xref: /freebsd/sys/vm/vm_pageout.c (revision 595e514d0df2bac5b813d35f83e32875dbf16a83)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/vnode.h>
94 #include <sys/vmmeter.h>
95 #include <sys/rwlock.h>
96 #include <sys/sx.h>
97 #include <sys/sysctl.h>
98 
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/vm_object.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_map.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_pager.h>
106 #include <vm/swap_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/uma.h>
109 
110 /*
111  * System initialization
112  */
113 
114 /* the kernel process "vm_pageout"*/
115 static void vm_pageout(void);
116 static int vm_pageout_clean(vm_page_t);
117 static void vm_pageout_scan(int pass);
118 
119 struct proc *pageproc;
120 
121 static struct kproc_desc page_kp = {
122 	"pagedaemon",
123 	vm_pageout,
124 	&pageproc
125 };
126 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
127     &page_kp);
128 
129 #if !defined(NO_SWAPPING)
130 /* the kernel process "vm_daemon"*/
131 static void vm_daemon(void);
132 static struct	proc *vmproc;
133 
134 static struct kproc_desc vm_kp = {
135 	"vmdaemon",
136 	vm_daemon,
137 	&vmproc
138 };
139 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
140 #endif
141 
142 
143 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
144 int vm_pageout_deficit;		/* Estimated number of pages deficit */
145 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
146 
147 #if !defined(NO_SWAPPING)
148 static int vm_pageout_req_swapout;	/* XXX */
149 static int vm_daemon_needed;
150 static struct mtx vm_daemon_mtx;
151 /* Allow for use by vm_pageout before vm_daemon is initialized. */
152 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
153 #endif
154 static int vm_max_launder = 32;
155 static int vm_pageout_stats_max;
156 static int vm_pageout_stats;
157 static int vm_pageout_stats_interval;
158 static int vm_pageout_full_stats;
159 static int vm_pageout_full_stats_interval;
160 static int vm_pageout_algorithm;
161 static int defer_swap_pageouts;
162 static int disable_swap_pageouts;
163 
164 #if defined(NO_SWAPPING)
165 static int vm_swap_enabled = 0;
166 static int vm_swap_idle_enabled = 0;
167 #else
168 static int vm_swap_enabled = 1;
169 static int vm_swap_idle_enabled = 0;
170 #endif
171 
172 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
173 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
174 
175 SYSCTL_INT(_vm, OID_AUTO, max_launder,
176 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
177 
178 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
179 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
180 
181 SYSCTL_INT(_vm, OID_AUTO, pageout_stats,
182 	CTLFLAG_RD, &vm_pageout_stats, 0, "Number of partial stats scans");
183 
184 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
185 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
186 
187 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats,
188 	CTLFLAG_RD, &vm_pageout_full_stats, 0, "Number of full stats scans");
189 
190 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
191 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
192 
193 #if defined(NO_SWAPPING)
194 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
195 	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
196 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
197 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
198 #else
199 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
200 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
201 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
202 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
203 #endif
204 
205 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
206 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
207 
208 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
209 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
210 
211 static int pageout_lock_miss;
212 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
213 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
214 
215 #define VM_PAGEOUT_PAGE_COUNT 16
216 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
217 
218 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
219 SYSCTL_INT(_vm, OID_AUTO, max_wired,
220 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
221 
222 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
223 static boolean_t vm_pageout_launder(int, int, vm_paddr_t, vm_paddr_t);
224 #if !defined(NO_SWAPPING)
225 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
226 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
227 static void vm_req_vmdaemon(int req);
228 #endif
229 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
230 static void vm_pageout_page_stats(void);
231 
232 /*
233  * Initialize a dummy page for marking the caller's place in the specified
234  * paging queue.  In principle, this function only needs to set the flag
235  * PG_MARKER.  Nonetheless, it sets the flag VPO_BUSY and initializes the hold
236  * count to one as safety precautions.
237  */
238 static void
239 vm_pageout_init_marker(vm_page_t marker, u_short queue)
240 {
241 
242 	bzero(marker, sizeof(*marker));
243 	marker->flags = PG_MARKER;
244 	marker->oflags = VPO_BUSY;
245 	marker->queue = queue;
246 	marker->hold_count = 1;
247 }
248 
249 /*
250  * vm_pageout_fallback_object_lock:
251  *
252  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
253  * known to have failed and page queue must be either PQ_ACTIVE or
254  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
255  * while locking the vm object.  Use marker page to detect page queue
256  * changes and maintain notion of next page on page queue.  Return
257  * TRUE if no changes were detected, FALSE otherwise.  vm object is
258  * locked on return.
259  *
260  * This function depends on both the lock portion of struct vm_object
261  * and normal struct vm_page being type stable.
262  */
263 static boolean_t
264 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
265 {
266 	struct vm_page marker;
267 	struct vm_pagequeue *pq;
268 	boolean_t unchanged;
269 	u_short queue;
270 	vm_object_t object;
271 
272 	queue = m->queue;
273 	vm_pageout_init_marker(&marker, queue);
274 	pq = &vm_pagequeues[queue];
275 	object = m->object;
276 
277 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, pageq);
278 	vm_pagequeue_unlock(pq);
279 	vm_page_unlock(m);
280 	VM_OBJECT_WLOCK(object);
281 	vm_page_lock(m);
282 	vm_pagequeue_lock(pq);
283 
284 	/* Page queue might have changed. */
285 	*next = TAILQ_NEXT(&marker, pageq);
286 	unchanged = (m->queue == queue &&
287 		     m->object == object &&
288 		     &marker == TAILQ_NEXT(m, pageq));
289 	TAILQ_REMOVE(&pq->pq_pl, &marker, pageq);
290 	return (unchanged);
291 }
292 
293 /*
294  * Lock the page while holding the page queue lock.  Use marker page
295  * to detect page queue changes and maintain notion of next page on
296  * page queue.  Return TRUE if no changes were detected, FALSE
297  * otherwise.  The page is locked on return. The page queue lock might
298  * be dropped and reacquired.
299  *
300  * This function depends on normal struct vm_page being type stable.
301  */
302 static boolean_t
303 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
304 {
305 	struct vm_page marker;
306 	struct vm_pagequeue *pq;
307 	boolean_t unchanged;
308 	u_short queue;
309 
310 	vm_page_lock_assert(m, MA_NOTOWNED);
311 	if (vm_page_trylock(m))
312 		return (TRUE);
313 
314 	queue = m->queue;
315 	vm_pageout_init_marker(&marker, queue);
316 	pq = &vm_pagequeues[queue];
317 
318 	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, pageq);
319 	vm_pagequeue_unlock(pq);
320 	vm_page_lock(m);
321 	vm_pagequeue_lock(pq);
322 
323 	/* Page queue might have changed. */
324 	*next = TAILQ_NEXT(&marker, pageq);
325 	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
326 	TAILQ_REMOVE(&pq->pq_pl, &marker, pageq);
327 	return (unchanged);
328 }
329 
330 /*
331  * vm_pageout_clean:
332  *
333  * Clean the page and remove it from the laundry.
334  *
335  * We set the busy bit to cause potential page faults on this page to
336  * block.  Note the careful timing, however, the busy bit isn't set till
337  * late and we cannot do anything that will mess with the page.
338  */
339 static int
340 vm_pageout_clean(vm_page_t m)
341 {
342 	vm_object_t object;
343 	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
344 	int pageout_count;
345 	int ib, is, page_base;
346 	vm_pindex_t pindex = m->pindex;
347 
348 	vm_page_lock_assert(m, MA_OWNED);
349 	object = m->object;
350 	VM_OBJECT_ASSERT_WLOCKED(object);
351 
352 	/*
353 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
354 	 * with the new swapper, but we could have serious problems paging
355 	 * out other object types if there is insufficient memory.
356 	 *
357 	 * Unfortunately, checking free memory here is far too late, so the
358 	 * check has been moved up a procedural level.
359 	 */
360 
361 	/*
362 	 * Can't clean the page if it's busy or held.
