xref: /freebsd/sys/vm/vm_pageout.c (revision 52baf267be42c3e14a9d843c24c953efae7195bd)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/vnode.h>
94 #include <sys/vmmeter.h>
95 #include <sys/sx.h>
96 #include <sys/sysctl.h>
97 
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_pager.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_extern.h>
107 #include <vm/uma.h>
108 
109 /*
110  * System initialization
111  */
112 
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_scan(int pass);
117 
118 struct proc *pageproc;
119 
120 static struct kproc_desc page_kp = {
121 	"pagedaemon",
122 	vm_pageout,
123 	&pageproc
124 };
125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
126     &page_kp);
127 
128 #if !defined(NO_SWAPPING)
129 /* the kernel process "vm_daemon"*/
130 static void vm_daemon(void);
131 static struct	proc *vmproc;
132 
133 static struct kproc_desc vm_kp = {
134 	"vmdaemon",
135 	vm_daemon,
136 	&vmproc
137 };
138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
139 #endif
140 
141 
142 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
143 int vm_pageout_deficit;		/* Estimated number of pages deficit */
144 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
145 
146 #if !defined(NO_SWAPPING)
147 static int vm_pageout_req_swapout;	/* XXX */
148 static int vm_daemon_needed;
149 static struct mtx vm_daemon_mtx;
150 /* Allow for use by vm_pageout before vm_daemon is initialized. */
151 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152 #endif
153 static int vm_max_launder = 32;
154 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
155 static int vm_pageout_full_stats_interval = 0;
156 static int vm_pageout_algorithm=0;
157 static int defer_swap_pageouts=0;
158 static int disable_swap_pageouts=0;
159 
160 #if defined(NO_SWAPPING)
161 static int vm_swap_enabled=0;
162 static int vm_swap_idle_enabled=0;
163 #else
164 static int vm_swap_enabled=1;
165 static int vm_swap_idle_enabled=0;
166 #endif
167 
168 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
169 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
170 
171 SYSCTL_INT(_vm, OID_AUTO, max_launder,
172 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
173 
174 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
175 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
176 
177 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
178 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
179 
180 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
181 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
182 
183 #if defined(NO_SWAPPING)
184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185 	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188 #else
189 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
190 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
191 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
192 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
193 #endif
194 
195 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
196 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
197 
198 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
199 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
200 
201 static int pageout_lock_miss;
202 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
203 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
204 
205 #define VM_PAGEOUT_PAGE_COUNT 16
206 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207 
208 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
209 SYSCTL_INT(_vm, OID_AUTO, max_wired,
210 	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
211 
212 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
213 static boolean_t vm_pageout_launder(int, int, vm_paddr_t, vm_paddr_t);
214 #if !defined(NO_SWAPPING)
215 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
216 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
217 static void vm_req_vmdaemon(int req);
218 #endif
219 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
220 static void vm_pageout_page_stats(void);
221 
222 /*
223  * Initialize a dummy page for marking the caller's place in the specified
224  * paging queue.  In principle, this function only needs to set the flag
225  * PG_MARKER.  Nonetheless, it sets the flag VPO_BUSY and initializes the hold
226  * count to one as safety precautions.
227  */
228 static void
229 vm_pageout_init_marker(vm_page_t marker, u_short queue)
230 {
231 
232 	bzero(marker, sizeof(*marker));
233 	marker->flags = PG_MARKER;
234 	marker->oflags = VPO_BUSY;
235 	marker->queue = queue;
236 	marker->hold_count = 1;
237 }
238 
239 /*
240  * vm_pageout_fallback_object_lock:
241  *
242  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
243  * known to have failed and page queue must be either PQ_ACTIVE or
244  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
245  * while locking the vm object.  Use marker page to detect page queue
246  * changes and maintain notion of next page on page queue.  Return
247  * TRUE if no changes were detected, FALSE otherwise.  vm object is
248  * locked on return.
249  *
250  * This function depends on both the lock portion of struct vm_object
251  * and normal struct vm_page being type stable.
252  */
253 static boolean_t
254 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
255 {
256 	struct vm_page marker;
257 	boolean_t unchanged;
258 	u_short queue;
259 	vm_object_t object;
260 
261 	queue = m->queue;
262 	vm_pageout_init_marker(&marker, queue);
263 	object = m->object;
264 
265 	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
266 			   m, &marker, pageq);
267 	vm_page_unlock_queues();
268 	vm_page_unlock(m);
269 	VM_OBJECT_LOCK(object);
270 	vm_page_lock(m);
271 	vm_page_lock_queues();
272 
273 	/* Page queue might have changed. */
274 	*next = TAILQ_NEXT(&marker, pageq);
275 	unchanged = (m->queue == queue &&
276 		     m->object == object &&
277 		     &marker == TAILQ_NEXT(m, pageq));
278 	TAILQ_REMOVE(&vm_page_queues[queue].pl,
279 		     &marker, pageq);
280 	return (unchanged);
281 }
282 
283 /*
284  * Lock the page while holding the page queue lock.  Use marker page
285  * to detect page queue changes and maintain notion of next page on
286  * page queue.  Return TRUE if no changes were detected, FALSE
287  * otherwise.  The page is locked on return. The page queue lock might
288  * be dropped and reacquired.
289  *
290  * This function depends on normal struct vm_page being type stable.
291  */
292 static boolean_t
293 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
294 {
295 	struct vm_page marker;
296 	boolean_t unchanged;
297 	u_short queue;
298 
299 	vm_page_lock_assert(m, MA_NOTOWNED);
300 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
301 
302 	if (vm_page_trylock(m))
303 		return (TRUE);
304 
305 	queue = m->queue;
306 	vm_pageout_init_marker(&marker, queue);
307 
308 	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
309 	vm_page_unlock_queues();
310 	vm_page_lock(m);
311 	vm_page_lock_queues();
312 
313 	/* Page queue might have changed. */
314 	*next = TAILQ_NEXT(&marker, pageq);
315 	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
316 	TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
317 	return (unchanged);
318 }
319 
320 /*
321  * vm_pageout_clean:
322  *
323  * Clean the page and remove it from the laundry.
324  *
325  * We set the busy bit to cause potential page faults on this page to
326  * block.  Note the careful timing, however, the busy bit isn't set till
327  * late and we cannot do anything that will mess with the page.
328  */
329 static int
330 vm_pageout_clean(vm_page_t m)
331 {
332 	vm_object_t object;
333 	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
334 	int pageout_count;
335 	int ib, is, page_base;
336 	vm_pindex_t pindex = m->pindex;
337 
338 	vm_page_lock_assert(m, MA_OWNED);
339 	object = m->object;
340 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
341 
342 	/*
343 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
344 	 * with the new swapper, but we could have serious problems paging
345 	 * out other object types if there is insufficient memory.
