1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * 45 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 46 * All rights reserved. 47 * 48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 49 * 50 * Permission to use, copy, modify and distribute this software and 51 * its documentation is hereby granted, provided that both the copyright 52 * notice and this permission notice appear in all copies of the 53 * software, derivative works or modified versions, and any portions 54 * thereof, and that both notices appear in supporting documentation. 55 * 56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 57 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 59 * 60 * Carnegie Mellon requests users of this software to return to 61 * 62 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 63 * School of Computer Science 64 * Carnegie Mellon University 65 * Pittsburgh PA 15213-3890 66 * 67 * any improvements or extensions that they make and grant Carnegie the 68 * rights to redistribute these changes. 69 */ 70 71 /* 72 * The proverbial page-out daemon. 73 */ 74 75 #include <sys/cdefs.h> 76 #include "opt_vm.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/kernel.h> 81 #include <sys/blockcount.h> 82 #include <sys/eventhandler.h> 83 #include <sys/lock.h> 84 #include <sys/mutex.h> 85 #include <sys/proc.h> 86 #include <sys/kthread.h> 87 #include <sys/ktr.h> 88 #include <sys/mount.h> 89 #include <sys/racct.h> 90 #include <sys/resourcevar.h> 91 #include <sys/sched.h> 92 #include <sys/sdt.h> 93 #include <sys/signalvar.h> 94 #include <sys/smp.h> 95 #include <sys/time.h> 96 #include <sys/vnode.h> 97 #include <sys/vmmeter.h> 98 #include <sys/rwlock.h> 99 #include <sys/sx.h> 100 #include <sys/sysctl.h> 101 102 #include <vm/vm.h> 103 #include <vm/vm_param.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_page.h> 106 #include <vm/vm_map.h> 107 #include <vm/vm_pageout.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_phys.h> 110 #include <vm/vm_pagequeue.h> 111 #include <vm/swap_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/uma.h> 114 115 /* 116 * System initialization 117 */ 118 119 /* the kernel process "vm_pageout"*/ 120 static void vm_pageout(void); 121 static void vm_pageout_init(void); 122 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 123 static int vm_pageout_cluster(vm_page_t m); 124 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 125 int starting_page_shortage); 126 127 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 128 NULL); 129 130 struct proc *pageproc; 131 132 static struct kproc_desc page_kp = { 133 "pagedaemon", 134 vm_pageout, 135 &pageproc 136 }; 137 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 138 &page_kp); 139 140 SDT_PROVIDER_DEFINE(vm); 141 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 142 143 /* Pagedaemon activity rates, in subdivisions of one second. */ 144 #define VM_LAUNDER_RATE 10 145 #define VM_INACT_SCAN_RATE 10 146 147 static int swapdev_enabled; 148 int vm_pageout_page_count = 32; 149 150 static int vm_panic_on_oom = 0; 151 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 152 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 153 "Panic on the given number of out-of-memory errors instead of " 154 "killing the largest process"); 155 156 static int vm_pageout_update_period; 157 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 158 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 159 "Maximum active LRU update period"); 160 161 static int pageout_cpus_per_thread = 16; 162 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN, 163 &pageout_cpus_per_thread, 0, 164 "Number of CPUs per pagedaemon worker thread"); 165 166 static int lowmem_period = 10; 167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 168 "Low memory callback period"); 169 170 static int disable_swap_pageouts; 171 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 172 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, 173 "Disallow swapout of dirty pages"); 174 175 static int pageout_lock_miss; 176 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 177 CTLFLAG_RD, &pageout_lock_miss, 0, 178 "vget() lock misses during pageout"); 179 180 static int vm_pageout_oom_seq = 12; 181 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 182 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 183 "back-to-back calls to oom detector to start OOM"); 184 185 static int act_scan_laundry_weight = 3; 186 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 187 &act_scan_laundry_weight, 0, 188 "weight given to clean vs. dirty pages in active queue scans"); 189 190 static u_int vm_background_launder_rate = 4096; 191 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 192 &vm_background_launder_rate, 0, 193 "background laundering rate, in kilobytes per second"); 194 195 static u_int vm_background_launder_max = 20 * 1024; 196 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 197 &vm_background_launder_max, 0, 198 "background laundering cap, in kilobytes"); 199 200 u_long vm_page_max_user_wired; 201 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW, 202 &vm_page_max_user_wired, 0, 203 "system-wide limit to user-wired page count"); 204 205 static u_int isqrt(u_int num); 206 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 207 bool in_shortfall); 208 static void vm_pageout_laundry_worker(void *arg); 209 210 struct scan_state { 211 struct vm_batchqueue bq; 212 struct vm_pagequeue *pq; 213 vm_page_t marker; 214 int maxscan; 215 int scanned; 216 }; 217 218 static void 219 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 220 vm_page_t marker, vm_page_t after, int maxscan) 221 { 222 223 vm_pagequeue_assert_locked(pq); 224 KASSERT((marker->a.flags & PGA_ENQUEUED) == 0, 225 ("marker %p already enqueued", marker)); 226 227 if (after == NULL) 228 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 229 else 230 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 231 vm_page_aflag_set(marker, PGA_ENQUEUED); 232 233 vm_batchqueue_init(&ss->bq); 234 ss->pq = pq; 235 ss->marker = marker; 236 ss->maxscan = maxscan; 237 ss->scanned = 0; 238 vm_pagequeue_unlock(pq); 239 } 240 241 static void 242 vm_pageout_end_scan(struct scan_state *ss) 243 { 244 struct vm_pagequeue *pq; 245 246 pq = ss->pq; 247 vm_pagequeue_assert_locked(pq); 248 KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0, 249 ("marker %p not enqueued", ss->marker)); 250 251 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 252 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 253 pq->pq_pdpages += ss->scanned; 254 } 255 256 /* 257 * Add a small number of queued pages to a batch queue for later processing 258 * without the corresponding queue lock held. The caller must have enqueued a 259 * marker page at the desired start point for the scan. Pages will be 260 * physically dequeued if the caller so requests. Otherwise, the returned 261 * batch may contain marker pages, and it is up to the caller to handle them. 262 * 263 * When processing the batch queue, vm_pageout_defer() must be used to 264 * determine whether the page has been logically dequeued since the batch was 265 * collected. 266 */ 267 static __always_inline void 268 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 269 { 270 struct vm_pagequeue *pq; 271 vm_page_t m, marker, n; 272 273 marker = ss->marker; 274 pq = ss->pq; 275 276 KASSERT((marker->a.flags & PGA_ENQUEUED) != 0, 277 ("marker %p not enqueued", ss->marker)); 278 279 vm_pagequeue_lock(pq); 280 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 281 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 282 m = n, ss->scanned++) { 283 n = TAILQ_NEXT(m, plinks.q); 284 if ((m->flags & PG_MARKER) == 0) { 285 KASSERT((m->a.flags & PGA_ENQUEUED) != 0, 286 ("page %p not enqueued", m)); 287 KASSERT((m->flags & PG_FICTITIOUS) == 0, 288 ("Fictitious page %p cannot be in page queue", m)); 289 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 290 ("Unmanaged page %p cannot be in page queue", m)); 291 } else if (dequeue) 292 continue; 293 294 (void)vm_batchqueue_insert(&ss->bq, m); 295 if (dequeue) { 296 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 297 vm_page_aflag_clear(m, PGA_ENQUEUED); 298 } 299 } 300 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 301 if (__predict_true(m != NULL)) 302 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 303 else 304 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 305 if (dequeue) 306 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 307 vm_pagequeue_unlock(pq); 308 } 309 310 /* 311 * Return the next page to be scanned, or NULL if the scan is complete. 312 */ 313 static __always_inline vm_page_t 314 vm_pageout_next(struct scan_state *ss, const bool dequeue) 315 { 316 317 if (ss->bq.bq_cnt == 0) 318 vm_pageout_collect_batch(ss, dequeue); 319 return (vm_batchqueue_pop(&ss->bq)); 320 } 321 322 /* 323 * Determine whether processing of a page should be deferred and ensure that any 324 * outstanding queue operations are processed. 