363 	 */
364 	KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
365 	    ("vm_pageout_clean: page %p is busy", m));
366 	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
367 	vm_page_unlock(m);
368 
369 	mc[vm_pageout_page_count] = pb = ps = m;
370 	pageout_count = 1;
371 	page_base = vm_pageout_page_count;
372 	ib = 1;
373 	is = 1;
374 
375 	/*
376 	 * Scan object for clusterable pages.
377 	 *
378 	 * We can cluster ONLY if: ->> the page is NOT
379 	 * clean, wired, busy, held, or mapped into a
380 	 * buffer, and one of the following:
381 	 * 1) The page is inactive, or a seldom used
382 	 *    active page.
383 	 * -or-
384 	 * 2) we force the issue.
385 	 *
386 	 * During heavy mmap/modification loads the pageout
387 	 * daemon can really fragment the underlying file
388 	 * due to flushing pages out of order and not trying
389 	 * align the clusters (which leave sporatic out-of-order
390 	 * holes).  To solve this problem we do the reverse scan
391 	 * first and attempt to align our cluster, then do a
392 	 * forward scan if room remains.
393 	 */
394 more:
395 	while (ib && pageout_count < vm_pageout_page_count) {
396 		vm_page_t p;
397 
398 		if (ib > pindex) {
399 			ib = 0;
400 			break;
401 		}
402 
403 		if ((p = vm_page_prev(pb)) == NULL ||
404 		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
405 			ib = 0;
406 			break;
407 		}
408 		vm_page_lock(p);
409 		vm_page_test_dirty(p);
410 		if (p->dirty == 0 ||
411 		    p->queue != PQ_INACTIVE ||
412 		    p->hold_count != 0) {	/* may be undergoing I/O */
413 			vm_page_unlock(p);
414 			ib = 0;
415 			break;
416 		}
417 		vm_page_unlock(p);
418 		mc[--page_base] = pb = p;
419 		++pageout_count;
420 		++ib;
421 		/*
422 		 * alignment boundry, stop here and switch directions.  Do
423 		 * not clear ib.
424 		 */
425 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
426 			break;
427 	}
428 
429 	while (pageout_count < vm_pageout_page_count &&
430 	    pindex + is < object->size) {
431 		vm_page_t p;
432 
433 		if ((p = vm_page_next(ps)) == NULL ||
434 		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
435 			break;
436 		vm_page_lock(p);
437 		vm_page_test_dirty(p);
438 		if (p->dirty == 0 ||
439 		    p->queue != PQ_INACTIVE ||
440 		    p->hold_count != 0) {	/* may be undergoing I/O */
441 			vm_page_unlock(p);
442 			break;
443 		}
444 		vm_page_unlock(p);
445 		mc[page_base + pageout_count] = ps = p;
446 		++pageout_count;
447 		++is;
448 	}
449 
450 	/*
451 	 * If we exhausted our forward scan, continue with the reverse scan
452 	 * when possible, even past a page boundry.  This catches boundry
453 	 * conditions.
454 	 */
455 	if (ib && pageout_count < vm_pageout_page_count)
456 		goto more;
457 
458 	/*
459 	 * we allow reads during pageouts...
460 	 */
461 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
462 	    NULL));
463 }
464 
465 /*
466  * vm_pageout_flush() - launder the given pages
467  *
468  *	The given pages are laundered.  Note that we setup for the start of
469  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
470  *	reference count all in here rather then in the parent.  If we want
471  *	the parent to do more sophisticated things we may have to change
472  *	the ordering.
473  *
474  *	Returned runlen is the count of pages between mreq and first
475  *	page after mreq with status VM_PAGER_AGAIN.
476  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
477  *	for any page in runlen set.
478  */
479 int
480 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
481     boolean_t *eio)
482 {
483 	vm_object_t object = mc[0]->object;
484 	int pageout_status[count];
485 	int numpagedout = 0;
486 	int i, runlen;
487 
488 	VM_OBJECT_ASSERT_WLOCKED(object);
489 
490 	/*
491 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
492 	 * mark the pages read-only.
493 	 *
494 	 * We do not have to fixup the clean/dirty bits here... we can
495 	 * allow the pager to do it after the I/O completes.
496 	 *
497 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
498 	 * edge case with file fragments.
499 	 */
500 	for (i = 0; i < count; i++) {
501 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
502 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
503 			mc[i], i, count));
504 		vm_page_io_start(mc[i]);
505 		pmap_remove_write(mc[i]);
506 	}
507 	vm_object_pip_add(object, count);
508 
509 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
510 
511 	runlen = count - mreq;
512 	if (eio != NULL)
513 		*eio = FALSE;
514 	for (i = 0; i < count; i++) {
515 		vm_page_t mt = mc[i];
516 
517 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
518 		    !pmap_page_is_write_mapped(mt),
519 		    ("vm_pageout_flush: page %p is not write protected", mt));
520 		switch (pageout_status[i]) {
521 		case VM_PAGER_OK:
522 		case VM_PAGER_PEND:
523 			numpagedout++;
524 			break;
525 		case VM_PAGER_BAD:
526 			/*
527 			 * Page outside of range of object. Right now we
528 			 * essentially lose the changes by pretending it
529 			 * worked.
530 			 */
531 			vm_page_undirty(mt);
532 			break;
533 		case VM_PAGER_ERROR:
534 		case VM_PAGER_FAIL:
535 			/*
536 			 * If page couldn't be paged out, then reactivate the
537 			 * page so it doesn't clog the inactive list.  (We
538 			 * will try paging out it again later).
539 			 */
540 			vm_page_lock(mt);
541 			vm_page_activate(mt);
542 			vm_page_unlock(mt);
543 			if (eio != NULL && i >= mreq && i - mreq < runlen)
544 				*eio = TRUE;
545 			break;
546 		case VM_PAGER_AGAIN:
547 			if (i >= mreq && i - mreq < runlen)
548 				runlen = i - mreq;
549 			break;
550 		}
551 
552 		/*
553 		 * If the operation is still going, leave the page busy to
554 		 * block all other accesses. Also, leave the paging in
555 		 * progress indicator set so that we don't attempt an object
556 		 * collapse.
557 		 */
558 		if (pageout_status[i] != VM_PAGER_PEND) {
559 			vm_object_pip_wakeup(object);
560 			vm_page_io_finish(mt);
561 			if (vm_page_count_severe()) {
562 				vm_page_lock(mt);
563 				vm_page_try_to_cache(mt);
564 				vm_page_unlock(mt);
565 			}
566 		}
567 	}
568 	if (prunlen != NULL)
569 		*prunlen = runlen;
570 	return (numpagedout);
571 }
572 
573 static boolean_t
574 vm_pageout_launder(int queue, int tries, vm_paddr_t low, vm_paddr_t high)
575 {
576 	struct mount *mp;
577 	struct vm_pagequeue *pq;
578 	struct vnode *vp;
579 	vm_object_t object;
580 	vm_paddr_t pa;
581 	vm_page_t m, m_tmp, next;
582 
583 	pq = &vm_pagequeues[queue];
584 	vm_pagequeue_lock(pq);
585 	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, pageq, next) {
586 		KASSERT(m->queue == queue,
587 		    ("vm_pageout_launder: page %p's queue is not %d", m,
588 		    queue));
589 		if ((m->flags & PG_MARKER) != 0)
590 			continue;
591 		pa = VM_PAGE_TO_PHYS(m);
592 		if (pa < low || pa + PAGE_SIZE > high)
593 			continue;
594 		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
595 			vm_page_unlock(m);
596 			continue;
597 		}
598 		object = m->object;
599 		if ((!VM_OBJECT_TRYWLOCK(object) &&
600 		    (!vm_pageout_fallback_object_lock(m, &next) ||
601 		    m->hold_count != 0)) || (m->oflags & VPO_BUSY) != 0 ||
602 		    m->busy != 0) {
603 			vm_page_unlock(m);
604 			VM_OBJECT_WUNLOCK(object);
605 			continue;
606 		}
607 		vm_page_test_dirty(m);
608 		if (m->dirty == 0 && object->ref_count != 0)
609 			pmap_remove_all(m);
610 		if (m->dirty != 0) {
611 			vm_page_unlock(m);
612 			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
613 				VM_OBJECT_WUNLOCK(object);
614 				continue;
615 			}
616 			if (object->type == OBJT_VNODE) {
617 				vm_pagequeue_unlock(pq);
618 				vp = object->handle;
619 				vm_object_reference_locked(object);
620 				VM_OBJECT_WUNLOCK(object);
621 				(void)vn_start_write(vp, &mp, V_WAIT);
622 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
623 				VM_OBJECT_WLOCK(object);
624 				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
625 				VM_OBJECT_WUNLOCK(object);
626 				VOP_UNLOCK(vp, 0);
627 				vm_object_deallocate(object);
628 				vn_finished_write(mp);
629 				return (TRUE);
630 			} else if (object->type == OBJT_SWAP ||
631 			    object->type == OBJT_DEFAULT) {
632 				vm_pagequeue_unlock(pq);
633 				m_tmp = m;
634 				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
635 				    0, NULL, NULL);
636 				VM_OBJECT_WUNLOCK(object);
637 				return (TRUE);
638 			}
639 		} else {
640 			/*
641 			 * Dequeue here to prevent lock recursion in
642 			 * vm_page_cache().