346 	 *
347 	 * Unfortunately, checking free memory here is far too late, so the
348 	 * check has been moved up a procedural level.
349 	 */
350 
351 	/*
352 	 * Can't clean the page if it's busy or held.
353 	 */
354 	KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
355 	    ("vm_pageout_clean: page %p is busy", m));
356 	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
357 	vm_page_unlock(m);
358 
359 	mc[vm_pageout_page_count] = pb = ps = m;
360 	pageout_count = 1;
361 	page_base = vm_pageout_page_count;
362 	ib = 1;
363 	is = 1;
364 
365 	/*
366 	 * Scan object for clusterable pages.
367 	 *
368 	 * We can cluster ONLY if: ->> the page is NOT
369 	 * clean, wired, busy, held, or mapped into a
370 	 * buffer, and one of the following:
371 	 * 1) The page is inactive, or a seldom used
372 	 *    active page.
373 	 * -or-
374 	 * 2) we force the issue.
375 	 *
376 	 * During heavy mmap/modification loads the pageout
377 	 * daemon can really fragment the underlying file
378 	 * due to flushing pages out of order and not trying
379 	 * align the clusters (which leave sporatic out-of-order
380 	 * holes).  To solve this problem we do the reverse scan
381 	 * first and attempt to align our cluster, then do a
382 	 * forward scan if room remains.
383 	 */
384 more:
385 	while (ib && pageout_count < vm_pageout_page_count) {
386 		vm_page_t p;
387 
388 		if (ib > pindex) {
389 			ib = 0;
390 			break;
391 		}
392 
393 		if ((p = vm_page_prev(pb)) == NULL ||
394 		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
395 			ib = 0;
396 			break;
397 		}
398 		vm_page_lock(p);
399 		vm_page_test_dirty(p);
400 		if (p->dirty == 0 ||
401 		    p->queue != PQ_INACTIVE ||
402 		    p->hold_count != 0) {	/* may be undergoing I/O */
403 			vm_page_unlock(p);
404 			ib = 0;
405 			break;
406 		}
407 		vm_page_unlock(p);
408 		mc[--page_base] = pb = p;
409 		++pageout_count;
410 		++ib;
411 		/*
412 		 * alignment boundry, stop here and switch directions.  Do
413 		 * not clear ib.
414 		 */
415 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
416 			break;
417 	}
418 
419 	while (pageout_count < vm_pageout_page_count &&
420 	    pindex + is < object->size) {
421 		vm_page_t p;
422 
423 		if ((p = vm_page_next(ps)) == NULL ||
424 		    (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
425 			break;
426 		vm_page_lock(p);
427 		vm_page_test_dirty(p);
428 		if (p->dirty == 0 ||
429 		    p->queue != PQ_INACTIVE ||
430 		    p->hold_count != 0) {	/* may be undergoing I/O */
431 			vm_page_unlock(p);
432 			break;
433 		}
434 		vm_page_unlock(p);
435 		mc[page_base + pageout_count] = ps = p;
436 		++pageout_count;
437 		++is;
438 	}
439 
440 	/*
441 	 * If we exhausted our forward scan, continue with the reverse scan
442 	 * when possible, even past a page boundry.  This catches boundry
443 	 * conditions.
444 	 */
445 	if (ib && pageout_count < vm_pageout_page_count)
446 		goto more;
447 
448 	/*
449 	 * we allow reads during pageouts...
450 	 */
451 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
452 	    NULL));
453 }
454 
455 /*
456  * vm_pageout_flush() - launder the given pages
457  *
458  *	The given pages are laundered.  Note that we setup for the start of
459  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
460  *	reference count all in here rather then in the parent.  If we want
461  *	the parent to do more sophisticated things we may have to change
462  *	the ordering.
463  *
464  *	Returned runlen is the count of pages between mreq and first
465  *	page after mreq with status VM_PAGER_AGAIN.
466  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
467  *	for any page in runlen set.
468  */
469 int
470 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
471     boolean_t *eio)
472 {
473 	vm_object_t object = mc[0]->object;
474 	int pageout_status[count];
475 	int numpagedout = 0;
476 	int i, runlen;
477 
478 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
479 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
480 
481 	/*
482 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
483 	 * mark the pages read-only.
484 	 *
485 	 * We do not have to fixup the clean/dirty bits here... we can
486 	 * allow the pager to do it after the I/O completes.
487 	 *
488 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
489 	 * edge case with file fragments.
490 	 */
491 	for (i = 0; i < count; i++) {
492 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
493 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
494 			mc[i], i, count));
495 		vm_page_io_start(mc[i]);
496 		pmap_remove_write(mc[i]);
497 	}
498 	vm_object_pip_add(object, count);
499 
500 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
501 
502 	runlen = count - mreq;
503 	if (eio != NULL)
504 		*eio = FALSE;
505 	for (i = 0; i < count; i++) {
506 		vm_page_t mt = mc[i];
507 
508 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
509 		    !pmap_page_is_write_mapped(mt),
510 		    ("vm_pageout_flush: page %p is not write protected", mt));
511 		switch (pageout_status[i]) {
512 		case VM_PAGER_OK:
513 		case VM_PAGER_PEND:
514 			numpagedout++;
515 			break;
516 		case VM_PAGER_BAD:
517 			/*
518 			 * Page outside of range of object. Right now we
519 			 * essentially lose the changes by pretending it
520 			 * worked.
521 			 */
522 			vm_page_undirty(mt);
523 			break;
524 		case VM_PAGER_ERROR:
525 		case VM_PAGER_FAIL:
526 			/*
527 			 * If page couldn't be paged out, then reactivate the
528 			 * page so it doesn't clog the inactive list.  (We
529 			 * will try paging out it again later).
530 			 */
531 			vm_page_lock(mt);
532 			vm_page_activate(mt);
533 			vm_page_unlock(mt);
534 			if (eio != NULL && i >= mreq && i - mreq < runlen)
535 				*eio = TRUE;
536 			break;
537 		case VM_PAGER_AGAIN:
538 			if (i >= mreq && i - mreq < runlen)
539 				runlen = i - mreq;
540 			break;
541 		}
542 
543 		/*
544 		 * If the operation is still going, leave the page busy to
545 		 * block all other accesses. Also, leave the paging in
546 		 * progress indicator set so that we don't attempt an object
547 		 * collapse.