325 */ 326 static __always_inline bool 327 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued) 328 { 329 vm_page_astate_t as; 330 331 as = vm_page_astate_load(m); 332 if (__predict_false(as.queue != queue || 333 ((as.flags & PGA_ENQUEUED) != 0) != enqueued)) 334 return (true); 335 if ((as.flags & PGA_QUEUE_OP_MASK) != 0) { 336 vm_page_pqbatch_submit(m, queue); 337 return (true); 338 } 339 return (false); 340 } 341 342 /* 343 * We can cluster only if the page is not clean, busy, or held, and the page is 344 * in the laundry queue. 345 */ 346 static bool 347 vm_pageout_flushable(vm_page_t m) 348 { 349 if (vm_page_tryxbusy(m) == 0) 350 return (false); 351 if (!vm_page_wired(m)) { 352 vm_page_test_dirty(m); 353 if (m->dirty != 0 && vm_page_in_laundry(m) && 354 vm_page_try_remove_write(m)) 355 return (true); 356 } 357 vm_page_xunbusy(m); 358 return (false); 359 } 360 361 /* 362 * Scan for pages at adjacent offsets within the given page's object that are 363 * eligible for laundering, form a cluster of these pages and the given page, 364 * and launder that cluster. 365 */ 366 static int 367 vm_pageout_cluster(vm_page_t m) 368 { 369 vm_object_t object; 370 vm_page_t mc[2 * vm_pageout_page_count - 1]; 371 int alignment, num_ends, page_base, pageout_count; 372 373 object = m->object; 374 VM_OBJECT_ASSERT_WLOCKED(object); 375 376 vm_page_assert_xbusied(m); 377 378 alignment = m->pindex % vm_pageout_page_count; 379 num_ends = 0; 380 page_base = nitems(mc) / 2; 381 pageout_count = 1; 382 mc[page_base] = m; 383 384 /* 385 * During heavy mmap/modification loads the pageout 386 * daemon can really fragment the underlying file 387 * due to flushing pages out of order and not trying to 388 * align the clusters (which leaves sporadic out-of-order 389 * holes). To solve this problem we do the reverse scan 390 * first and attempt to align our cluster, then do a 391 * forward scan if room remains. 392 */ 393 more: 394 m = mc[page_base]; 395 while (pageout_count < vm_pageout_page_count) { 396 /* 397 * If we are at an alignment boundary, and haven't reached the 398 * last flushable page forward, stop here, and switch 399 * directions. 400 */ 401 if (alignment == pageout_count - 1 && num_ends == 0) 402 break; 403 404 m = vm_page_prev(m); 405 if (m == NULL || !vm_pageout_flushable(m)) { 406 num_ends++; 407 break; 408 } 409 mc[--page_base] = m; 410 ++pageout_count; 411 } 412 m = mc[page_base + pageout_count - 1]; 413 while (num_ends != 2 && pageout_count < vm_pageout_page_count) { 414 m = vm_page_next(m); 415 if (m == NULL || !vm_pageout_flushable(m)) { 416 if (num_ends++ == 0) 417 /* Resume the reverse scan. */ 418 goto more; 419 break; 420 } 421 mc[page_base + pageout_count] = m; 422 ++pageout_count; 423 } 424 425 return (vm_pageout_flush(&mc[page_base], pageout_count, 426 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 427 } 428 429 /* 430 * vm_pageout_flush() - launder the given pages 431 * 432 * The given pages are laundered. Note that we setup for the start of 433 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 434 * reference count all in here rather then in the parent. If we want 435 * the parent to do more sophisticated things we may have to change 436 * the ordering. 437 * 438 * Returned runlen is the count of pages between mreq and first 439 * page after mreq with status VM_PAGER_AGAIN. 440 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 441 * for any page in runlen set. 442 */ 443 int 444 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 445 boolean_t *eio) 446 { 447 vm_object_t object = mc[0]->object; 448 int pageout_status[count]; 449 int numpagedout = 0; 450 int i, runlen; 451 452 VM_OBJECT_ASSERT_WLOCKED(object); 453 454 /* 455 * Initiate I/O. Mark the pages shared busy and verify that they're 456 * valid and read-only. 457 * 458 * We do not have to fixup the clean/dirty bits here... we can 459 * allow the pager to do it after the I/O completes. 460 * 461 * NOTE! mc[i]->dirty may be partial or fragmented due to an 462 * edge case with file fragments. 463 */ 464 for (i = 0; i < count; i++) { 465 KASSERT(vm_page_all_valid(mc[i]), 466 ("vm_pageout_flush: partially invalid page %p index %d/%d", 467 mc[i], i, count)); 468 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0, 469 ("vm_pageout_flush: writeable page %p", mc[i])); 470 vm_page_busy_downgrade(mc[i]); 471 } 472 vm_object_pip_add(object, count); 473 474 vm_pager_put_pages(object, mc, count, flags, pageout_status); 475 476 runlen = count - mreq; 477 if (eio != NULL) 478 *eio = FALSE; 479 for (i = 0; i < count; i++) { 480 vm_page_t mt = mc[i]; 481 482 KASSERT(pageout_status[i] == VM_PAGER_PEND || 483 !pmap_page_is_write_mapped(mt), 484 ("vm_pageout_flush: page %p is not write protected", mt)); 485 switch (pageout_status[i]) { 486 case VM_PAGER_OK: 487 /* 488 * The page may have moved since laundering started, in 489 * which case it should be left alone. 490 */ 491 if (vm_page_in_laundry(mt)) 492 vm_page_deactivate_noreuse(mt); 493 /* FALLTHROUGH */ 494 case VM_PAGER_PEND: 495 numpagedout++; 496 break; 497 case VM_PAGER_BAD: 498 /* 499 * The page is outside the object's range. We pretend 500 * that the page out worked and clean the page, so the 501 * changes will be lost if the page is reclaimed by 502 * the page daemon. 503 */ 504 vm_page_undirty(mt); 505 if (vm_page_in_laundry(mt)) 506 vm_page_deactivate_noreuse(mt); 507 break; 508 case VM_PAGER_ERROR: 509 case VM_PAGER_FAIL: 510 /* 511 * If the page couldn't be paged out to swap because the 512 * pager wasn't able to find space, place the page in 513 * the PQ_UNSWAPPABLE holding queue. This is an 514 * optimization that prevents the page daemon from 515 * wasting CPU cycles on pages that cannot be reclaimed 516 * because no swap device is configured. 517 * 518 * Otherwise, reactivate the page so that it doesn't 519 * clog the laundry and inactive queues. (We will try 520 * paging it out again later.) 521 */ 522 if ((object->flags & OBJ_SWAP) != 0 && 523 pageout_status[i] == VM_PAGER_FAIL) { 524 vm_page_unswappable(mt); 525 numpagedout++; 526 } else 527 vm_page_activate(mt); 528 if (eio != NULL && i >= mreq && i - mreq < runlen) 529 *eio = TRUE; 530 break; 531 case VM_PAGER_AGAIN: 532 if (i >= mreq && i - mreq < runlen) 533 runlen = i - mreq; 534 break; 535 } 536 537 /* 538 * If the operation is still going, leave the page busy to 539 * block all other accesses. Also, leave the paging in 540 * progress indicator set so that we don't attempt an object 541 * collapse. 542 */ 543 if (pageout_status[i] != VM_PAGER_PEND) { 544 vm_object_pip_wakeup(object); 545 vm_page_sunbusy(mt); 546 } 547 } 548 if (prunlen != NULL) 549 *prunlen = runlen; 550 return (numpagedout); 551 } 552 553 static void 554 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 555 { 556 557 atomic_store_rel_int(&swapdev_enabled, 1); 558 } 559 560 static void 561 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 562 { 563 564 if (swap_pager_nswapdev() == 1) 565 atomic_store_rel_int(&swapdev_enabled, 0); 566 } 567 568 /* 569 * Attempt to acquire all of the necessary locks to launder a page and 570 * then call through the clustering layer to PUTPAGES. Wait a short 571 * time for a vnode lock. 572 * 573 * Requires the page and object lock on entry, releases both before return. 574 * Returns 0 on success and an errno otherwise. 575 */ 576 static int 577 vm_pageout_clean(vm_page_t m, int *numpagedout) 578 { 579 struct vnode *vp; 580 struct mount *mp; 581 vm_object_t object; 582 vm_pindex_t pindex; 583 int error; 584 585 object = m->object; 586 VM_OBJECT_ASSERT_WLOCKED(object); 587 error = 0; 588 vp = NULL; 589 mp = NULL; 590 591 /* 592 * The object is already known NOT to be dead. It 593 * is possible for the vget() to block the whole 594 * pageout daemon, but the new low-memory handling 595 * code should prevent it. 596 * 597 * We can't wait forever for the vnode lock, we might 598 * deadlock due to a vn_read() getting stuck in 599 * vm_wait while holding this vnode. We skip the 600 * vnode if we can't get it in a reasonable amount 601 * of time. 602 */ 603 if (object->type == OBJT_VNODE) { 604 vm_page_xunbusy(m); 605 vp = object->handle; 606 if (vp->v_type == VREG && 607 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 608 mp = NULL; 609 error = EDEADLK; 610 goto unlock_all; 611 } 612 KASSERT(mp != NULL, 613 ("vp %p with NULL v_mount", vp)); 614 vm_object_reference_locked(object); 615 pindex = m->pindex; 616 VM_OBJECT_WUNLOCK(object); 617 if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) { 618 vp = NULL; 619 error = EDEADLK; 620 goto unlock_mp; 621 } 622 VM_OBJECT_WLOCK(object); 623 624 /* 625 * Ensure that the object and vnode were not disassociated 626 * while locks were dropped. 627 */ 628 if (vp->v_object != object) { 629 error = ENOENT; 630 goto unlock_all; 631 } 632 633 /* 634 * While the object was unlocked, the page may have been: 635 * (1) moved to a different queue, 636 * (2) reallocated to a different object, 637 * (3) reallocated to a different offset, or 638 * (4) cleaned. 639 */ 640 if (!vm_page_in_laundry(m) || m->object != object || 641 m->pindex != pindex || m->dirty == 0) { 642 error = ENXIO; 643 goto unlock_all; 644 } 645 646 /* 647 * The page may have been busied while the object lock was 648 * released. 