643 			 */
644 			vm_page_dequeue_locked(m);
645 			vm_page_cache(m);
646 			vm_page_unlock(m);
647 		}
648 		VM_OBJECT_WUNLOCK(object);
649 	}
650 	vm_pagequeue_unlock(pq);
651 	return (FALSE);
652 }
653 
654 /*
655  * Increase the number of cached pages.  The specified value, "tries",
656  * determines which categories of pages are cached:
657  *
658  *  0: All clean, inactive pages within the specified physical address range
659  *     are cached.  Will not sleep.
660  *  1: The vm_lowmem handlers are called.  All inactive pages within
661  *     the specified physical address range are cached.  May sleep.
662  *  2: The vm_lowmem handlers are called.  All inactive and active pages
663  *     within the specified physical address range are cached.  May sleep.
664  */
665 void
666 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
667 {
668 	int actl, actmax, inactl, inactmax;
669 
670 	if (tries > 0) {
671 		/*
672 		 * Decrease registered cache sizes.  The vm_lowmem handlers
673 		 * may acquire locks and/or sleep, so they can only be invoked
674 		 * when "tries" is greater than zero.
675 		 */
676 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
677 
678 		/*
679 		 * We do this explicitly after the caches have been drained
680 		 * above.
681 		 */
682 		uma_reclaim();
683 	}
684 	inactl = 0;
685 	inactmax = cnt.v_inactive_count;
686 	actl = 0;
687 	actmax = tries < 2 ? 0 : cnt.v_active_count;
688 again:
689 	if (inactl < inactmax && vm_pageout_launder(PQ_INACTIVE, tries, low,
690 	    high)) {
691 		inactl++;
692 		goto again;
693 	}
694 	if (actl < actmax && vm_pageout_launder(PQ_ACTIVE, tries, low, high)) {
695 		actl++;
696 		goto again;
697 	}
698 }
699 
700 #if !defined(NO_SWAPPING)
701 /*
702  *	vm_pageout_object_deactivate_pages
703  *
704  *	Deactivate enough pages to satisfy the inactive target
705  *	requirements.
706  *
707  *	The object and map must be locked.
708  */
709 static void
710 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
711     long desired)
712 {
713 	vm_object_t backing_object, object;
714 	vm_page_t p;
715 	int actcount, remove_mode;
716 
717 	VM_OBJECT_ASSERT_LOCKED(first_object);
718 	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
719 		return;
720 	for (object = first_object;; object = backing_object) {
721 		if (pmap_resident_count(pmap) <= desired)
722 			goto unlock_return;
723 		VM_OBJECT_ASSERT_LOCKED(object);
724 		if ((object->flags & OBJ_UNMANAGED) != 0 ||
725 		    object->paging_in_progress != 0)
726 			goto unlock_return;
727 
728 		remove_mode = 0;
729 		if (object->shadow_count > 1)
730 			remove_mode = 1;
731 		/*
732 		 * Scan the object's entire memory queue.
733 		 */
734 		TAILQ_FOREACH(p, &object->memq, listq) {
735 			if (pmap_resident_count(pmap) <= desired)
736 				goto unlock_return;
737 			if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
738 				continue;
739 			PCPU_INC(cnt.v_pdpages);
740 			vm_page_lock(p);
741 			if (p->wire_count != 0 || p->hold_count != 0 ||
742 			    !pmap_page_exists_quick(pmap, p)) {
743 				vm_page_unlock(p);
744 				continue;
745 			}
746 			actcount = pmap_ts_referenced(p);
747 			if ((p->aflags & PGA_REFERENCED) != 0) {
748 				if (actcount == 0)
749 					actcount = 1;
750 				vm_page_aflag_clear(p, PGA_REFERENCED);
751 			}
752 			if (p->queue != PQ_ACTIVE && actcount != 0) {
753 				vm_page_activate(p);
754 				p->act_count += actcount;
755 			} else if (p->queue == PQ_ACTIVE) {
756 				if (actcount == 0) {
757 					p->act_count -= min(p->act_count,
758 					    ACT_DECLINE);
759 					if (!remove_mode &&
760 					    (vm_pageout_algorithm ||
761 					    p->act_count == 0)) {
762 						pmap_remove_all(p);
763 						vm_page_deactivate(p);
764 					} else
765 						vm_page_requeue(p);
766 				} else {
767 					vm_page_activate(p);
768 					if (p->act_count < ACT_MAX -
769 					    ACT_ADVANCE)
770 						p->act_count += ACT_ADVANCE;
771 					vm_page_requeue(p);
772 				}
773 			} else if (p->queue == PQ_INACTIVE)
774 				pmap_remove_all(p);
775 			vm_page_unlock(p);
776 		}
777 		if ((backing_object = object->backing_object) == NULL)
778 			goto unlock_return;
779 		VM_OBJECT_RLOCK(backing_object);
780 		if (object != first_object)
781 			VM_OBJECT_RUNLOCK(object);
782 	}
783 unlock_return:
784 	if (object != first_object)
785 		VM_OBJECT_RUNLOCK(object);
786 }
787 
788 /*
789  * deactivate some number of pages in a map, try to do it fairly, but
790  * that is really hard to do.
791  */
792 static void
793 vm_pageout_map_deactivate_pages(map, desired)
794 	vm_map_t map;
795 	long desired;
796 {
797 	vm_map_entry_t tmpe;
798 	vm_object_t obj, bigobj;
799 	int nothingwired;
800 
801 	if (!vm_map_trylock(map))
802 		return;
803 
804 	bigobj = NULL;
805 	nothingwired = TRUE;
806 
807 	/*
808 	 * first, search out the biggest object, and try to free pages from
809 	 * that.
810 	 */
811 	tmpe = map->header.next;
812 	while (tmpe != &map->header) {
813 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
814 			obj = tmpe->object.vm_object;
815 			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
816 				if (obj->shadow_count <= 1 &&
817 				    (bigobj == NULL ||
818 				     bigobj->resident_page_count < obj->resident_page_count)) {
819 					if (bigobj != NULL)
820 						VM_OBJECT_RUNLOCK(bigobj);
821 					bigobj = obj;
822 				} else
823 					VM_OBJECT_RUNLOCK(obj);
824 			}
825 		}
826 		if (tmpe->wired_count > 0)
827 			nothingwired = FALSE;
828 		tmpe = tmpe->next;
829 	}
830 
831 	if (bigobj != NULL) {
832 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
833 		VM_OBJECT_RUNLOCK(bigobj);
834 	}
835 	/*
836 	 * Next, hunt around for other pages to deactivate.  We actually
837 	 * do this search sort of wrong -- .text first is not the best idea.