548 		 */
549 		if (pageout_status[i] != VM_PAGER_PEND) {
550 			vm_object_pip_wakeup(object);
551 			vm_page_io_finish(mt);
552 			if (vm_page_count_severe()) {
553 				vm_page_lock(mt);
554 				vm_page_try_to_cache(mt);
555 				vm_page_unlock(mt);
556 			}
557 		}
558 	}
559 	if (prunlen != NULL)
560 		*prunlen = runlen;
561 	return (numpagedout);
562 }
563 
564 static boolean_t
565 vm_pageout_launder(int queue, int tries, vm_paddr_t low, vm_paddr_t high)
566 {
567 	struct mount *mp;
568 	struct vnode *vp;
569 	vm_object_t object;
570 	vm_paddr_t pa;
571 	vm_page_t m, m_tmp, next;
572 	int vfslocked;
573 
574 	vm_page_lock_queues();
575 	TAILQ_FOREACH_SAFE(m, &vm_page_queues[queue].pl, pageq, next) {
576 		KASSERT(m->queue == queue,
577 		    ("vm_pageout_launder: page %p's queue is not %d", m,
578 		    queue));
579 		if ((m->flags & PG_MARKER) != 0)
580 			continue;
581 		pa = VM_PAGE_TO_PHYS(m);
582 		if (pa < low || pa + PAGE_SIZE > high)
583 			continue;
584 		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
585 			vm_page_unlock(m);
586 			continue;
587 		}
588 		object = m->object;
589 		if (!VM_OBJECT_TRYLOCK(object) &&
590 		    (!vm_pageout_fallback_object_lock(m, &next) ||
591 		    m->hold_count != 0)) {
592 			vm_page_unlock(m);
593 			VM_OBJECT_UNLOCK(object);
594 			continue;
595 		}
596 		if ((m->oflags & VPO_BUSY) != 0 || m->busy != 0) {
597 			if (tries == 0) {
598 				vm_page_unlock(m);
599 				VM_OBJECT_UNLOCK(object);
600 				continue;
601 			}
602 			vm_page_sleep(m, "vpctw0");
603 			VM_OBJECT_UNLOCK(object);
604 			return (FALSE);
605 		}
606 		vm_page_test_dirty(m);
607 		if (m->dirty == 0)
608 			pmap_remove_all(m);
609 		if (m->dirty != 0) {
610 			vm_page_unlock(m);
611 			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
612 				VM_OBJECT_UNLOCK(object);
613 				continue;
614 			}
615 			if (object->type == OBJT_VNODE) {
616 				vm_page_unlock_queues();
617 				vp = object->handle;
618 				vm_object_reference_locked(object);
619 				VM_OBJECT_UNLOCK(object);
620 				(void)vn_start_write(vp, &mp, V_WAIT);
621 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
622 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
623 				VM_OBJECT_LOCK(object);
624 				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
625 				VM_OBJECT_UNLOCK(object);
626 				VOP_UNLOCK(vp, 0);
627 				VFS_UNLOCK_GIANT(vfslocked);
628 				vm_object_deallocate(object);
629 				vn_finished_write(mp);
630 				return (TRUE);
631 			} else if (object->type == OBJT_SWAP ||
632 			    object->type == OBJT_DEFAULT) {
633 				vm_page_unlock_queues();
634 				m_tmp = m;
635 				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
636 				    0, NULL, NULL);
637 				VM_OBJECT_UNLOCK(object);
638 				return (TRUE);
639 			}
640 		} else {
641 			vm_page_cache(m);
642 			vm_page_unlock(m);
643 		}
644 		VM_OBJECT_UNLOCK(object);
645 	}
646 	vm_page_unlock_queues();
647 	return (FALSE);
648 }
649 
650 /*
651  * Increase the number of cached pages.  The specified value, "tries",
652  * determines which categories of pages are cached:
653  *
654  *  0: All clean, inactive pages within the specified physical address range
655  *     are cached.  Will not sleep.
656  *  1: The vm_lowmem handlers are called.  All inactive pages within
657  *     the specified physical address range are cached.  May sleep.
658  *  2: The vm_lowmem handlers are called.  All inactive and active pages
659  *     within the specified physical address range are cached.  May sleep.
660  */
661 void
662 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
663 {
664 	int actl, actmax, inactl, inactmax;
665 
666 	if (tries > 0) {
667 		/*
668 		 * Decrease registered cache sizes.  The vm_lowmem handlers
669 		 * may acquire locks and/or sleep, so they can only be invoked
670 		 * when "tries" is greater than zero.
671 		 */
672 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
673 
674 		/*
675 		 * We do this explicitly after the caches have been drained
676 		 * above.
677 		 */
678 		uma_reclaim();
679 	}
680 	inactl = 0;
681 	inactmax = cnt.v_inactive_count;
682 	actl = 0;
683 	actmax = tries < 2 ? 0 : cnt.v_active_count;
684 again:
685 	if (inactl < inactmax && vm_pageout_launder(PQ_INACTIVE, tries, low,
686 	    high)) {
687 		inactl++;
688 		goto again;
689 	}
690 	if (actl < actmax && vm_pageout_launder(PQ_ACTIVE, tries, low, high)) {
691 		actl++;
692 		goto again;
693 	}
694 }
695 
696 #if !defined(NO_SWAPPING)
697 /*
698  *	vm_pageout_object_deactivate_pages
699  *
700  *	Deactivate enough pages to satisfy the inactive target
701  *	requirements.
702  *
703  *	The object and map must be locked.
704  */
705 static void
706 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
707     long desired)
708 {
709 	vm_object_t backing_object, object;
710 	vm_page_t p;
711 	int actcount, remove_mode;
712 
713 	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
714 	if (first_object->type == OBJT_DEVICE ||
715 	    first_object->type == OBJT_SG)
716 		return;
717 	for (object = first_object;; object = backing_object) {
718 		if (pmap_resident_count(pmap) <= desired)
719 			goto unlock_return;
720 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
721 		if (object->type == OBJT_PHYS || object->paging_in_progress)
722 			goto unlock_return;
723 
724 		remove_mode = 0;
725 		if (object->shadow_count > 1)
726 			remove_mode = 1;
727 		/*
728 		 * Scan the object's entire memory queue.