649 */ 650 if (vm_page_tryxbusy(m) == 0) { 651 error = EBUSY; 652 goto unlock_all; 653 } 654 } 655 656 /* 657 * Remove all writeable mappings, failing if the page is wired. 658 */ 659 if (!vm_page_try_remove_write(m)) { 660 vm_page_xunbusy(m); 661 error = EBUSY; 662 goto unlock_all; 663 } 664 665 /* 666 * If a page is dirty, then it is either being washed 667 * (but not yet cleaned) or it is still in the 668 * laundry. If it is still in the laundry, then we 669 * start the cleaning operation. 670 */ 671 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 672 error = EIO; 673 674 unlock_all: 675 VM_OBJECT_WUNLOCK(object); 676 677 unlock_mp: 678 if (mp != NULL) { 679 if (vp != NULL) 680 vput(vp); 681 vm_object_deallocate(object); 682 vn_finished_write(mp); 683 } 684 685 return (error); 686 } 687 688 /* 689 * Attempt to launder the specified number of pages. 690 * 691 * Returns the number of pages successfully laundered. 692 */ 693 static int 694 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 695 { 696 struct scan_state ss; 697 struct vm_pagequeue *pq; 698 vm_object_t object; 699 vm_page_t m, marker; 700 vm_page_astate_t new, old; 701 int act_delta, error, numpagedout, queue, refs, starting_target; 702 int vnodes_skipped; 703 bool pageout_ok; 704 705 object = NULL; 706 starting_target = launder; 707 vnodes_skipped = 0; 708 709 /* 710 * Scan the laundry queues for pages eligible to be laundered. We stop 711 * once the target number of dirty pages have been laundered, or once 712 * we've reached the end of the queue. A single iteration of this loop 713 * may cause more than one page to be laundered because of clustering. 714 * 715 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 716 * swap devices are configured. 717 */ 718 if (atomic_load_acq_int(&swapdev_enabled)) 719 queue = PQ_UNSWAPPABLE; 720 else 721 queue = PQ_LAUNDRY; 722 723 scan: 724 marker = &vmd->vmd_markers[queue]; 725 pq = &vmd->vmd_pagequeues[queue]; 726 vm_pagequeue_lock(pq); 727 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 728 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 729 if (__predict_false((m->flags & PG_MARKER) != 0)) 730 continue; 731 732 /* 733 * Don't touch a page that was removed from the queue after the 734 * page queue lock was released. Otherwise, ensure that any 735 * pending queue operations, such as dequeues for wired pages, 736 * are handled. 737 */ 738 if (vm_pageout_defer(m, queue, true)) 739 continue; 740 741 /* 742 * Lock the page's object. 743 */ 744 if (object == NULL || object != m->object) { 745 if (object != NULL) 746 VM_OBJECT_WUNLOCK(object); 747 object = atomic_load_ptr(&m->object); 748 if (__predict_false(object == NULL)) 749 /* The page is being freed by another thread. */ 750 continue; 751 752 /* Depends on type-stability. */ 753 VM_OBJECT_WLOCK(object); 754 if (__predict_false(m->object != object)) { 755 VM_OBJECT_WUNLOCK(object); 756 object = NULL; 757 continue; 758 } 759 } 760 761 if (vm_page_tryxbusy(m) == 0) 762 continue; 763 764 /* 765 * Check for wirings now that we hold the object lock and have 766 * exclusively busied the page. If the page is mapped, it may 767 * still be wired by pmap lookups. The call to 768 * vm_page_try_remove_all() below atomically checks for such 769 * wirings and removes mappings. If the page is unmapped, the 770 * wire count is guaranteed not to increase after this check. 771 */ 772 if (__predict_false(vm_page_wired(m))) 773 goto skip_page; 774 775 /* 776 * Invalid pages can be easily freed. They cannot be 777 * mapped; vm_page_free() asserts this. 778 */ 779 if (vm_page_none_valid(m)) 780 goto free_page; 781 782 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 783 784 for (old = vm_page_astate_load(m);;) { 785 /* 786 * Check to see if the page has been removed from the 787 * queue since the first such check. Leave it alone if 788 * so, discarding any references collected by 789 * pmap_ts_referenced(). 790 */ 791 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 792 goto skip_page; 793 794 new = old; 795 act_delta = refs; 796 if ((old.flags & PGA_REFERENCED) != 0) { 797 new.flags &= ~PGA_REFERENCED; 798 act_delta++; 799 } 800 if (act_delta == 0) { 801 ; 802 } else if (object->ref_count != 0) { 803 /* 804 * Increase the activation count if the page was 805 * referenced while in the laundry queue. This 806 * makes it less likely that the page will be 807 * returned prematurely to the laundry queue. 808 */ 809 new.act_count += ACT_ADVANCE + 810 act_delta; 811 if (new.act_count > ACT_MAX) 812 new.act_count = ACT_MAX; 813 814 new.flags &= ~PGA_QUEUE_OP_MASK; 815 new.flags |= PGA_REQUEUE; 816 new.queue = PQ_ACTIVE; 817 if (!vm_page_pqstate_commit(m, &old, new)) 818 continue; 819 820 /* 821 * If this was a background laundering, count 822 * activated pages towards our target. The 823 * purpose of background laundering is to ensure 824 * that pages are eventually cycled through the 825 * laundry queue, and an activation is a valid 826 * way out. 827 */ 828 if (!in_shortfall) 829 launder--; 830 VM_CNT_INC(v_reactivated); 831 goto skip_page; 832 } else if ((object->flags & OBJ_DEAD) == 0) { 833 new.flags |= PGA_REQUEUE; 834 if (!vm_page_pqstate_commit(m, &old, new)) 835 continue; 836 goto skip_page; 837 } 838 break; 839 } 840 841 /* 842 * If the page appears to be clean at the machine-independent 843 * layer, then remove all of its mappings from the pmap in 844 * anticipation of freeing it. If, however, any of the page's 845 * mappings allow write access, then the page may still be 846 * modified until the last of those mappings are removed. 847 */ 848 if (object->ref_count != 0) { 849 vm_page_test_dirty(m); 850 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 851 goto skip_page; 852 } 853 854 /* 855 * Clean pages are freed, and dirty pages are paged out unless 856 * they belong to a dead object. Requeueing dirty pages from 857 * dead objects is pointless, as they are being paged out and 858 * freed by the thread that destroyed the object. 859 */ 860 if (m->dirty == 0) { 861 free_page: 862 /* 863 * Now we are guaranteed that no other threads are 864 * manipulating the page, check for a last-second 865 * reference. 866 */ 867 if (vm_pageout_defer(m, queue, true)) 868 goto skip_page; 869 vm_page_free(m); 870 VM_CNT_INC(v_dfree); 871 } else if ((object->flags & OBJ_DEAD) == 0) { 872 if ((object->flags & OBJ_SWAP) != 0) 873 pageout_ok = disable_swap_pageouts == 0; 874 else 875 pageout_ok = true; 876 if (!pageout_ok) { 877 vm_page_launder(m); 878 goto skip_page; 879 } 880 881 /* 882 * Form a cluster with adjacent, dirty pages from the 883 * same object, and page out that entire cluster. 884 * 885 * The adjacent, dirty pages must also be in the 886 * laundry. However, their mappings are not checked 887 * for new references. Consequently, a recently 888 * referenced page may be paged out. However, that 889 * page will not be prematurely reclaimed. After page 890 * out, the page will be placed in the inactive queue, 891 * where any new references will be detected and the 892 * page reactivated. 893 */ 894 error = vm_pageout_clean(m, &numpagedout); 895 if (error == 0) { 896 launder -= numpagedout; 897 ss.scanned += numpagedout; 898 } else if (error == EDEADLK) { 899 pageout_lock_miss++; 900 vnodes_skipped++; 901 } 902 object = NULL; 903 } else { 904 skip_page: 905 vm_page_xunbusy(m); 906 } 907 } 908 if (object != NULL) { 909 VM_OBJECT_WUNLOCK(object); 910 object = NULL; 911 } 912 vm_pagequeue_lock(pq); 913 vm_pageout_end_scan(&ss); 914 vm_pagequeue_unlock(pq); 915 916 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 917 queue = PQ_LAUNDRY; 918 goto scan; 919 } 920 921 /* 922 * Wakeup the sync daemon if we skipped a vnode in a writeable object 923 * and we didn't launder enough pages. 924 */ 925 if (vnodes_skipped > 0 && launder > 0) 926 (void)speedup_syncer(); 927 928 return (starting_target - launder); 929 } 930 931 /* 932 * Compute the integer square root. 933 */ 934 static u_int 935 isqrt(u_int num) 936 { 937 u_int bit, root, tmp; 938 939 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0; 940 root = 0; 941 while (bit != 0) { 942 tmp = root + bit; 943 root >>= 1; 944 if (num >= tmp) { 945 num -= tmp; 946 root += bit; 947 } 948 bit >>= 2; 949 } 950 return (root); 951 } 952 953 /* 954 * Perform the work of the laundry thread: periodically wake up and determine 955 * whether any pages need to be laundered. If so, determine the number of pages 956 * that need to be laundered, and launder them. 957 */ 958 static void 959 vm_pageout_laundry_worker(void *arg) 960 { 961 struct vm_domain *vmd; 962 struct vm_pagequeue *pq; 963 uint64_t nclean, ndirty, nfreed; 964 int domain, last_target, launder, shortfall, shortfall_cycle, target; 965 bool in_shortfall; 966 967 domain = (uintptr_t)arg; 968 vmd = VM_DOMAIN(domain); 969 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 970 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 971 972 shortfall = 0; 973 in_shortfall = false; 974 shortfall_cycle = 0; 975 last_target = target = 0; 976 nfreed = 0; 977 978 /* 979 * Calls to these handlers are serialized by the swap syscall lock. 980 */ 981 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 982 EVENTHANDLER_PRI_ANY); 983 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 984 EVENTHANDLER_PRI_ANY); 985 986 /* 987 * The pageout laundry worker is never done, so loop forever. 