838 	 */
839 	tmpe = map->header.next;
840 	while (tmpe != &map->header) {
841 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
842 			break;
843 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
844 			obj = tmpe->object.vm_object;
845 			if (obj != NULL) {
846 				VM_OBJECT_RLOCK(obj);
847 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
848 				VM_OBJECT_RUNLOCK(obj);
849 			}
850 		}
851 		tmpe = tmpe->next;
852 	}
853 
854 	/*
855 	 * Remove all mappings if a process is swapped out, this will free page
856 	 * table pages.
857 	 */
858 	if (desired == 0 && nothingwired) {
859 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
860 		    vm_map_max(map));
861 	}
862 	vm_map_unlock(map);
863 }
864 #endif		/* !defined(NO_SWAPPING) */
865 
866 /*
867  *	vm_pageout_scan does the dirty work for the pageout daemon.
868  */
869 static void
870 vm_pageout_scan(int pass)
871 {
872 	vm_page_t m, next;
873 	struct vm_page marker;
874 	struct vm_pagequeue *pq;
875 	int page_shortage, maxscan, pcount;
876 	int addl_page_shortage;
877 	vm_object_t object;
878 	int actcount;
879 	int vnodes_skipped = 0;
880 	int maxlaunder;
881 	boolean_t queues_locked;
882 
883 	vm_pageout_init_marker(&marker, PQ_INACTIVE);
884 
885 	/*
886 	 * Decrease registered cache sizes.
887 	 */
888 	EVENTHANDLER_INVOKE(vm_lowmem, 0);
889 	/*
890 	 * We do this explicitly after the caches have been drained above.
891 	 */
892 	uma_reclaim();
893 
894 	/*
895 	 * The addl_page_shortage is the number of temporarily
896 	 * stuck pages in the inactive queue.  In other words, the
897 	 * number of pages from cnt.v_inactive_count that should be
898 	 * discounted in setting the target for the active queue scan.
899 	 */
900 	addl_page_shortage = atomic_readandclear_int(&vm_pageout_deficit);
901 
902 	/*
903 	 * Calculate the number of pages we want to either free or move
904 	 * to the cache.
905 	 */
906 	page_shortage = vm_paging_target() + addl_page_shortage;
907 
908 	/*
909 	 * maxlaunder limits the number of dirty pages we flush per scan.
910 	 * For most systems a smaller value (16 or 32) is more robust under
911 	 * extreme memory and disk pressure because any unnecessary writes
912 	 * to disk can result in extreme performance degredation.  However,
913 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
914 	 * used) will die horribly with limited laundering.  If the pageout
915 	 * daemon cannot clean enough pages in the first pass, we let it go
916 	 * all out in succeeding passes.
917 	 */
918 	if ((maxlaunder = vm_max_launder) <= 1)
919 		maxlaunder = 1;
920 	if (pass)
921 		maxlaunder = 10000;
922 
923 	maxscan = cnt.v_inactive_count;
924 
925 	/*
926 	 * Start scanning the inactive queue for pages we can move to the
927 	 * cache or free.  The scan will stop when the target is reached or
928 	 * we have scanned the entire inactive queue.  Note that m->act_count
929 	 * is not used to form decisions for the inactive queue, only for the
930 	 * active queue.
931 	 */
932 	pq = &vm_pagequeues[PQ_INACTIVE];
933 	vm_pagequeue_lock(pq);
934 	queues_locked = TRUE;
935 	for (m = TAILQ_FIRST(&pq->pq_pl);
936 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
937 	     m = next) {
938 		vm_pagequeue_assert_locked(pq);
939 		KASSERT(queues_locked, ("unlocked queues"));
940 		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
941 
942 		PCPU_INC(cnt.v_pdpages);
943 		next = TAILQ_NEXT(m, pageq);
944 
945 		/*
946 		 * skip marker pages
947 		 */
948 		if (m->flags & PG_MARKER)
949 			continue;
950 
951 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
952 		    ("Fictitious page %p cannot be in inactive queue", m));
953 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
954 		    ("Unmanaged page %p cannot be in inactive queue", m));
955 
956 		/*
957 		 * The page or object lock acquisitions fail if the
958 		 * page was removed from the queue or moved to a
959 		 * different position within the queue.  In either
960 		 * case, addl_page_shortage should not be incremented.
961 		 */
962 		if (!vm_pageout_page_lock(m, &next)) {
963 			vm_page_unlock(m);
964 			continue;
965 		}
966 		object = m->object;
967 		if (!VM_OBJECT_TRYWLOCK(object) &&
968 		    !vm_pageout_fallback_object_lock(m, &next)) {
969 			vm_page_unlock(m);
970 			VM_OBJECT_WUNLOCK(object);
971 			continue;
972 		}
973 
974 		/*
975 		 * Don't mess with busy pages, keep them at at the
976 		 * front of the queue, most likely they are being
977 		 * paged out.  Increment addl_page_shortage for busy
978 		 * pages, because they may leave the inactive queue
979 		 * shortly after page scan is finished.
980 		 */
981 		if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0) {
982 			vm_page_unlock(m);
983 			VM_OBJECT_WUNLOCK(object);
984 			addl_page_shortage++;
985 			continue;
986 		}
987 
988 		/*
989 		 * We unlock the inactive page queue, invalidating the
990 		 * 'next' pointer.  Use our marker to remember our
991 		 * place.
992 		 */
993 		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, pageq);
994 		vm_pagequeue_unlock(pq);
995 		queues_locked = FALSE;
996 
997 		/*
998 		 * If the object is not being used, we ignore previous
999 		 * references.
1000 		 */
1001 		if (object->ref_count == 0) {
1002 			vm_page_aflag_clear(m, PGA_REFERENCED);
1003 			KASSERT(!pmap_page_is_mapped(m),
1004 			    ("vm_pageout_scan: page %p is mapped", m));
1005 
1006 		/*
1007 		 * Otherwise, if the page has been referenced while in the
1008 		 * inactive queue, we bump the "activation count" upwards,
1009 		 * making it less likely that the page will be added back to
1010 		 * the inactive queue prematurely again.  Here we check the
1011 		 * page tables (or emulated bits, if any), given the upper
1012 		 * level VM system not knowing anything about existing
1013 		 * references.
1014 		 */
1015 		} else if ((m->aflags & PGA_REFERENCED) == 0 &&
1016 		    (actcount = pmap_ts_referenced(m)) != 0) {
1017 			vm_page_activate(m);
1018 			VM_OBJECT_WUNLOCK(object);
1019 			m->act_count += actcount + ACT_ADVANCE;
1020 			vm_page_unlock(m);
1021 			goto relock_queues;
1022 		}
1023 
1024 		/*
1025 		 * If the upper level VM system knows about any page
1026 		 * references, we activate the page.  We also set the
1027 		 * "activation count" higher than normal so that we will less
1028 		 * likely place pages back onto the inactive queue again.
1029 		 */
1030 		if ((m->aflags & PGA_REFERENCED) != 0) {
1031 			vm_page_aflag_clear(m, PGA_REFERENCED);
1032 			actcount = pmap_ts_referenced(m);
1033 			vm_page_activate(m);
1034 			VM_OBJECT_WUNLOCK(object);
1035 			m->act_count += actcount + ACT_ADVANCE + 1;
1036 			vm_page_unlock(m);
1037 			goto relock_queues;
1038 		}
1039 
1040 		if (m->hold_count != 0) {
1041 			vm_page_unlock(m);
1042 			VM_OBJECT_WUNLOCK(object);
1043 
1044 			/*
1045 			 * Held pages are essentially stuck in the
1046 			 * queue.  So, they ought to be discounted
1047 			 * from cnt.v_inactive_count.  See the
1048 			 * calculation of the page_shortage for the
1049 			 * loop over the active queue below.
1050 			 */
1051 			addl_page_shortage++;
1052 			goto relock_queues;
1053 		}
1054 
1055 		/*
1056 		 * If the page appears to be clean at the machine-independent
1057 		 * layer, then remove all of its mappings from the pmap in
1058 		 * anticipation of placing it onto the cache queue.  If,
1059 		 * however, any of the page's mappings allow write access,
1060 		 * then the page may still be modified until the last of those
1061 		 * mappings are removed.