729 		 */
730 		TAILQ_FOREACH(p, &object->memq, listq) {
731 			if (pmap_resident_count(pmap) <= desired)
732 				goto unlock_return;
733 			if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
734 				continue;
735 			PCPU_INC(cnt.v_pdpages);
736 			vm_page_lock(p);
737 			if (p->wire_count != 0 || p->hold_count != 0 ||
738 			    !pmap_page_exists_quick(pmap, p)) {
739 				vm_page_unlock(p);
740 				continue;
741 			}
742 			actcount = pmap_ts_referenced(p);
743 			if ((p->aflags & PGA_REFERENCED) != 0) {
744 				if (actcount == 0)
745 					actcount = 1;
746 				vm_page_aflag_clear(p, PGA_REFERENCED);
747 			}
748 			if (p->queue != PQ_ACTIVE && actcount != 0) {
749 				vm_page_activate(p);
750 				p->act_count += actcount;
751 			} else if (p->queue == PQ_ACTIVE) {
752 				if (actcount == 0) {
753 					p->act_count -= min(p->act_count,
754 					    ACT_DECLINE);
755 					if (!remove_mode &&
756 					    (vm_pageout_algorithm ||
757 					    p->act_count == 0)) {
758 						pmap_remove_all(p);
759 						vm_page_deactivate(p);
760 					} else {
761 						vm_page_lock_queues();
762 						vm_page_requeue(p);
763 						vm_page_unlock_queues();
764 					}
765 				} else {
766 					vm_page_activate(p);
767 					if (p->act_count < ACT_MAX -
768 					    ACT_ADVANCE)
769 						p->act_count += ACT_ADVANCE;
770 					vm_page_lock_queues();
771 					vm_page_requeue(p);
772 					vm_page_unlock_queues();
773 				}
774 			} else if (p->queue == PQ_INACTIVE)
775 				pmap_remove_all(p);
776 			vm_page_unlock(p);
777 		}
778 		if ((backing_object = object->backing_object) == NULL)
779 			goto unlock_return;
780 		VM_OBJECT_LOCK(backing_object);
781 		if (object != first_object)
782 			VM_OBJECT_UNLOCK(object);
783 	}
784 unlock_return:
785 	if (object != first_object)
786 		VM_OBJECT_UNLOCK(object);
787 }
788 
789 /*
790  * deactivate some number of pages in a map, try to do it fairly, but
791  * that is really hard to do.
792  */
793 static void
794 vm_pageout_map_deactivate_pages(map, desired)
795 	vm_map_t map;
796 	long desired;
797 {
798 	vm_map_entry_t tmpe;
799 	vm_object_t obj, bigobj;
800 	int nothingwired;
801 
802 	if (!vm_map_trylock(map))
803 		return;
804 
805 	bigobj = NULL;
806 	nothingwired = TRUE;
807 
808 	/*
809 	 * first, search out the biggest object, and try to free pages from
810 	 * that.
811 	 */
812 	tmpe = map->header.next;
813 	while (tmpe != &map->header) {
814 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
815 			obj = tmpe->object.vm_object;
816 			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
817 				if (obj->shadow_count <= 1 &&
818 				    (bigobj == NULL ||
819 				     bigobj->resident_page_count < obj->resident_page_count)) {
820 					if (bigobj != NULL)
821 						VM_OBJECT_UNLOCK(bigobj);
822 					bigobj = obj;
823 				} else
824 					VM_OBJECT_UNLOCK(obj);
825 			}
826 		}
827 		if (tmpe->wired_count > 0)
828 			nothingwired = FALSE;
829 		tmpe = tmpe->next;
830 	}
831 
832 	if (bigobj != NULL) {
833 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
834 		VM_OBJECT_UNLOCK(bigobj);
835 	}
836 	/*
837 	 * Next, hunt around for other pages to deactivate.  We actually
838 	 * do this search sort of wrong -- .text first is not the best idea.
839 	 */
840 	tmpe = map->header.next;
841 	while (tmpe != &map->header) {
842 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
843 			break;
844 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
845 			obj = tmpe->object.vm_object;
846 			if (obj != NULL) {
847 				VM_OBJECT_LOCK(obj);
848 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
849 				VM_OBJECT_UNLOCK(obj);
850 			}
851 		}
852 		tmpe = tmpe->next;
853 	}
854 
855 	/*
856 	 * Remove all mappings if a process is swapped out, this will free page
857 	 * table pages.
858 	 */
859 	if (desired == 0 && nothingwired) {
860 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
861 		    vm_map_max(map));
862 	}
863 	vm_map_unlock(map);
864 }
865 #endif		/* !defined(NO_SWAPPING) */
866 
867 /*
868  *	vm_pageout_scan does the dirty work for the pageout daemon.
869  */
870 static void
871 vm_pageout_scan(int pass)
872 {
873 	vm_page_t m, next;
874 	struct vm_page marker;
875 	int page_shortage, maxscan, pcount;
876 	int addl_page_shortage;
877 	vm_object_t object;
878 	int actcount;
879 	int vnodes_skipped = 0;
880 	int maxlaunder;
881 	boolean_t queues_locked;
882 
883 	/*
884 	 * Decrease registered cache sizes.
885 	 */
886 	EVENTHANDLER_INVOKE(vm_lowmem, 0);
887 	/*
888 	 * We do this explicitly after the caches have been drained above.
889 	 */
890 	uma_reclaim();
891 
892 	addl_page_shortage = atomic_readandclear_int(&vm_pageout_deficit);
893 
894 	/*
895 	 * Calculate the number of pages we want to either free or move
896 	 * to the cache.
897 	 */
898 	page_shortage = vm_paging_target() + addl_page_shortage;
899 
900 	vm_pageout_init_marker(&marker, PQ_INACTIVE);
901 
902 	/*
903 	 * Start scanning the inactive queue for pages we can move to the
904 	 * cache or free.  The scan will stop when the target is reached or
905 	 * we have scanned the entire inactive queue.  Note that m->act_count
906 	 * is not used to form decisions for the inactive queue, only for the
907 	 * active queue.
908 	 *
909 	 * maxlaunder limits the number of dirty pages we flush per scan.
910 	 * For most systems a smaller value (16 or 32) is more robust under
911 	 * extreme memory and disk pressure because any unnecessary writes
912 	 * to disk can result in extreme performance degredation.  However,
913 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
914 	 * used) will die horribly with limited laundering.  If the pageout
915 	 * daemon cannot clean enough pages in the first pass, we let it go
916 	 * all out in succeeding passes.
917 	 */
918 	if ((maxlaunder = vm_max_launder) <= 1)
919 		maxlaunder = 1;
920 	if (pass)
921 		maxlaunder = 10000;
922 	vm_page_lock_queues();
923 	queues_locked = TRUE;
924 	maxscan = cnt.v_inactive_count;
925 
926 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
927 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
928 	     m = next) {
929 		KASSERT(queues_locked, ("unlocked queues"));
930 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
931 		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
932 
933 		cnt.v_pdpages++;
934 		next = TAILQ_NEXT(m, pageq);
935 
936 		/*
937 		 * skip marker pages
938 		 */
939 		if (m->flags & PG_MARKER)
940 			continue;
941 
942 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
943 		    ("Fictitious page %p cannot be in inactive queue", m));
944 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
945 		    ("Unmanaged page %p cannot be in inactive queue", m));
946 
947 		/*
948 		 * Lock the page.
949 		 */
950 		if (!vm_pageout_page_lock(m, &next)) {
951 			vm_page_unlock(m);
952 			addl_page_shortage++;
953 			continue;
954 		}
955 
956 		/*
957 		 * A held page may be undergoing I/O, so skip it.