988 */ 989 for (;;) { 990 KASSERT(target >= 0, ("negative target %d", target)); 991 KASSERT(shortfall_cycle >= 0, 992 ("negative cycle %d", shortfall_cycle)); 993 launder = 0; 994 995 /* 996 * First determine whether we need to launder pages to meet a 997 * shortage of free pages. 998 */ 999 if (shortfall > 0) { 1000 in_shortfall = true; 1001 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 1002 target = shortfall; 1003 } else if (!in_shortfall) 1004 goto trybackground; 1005 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 1006 /* 1007 * We recently entered shortfall and began laundering 1008 * pages. If we have completed that laundering run 1009 * (and we are no longer in shortfall) or we have met 1010 * our laundry target through other activity, then we 1011 * can stop laundering pages. 1012 */ 1013 in_shortfall = false; 1014 target = 0; 1015 goto trybackground; 1016 } 1017 launder = target / shortfall_cycle--; 1018 goto dolaundry; 1019 1020 /* 1021 * There's no immediate need to launder any pages; see if we 1022 * meet the conditions to perform background laundering: 1023 * 1024 * 1. The ratio of dirty to clean inactive pages exceeds the 1025 * background laundering threshold, or 1026 * 2. we haven't yet reached the target of the current 1027 * background laundering run. 1028 * 1029 * The background laundering threshold is not a constant. 1030 * Instead, it is a slowly growing function of the number of 1031 * clean pages freed by the page daemon since the last 1032 * background laundering. Thus, as the ratio of dirty to 1033 * clean inactive pages grows, the amount of memory pressure 1034 * required to trigger laundering decreases. We ensure 1035 * that the threshold is non-zero after an inactive queue 1036 * scan, even if that scan failed to free a single clean page. 1037 */ 1038 trybackground: 1039 nclean = vmd->vmd_free_count + 1040 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1041 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1042 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1043 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1044 target = vmd->vmd_background_launder_target; 1045 } 1046 1047 /* 1048 * We have a non-zero background laundering target. If we've 1049 * laundered up to our maximum without observing a page daemon 1050 * request, just stop. This is a safety belt that ensures we 1051 * don't launder an excessive amount if memory pressure is low 1052 * and the ratio of dirty to clean pages is large. Otherwise, 1053 * proceed at the background laundering rate. 1054 */ 1055 if (target > 0) { 1056 if (nfreed > 0) { 1057 nfreed = 0; 1058 last_target = target; 1059 } else if (last_target - target >= 1060 vm_background_launder_max * PAGE_SIZE / 1024) { 1061 target = 0; 1062 } 1063 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1064 launder /= VM_LAUNDER_RATE; 1065 if (launder > target) 1066 launder = target; 1067 } 1068 1069 dolaundry: 1070 if (launder > 0) { 1071 /* 1072 * Because of I/O clustering, the number of laundered 1073 * pages could exceed "target" by the maximum size of 1074 * a cluster minus one. 1075 */ 1076 target -= min(vm_pageout_launder(vmd, launder, 1077 in_shortfall), target); 1078 pause("laundp", hz / VM_LAUNDER_RATE); 1079 } 1080 1081 /* 1082 * If we're not currently laundering pages and the page daemon 1083 * hasn't posted a new request, sleep until the page daemon 1084 * kicks us. 1085 */ 1086 vm_pagequeue_lock(pq); 1087 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1088 (void)mtx_sleep(&vmd->vmd_laundry_request, 1089 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1090 1091 /* 1092 * If the pagedaemon has indicated that it's in shortfall, start 1093 * a shortfall laundering unless we're already in the middle of 1094 * one. This may preempt a background laundering. 1095 */ 1096 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1097 (!in_shortfall || shortfall_cycle == 0)) { 1098 shortfall = vm_laundry_target(vmd) + 1099 vmd->vmd_pageout_deficit; 1100 target = 0; 1101 } else 1102 shortfall = 0; 1103 1104 if (target == 0) 1105 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1106 nfreed += vmd->vmd_clean_pages_freed; 1107 vmd->vmd_clean_pages_freed = 0; 1108 vm_pagequeue_unlock(pq); 1109 } 1110 } 1111 1112 /* 1113 * Compute the number of pages we want to try to move from the 1114 * active queue to either the inactive or laundry queue. 1115 * 1116 * When scanning active pages during a shortage, we make clean pages 1117 * count more heavily towards the page shortage than dirty pages. 1118 * This is because dirty pages must be laundered before they can be 1119 * reused and thus have less utility when attempting to quickly 1120 * alleviate a free page shortage. However, this weighting also 1121 * causes the scan to deactivate dirty pages more aggressively, 1122 * improving the effectiveness of clustering. 1123 */ 1124 static int 1125 vm_pageout_active_target(struct vm_domain *vmd) 1126 { 1127 int shortage; 1128 1129 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) - 1130 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt + 1131 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight); 1132 shortage *= act_scan_laundry_weight; 1133 return (shortage); 1134 } 1135 1136 /* 1137 * Scan the active queue. If there is no shortage of inactive pages, scan a 1138 * small portion of the queue in order to maintain quasi-LRU. 1139 */ 1140 static void 1141 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage) 1142 { 1143 struct scan_state ss; 1144 vm_object_t object; 1145 vm_page_t m, marker; 1146 struct vm_pagequeue *pq; 1147 vm_page_astate_t old, new; 1148 long min_scan; 1149 int act_delta, max_scan, ps_delta, refs, scan_tick; 1150 uint8_t nqueue; 1151 1152 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1153 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1154 vm_pagequeue_lock(pq); 1155 1156 /* 1157 * If we're just idle polling attempt to visit every 1158 * active page within 'update_period' seconds. 1159 */ 1160 scan_tick = ticks; 1161 if (vm_pageout_update_period != 0) { 1162 min_scan = pq->pq_cnt; 1163 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1164 min_scan /= hz * vm_pageout_update_period; 1165 } else 1166 min_scan = 0; 1167 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0)) 1168 vmd->vmd_last_active_scan = scan_tick; 1169 1170 /* 1171 * Scan the active queue for pages that can be deactivated. Update 1172 * the per-page activity counter and use it to identify deactivation 1173 * candidates. Held pages may be deactivated. 1174 * 1175 * To avoid requeuing each page that remains in the active queue, we 1176 * implement the CLOCK algorithm. To keep the implementation of the 1177 * enqueue operation consistent for all page queues, we use two hands, 1178 * represented by marker pages. Scans begin at the first hand, which 1179 * precedes the second hand in the queue. When the two hands meet, 1180 * they are moved back to the head and tail of the queue, respectively, 1181 * and scanning resumes. 1182 */ 1183 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan; 1184 act_scan: 1185 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1186 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1187 if (__predict_false(m == &vmd->vmd_clock[1])) { 1188 vm_pagequeue_lock(pq); 1189 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1190 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1191 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1192 plinks.q); 1193 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1194 plinks.q); 1195 max_scan -= ss.scanned; 1196 vm_pageout_end_scan(&ss); 1197 goto act_scan; 1198 } 1199 if (__predict_false((m->flags & PG_MARKER) != 0)) 1200 continue; 1201 1202 /* 1203 * Don't touch a page that was removed from the queue after the 1204 * page queue lock was released. Otherwise, ensure that any 1205 * pending queue operations, such as dequeues for wired pages, 1206 * are handled. 1207 */ 1208 if (vm_pageout_defer(m, PQ_ACTIVE, true)) 1209 continue; 1210 1211 /* 1212 * A page's object pointer may be set to NULL before 1213 * the object lock is acquired. 1214 */ 1215 object = atomic_load_ptr(&m->object); 1216 if (__predict_false(object == NULL)) 1217 /* 1218 * The page has been removed from its object. 1219 */ 1220 continue; 1221 1222 /* Deferred free of swap space. */ 1223 if ((m->a.flags & PGA_SWAP_FREE) != 0 && 1224 VM_OBJECT_TRYWLOCK(object)) { 1225 if (m->object == object) 1226 vm_pager_page_unswapped(m); 1227 VM_OBJECT_WUNLOCK(object); 1228 } 1229 1230 /* 1231 * Check to see "how much" the page has been used. 1232 * 1233 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1234 * that a reference from a concurrently destroyed mapping is 1235 * observed here and now. 1236 * 1237 * Perform an unsynchronized object ref count check. While 1238 * the page lock ensures that the page is not reallocated to 1239 * another object, in particular, one with unmanaged mappings 1240 * that cannot support pmap_ts_referenced(), two races are, 1241 * nonetheless, possible: 1242 * 1) The count was transitioning to zero, but we saw a non- 1243 * zero value. pmap_ts_referenced() will return zero 1244 * because the page is not mapped. 