1062 		 */
1063 		vm_page_test_dirty(m);
1064 		if (m->dirty == 0 && object->ref_count != 0)
1065 			pmap_remove_all(m);
1066 
1067 		if (m->valid == 0) {
1068 			/*
1069 			 * Invalid pages can be easily freed
1070 			 */
1071 			vm_page_free(m);
1072 			PCPU_INC(cnt.v_dfree);
1073 			--page_shortage;
1074 		} else if (m->dirty == 0) {
1075 			/*
1076 			 * Clean pages can be placed onto the cache queue.
1077 			 * This effectively frees them.
1078 			 */
1079 			vm_page_cache(m);
1080 			--page_shortage;
1081 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
1082 			/*
1083 			 * Dirty pages need to be paged out, but flushing
1084 			 * a page is extremely expensive verses freeing
1085 			 * a clean page.  Rather then artificially limiting
1086 			 * the number of pages we can flush, we instead give
1087 			 * dirty pages extra priority on the inactive queue
1088 			 * by forcing them to be cycled through the queue
1089 			 * twice before being flushed, after which the
1090 			 * (now clean) page will cycle through once more
1091 			 * before being freed.  This significantly extends
1092 			 * the thrash point for a heavily loaded machine.
1093 			 */
1094 			m->flags |= PG_WINATCFLS;
1095 			vm_pagequeue_lock(pq);
1096 			queues_locked = TRUE;
1097 			vm_page_requeue_locked(m);
1098 		} else if (maxlaunder > 0) {
1099 			/*
1100 			 * We always want to try to flush some dirty pages if
1101 			 * we encounter them, to keep the system stable.
1102 			 * Normally this number is small, but under extreme
1103 			 * pressure where there are insufficient clean pages
1104 			 * on the inactive queue, we may have to go all out.
1105 			 */
1106 			int swap_pageouts_ok;
1107 			struct vnode *vp = NULL;
1108 			struct mount *mp = NULL;
1109 
1110 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1111 				swap_pageouts_ok = 1;
1112 			} else {
1113 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1114 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1115 				vm_page_count_min());
1116 
1117 			}
1118 
1119 			/*
1120 			 * We don't bother paging objects that are "dead".
1121 			 * Those objects are in a "rundown" state.
1122 			 */
1123 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1124 				vm_pagequeue_lock(pq);
1125 				vm_page_unlock(m);
1126 				VM_OBJECT_WUNLOCK(object);
1127 				queues_locked = TRUE;
1128 				vm_page_requeue_locked(m);
1129 				goto relock_queues;
1130 			}
1131 
1132 			/*
1133 			 * The object is already known NOT to be dead.   It
1134 			 * is possible for the vget() to block the whole
1135 			 * pageout daemon, but the new low-memory handling
1136 			 * code should prevent it.
1137 			 *
1138 			 * The previous code skipped locked vnodes and, worse,
1139 			 * reordered pages in the queue.  This results in
1140 			 * completely non-deterministic operation and, on a
1141 			 * busy system, can lead to extremely non-optimal
1142 			 * pageouts.  For example, it can cause clean pages
1143 			 * to be freed and dirty pages to be moved to the end
1144 			 * of the queue.  Since dirty pages are also moved to
1145 			 * the end of the queue once-cleaned, this gives
1146 			 * way too large a weighting to defering the freeing
1147 			 * of dirty pages.
1148 			 *
1149 			 * We can't wait forever for the vnode lock, we might
1150 			 * deadlock due to a vn_read() getting stuck in
1151 			 * vm_wait while holding this vnode.  We skip the
1152 			 * vnode if we can't get it in a reasonable amount
1153 			 * of time.
1154 			 */
1155 			if (object->type == OBJT_VNODE) {
1156 				vm_page_unlock(m);
1157 				vp = object->handle;
1158 				if (vp->v_type == VREG &&
1159 				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1160 					mp = NULL;
1161 					++pageout_lock_miss;
1162 					if (object->flags & OBJ_MIGHTBEDIRTY)
1163 						vnodes_skipped++;
1164 					goto unlock_and_continue;
1165 				}
1166 				KASSERT(mp != NULL,
1167 				    ("vp %p with NULL v_mount", vp));
1168 				vm_object_reference_locked(object);
1169 				VM_OBJECT_WUNLOCK(object);
1170 				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1171 				    curthread)) {
1172 					VM_OBJECT_WLOCK(object);
1173 					++pageout_lock_miss;
1174 					if (object->flags & OBJ_MIGHTBEDIRTY)
1175 						vnodes_skipped++;
1176 					vp = NULL;
1177 					goto unlock_and_continue;
1178 				}
1179 				VM_OBJECT_WLOCK(object);
1180 				vm_page_lock(m);
1181 				vm_pagequeue_lock(pq);
1182 				queues_locked = TRUE;
1183 				/*
1184 				 * The page might have been moved to another
1185 				 * queue during potential blocking in vget()
1186 				 * above.  The page might have been freed and
1187 				 * reused for another vnode.
1188 				 */
1189 				if (m->queue != PQ_INACTIVE ||
1190 				    m->object != object ||
1191 				    TAILQ_NEXT(m, pageq) != &marker) {
1192 					vm_page_unlock(m);
1193 					if (object->flags & OBJ_MIGHTBEDIRTY)
1194 						vnodes_skipped++;
1195 					goto unlock_and_continue;
1196 				}
1197 
1198 				/*
1199 				 * The page may have been busied during the
1200 				 * blocking in vget().  We don't move the
1201 				 * page back onto the end of the queue so that
1202 				 * statistics are more correct if we don't.
1203 				 */
1204 				if (m->busy || (m->oflags & VPO_BUSY)) {
1205 					vm_page_unlock(m);
1206 					goto unlock_and_continue;
1207 				}
1208 
1209 				/*
1210 				 * If the page has become held it might
1211 				 * be undergoing I/O, so skip it
1212 				 */
1213 				if (m->hold_count) {
1214 					vm_page_unlock(m);
1215 					vm_page_requeue_locked(m);
1216 					if (object->flags & OBJ_MIGHTBEDIRTY)
1217 						vnodes_skipped++;
1218 					goto unlock_and_continue;
1219 				}
1220 				vm_pagequeue_unlock(pq);
1221 				queues_locked = FALSE;
1222 			}
1223 
1224 			/*
1225 			 * If a page is dirty, then it is either being washed
1226 			 * (but not yet cleaned) or it is still in the
1227 			 * laundry.  If it is still in the laundry, then we
1228 			 * start the cleaning operation.
1229 			 *
1230 			 * decrement page_shortage on success to account for
1231 			 * the (future) cleaned page.  Otherwise we could wind
1232 			 * up laundering or cleaning too many pages.
1233 			 */
1234 			if (vm_pageout_clean(m) != 0) {
1235 				--page_shortage;
1236 				--maxlaunder;
1237 			}
1238 unlock_and_continue:
1239 			vm_page_lock_assert(m, MA_NOTOWNED);
1240 			VM_OBJECT_WUNLOCK(object);
1241 			if (mp != NULL) {
1242 				if (queues_locked) {
1243 					vm_pagequeue_unlock(pq);
1244 					queues_locked = FALSE;
1245 				}
1246 				if (vp != NULL)
1247 					vput(vp);
1248 				vm_object_deallocate(object);
1249 				vn_finished_write(mp);
1250 			}
1251 			vm_page_lock_assert(m, MA_NOTOWNED);
1252 			goto relock_queues;
1253 		}
1254 		vm_page_unlock(m);
1255 		VM_OBJECT_WUNLOCK(object);
1256 relock_queues:
1257 		if (!queues_locked) {
1258 			vm_pagequeue_lock(pq);
1259 			queues_locked = TRUE;
1260 		}
1261 		next = TAILQ_NEXT(&marker, pageq);
1262 		TAILQ_REMOVE(&pq->pq_pl, &marker, pageq);
1263 	}
1264 	vm_pagequeue_unlock(pq);
1265 
1266 	/*
1267 	 * Compute the number of pages we want to try to move from the
1268 	 * active queue to the inactive queue.