958 		 */
959 		if (m->hold_count) {
960 			vm_page_unlock(m);
961 			vm_page_requeue(m);
962 			addl_page_shortage++;
963 			continue;
964 		}
965 
966 		/*
967 		 * Don't mess with busy pages, keep in the front of the
968 		 * queue, most likely are being paged out.
969 		 */
970 		object = m->object;
971 		if (!VM_OBJECT_TRYLOCK(object) &&
972 		    (!vm_pageout_fallback_object_lock(m, &next) ||
973 		    m->hold_count != 0)) {
974 			VM_OBJECT_UNLOCK(object);
975 			vm_page_unlock(m);
976 			addl_page_shortage++;
977 			continue;
978 		}
979 		if (m->busy || (m->oflags & VPO_BUSY)) {
980 			vm_page_unlock(m);
981 			VM_OBJECT_UNLOCK(object);
982 			addl_page_shortage++;
983 			continue;
984 		}
985 
986 		/*
987 		 * We unlock vm_page_queue_mtx, invalidating the
988 		 * 'next' pointer.  Use our marker to remember our
989 		 * place.
990 		 */
991 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
992 		    m, &marker, pageq);
993 		vm_page_unlock_queues();
994 		queues_locked = FALSE;
995 
996 		/*
997 		 * If the object is not being used, we ignore previous
998 		 * references.
999 		 */
1000 		if (object->ref_count == 0) {
1001 			vm_page_aflag_clear(m, PGA_REFERENCED);
1002 			KASSERT(!pmap_page_is_mapped(m),
1003 			    ("vm_pageout_scan: page %p is mapped", m));
1004 
1005 		/*
1006 		 * Otherwise, if the page has been referenced while in the
1007 		 * inactive queue, we bump the "activation count" upwards,
1008 		 * making it less likely that the page will be added back to
1009 		 * the inactive queue prematurely again.  Here we check the
1010 		 * page tables (or emulated bits, if any), given the upper
1011 		 * level VM system not knowing anything about existing
1012 		 * references.
1013 		 */
1014 		} else if ((m->aflags & PGA_REFERENCED) == 0 &&
1015 		    (actcount = pmap_ts_referenced(m)) != 0) {
1016 			vm_page_activate(m);
1017 			vm_page_unlock(m);
1018 			m->act_count += actcount + ACT_ADVANCE;
1019 			VM_OBJECT_UNLOCK(object);
1020 			goto relock_queues;
1021 		}
1022 
1023 		/*
1024 		 * If the upper level VM system knows about any page
1025 		 * references, we activate the page.  We also set the
1026 		 * "activation count" higher than normal so that we will less
1027 		 * likely place pages back onto the inactive queue again.
1028 		 */
1029 		if ((m->aflags & PGA_REFERENCED) != 0) {
1030 			vm_page_aflag_clear(m, PGA_REFERENCED);
1031 			actcount = pmap_ts_referenced(m);
1032 			vm_page_activate(m);
1033 			vm_page_unlock(m);
1034 			m->act_count += actcount + ACT_ADVANCE + 1;
1035 			VM_OBJECT_UNLOCK(object);
1036 			goto relock_queues;
1037 		}
1038 
1039 		/*
1040 		 * If the upper level VM system does not believe that the page
1041 		 * is fully dirty, but it is mapped for write access, then we
1042 		 * consult the pmap to see if the page's dirty status should
1043 		 * be updated.
1044 		 */
1045 		if (m->dirty != VM_PAGE_BITS_ALL &&
1046 		    pmap_page_is_write_mapped(m)) {
1047 			/*
1048 			 * Avoid a race condition: Unless write access is
1049 			 * removed from the page, another processor could
1050 			 * modify it before all access is removed by the call
1051 			 * to vm_page_cache() below.  If vm_page_cache() finds
1052 			 * that the page has been modified when it removes all
1053 			 * access, it panics because it cannot cache dirty
1054 			 * pages.  In principle, we could eliminate just write
1055 			 * access here rather than all access.  In the expected
1056 			 * case, when there are no last instant modifications
1057 			 * to the page, removing all access will be cheaper
1058 			 * overall.
1059 			 */
1060 			if (pmap_is_modified(m))
1061 				vm_page_dirty(m);
1062 			else if (m->dirty == 0)
1063 				pmap_remove_all(m);
1064 		}
1065 
1066 		if (m->valid == 0) {
1067 			/*
1068 			 * Invalid pages can be easily freed
1069 			 */
1070 			vm_page_free(m);
1071 			PCPU_INC(cnt.v_dfree);
1072 			--page_shortage;
1073 		} else if (m->dirty == 0) {
1074 			/*
1075 			 * Clean pages can be placed onto the cache queue.
1076 			 * This effectively frees them.
1077 			 */
1078 			vm_page_cache(m);
1079 			--page_shortage;
1080 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
1081 			/*
1082 			 * Dirty pages need to be paged out, but flushing
1083 			 * a page is extremely expensive verses freeing
1084 			 * a clean page.  Rather then artificially limiting
1085 			 * the number of pages we can flush, we instead give
1086 			 * dirty pages extra priority on the inactive queue
1087 			 * by forcing them to be cycled through the queue
1088 			 * twice before being flushed, after which the
1089 			 * (now clean) page will cycle through once more
1090 			 * before being freed.  This significantly extends
1091 			 * the thrash point for a heavily loaded machine.
1092 			 */
1093 			m->flags |= PG_WINATCFLS;
1094 			vm_page_lock_queues();
1095 			queues_locked = TRUE;
1096 			vm_page_requeue(m);
1097 		} else if (maxlaunder > 0) {
1098 			/*
1099 			 * We always want to try to flush some dirty pages if
1100 			 * we encounter them, to keep the system stable.
1101 			 * Normally this number is small, but under extreme
1102 			 * pressure where there are insufficient clean pages
1103 			 * on the inactive queue, we may have to go all out.
1104 			 */
1105 			int swap_pageouts_ok, vfslocked = 0;
1106 			struct vnode *vp = NULL;
1107 			struct mount *mp = NULL;
1108 
1109 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1110 				swap_pageouts_ok = 1;
1111 			} else {
1112 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1113 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1114 				vm_page_count_min());
1115 
1116 			}
1117 
1118 			/*
1119 			 * We don't bother paging objects that are "dead".
1120 			 * Those objects are in a "rundown" state.
1121 			 */
1122 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1123 				vm_page_unlock(m);
1124 				VM_OBJECT_UNLOCK(object);
1125 				vm_page_lock_queues();
1126 				queues_locked = TRUE;
1127 				vm_page_requeue(m);
1128 				goto relock_queues;
1129 			}
1130 
1131 			/*
1132 			 * The object is already known NOT to be dead.   It
1133 			 * is possible for the vget() to block the whole
1134 			 * pageout daemon, but the new low-memory handling
1135 			 * code should prevent it.