1245 * 2) The count was transitioning to one, but we saw zero. 1246 * This race delays the detection of a new reference. At 1247 * worst, we will deactivate and reactivate the page. 1248 */ 1249 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 1250 1251 old = vm_page_astate_load(m); 1252 do { 1253 /* 1254 * Check to see if the page has been removed from the 1255 * queue since the first such check. Leave it alone if 1256 * so, discarding any references collected by 1257 * pmap_ts_referenced(). 1258 */ 1259 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) { 1260 ps_delta = 0; 1261 break; 1262 } 1263 1264 /* 1265 * Advance or decay the act_count based on recent usage. 1266 */ 1267 new = old; 1268 act_delta = refs; 1269 if ((old.flags & PGA_REFERENCED) != 0) { 1270 new.flags &= ~PGA_REFERENCED; 1271 act_delta++; 1272 } 1273 if (act_delta != 0) { 1274 new.act_count += ACT_ADVANCE + act_delta; 1275 if (new.act_count > ACT_MAX) 1276 new.act_count = ACT_MAX; 1277 } else { 1278 new.act_count -= min(new.act_count, 1279 ACT_DECLINE); 1280 } 1281 1282 if (new.act_count > 0) { 1283 /* 1284 * Adjust the activation count and keep the page 1285 * in the active queue. The count might be left 1286 * unchanged if it is saturated. The page may 1287 * have been moved to a different queue since we 1288 * started the scan, in which case we move it 1289 * back. 1290 */ 1291 ps_delta = 0; 1292 if (old.queue != PQ_ACTIVE) { 1293 new.flags &= ~PGA_QUEUE_OP_MASK; 1294 new.flags |= PGA_REQUEUE; 1295 new.queue = PQ_ACTIVE; 1296 } 1297 } else { 1298 /* 1299 * When not short for inactive pages, let dirty 1300 * pages go through the inactive queue before 1301 * moving to the laundry queue. This gives them 1302 * some extra time to be reactivated, 1303 * potentially avoiding an expensive pageout. 1304 * However, during a page shortage, the inactive 1305 * queue is necessarily small, and so dirty 1306 * pages would only spend a trivial amount of 1307 * time in the inactive queue. Therefore, we 1308 * might as well place them directly in the 1309 * laundry queue to reduce queuing overhead. 1310 * 1311 * Calling vm_page_test_dirty() here would 1312 * require acquisition of the object's write 1313 * lock. However, during a page shortage, 1314 * directing dirty pages into the laundry queue 1315 * is only an optimization and not a 1316 * requirement. Therefore, we simply rely on 1317 * the opportunistic updates to the page's dirty 1318 * field by the pmap. 1319 */ 1320 if (page_shortage <= 0) { 1321 nqueue = PQ_INACTIVE; 1322 ps_delta = 0; 1323 } else if (m->dirty == 0) { 1324 nqueue = PQ_INACTIVE; 1325 ps_delta = act_scan_laundry_weight; 1326 } else { 1327 nqueue = PQ_LAUNDRY; 1328 ps_delta = 1; 1329 } 1330 1331 new.flags &= ~PGA_QUEUE_OP_MASK; 1332 new.flags |= PGA_REQUEUE; 1333 new.queue = nqueue; 1334 } 1335 } while (!vm_page_pqstate_commit(m, &old, new)); 1336 1337 page_shortage -= ps_delta; 1338 } 1339 vm_pagequeue_lock(pq); 1340 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1341 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1342 vm_pageout_end_scan(&ss); 1343 vm_pagequeue_unlock(pq); 1344 } 1345 1346 static int 1347 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker, 1348 vm_page_t m) 1349 { 1350 vm_page_astate_t as; 1351 1352 vm_pagequeue_assert_locked(pq); 1353 1354 as = vm_page_astate_load(m); 1355 if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0) 1356 return (0); 1357 vm_page_aflag_set(m, PGA_ENQUEUED); 1358 TAILQ_INSERT_BEFORE(marker, m, plinks.q); 1359 return (1); 1360 } 1361 1362 /* 1363 * Re-add stuck pages to the inactive queue. We will examine them again 1364 * during the next scan. If the queue state of a page has changed since 1365 * it was physically removed from the page queue in 1366 * vm_pageout_collect_batch(), don't do anything with that page. 1367 */ 1368 static void 1369 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1370 vm_page_t m) 1371 { 1372 struct vm_pagequeue *pq; 1373 vm_page_t marker; 1374 int delta; 1375 1376 delta = 0; 1377 marker = ss->marker; 1378 pq = ss->pq; 1379 1380 if (m != NULL) { 1381 if (vm_batchqueue_insert(bq, m) != 0) 1382 return; 1383 vm_pagequeue_lock(pq); 1384 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1385 } else 1386 vm_pagequeue_lock(pq); 1387 while ((m = vm_batchqueue_pop(bq)) != NULL) 1388 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1389 vm_pagequeue_cnt_add(pq, delta); 1390 vm_pagequeue_unlock(pq); 1391 vm_batchqueue_init(bq); 1392 } 1393 1394 static void 1395 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage) 1396 { 1397 struct timeval start, end; 1398 struct scan_state ss; 1399 struct vm_batchqueue rq; 1400 struct vm_page marker_page; 1401 vm_page_t m, marker; 1402 struct vm_pagequeue *pq; 1403 vm_object_t object; 1404 vm_page_astate_t old, new; 1405 int act_delta, addl_page_shortage, starting_page_shortage, refs; 1406 1407 object = NULL; 1408 vm_batchqueue_init(&rq); 1409 getmicrouptime(&start); 1410 1411 /* 1412 * The addl_page_shortage is an estimate of the number of temporarily 1413 * stuck pages in the inactive queue. In other words, the 1414 * number of pages from the inactive count that should be 1415 * discounted in setting the target for the active queue scan. 1416 */ 1417 addl_page_shortage = 0; 1418 1419 /* 1420 * Start scanning the inactive queue for pages that we can free. The 1421 * scan will stop when we reach the target or we have scanned the 1422 * entire queue. (Note that m->a.act_count is not used to make 1423 * decisions for the inactive queue, only for the active queue.) 1424 */ 1425 starting_page_shortage = page_shortage; 1426 marker = &marker_page; 1427 vm_page_init_marker(marker, PQ_INACTIVE, 0); 1428 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1429 vm_pagequeue_lock(pq); 1430 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1431 while (page_shortage > 0) { 1432 /* 1433 * If we need to refill the scan batch queue, release any 1434 * optimistically held object lock. This gives someone else a 1435 * chance to grab the lock, and also avoids holding it while we 1436 * do unrelated work. 1437 */ 1438 if (object != NULL && vm_batchqueue_empty(&ss.bq)) { 1439 VM_OBJECT_WUNLOCK(object); 1440 object = NULL; 1441 } 1442 1443 m = vm_pageout_next(&ss, true); 1444 if (m == NULL) 1445 break; 1446 KASSERT((m->flags & PG_MARKER) == 0, 1447 ("marker page %p was dequeued", m)); 1448 1449 /* 1450 * Don't touch a page that was removed from the queue after the 1451 * page queue lock was released. Otherwise, ensure that any 1452 * pending queue operations, such as dequeues for wired pages, 1453 * are handled. 1454 */ 1455 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1456 continue; 1457 1458 /* 1459 * Lock the page's object. 1460 */ 1461 if (object == NULL || object != m->object) { 1462 if (object != NULL) 1463 VM_OBJECT_WUNLOCK(object); 1464 object = atomic_load_ptr(&m->object); 1465 if (__predict_false(object == NULL)) 1466 /* The page is being freed by another thread. */ 1467 continue; 1468 1469 /* Depends on type-stability. */ 1470 VM_OBJECT_WLOCK(object); 1471 if (__predict_false(m->object != object)) { 1472 VM_OBJECT_WUNLOCK(object); 1473 object = NULL; 1474 goto reinsert; 1475 } 1476 } 1477 1478 if (vm_page_tryxbusy(m) == 0) { 1479 /* 1480 * Don't mess with busy pages. Leave them at 1481 * the front of the queue. Most likely, they 1482 * are being paged out and will leave the 1483 * queue shortly after the scan finishes. So, 1484 * they ought to be discounted from the 1485 * inactive count. 1486 */ 1487 addl_page_shortage++; 1488 goto reinsert; 1489 } 1490 1491 /* Deferred free of swap space. */ 1492 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1493 vm_pager_page_unswapped(m); 1494 1495 /* 1496 * Check for wirings now that we hold the object lock and have 1497 * exclusively busied the page. If the page is mapped, it may 1498 * still be wired by pmap lookups. The call to 1499 * vm_page_try_remove_all() below atomically checks for such 1500 * wirings and removes mappings. If the page is unmapped, the 1501 * wire count is guaranteed not to increase after this check. 1502 */ 1503 if (__predict_false(vm_page_wired(m))) 1504 goto skip_page; 1505 1506 /* 1507 * Invalid pages can be easily freed. They cannot be 1508 * mapped, vm_page_free() asserts this. 1509 */ 1510 if (vm_page_none_valid(m)) 1511 goto free_page; 1512 1513 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 1514 1515 for (old = vm_page_astate_load(m);;) { 1516 /* 1517 * Check to see if the page has been removed from the 1518 * queue since the first such check. Leave it alone if 1519 * so, discarding any references collected by 1520 * pmap_ts_referenced(). 