1269 	 */
1270 	page_shortage = vm_paging_target() +
1271 		cnt.v_inactive_target - cnt.v_inactive_count;
1272 	page_shortage += addl_page_shortage;
1273 
1274 	/*
1275 	 * Scan the active queue for things we can deactivate. We nominally
1276 	 * track the per-page activity counter and use it to locate
1277 	 * deactivation candidates.
1278 	 */
1279 	pcount = cnt.v_active_count;
1280 	pq = &vm_pagequeues[PQ_ACTIVE];
1281 	vm_pagequeue_lock(pq);
1282 	m = TAILQ_FIRST(&pq->pq_pl);
1283 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1284 
1285 		KASSERT(m->queue == PQ_ACTIVE,
1286 		    ("vm_pageout_scan: page %p isn't active", m));
1287 
1288 		next = TAILQ_NEXT(m, pageq);
1289 		if ((m->flags & PG_MARKER) != 0) {
1290 			m = next;
1291 			continue;
1292 		}
1293 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1294 		    ("Fictitious page %p cannot be in active queue", m));
1295 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1296 		    ("Unmanaged page %p cannot be in active queue", m));
1297 		if (!vm_pageout_page_lock(m, &next)) {
1298 			vm_page_unlock(m);
1299 			m = next;
1300 			continue;
1301 		}
1302 		object = m->object;
1303 		if (!VM_OBJECT_TRYWLOCK(object) &&
1304 		    !vm_pageout_fallback_object_lock(m, &next)) {
1305 			VM_OBJECT_WUNLOCK(object);
1306 			vm_page_unlock(m);
1307 			m = next;
1308 			continue;
1309 		}
1310 
1311 		/*
1312 		 * Don't deactivate pages that are busy.
1313 		 */
1314 		if ((m->busy != 0) ||
1315 		    (m->oflags & VPO_BUSY) ||
1316 		    (m->hold_count != 0)) {
1317 			vm_page_unlock(m);
1318 			VM_OBJECT_WUNLOCK(object);
1319 			vm_page_requeue_locked(m);
1320 			m = next;
1321 			continue;
1322 		}
1323 
1324 		/*
1325 		 * The count for pagedaemon pages is done after checking the
1326 		 * page for eligibility...
1327 		 */
1328 		PCPU_INC(cnt.v_pdpages);
1329 
1330 		/*
1331 		 * Check to see "how much" the page has been used.
1332 		 */
1333 		actcount = 0;
1334 		if (object->ref_count != 0) {
1335 			if (m->aflags & PGA_REFERENCED) {
1336 				actcount += 1;
1337 			}
1338 			actcount += pmap_ts_referenced(m);
1339 			if (actcount) {
1340 				m->act_count += ACT_ADVANCE + actcount;
1341 				if (m->act_count > ACT_MAX)
1342 					m->act_count = ACT_MAX;
1343 			}
1344 		}
1345 
1346 		/*
1347 		 * Since we have "tested" this bit, we need to clear it now.
1348 		 */
1349 		vm_page_aflag_clear(m, PGA_REFERENCED);
1350 
1351 		/*
1352 		 * Only if an object is currently being used, do we use the
1353 		 * page activation count stats.
1354 		 */
1355 		if (actcount != 0 && object->ref_count != 0)
1356 			vm_page_requeue_locked(m);
1357 		else {
1358 			m->act_count -= min(m->act_count, ACT_DECLINE);
1359 			if (vm_pageout_algorithm ||
1360 			    object->ref_count == 0 ||
1361 			    m->act_count == 0) {
1362 				page_shortage--;
1363 				/* Dequeue to avoid later lock recursion. */
1364 				vm_page_dequeue_locked(m);
1365 				if (object->ref_count == 0) {
1366 					KASSERT(!pmap_page_is_mapped(m),
1367 				    ("vm_pageout_scan: page %p is mapped", m));
1368 					if (m->dirty == 0)
1369 						vm_page_cache(m);
1370 					else
1371 						vm_page_deactivate(m);
1372 				} else {
1373 					vm_page_deactivate(m);
1374 				}
1375 			} else
1376 				vm_page_requeue_locked(m);
1377 		}
1378 		vm_page_unlock(m);
1379 		VM_OBJECT_WUNLOCK(object);
1380 		m = next;
1381 	}
1382 	vm_pagequeue_unlock(pq);
1383 #if !defined(NO_SWAPPING)
1384 	/*
1385 	 * Idle process swapout -- run once per second.
1386 	 */
1387 	if (vm_swap_idle_enabled) {
1388 		static long lsec;
1389 		if (time_second != lsec) {
1390 			vm_req_vmdaemon(VM_SWAP_IDLE);
1391 			lsec = time_second;
1392 		}
1393 	}
1394 #endif
1395 
1396 	/*
1397 	 * If we didn't get enough free pages, and we have skipped a vnode
1398 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1399 	 * if we did not get enough free pages.
1400 	 */
1401 	if (vm_paging_target() > 0) {
1402 		if (vnodes_skipped && vm_page_count_min())
1403 			(void) speedup_syncer();
1404 #if !defined(NO_SWAPPING)
1405 		if (vm_swap_enabled && vm_page_count_target())
1406 			vm_req_vmdaemon(VM_SWAP_NORMAL);
1407 #endif
1408 	}
1409 
1410 	/*
1411 	 * If we are critically low on one of RAM or swap and low on
1412 	 * the other, kill the largest process.  However, we avoid
1413 	 * doing this on the first pass in order to give ourselves a
1414 	 * chance to flush out dirty vnode-backed pages and to allow
1415 	 * active pages to be moved to the inactive queue and reclaimed.
1416 	 */
1417 	if (pass != 0 &&
1418 	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1419 	     (swap_pager_full && vm_paging_target() > 0)))
1420 		vm_pageout_oom(VM_OOM_MEM);
1421 }
1422 
1423 
1424 void
1425 vm_pageout_oom(int shortage)
1426 {
1427 	struct proc *p, *bigproc;
1428 	vm_offset_t size, bigsize;
1429 	struct thread *td;
1430 	struct vmspace *vm;
1431 
1432 	/*
1433 	 * We keep the process bigproc locked once we find it to keep anyone
1434 	 * from messing with it; however, there is a possibility of
1435 	 * deadlock if process B is bigproc and one of it's child processes
1436 	 * attempts to propagate a signal to B while we are waiting for A's
1437 	 * lock while walking this list.  To avoid this, we don't block on
1438 	 * the process lock but just skip a process if it is already locked.
1439 	 */
1440 	bigproc = NULL;
1441 	bigsize = 0;
1442 	sx_slock(&allproc_lock);
1443 	FOREACH_PROC_IN_SYSTEM(p) {
1444 		int breakout;
1445 
1446 		if (PROC_TRYLOCK(p) == 0)
1447 			continue;
1448 		/*
1449 		 * If this is a system, protected or killed process, skip it.
1450 		 */
1451 		if (p->p_state != PRS_NORMAL ||
1452 		    (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1453 		    (p->p_pid == 1) || P_KILLED(p) ||
1454 		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1455 			PROC_UNLOCK(p);
1456 			continue;
1457 		}
1458 		/*
1459 		 * If the process is in a non-running type state,
1460 		 * don't touch it.  Check all the threads individually.