1136 			 *
1137 			 * The previous code skipped locked vnodes and, worse,
1138 			 * reordered pages in the queue.  This results in
1139 			 * completely non-deterministic operation and, on a
1140 			 * busy system, can lead to extremely non-optimal
1141 			 * pageouts.  For example, it can cause clean pages
1142 			 * to be freed and dirty pages to be moved to the end
1143 			 * of the queue.  Since dirty pages are also moved to
1144 			 * the end of the queue once-cleaned, this gives
1145 			 * way too large a weighting to defering the freeing
1146 			 * of dirty pages.
1147 			 *
1148 			 * We can't wait forever for the vnode lock, we might
1149 			 * deadlock due to a vn_read() getting stuck in
1150 			 * vm_wait while holding this vnode.  We skip the
1151 			 * vnode if we can't get it in a reasonable amount
1152 			 * of time.
1153 			 */
1154 			if (object->type == OBJT_VNODE) {
1155 				vm_page_unlock(m);
1156 				vp = object->handle;
1157 				if (vp->v_type == VREG &&
1158 				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1159 					mp = NULL;
1160 					++pageout_lock_miss;
1161 					if (object->flags & OBJ_MIGHTBEDIRTY)
1162 						vnodes_skipped++;
1163 					goto unlock_and_continue;
1164 				}
1165 				KASSERT(mp != NULL,
1166 				    ("vp %p with NULL v_mount", vp));
1167 				vm_object_reference_locked(object);
1168 				VM_OBJECT_UNLOCK(object);
1169 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1170 				if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1171 				    curthread)) {
1172 					VM_OBJECT_LOCK(object);
1173 					++pageout_lock_miss;
1174 					if (object->flags & OBJ_MIGHTBEDIRTY)
1175 						vnodes_skipped++;
1176 					vp = NULL;
1177 					goto unlock_and_continue;
1178 				}
1179 				VM_OBJECT_LOCK(object);
1180 				vm_page_lock(m);
1181 				vm_page_lock_queues();
1182 				queues_locked = TRUE;
1183 				/*
1184 				 * The page might have been moved to another
1185 				 * queue during potential blocking in vget()
1186 				 * above.  The page might have been freed and
1187 				 * reused for another vnode.
1188 				 */
1189 				if (m->queue != PQ_INACTIVE ||
1190 				    m->object != object ||
1191 				    TAILQ_NEXT(m, pageq) != &marker) {
1192 					vm_page_unlock(m);
1193 					if (object->flags & OBJ_MIGHTBEDIRTY)
1194 						vnodes_skipped++;
1195 					goto unlock_and_continue;
1196 				}
1197 
1198 				/*
1199 				 * The page may have been busied during the
1200 				 * blocking in vget().  We don't move the
1201 				 * page back onto the end of the queue so that
1202 				 * statistics are more correct if we don't.
1203 				 */
1204 				if (m->busy || (m->oflags & VPO_BUSY)) {
1205 					vm_page_unlock(m);
1206 					goto unlock_and_continue;
1207 				}
1208 
1209 				/*
1210 				 * If the page has become held it might
1211 				 * be undergoing I/O, so skip it
1212 				 */
1213 				if (m->hold_count) {
1214 					vm_page_unlock(m);
1215 					vm_page_requeue(m);
1216 					if (object->flags & OBJ_MIGHTBEDIRTY)
1217 						vnodes_skipped++;
1218 					goto unlock_and_continue;
1219 				}
1220 				vm_page_unlock_queues();
1221 				queues_locked = FALSE;
1222 			}
1223 
1224 			/*
1225 			 * If a page is dirty, then it is either being washed
1226 			 * (but not yet cleaned) or it is still in the
1227 			 * laundry.  If it is still in the laundry, then we
1228 			 * start the cleaning operation.
1229 			 *
1230 			 * decrement page_shortage on success to account for
1231 			 * the (future) cleaned page.  Otherwise we could wind
1232 			 * up laundering or cleaning too many pages.
1233 			 */
1234 			if (vm_pageout_clean(m) != 0) {
1235 				--page_shortage;
1236 				--maxlaunder;
1237 			}
1238 unlock_and_continue:
1239 			vm_page_lock_assert(m, MA_NOTOWNED);
1240 			VM_OBJECT_UNLOCK(object);
1241 			if (mp != NULL) {
1242 				if (queues_locked) {
1243 					vm_page_unlock_queues();
1244 					queues_locked = FALSE;
1245 				}
1246 				if (vp != NULL)
1247 					vput(vp);
1248 				VFS_UNLOCK_GIANT(vfslocked);
1249 				vm_object_deallocate(object);
1250 				vn_finished_write(mp);
1251 			}
1252 			vm_page_lock_assert(m, MA_NOTOWNED);
1253 			goto relock_queues;
1254 		}
1255 		vm_page_unlock(m);
1256 		VM_OBJECT_UNLOCK(object);
1257 relock_queues:
1258 		if (!queues_locked) {
1259 			vm_page_lock_queues();
1260 			queues_locked = TRUE;
1261 		}
1262 		next = TAILQ_NEXT(&marker, pageq);
1263 		TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1264 		    &marker, pageq);
1265 	}
1266 
1267 	/*
1268 	 * Compute the number of pages we want to try to move from the
1269 	 * active queue to the inactive queue.
1270 	 */
1271 	page_shortage = vm_paging_target() +
1272 		cnt.v_inactive_target - cnt.v_inactive_count;
1273 	page_shortage += addl_page_shortage;
1274 
1275 	/*
1276 	 * Scan the active queue for things we can deactivate. We nominally
1277 	 * track the per-page activity counter and use it to locate
1278 	 * deactivation candidates.
1279 	 */
1280 	pcount = cnt.v_active_count;
1281 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1282 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1283 
1284 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1285 
1286 		KASSERT(m->queue == PQ_ACTIVE,
1287 		    ("vm_pageout_scan: page %p isn't active", m));
1288 
1289 		next = TAILQ_NEXT(m, pageq);
1290 		if ((m->flags & PG_MARKER) != 0) {
1291 			m = next;
1292 			continue;
1293 		}
1294 		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1295 		    ("Fictitious page %p cannot be in active queue", m));
1296 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1297 		    ("Unmanaged page %p cannot be in active queue", m));
1298 		if (!vm_pageout_page_lock(m, &next)) {
1299 			vm_page_unlock(m);
1300 			m = next;
1301 			continue;
1302 		}
1303 		object = m->object;
1304 		if (!VM_OBJECT_TRYLOCK(object) &&
1305 		    !vm_pageout_fallback_object_lock(m, &next)) {
1306 			VM_OBJECT_UNLOCK(object);
1307 			vm_page_unlock(m);
1308 			m = next;
1309 			continue;
1310 		}
1311 
1312 		/*
1313 		 * Don't deactivate pages that are busy.