1521 */ 1522 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 1523 goto skip_page; 1524 1525 new = old; 1526 act_delta = refs; 1527 if ((old.flags & PGA_REFERENCED) != 0) { 1528 new.flags &= ~PGA_REFERENCED; 1529 act_delta++; 1530 } 1531 if (act_delta == 0) { 1532 ; 1533 } else if (object->ref_count != 0) { 1534 /* 1535 * Increase the activation count if the 1536 * page was referenced while in the 1537 * inactive queue. This makes it less 1538 * likely that the page will be returned 1539 * prematurely to the inactive queue. 1540 */ 1541 new.act_count += ACT_ADVANCE + 1542 act_delta; 1543 if (new.act_count > ACT_MAX) 1544 new.act_count = ACT_MAX; 1545 1546 new.flags &= ~PGA_QUEUE_OP_MASK; 1547 new.flags |= PGA_REQUEUE; 1548 new.queue = PQ_ACTIVE; 1549 if (!vm_page_pqstate_commit(m, &old, new)) 1550 continue; 1551 1552 VM_CNT_INC(v_reactivated); 1553 goto skip_page; 1554 } else if ((object->flags & OBJ_DEAD) == 0) { 1555 new.queue = PQ_INACTIVE; 1556 new.flags |= PGA_REQUEUE; 1557 if (!vm_page_pqstate_commit(m, &old, new)) 1558 continue; 1559 goto skip_page; 1560 } 1561 break; 1562 } 1563 1564 /* 1565 * If the page appears to be clean at the machine-independent 1566 * layer, then remove all of its mappings from the pmap in 1567 * anticipation of freeing it. If, however, any of the page's 1568 * mappings allow write access, then the page may still be 1569 * modified until the last of those mappings are removed. 1570 */ 1571 if (object->ref_count != 0) { 1572 vm_page_test_dirty(m); 1573 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 1574 goto skip_page; 1575 } 1576 1577 /* 1578 * Clean pages can be freed, but dirty pages must be sent back 1579 * to the laundry, unless they belong to a dead object. 1580 * Requeueing dirty pages from dead objects is pointless, as 1581 * they are being paged out and freed by the thread that 1582 * destroyed the object. 1583 */ 1584 if (m->dirty == 0) { 1585 free_page: 1586 /* 1587 * Now we are guaranteed that no other threads are 1588 * manipulating the page, check for a last-second 1589 * reference that would save it from doom. 1590 */ 1591 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1592 goto skip_page; 1593 1594 /* 1595 * Because we dequeued the page and have already checked 1596 * for pending dequeue and enqueue requests, we can 1597 * safely disassociate the page from the inactive queue 1598 * without holding the queue lock. 1599 */ 1600 m->a.queue = PQ_NONE; 1601 vm_page_free(m); 1602 page_shortage--; 1603 continue; 1604 } 1605 if ((object->flags & OBJ_DEAD) == 0) 1606 vm_page_launder(m); 1607 skip_page: 1608 vm_page_xunbusy(m); 1609 continue; 1610 reinsert: 1611 vm_pageout_reinsert_inactive(&ss, &rq, m); 1612 } 1613 if (object != NULL) 1614 VM_OBJECT_WUNLOCK(object); 1615 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1616 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1617 vm_pagequeue_lock(pq); 1618 vm_pageout_end_scan(&ss); 1619 vm_pagequeue_unlock(pq); 1620 1621 /* 1622 * Record the remaining shortage and the progress and rate it was made. 1623 */ 1624 atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage); 1625 getmicrouptime(&end); 1626 timevalsub(&end, &start); 1627 atomic_add_int(&vmd->vmd_inactive_us, 1628 end.tv_sec * 1000000 + end.tv_usec); 1629 atomic_add_int(&vmd->vmd_inactive_freed, 1630 starting_page_shortage - page_shortage); 1631 } 1632 1633 /* 1634 * Dispatch a number of inactive threads according to load and collect the 1635 * results to present a coherent view of paging activity on this domain. 1636 */ 1637 static int 1638 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage) 1639 { 1640 u_int freed, pps, slop, threads, us; 1641 1642 vmd->vmd_inactive_shortage = shortage; 1643 slop = 0; 1644 1645 /* 1646 * If we have more work than we can do in a quarter of our interval, we 1647 * fire off multiple threads to process it. 1648 */ 1649 threads = vmd->vmd_inactive_threads; 1650 if (threads > 1 && vmd->vmd_inactive_pps != 0 && 1651 shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) { 1652 vmd->vmd_inactive_shortage /= threads; 1653 slop = shortage % threads; 1654 vm_domain_pageout_lock(vmd); 1655 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1); 1656 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1); 1657 wakeup(&vmd->vmd_inactive_shortage); 1658 vm_domain_pageout_unlock(vmd); 1659 } 1660 1661 /* Run the local thread scan. */ 1662 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop); 1663 1664 /* 1665 * Block until helper threads report results and then accumulate 1666 * totals. 1667 */ 1668 blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM); 1669 freed = atomic_readandclear_int(&vmd->vmd_inactive_freed); 1670 VM_CNT_ADD(v_dfree, freed); 1671 1672 /* 1673 * Calculate the per-thread paging rate with an exponential decay of 1674 * prior results. Careful to avoid integer rounding errors with large 1675 * us values. 1676 */ 1677 us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1); 1678 if (us > 1000000) 1679 /* Keep rounding to tenths */ 1680 pps = (freed * 10) / ((us * 10) / 1000000); 1681 else 1682 pps = (1000000 / us) * freed; 1683 vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2); 1684 1685 return (shortage - freed); 1686 } 1687 1688 /* 1689 * Attempt to reclaim the requested number of pages from the inactive queue. 1690 * Returns true if the shortage was addressed. 1691 */ 1692 static int 1693 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage) 1694 { 1695 struct vm_pagequeue *pq; 1696 u_int addl_page_shortage, deficit, page_shortage; 1697 u_int starting_page_shortage; 1698 1699 /* 1700 * vmd_pageout_deficit counts the number of pages requested in 1701 * allocations that failed because of a free page shortage. We assume 1702 * that the allocations will be reattempted and thus include the deficit 1703 * in our scan target. 1704 */ 1705 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1706 starting_page_shortage = shortage + deficit; 1707 1708 /* 1709 * Run the inactive scan on as many threads as is necessary. 1710 */ 1711 page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage); 1712 addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage); 1713 1714 /* 1715 * Wake up the laundry thread so that it can perform any needed 1716 * laundering. If we didn't meet our target, we're in shortfall and 1717 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1718 * swap devices are configured, the laundry thread has no work to do, so 1719 * don't bother waking it up. 1720 * 1721 * The laundry thread uses the number of inactive queue scans elapsed 1722 * since the last laundering to determine whether to launder again, so 1723 * keep count. 1724 */ 1725 if (starting_page_shortage > 0) { 1726 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1727 vm_pagequeue_lock(pq); 1728 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1729 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1730 if (page_shortage > 0) { 1731 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1732 VM_CNT_INC(v_pdshortfalls); 1733 } else if (vmd->vmd_laundry_request != 1734 VM_LAUNDRY_SHORTFALL) 1735 vmd->vmd_laundry_request = 1736 VM_LAUNDRY_BACKGROUND; 1737 wakeup(&vmd->vmd_laundry_request); 1738 } 1739 vmd->vmd_clean_pages_freed += 1740 starting_page_shortage - page_shortage; 1741 vm_pagequeue_unlock(pq); 1742 } 1743 1744 /* 1745 * If the inactive queue scan fails repeatedly to meet its 1746 * target, kill the largest process. 1747 */ 1748 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1749 1750 /* 1751 * See the description of addl_page_shortage above. 1752 */ 1753 *addl_shortage = addl_page_shortage + deficit; 1754 1755 return (page_shortage <= 0); 1756 } 1757 1758 static int vm_pageout_oom_vote; 1759 1760 /* 1761 * The pagedaemon threads randlomly select one to perform the 1762 * OOM. Trying to kill processes before all pagedaemons 1763 * failed to reach free target is premature. 1764 */ 1765 static void 1766 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1767 int starting_page_shortage) 1768 { 1769 int old_vote; 1770 1771 if (starting_page_shortage <= 0 || starting_page_shortage != 1772 page_shortage) 1773 vmd->vmd_oom_seq = 0; 1774 else 1775 vmd->vmd_oom_seq++; 1776 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1777 if (vmd->vmd_oom) { 1778 vmd->vmd_oom = FALSE; 1779 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1780 } 1781 return; 1782 } 1783 1784 /* 1785 * Do not follow the call sequence until OOM condition is 1786 * cleared. 1787 */ 1788 vmd->vmd_oom_seq = 0; 1789 1790 if (vmd->vmd_oom) 1791 return; 1792 1793 vmd->vmd_oom = TRUE; 1794 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1795 if (old_vote != vm_ndomains - 1) 1796 return; 1797 1798 /* 1799 * The current pagedaemon thread is the last in the quorum to 1800 * start OOM. Initiate the selection and signaling of the 1801 * victim. 1802 */ 1803 vm_pageout_oom(VM_OOM_MEM); 1804 1805 /* 1806 * After one round of OOM terror, recall our vote. On the 1807 * next pass, current pagedaemon would vote again if the low 1808 * memory condition is still there, due to vmd_oom being 1809 * false. 