1461 		 */
1462 		breakout = 0;
1463 		FOREACH_THREAD_IN_PROC(p, td) {
1464 			thread_lock(td);
1465 			if (!TD_ON_RUNQ(td) &&
1466 			    !TD_IS_RUNNING(td) &&
1467 			    !TD_IS_SLEEPING(td) &&
1468 			    !TD_IS_SUSPENDED(td)) {
1469 				thread_unlock(td);
1470 				breakout = 1;
1471 				break;
1472 			}
1473 			thread_unlock(td);
1474 		}
1475 		if (breakout) {
1476 			PROC_UNLOCK(p);
1477 			continue;
1478 		}
1479 		/*
1480 		 * get the process size
1481 		 */
1482 		vm = vmspace_acquire_ref(p);
1483 		if (vm == NULL) {
1484 			PROC_UNLOCK(p);
1485 			continue;
1486 		}
1487 		if (!vm_map_trylock_read(&vm->vm_map)) {
1488 			vmspace_free(vm);
1489 			PROC_UNLOCK(p);
1490 			continue;
1491 		}
1492 		size = vmspace_swap_count(vm);
1493 		vm_map_unlock_read(&vm->vm_map);
1494 		if (shortage == VM_OOM_MEM)
1495 			size += vmspace_resident_count(vm);
1496 		vmspace_free(vm);
1497 		/*
1498 		 * if the this process is bigger than the biggest one
1499 		 * remember it.
1500 		 */
1501 		if (size > bigsize) {
1502 			if (bigproc != NULL)
1503 				PROC_UNLOCK(bigproc);
1504 			bigproc = p;
1505 			bigsize = size;
1506 		} else
1507 			PROC_UNLOCK(p);
1508 	}
1509 	sx_sunlock(&allproc_lock);
1510 	if (bigproc != NULL) {
1511 		killproc(bigproc, "out of swap space");
1512 		sched_nice(bigproc, PRIO_MIN);
1513 		PROC_UNLOCK(bigproc);
1514 		wakeup(&cnt.v_free_count);
1515 	}
1516 }
1517 
1518 /*
1519  * This routine tries to maintain the pseudo LRU active queue,
1520  * so that during long periods of time where there is no paging,
1521  * that some statistic accumulation still occurs.  This code
1522  * helps the situation where paging just starts to occur.
1523  */
1524 static void
1525 vm_pageout_page_stats(void)
1526 {
1527 	struct vm_pagequeue *pq;
1528 	vm_object_t object;
1529 	vm_page_t m, next;
1530 	int pcount, tpcount;		/* Number of pages to check */
1531 	static int fullintervalcount = 0;
1532 	int page_shortage;
1533 
1534 	page_shortage =
1535 	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1536 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1537 
1538 	if (page_shortage <= 0)
1539 		return;
1540 
1541 	pcount = cnt.v_active_count;
1542 	fullintervalcount += vm_pageout_stats_interval;
1543 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1544 		vm_pageout_stats++;
1545 		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1546 		    cnt.v_page_count;
1547 		if (pcount > tpcount)
1548 			pcount = tpcount;
1549 	} else {
1550 		vm_pageout_full_stats++;
1551 		fullintervalcount = 0;
1552 	}
1553 
1554 	pq = &vm_pagequeues[PQ_ACTIVE];
1555 	vm_pagequeue_lock(pq);
1556 	m = TAILQ_FIRST(&pq->pq_pl);
1557 	while ((m != NULL) && (pcount-- > 0)) {
1558 		int actcount;
1559 
1560 		KASSERT(m->queue == PQ_ACTIVE,
1561 		    ("vm_pageout_page_stats: page %p isn't active", m));
1562 
1563 		next = TAILQ_NEXT(m, pageq);
1564 		if ((m->flags & PG_MARKER) != 0) {
1565 			m = next;
1566 			continue;
1567 		}
1568 		vm_page_lock_assert(m, MA_NOTOWNED);
1569 		if (!vm_pageout_page_lock(m, &next)) {
1570 			vm_page_unlock(m);
1571 			m = next;
1572 			continue;
1573 		}
1574 		object = m->object;
1575 		if (!VM_OBJECT_TRYWLOCK(object) &&
1576 		    !vm_pageout_fallback_object_lock(m, &next)) {
1577 			VM_OBJECT_WUNLOCK(object);
1578 			vm_page_unlock(m);
1579 			m = next;
1580 			continue;
1581 		}
1582 
1583 		/*
1584 		 * Don't deactivate pages that are busy.
1585 		 */
1586 		if ((m->busy != 0) ||
1587 		    (m->oflags & VPO_BUSY) ||
1588 		    (m->hold_count != 0)) {
1589 			vm_page_unlock(m);
1590 			VM_OBJECT_WUNLOCK(object);
1591 			vm_page_requeue_locked(m);
1592 			m = next;
1593 			continue;
1594 		}
1595 
1596 		actcount = 0;
1597 		if (m->aflags & PGA_REFERENCED) {
1598 			vm_page_aflag_clear(m, PGA_REFERENCED);
1599 			actcount += 1;
1600 		}
1601 
1602 		actcount += pmap_ts_referenced(m);
1603 		if (actcount) {
1604 			m->act_count += ACT_ADVANCE + actcount;
1605 			if (m->act_count > ACT_MAX)
1606 				m->act_count = ACT_MAX;
1607 			vm_page_requeue_locked(m);
1608 		} else {
1609 			if (m->act_count == 0) {
1610 				/*
1611 				 * We turn off page access, so that we have
1612 				 * more accurate RSS stats.  We don't do this
1613 				 * in the normal page deactivation when the
1614 				 * system is loaded VM wise, because the
1615 				 * cost of the large number of page protect
1616 				 * operations would be higher than the value
1617 				 * of doing the operation.
1618 				 */
1619 				pmap_remove_all(m);
1620 				/* Dequeue to avoid later lock recursion. */
1621 				vm_page_dequeue_locked(m);
1622 				vm_page_deactivate(m);
1623 			} else {
1624 				m->act_count -= min(m->act_count, ACT_DECLINE);
1625 				vm_page_requeue_locked(m);
1626 			}
1627 		}
1628 		vm_page_unlock(m);
1629 		VM_OBJECT_WUNLOCK(object);
1630 		m = next;
1631 	}
1632 	vm_pagequeue_unlock(pq);
1633 }
1634 
1635 /*
1636  *	vm_pageout is the high level pageout daemon.
1637  */
1638 static void
1639 vm_pageout(void)
1640 {
1641 	int error, pass;
1642 
1643 	/*
1644 	 * Initialize some paging parameters.
1645 	 */
1646 	cnt.v_interrupt_free_min = 2;
1647 	if (cnt.v_page_count < 2000)
1648 		vm_pageout_page_count = 8;
1649 
1650 	/*
1651 	 * v_free_reserved needs to include enough for the largest
1652 	 * swap pager structures plus enough for any pv_entry structs
1653 	 * when paging.
1654 	 */
1655 	if (cnt.v_page_count > 1024)
1656 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1657 	else
1658 		cnt.v_free_min = 4;
1659 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1660 	    cnt.v_interrupt_free_min;
1661 	cnt.v_free_reserved = vm_pageout_page_count +
1662 	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1663 	cnt.v_free_severe = cnt.v_free_min / 2;
1664 	cnt.v_free_min += cnt.v_free_reserved;
1665 	cnt.v_free_severe += cnt.v_free_reserved;
1666 
1667 	/*
1668 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1669 	 * that these are more a measure of the VM cache queue hysteresis
1670 	 * then the VM free queue.  Specifically, v_free_target is the
1671 	 * high water mark (free+cache pages).
1672 	 *
1673 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1674 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1675 	 * be big enough to handle memory needs while the pageout daemon
1676 	 * is signalled and run to free more pages.
1677 	 */
1678 	if (cnt.v_free_count > 6144)
1679 		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1680 	else
1681 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1682 
1683 	if (cnt.v_free_count > 2048) {
1684 		cnt.v_cache_min = cnt.v_free_target;
1685 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1686 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1687 	} else {
1688 		cnt.v_cache_min = 0;
1689 		cnt.v_cache_max = 0;
1690 		cnt.v_inactive_target = cnt.v_free_count / 4;
1691 	}
1692 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1693 		cnt.v_inactive_target = cnt.v_free_count / 3;
1694 
1695 	/* XXX does not really belong here */
1696 	if (vm_page_max_wired == 0)
1697 		vm_page_max_wired = cnt.v_free_count / 3;
1698 
1699 	if (vm_pageout_stats_max == 0)
1700 		vm_pageout_stats_max = cnt.v_free_target;
1701 
1702 	/*
1703 	 * Set interval in seconds for stats scan.