1314 		 */
1315 		if ((m->busy != 0) ||
1316 		    (m->oflags & VPO_BUSY) ||
1317 		    (m->hold_count != 0)) {
1318 			vm_page_unlock(m);
1319 			VM_OBJECT_UNLOCK(object);
1320 			vm_page_requeue(m);
1321 			m = next;
1322 			continue;
1323 		}
1324 
1325 		/*
1326 		 * The count for pagedaemon pages is done after checking the
1327 		 * page for eligibility...
1328 		 */
1329 		cnt.v_pdpages++;
1330 
1331 		/*
1332 		 * Check to see "how much" the page has been used.
1333 		 */
1334 		actcount = 0;
1335 		if (object->ref_count != 0) {
1336 			if (m->aflags & PGA_REFERENCED) {
1337 				actcount += 1;
1338 			}
1339 			actcount += pmap_ts_referenced(m);
1340 			if (actcount) {
1341 				m->act_count += ACT_ADVANCE + actcount;
1342 				if (m->act_count > ACT_MAX)
1343 					m->act_count = ACT_MAX;
1344 			}
1345 		}
1346 
1347 		/*
1348 		 * Since we have "tested" this bit, we need to clear it now.
1349 		 */
1350 		vm_page_aflag_clear(m, PGA_REFERENCED);
1351 
1352 		/*
1353 		 * Only if an object is currently being used, do we use the
1354 		 * page activation count stats.
1355 		 */
1356 		if (actcount && (object->ref_count != 0)) {
1357 			vm_page_requeue(m);
1358 		} else {
1359 			m->act_count -= min(m->act_count, ACT_DECLINE);
1360 			if (vm_pageout_algorithm ||
1361 			    object->ref_count == 0 ||
1362 			    m->act_count == 0) {
1363 				page_shortage--;
1364 				if (object->ref_count == 0) {
1365 					KASSERT(!pmap_page_is_mapped(m),
1366 				    ("vm_pageout_scan: page %p is mapped", m));
1367 					if (m->dirty == 0)
1368 						vm_page_cache(m);
1369 					else
1370 						vm_page_deactivate(m);
1371 				} else {
1372 					vm_page_deactivate(m);
1373 				}
1374 			} else {
1375 				vm_page_requeue(m);
1376 			}
1377 		}
1378 		vm_page_unlock(m);
1379 		VM_OBJECT_UNLOCK(object);
1380 		m = next;
1381 	}
1382 	vm_page_unlock_queues();
1383 #if !defined(NO_SWAPPING)
1384 	/*
1385 	 * Idle process swapout -- run once per second.
1386 	 */
1387 	if (vm_swap_idle_enabled) {
1388 		static long lsec;
1389 		if (time_second != lsec) {
1390 			vm_req_vmdaemon(VM_SWAP_IDLE);
1391 			lsec = time_second;
1392 		}
1393 	}
1394 #endif
1395 
1396 	/*
1397 	 * If we didn't get enough free pages, and we have skipped a vnode
1398 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1399 	 * if we did not get enough free pages.
1400 	 */
1401 	if (vm_paging_target() > 0) {
1402 		if (vnodes_skipped && vm_page_count_min())
1403 			(void) speedup_syncer();
1404 #if !defined(NO_SWAPPING)
1405 		if (vm_swap_enabled && vm_page_count_target())
1406 			vm_req_vmdaemon(VM_SWAP_NORMAL);
1407 #endif
1408 	}
1409 
1410 	/*
1411 	 * If we are critically low on one of RAM or swap and low on
1412 	 * the other, kill the largest process.  However, we avoid
1413 	 * doing this on the first pass in order to give ourselves a
1414 	 * chance to flush out dirty vnode-backed pages and to allow
1415 	 * active pages to be moved to the inactive queue and reclaimed.
1416 	 */
1417 	if (pass != 0 &&
1418 	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1419 	     (swap_pager_full && vm_paging_target() > 0)))
1420 		vm_pageout_oom(VM_OOM_MEM);
1421 }
1422 
1423 
1424 void
1425 vm_pageout_oom(int shortage)
1426 {
1427 	struct proc *p, *bigproc;
1428 	vm_offset_t size, bigsize;
1429 	struct thread *td;
1430 	struct vmspace *vm;
1431 
1432 	/*
1433 	 * We keep the process bigproc locked once we find it to keep anyone
1434 	 * from messing with it; however, there is a possibility of
1435 	 * deadlock if process B is bigproc and one of it's child processes
1436 	 * attempts to propagate a signal to B while we are waiting for A's
1437 	 * lock while walking this list.  To avoid this, we don't block on
1438 	 * the process lock but just skip a process if it is already locked.
1439 	 */
1440 	bigproc = NULL;
1441 	bigsize = 0;
1442 	sx_slock(&allproc_lock);
1443 	FOREACH_PROC_IN_SYSTEM(p) {
1444 		int breakout;
1445 
1446 		if (PROC_TRYLOCK(p) == 0)
1447 			continue;
1448 		/*
1449 		 * If this is a system, protected or killed process, skip it.
1450 		 */
1451 		if (p->p_state != PRS_NORMAL ||
1452 		    (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1453 		    (p->p_pid == 1) || P_KILLED(p) ||
1454 		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1455 			PROC_UNLOCK(p);
1456 			continue;
1457 		}
1458 		/*
1459 		 * If the process is in a non-running type state,
1460 		 * don't touch it.  Check all the threads individually.
1461 		 */
1462 		breakout = 0;
1463 		FOREACH_THREAD_IN_PROC(p, td) {
1464 			thread_lock(td);
1465 			if (!TD_ON_RUNQ(td) &&
1466 			    !TD_IS_RUNNING(td) &&
1467 			    !TD_IS_SLEEPING(td) &&
1468 			    !TD_IS_SUSPENDED(td)) {
1469 				thread_unlock(td);
1470 				breakout = 1;
1471 				break;
1472 			}
1473 			thread_unlock(td);
1474 		}
1475 		if (breakout) {
1476 			PROC_UNLOCK(p);
1477 			continue;
1478 		}
1479 		/*
1480 		 * get the process size
1481 		 */
1482 		vm = vmspace_acquire_ref(p);
1483 		if (vm == NULL) {
1484 			PROC_UNLOCK(p);
1485 			continue;
1486 		}
1487 		if (!vm_map_trylock_read(&vm->vm_map)) {
1488 			vmspace_free(vm);
1489 			PROC_UNLOCK(p);
1490 			continue;
1491 		}
1492 		size = vmspace_swap_count(vm);
1493 		vm_map_unlock_read(&vm->vm_map);
1494 		if (shortage == VM_OOM_MEM)
1495 			size += vmspace_resident_count(vm);
1496 		vmspace_free(vm);
1497 		/*
1498 		 * if the this process is bigger than the biggest one
1499 		 * remember it.