1810 */ 1811 vmd->vmd_oom = FALSE; 1812 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1813 } 1814 1815 /* 1816 * The OOM killer is the page daemon's action of last resort when 1817 * memory allocation requests have been stalled for a prolonged period 1818 * of time because it cannot reclaim memory. This function computes 1819 * the approximate number of physical pages that could be reclaimed if 1820 * the specified address space is destroyed. 1821 * 1822 * Private, anonymous memory owned by the address space is the 1823 * principal resource that we expect to recover after an OOM kill. 1824 * Since the physical pages mapped by the address space's COW entries 1825 * are typically shared pages, they are unlikely to be released and so 1826 * they are not counted. 1827 * 1828 * To get to the point where the page daemon runs the OOM killer, its 1829 * efforts to write-back vnode-backed pages may have stalled. This 1830 * could be caused by a memory allocation deadlock in the write path 1831 * that might be resolved by an OOM kill. Therefore, physical pages 1832 * belonging to vnode-backed objects are counted, because they might 1833 * be freed without being written out first if the address space holds 1834 * the last reference to an unlinked vnode. 1835 * 1836 * Similarly, physical pages belonging to OBJT_PHYS objects are 1837 * counted because the address space might hold the last reference to 1838 * the object. 1839 */ 1840 static long 1841 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1842 { 1843 vm_map_t map; 1844 vm_map_entry_t entry; 1845 vm_object_t obj; 1846 long res; 1847 1848 map = &vmspace->vm_map; 1849 KASSERT(!map->system_map, ("system map")); 1850 sx_assert(&map->lock, SA_LOCKED); 1851 res = 0; 1852 VM_MAP_ENTRY_FOREACH(entry, map) { 1853 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1854 continue; 1855 obj = entry->object.vm_object; 1856 if (obj == NULL) 1857 continue; 1858 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1859 obj->ref_count != 1) 1860 continue; 1861 if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE || 1862 (obj->flags & OBJ_SWAP) != 0) 1863 res += obj->resident_page_count; 1864 } 1865 return (res); 1866 } 1867 1868 static int vm_oom_ratelim_last; 1869 static int vm_oom_pf_secs = 10; 1870 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0, 1871 ""); 1872 static struct mtx vm_oom_ratelim_mtx; 1873 1874 void 1875 vm_pageout_oom(int shortage) 1876 { 1877 const char *reason; 1878 struct proc *p, *bigproc; 1879 vm_offset_t size, bigsize; 1880 struct thread *td; 1881 struct vmspace *vm; 1882 int now; 1883 bool breakout; 1884 1885 /* 1886 * For OOM requests originating from vm_fault(), there is a high 1887 * chance that a single large process faults simultaneously in 1888 * several threads. Also, on an active system running many 1889 * processes of middle-size, like buildworld, all of them 1890 * could fault almost simultaneously as well. 1891 * 1892 * To avoid killing too many processes, rate-limit OOMs 1893 * initiated by vm_fault() time-outs on the waits for free 1894 * pages. 1895 */ 1896 mtx_lock(&vm_oom_ratelim_mtx); 1897 now = ticks; 1898 if (shortage == VM_OOM_MEM_PF && 1899 (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) { 1900 mtx_unlock(&vm_oom_ratelim_mtx); 1901 return; 1902 } 1903 vm_oom_ratelim_last = now; 1904 mtx_unlock(&vm_oom_ratelim_mtx); 1905 1906 /* 1907 * We keep the process bigproc locked once we find it to keep anyone 1908 * from messing with it; however, there is a possibility of 1909 * deadlock if process B is bigproc and one of its child processes 1910 * attempts to propagate a signal to B while we are waiting for A's 1911 * lock while walking this list. To avoid this, we don't block on 1912 * the process lock but just skip a process if it is already locked. 1913 */ 1914 bigproc = NULL; 1915 bigsize = 0; 1916 sx_slock(&allproc_lock); 1917 FOREACH_PROC_IN_SYSTEM(p) { 1918 PROC_LOCK(p); 1919 1920 /* 1921 * If this is a system, protected or killed process, skip it. 1922 */ 1923 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1924 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1925 p->p_pid == 1 || P_KILLED(p) || 1926 (p->p_pid < 48 && swap_pager_avail != 0)) { 1927 PROC_UNLOCK(p); 1928 continue; 1929 } 1930 /* 1931 * If the process is in a non-running type state, 1932 * don't touch it. Check all the threads individually. 1933 */ 1934 breakout = false; 1935 FOREACH_THREAD_IN_PROC(p, td) { 1936 thread_lock(td); 1937 if (!TD_ON_RUNQ(td) && 1938 !TD_IS_RUNNING(td) && 1939 !TD_IS_SLEEPING(td) && 1940 !TD_IS_SUSPENDED(td)) { 1941 thread_unlock(td); 1942 breakout = true; 1943 break; 1944 } 1945 thread_unlock(td); 1946 } 1947 if (breakout) { 1948 PROC_UNLOCK(p); 1949 continue; 1950 } 1951 /* 1952 * get the process size 1953 */ 1954 vm = vmspace_acquire_ref(p); 1955 if (vm == NULL) { 1956 PROC_UNLOCK(p); 1957 continue; 1958 } 1959 _PHOLD(p); 1960 PROC_UNLOCK(p); 1961 sx_sunlock(&allproc_lock); 1962 if (!vm_map_trylock_read(&vm->vm_map)) { 1963 vmspace_free(vm); 1964 sx_slock(&allproc_lock); 1965 PRELE(p); 1966 continue; 1967 } 1968 size = vmspace_swap_count(vm); 1969 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF) 1970 size += vm_pageout_oom_pagecount(vm); 1971 vm_map_unlock_read(&vm->vm_map); 1972 vmspace_free(vm); 1973 sx_slock(&allproc_lock); 1974 1975 /* 1976 * If this process is bigger than the biggest one, 1977 * remember it. 1978 */ 1979 if (size > bigsize) { 1980 if (bigproc != NULL) 1981 PRELE(bigproc); 1982 bigproc = p; 1983 bigsize = size; 1984 } else { 1985 PRELE(p); 1986 } 1987 } 1988 sx_sunlock(&allproc_lock); 1989 1990 if (bigproc != NULL) { 1991 switch (shortage) { 1992 case VM_OOM_MEM: 1993 reason = "failed to reclaim memory"; 1994 break; 1995 case VM_OOM_MEM_PF: 1996 reason = "a thread waited too long to allocate a page"; 1997 break; 1998 case VM_OOM_SWAPZ: 1999 reason = "out of swap space"; 2000 break; 2001 default: 2002 panic("unknown OOM reason %d", shortage); 2003 } 2004 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0) 2005 panic("%s", reason); 2006 PROC_LOCK(bigproc); 2007 killproc(bigproc, reason); 2008 sched_nice(bigproc, PRIO_MIN); 2009 _PRELE(bigproc); 2010 PROC_UNLOCK(bigproc); 2011 } 2012 } 2013 2014 /* 2015 * Signal a free page shortage to subsystems that have registered an event 2016 * handler. Reclaim memory from UMA in the event of a severe shortage. 2017 * Return true if the free page count should be re-evaluated. 2018 */ 2019 static bool 2020 vm_pageout_lowmem(void) 2021 { 2022 static int lowmem_ticks = 0; 2023 int last; 2024 bool ret; 2025 2026 ret = false; 2027 2028 last = atomic_load_int(&lowmem_ticks); 2029 while ((u_int)(ticks - last) / hz >= lowmem_period) { 2030 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0) 2031 continue; 2032 2033 /* 2034 * Decrease registered cache sizes. 2035 */ 2036 SDT_PROBE0(vm, , , vm__lowmem_scan); 2037 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 2038 2039 /* 2040 * We do this explicitly after the caches have been 2041 * drained above. 2042 */ 2043 uma_reclaim(UMA_RECLAIM_TRIM); 2044 ret = true; 2045 break; 2046 } 2047 2048 /* 2049 * Kick off an asynchronous reclaim of cached memory if one of the 2050 * page daemons is failing to keep up with demand. Use the "severe" 2051 * threshold instead of "min" to ensure that we do not blow away the 2052 * caches if a subset of the NUMA domains are depleted by kernel memory 2053 * allocations; the domainset iterators automatically skip domains 2054 * below the "min" threshold on the first pass. 2055 * 2056 * UMA reclaim worker has its own rate-limiting mechanism, so don't 2057 * worry about kicking it too often. 2058 */ 2059 if (vm_page_count_severe()) 2060 uma_reclaim_wakeup(); 2061 2062 return (ret); 2063 } 2064 2065 static void 2066 vm_pageout_worker(void *arg) 2067 { 2068 struct vm_domain *vmd; 2069 u_int ofree; 2070 int addl_shortage, domain, shortage; 2071 bool target_met; 2072 2073 domain = (uintptr_t)arg; 2074 vmd = VM_DOMAIN(domain); 2075 shortage = 0; 2076 target_met = true; 2077 2078 /* 2079 * XXXKIB It could be useful to bind pageout daemon threads to 2080 * the cores belonging to the domain, from which vm_page_array 2081 * is allocated. 2082 */ 2083 2084 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 2085 vmd->vmd_last_active_scan = ticks; 2086 2087 /* 2088 * The pageout daemon worker is never done, so loop forever. 2089 */ 2090 while (TRUE) { 2091 vm_domain_pageout_lock(vmd); 2092 2093 /* 2094 * We need to clear wanted before we check the limits. This 2095 * prevents races with wakers who will check wanted after they 2096 * reach the limit. 2097 */ 2098 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 2099 2100 /* 2101 * Might the page daemon need to run again? 2102 */ 2103 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 2104 /* 2105 * Yes. If the scan failed to produce enough free 2106 * pages, sleep uninterruptibly for some time in the 2107 * hope that the laundry thread will clean some pages. 