1704 	 */
1705 	if (vm_pageout_stats_interval == 0)
1706 		vm_pageout_stats_interval = 5;
1707 	if (vm_pageout_full_stats_interval == 0)
1708 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1709 
1710 	swap_pager_swap_init();
1711 	pass = 0;
1712 	/*
1713 	 * The pageout daemon is never done, so loop forever.
1714 	 */
1715 	while (TRUE) {
1716 		/*
1717 		 * If we have enough free memory, wakeup waiters.  Do
1718 		 * not clear vm_pages_needed until we reach our target,
1719 		 * otherwise we may be woken up over and over again and
1720 		 * waste a lot of cpu.
1721 		 */
1722 		mtx_lock(&vm_page_queue_free_mtx);
1723 		if (vm_pages_needed && !vm_page_count_min()) {
1724 			if (!vm_paging_needed())
1725 				vm_pages_needed = 0;
1726 			wakeup(&cnt.v_free_count);
1727 		}
1728 		if (vm_pages_needed) {
1729 			/*
1730 			 * Still not done, take a second pass without waiting
1731 			 * (unlimited dirty cleaning), otherwise sleep a bit
1732 			 * and try again.
1733 			 */
1734 			++pass;
1735 			if (pass > 1)
1736 				msleep(&vm_pages_needed,
1737 				    &vm_page_queue_free_mtx, PVM, "psleep",
1738 				    hz / 2);
1739 		} else {
1740 			/*
1741 			 * Good enough, sleep & handle stats.  Prime the pass
1742 			 * for the next run.
1743 			 */
1744 			if (pass > 1)
1745 				pass = 1;
1746 			else
1747 				pass = 0;
1748 			error = msleep(&vm_pages_needed,
1749 			    &vm_page_queue_free_mtx, PVM, "psleep",
1750 			    vm_pageout_stats_interval * hz);
1751 			if (error && !vm_pages_needed) {
1752 				mtx_unlock(&vm_page_queue_free_mtx);
1753 				pass = 0;
1754 				vm_pageout_page_stats();
1755 				continue;
1756 			}
1757 		}
1758 		if (vm_pages_needed)
1759 			cnt.v_pdwakeups++;
1760 		mtx_unlock(&vm_page_queue_free_mtx);
1761 		vm_pageout_scan(pass);
1762 	}
1763 }
1764 
1765 /*
1766  * Unless the free page queue lock is held by the caller, this function
1767  * should be regarded as advisory.  Specifically, the caller should
1768  * not msleep() on &cnt.v_free_count following this function unless
1769  * the free page queue lock is held until the msleep() is performed.
1770  */
1771 void
1772 pagedaemon_wakeup(void)
1773 {
1774 
1775 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1776 		vm_pages_needed = 1;
1777 		wakeup(&vm_pages_needed);
1778 	}
1779 }
1780 
1781 #if !defined(NO_SWAPPING)
1782 static void
1783 vm_req_vmdaemon(int req)
1784 {
1785 	static int lastrun = 0;
1786 
1787 	mtx_lock(&vm_daemon_mtx);
1788 	vm_pageout_req_swapout |= req;
1789 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1790 		wakeup(&vm_daemon_needed);
1791 		lastrun = ticks;
1792 	}
1793 	mtx_unlock(&vm_daemon_mtx);
1794 }
1795 
1796 static void
1797 vm_daemon(void)
1798 {
1799 	struct rlimit rsslim;
1800 	struct proc *p;
1801 	struct thread *td;
1802 	struct vmspace *vm;
1803 	int breakout, swapout_flags, tryagain, attempts;
1804 #ifdef RACCT
1805 	uint64_t rsize, ravailable;
1806 #endif
1807 
1808 	while (TRUE) {
1809 		mtx_lock(&vm_daemon_mtx);
1810 #ifdef RACCT
1811 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1812 #else
1813 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1814 #endif
1815 		swapout_flags = vm_pageout_req_swapout;
1816 		vm_pageout_req_swapout = 0;
1817 		mtx_unlock(&vm_daemon_mtx);
1818 		if (swapout_flags)
1819 			swapout_procs(swapout_flags);
1820 
1821 		/*
1822 		 * scan the processes for exceeding their rlimits or if
1823 		 * process is swapped out -- deactivate pages
1824 		 */
1825 		tryagain = 0;
1826 		attempts = 0;
1827 again:
1828 		attempts++;
1829 		sx_slock(&allproc_lock);
1830 		FOREACH_PROC_IN_SYSTEM(p) {
1831 			vm_pindex_t limit, size;
1832 
1833 			/*
1834 			 * if this is a system process or if we have already
1835 			 * looked at this process, skip it.
1836 			 */
1837 			PROC_LOCK(p);
1838 			if (p->p_state != PRS_NORMAL ||
1839 			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1840 				PROC_UNLOCK(p);
1841 				continue;
1842 			}
1843 			/*
1844 			 * if the process is in a non-running type state,
1845 			 * don't touch it.
1846 			 */
1847 			breakout = 0;
1848 			FOREACH_THREAD_IN_PROC(p, td) {
1849 				thread_lock(td);
1850 				if (!TD_ON_RUNQ(td) &&
1851 				    !TD_IS_RUNNING(td) &&
1852 				    !TD_IS_SLEEPING(td) &&
1853 				    !TD_IS_SUSPENDED(td)) {
1854 					thread_unlock(td);
1855 					breakout = 1;
1856 					break;
1857 				}
1858 				thread_unlock(td);
1859 			}
1860 			if (breakout) {
1861 				PROC_UNLOCK(p);
1862 				continue;
1863 			}
1864 			/*
1865 			 * get a limit
1866 			 */
1867 			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1868 			limit = OFF_TO_IDX(
1869 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1870 
1871 			/*
1872 			 * let processes that are swapped out really be
1873 			 * swapped out set the limit to nothing (will force a
1874 			 * swap-out.)
1875 			 */
1876 			if ((p->p_flag & P_INMEM) == 0)
1877 				limit = 0;	/* XXX */
1878 			vm = vmspace_acquire_ref(p);
1879 			PROC_UNLOCK(p);
1880 			if (vm == NULL)
1881 				continue;
1882 
1883 			size = vmspace_resident_count(vm);
1884 			if (size >= limit) {
1885 				vm_pageout_map_deactivate_pages(
1886 				    &vm->vm_map, limit);
1887 			}
1888 #ifdef RACCT
1889 			rsize = IDX_TO_OFF(size);
1890 			PROC_LOCK(p);
1891 			racct_set(p, RACCT_RSS, rsize);
1892 			ravailable = racct_get_available(p, RACCT_RSS);
1893 			PROC_UNLOCK(p);
1894 			if (rsize > ravailable) {
1895 				/*
1896 				 * Don't be overly aggressive; this might be
1897 				 * an innocent process, and the limit could've
1898 				 * been exceeded by some memory hog.  Don't
1899 				 * try to deactivate more than 1/4th of process'
1900 				 * resident set size.
1901 				 */
1902 				if (attempts <= 8) {
1903 					if (ravailable < rsize - (rsize / 4))
1904 						ravailable = rsize - (rsize / 4);
1905 				}
1906 				vm_pageout_map_deactivate_pages(
1907 				    &vm->vm_map, OFF_TO_IDX(ravailable));
1908 				/* Update RSS usage after paging out. */
1909 				size = vmspace_resident_count(vm);
1910 				rsize = IDX_TO_OFF(size);
1911 				PROC_LOCK(p);
1912 				racct_set(p, RACCT_RSS, rsize);
1913 				PROC_UNLOCK(p);
1914 				if (rsize > ravailable)
1915 					tryagain = 1;
1916 			}
1917 #endif
1918 			vmspace_free(vm);
1919 		}
1920 		sx_sunlock(&allproc_lock);
1921 		if (tryagain != 0 && attempts <= 10)
1922 			goto again;
1923 	}
1924 }
1925 #endif			/* !defined(NO_SWAPPING) */
1926