2108 */ 2109 vm_domain_pageout_unlock(vmd); 2110 if (!target_met) 2111 pause("pwait", hz / VM_INACT_SCAN_RATE); 2112 } else { 2113 /* 2114 * No, sleep until the next wakeup or until pages 2115 * need to have their reference stats updated. 2116 */ 2117 if (mtx_sleep(&vmd->vmd_pageout_wanted, 2118 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 2119 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 2120 VM_CNT_INC(v_pdwakeups); 2121 } 2122 2123 /* Prevent spurious wakeups by ensuring that wanted is set. */ 2124 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2125 2126 /* 2127 * Use the controller to calculate how many pages to free in 2128 * this interval, and scan the inactive queue. If the lowmem 2129 * handlers appear to have freed up some pages, subtract the 2130 * difference from the inactive queue scan target. 2131 */ 2132 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 2133 if (shortage > 0) { 2134 ofree = vmd->vmd_free_count; 2135 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) 2136 shortage -= min(vmd->vmd_free_count - ofree, 2137 (u_int)shortage); 2138 target_met = vm_pageout_inactive(vmd, shortage, 2139 &addl_shortage); 2140 } else 2141 addl_shortage = 0; 2142 2143 /* 2144 * Scan the active queue. A positive value for shortage 2145 * indicates that we must aggressively deactivate pages to avoid 2146 * a shortfall. 2147 */ 2148 shortage = vm_pageout_active_target(vmd) + addl_shortage; 2149 vm_pageout_scan_active(vmd, shortage); 2150 } 2151 } 2152 2153 /* 2154 * vm_pageout_helper runs additional pageout daemons in times of high paging 2155 * activity. 2156 */ 2157 static void 2158 vm_pageout_helper(void *arg) 2159 { 2160 struct vm_domain *vmd; 2161 int domain; 2162 2163 domain = (uintptr_t)arg; 2164 vmd = VM_DOMAIN(domain); 2165 2166 vm_domain_pageout_lock(vmd); 2167 for (;;) { 2168 msleep(&vmd->vmd_inactive_shortage, 2169 vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0); 2170 blockcount_release(&vmd->vmd_inactive_starting, 1); 2171 2172 vm_domain_pageout_unlock(vmd); 2173 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage); 2174 vm_domain_pageout_lock(vmd); 2175 2176 /* 2177 * Release the running count while the pageout lock is held to 2178 * prevent wakeup races. 2179 */ 2180 blockcount_release(&vmd->vmd_inactive_running, 1); 2181 } 2182 } 2183 2184 static int 2185 get_pageout_threads_per_domain(const struct vm_domain *vmd) 2186 { 2187 unsigned total_pageout_threads, eligible_cpus, domain_cpus; 2188 2189 if (VM_DOMAIN_EMPTY(vmd->vmd_domain)) 2190 return (0); 2191 2192 /* 2193 * Semi-arbitrarily constrain pagedaemon threads to less than half the 2194 * total number of CPUs in the system as an upper limit. 2195 */ 2196 if (pageout_cpus_per_thread < 2) 2197 pageout_cpus_per_thread = 2; 2198 else if (pageout_cpus_per_thread > mp_ncpus) 2199 pageout_cpus_per_thread = mp_ncpus; 2200 2201 total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread); 2202 domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]); 2203 2204 /* Pagedaemons are not run in empty domains. */ 2205 eligible_cpus = mp_ncpus; 2206 for (unsigned i = 0; i < vm_ndomains; i++) 2207 if (VM_DOMAIN_EMPTY(i)) 2208 eligible_cpus -= CPU_COUNT(&cpuset_domain[i]); 2209 2210 /* 2211 * Assign a portion of the total pageout threads to this domain 2212 * corresponding to the fraction of pagedaemon-eligible CPUs in the 2213 * domain. In asymmetric NUMA systems, domains with more CPUs may be 2214 * allocated more threads than domains with fewer CPUs. 2215 */ 2216 return (howmany(total_pageout_threads * domain_cpus, eligible_cpus)); 2217 } 2218 2219 /* 2220 * Initialize basic pageout daemon settings. See the comment above the 2221 * definition of vm_domain for some explanation of how these thresholds are 2222 * used. 2223 */ 2224 static void 2225 vm_pageout_init_domain(int domain) 2226 { 2227 struct vm_domain *vmd; 2228 struct sysctl_oid *oid; 2229 2230 vmd = VM_DOMAIN(domain); 2231 vmd->vmd_interrupt_free_min = 2; 2232 2233 /* 2234 * v_free_reserved needs to include enough for the largest 2235 * swap pager structures plus enough for any pv_entry structs 2236 * when paging. 2237 */ 2238 vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE + 2239 vmd->vmd_interrupt_free_min; 2240 vmd->vmd_free_reserved = vm_pageout_page_count + 2241 vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768; 2242 vmd->vmd_free_min = vmd->vmd_page_count / 200; 2243 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 2244 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 2245 vmd->vmd_free_min += vmd->vmd_free_reserved; 2246 vmd->vmd_free_severe += vmd->vmd_free_reserved; 2247 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 2248 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 2249 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 2250 2251 /* 2252 * Set the default wakeup threshold to be 10% below the paging 2253 * target. This keeps the steady state out of shortfall. 2254 */ 2255 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 2256 2257 /* 2258 * Target amount of memory to move out of the laundry queue during a 2259 * background laundering. This is proportional to the amount of system 2260 * memory. 2261 */ 2262 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 2263 vmd->vmd_free_min) / 10; 2264 2265 /* Initialize the pageout daemon pid controller. */ 2266 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 2267 vmd->vmd_free_target, PIDCTRL_BOUND, 2268 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 2269 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2270 "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2271 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 2272 2273 vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd); 2274 } 2275 2276 static void 2277 vm_pageout_init(void) 2278 { 2279 u_long freecount; 2280 int i; 2281 2282 /* 2283 * Initialize some paging parameters. 2284 */ 2285 freecount = 0; 2286 for (i = 0; i < vm_ndomains; i++) { 2287 struct vm_domain *vmd; 2288 2289 vm_pageout_init_domain(i); 2290 vmd = VM_DOMAIN(i); 2291 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2292 vm_cnt.v_free_target += vmd->vmd_free_target; 2293 vm_cnt.v_free_min += vmd->vmd_free_min; 2294 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2295 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2296 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2297 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2298 freecount += vmd->vmd_free_count; 2299 } 2300 2301 /* 2302 * Set interval in seconds for active scan. We want to visit each 2303 * page at least once every ten minutes. This is to prevent worst 2304 * case paging behaviors with stale active LRU. 2305 */ 2306 if (vm_pageout_update_period == 0) 2307 vm_pageout_update_period = 600; 2308 2309 /* 2310 * Set the maximum number of user-wired virtual pages. Historically the 2311 * main source of such pages was mlock(2) and mlockall(2). Hypervisors 2312 * may also request user-wired memory. 2313 */ 2314 if (vm_page_max_user_wired == 0) 2315 vm_page_max_user_wired = 4 * freecount / 5; 2316 } 2317 2318 /* 2319 * vm_pageout is the high level pageout daemon. 2320 */ 2321 static void 2322 vm_pageout(void) 2323 { 2324 struct proc *p; 2325 struct thread *td; 2326 int error, first, i, j, pageout_threads; 2327 2328 p = curproc; 2329 td = curthread; 2330 2331 mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF); 2332 swap_pager_swap_init(); 2333 for (first = -1, i = 0; i < vm_ndomains; i++) { 2334 if (VM_DOMAIN_EMPTY(i)) { 2335 if (bootverbose) 2336 printf("domain %d empty; skipping pageout\n", 2337 i); 2338 continue; 2339 } 2340 if (first == -1) 2341 first = i; 2342 else { 2343 error = kthread_add(vm_pageout_worker, 2344 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i); 2345 if (error != 0) 2346 panic("starting pageout for domain %d: %d\n", 2347 i, error); 2348 } 2349 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads; 2350 for (j = 0; j < pageout_threads - 1; j++) { 2351 error = kthread_add(vm_pageout_helper, 2352 (void *)(uintptr_t)i, p, NULL, 0, 0, 2353 "dom%d helper%d", i, j); 2354 if (error != 0) 2355 panic("starting pageout helper %d for domain " 2356 "%d: %d\n", j, i, error); 2357 } 2358 error = kthread_add(vm_pageout_laundry_worker, 2359 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); 2360 if (error != 0) 2361 panic("starting laundry for domain %d: %d", i, error); 2362 } 2363 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma"); 2364 if (error != 0) 2365 panic("starting uma_reclaim helper, error %d\n", error); 2366 2367 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first); 2368 vm_pageout_worker((void *)(uintptr_t)first); 2369 } 2370 2371 /* 2372 * Perform an advisory wakeup of the page daemon. 2373 */ 2374 void 2375 pagedaemon_wakeup(int domain) 2376 { 2377 struct vm_domain *vmd; 2378 2379 vmd = VM_DOMAIN(domain); 2380 vm_domain_pageout_assert_unlocked(vmd); 2381 if (curproc == pageproc) 2382 return; 2383 2384 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2385 vm_domain_pageout_lock(vmd); 2386 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2387 wakeup(&vmd->vmd_pageout_wanted); 2388 vm_domain_pageout_unlock(vmd); 2389 } 2390 } 2391