1500 		 */
1501 		if (size > bigsize) {
1502 			if (bigproc != NULL)
1503 				PROC_UNLOCK(bigproc);
1504 			bigproc = p;
1505 			bigsize = size;
1506 		} else
1507 			PROC_UNLOCK(p);
1508 	}
1509 	sx_sunlock(&allproc_lock);
1510 	if (bigproc != NULL) {
1511 		killproc(bigproc, "out of swap space");
1512 		sched_nice(bigproc, PRIO_MIN);
1513 		PROC_UNLOCK(bigproc);
1514 		wakeup(&cnt.v_free_count);
1515 	}
1516 }
1517 
1518 /*
1519  * This routine tries to maintain the pseudo LRU active queue,
1520  * so that during long periods of time where there is no paging,
1521  * that some statistic accumulation still occurs.  This code
1522  * helps the situation where paging just starts to occur.
1523  */
1524 static void
1525 vm_pageout_page_stats()
1526 {
1527 	vm_object_t object;
1528 	vm_page_t m,next;
1529 	int pcount,tpcount;		/* Number of pages to check */
1530 	static int fullintervalcount = 0;
1531 	int page_shortage;
1532 
1533 	page_shortage =
1534 	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1535 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1536 
1537 	if (page_shortage <= 0)
1538 		return;
1539 
1540 	vm_page_lock_queues();
1541 	pcount = cnt.v_active_count;
1542 	fullintervalcount += vm_pageout_stats_interval;
1543 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1544 		tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1545 		    cnt.v_page_count;
1546 		if (pcount > tpcount)
1547 			pcount = tpcount;
1548 	} else {
1549 		fullintervalcount = 0;
1550 	}
1551 
1552 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1553 	while ((m != NULL) && (pcount-- > 0)) {
1554 		int actcount;
1555 
1556 		KASSERT(m->queue == PQ_ACTIVE,
1557 		    ("vm_pageout_page_stats: page %p isn't active", m));
1558 
1559 		next = TAILQ_NEXT(m, pageq);
1560 		if ((m->flags & PG_MARKER) != 0) {
1561 			m = next;
1562 			continue;
1563 		}
1564 		vm_page_lock_assert(m, MA_NOTOWNED);
1565 		if (!vm_pageout_page_lock(m, &next)) {
1566 			vm_page_unlock(m);
1567 			m = next;
1568 			continue;
1569 		}
1570 		object = m->object;
1571 		if (!VM_OBJECT_TRYLOCK(object) &&
1572 		    !vm_pageout_fallback_object_lock(m, &next)) {
1573 			VM_OBJECT_UNLOCK(object);
1574 			vm_page_unlock(m);
1575 			m = next;
1576 			continue;
1577 		}
1578 
1579 		/*
1580 		 * Don't deactivate pages that are busy.
1581 		 */
1582 		if ((m->busy != 0) ||
1583 		    (m->oflags & VPO_BUSY) ||
1584 		    (m->hold_count != 0)) {
1585 			vm_page_unlock(m);
1586 			VM_OBJECT_UNLOCK(object);
1587 			vm_page_requeue(m);
1588 			m = next;
1589 			continue;
1590 		}
1591 
1592 		actcount = 0;
1593 		if (m->aflags & PGA_REFERENCED) {
1594 			vm_page_aflag_clear(m, PGA_REFERENCED);
1595 			actcount += 1;
1596 		}
1597 
1598 		actcount += pmap_ts_referenced(m);
1599 		if (actcount) {
1600 			m->act_count += ACT_ADVANCE + actcount;
1601 			if (m->act_count > ACT_MAX)
1602 				m->act_count = ACT_MAX;
1603 			vm_page_requeue(m);
1604 		} else {
1605 			if (m->act_count == 0) {
1606 				/*
1607 				 * We turn off page access, so that we have
1608 				 * more accurate RSS stats.  We don't do this
1609 				 * in the normal page deactivation when the
1610 				 * system is loaded VM wise, because the
1611 				 * cost of the large number of page protect
1612 				 * operations would be higher than the value
1613 				 * of doing the operation.
1614 				 */
1615 				pmap_remove_all(m);
1616 				vm_page_deactivate(m);
1617 			} else {
1618 				m->act_count -= min(m->act_count, ACT_DECLINE);
1619 				vm_page_requeue(m);
1620 			}
1621 		}
1622 		vm_page_unlock(m);
1623 		VM_OBJECT_UNLOCK(object);
1624 		m = next;
1625 	}
1626 	vm_page_unlock_queues();
1627 }
1628 
1629 /*
1630  *	vm_pageout is the high level pageout daemon.
1631  */
1632 static void
1633 vm_pageout()
1634 {
1635 	int error, pass;
1636 
1637 	/*
1638 	 * Initialize some paging parameters.
1639 	 */
1640 	cnt.v_interrupt_free_min = 2;
1641 	if (cnt.v_page_count < 2000)
1642 		vm_pageout_page_count = 8;
1643 
1644 	/*
1645 	 * v_free_reserved needs to include enough for the largest
1646 	 * swap pager structures plus enough for any pv_entry structs
1647 	 * when paging.
1648 	 */
1649 	if (cnt.v_page_count > 1024)
1650 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1651 	else
1652 		cnt.v_free_min = 4;
1653 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1654 	    cnt.v_interrupt_free_min;
1655 	cnt.v_free_reserved = vm_pageout_page_count +
1656 	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1657 	cnt.v_free_severe = cnt.v_free_min / 2;
1658 	cnt.v_free_min += cnt.v_free_reserved;
1659 	cnt.v_free_severe += cnt.v_free_reserved;
1660 
1661 	/*
1662 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1663 	 * that these are more a measure of the VM cache queue hysteresis
1664 	 * then the VM free queue.  Specifically, v_free_target is the
1665 	 * high water mark (free+cache pages).
1666 	 *
1667 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1668 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1669 	 * be big enough to handle memory needs while the pageout daemon
1670 	 * is signalled and run to free more pages.
1671 	 */
1672 	if (cnt.v_free_count > 6144)
1673 		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1674 	else
1675 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1676 
1677 	if (cnt.v_free_count > 2048) {
1678 		cnt.v_cache_min = cnt.v_free_target;
1679 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1680 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1681 	} else {
1682 		cnt.v_cache_min = 0;
1683 		cnt.v_cache_max = 0;
1684 		cnt.v_inactive_target = cnt.v_free_count / 4;
1685 	}
1686 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1687 		cnt.v_inactive_target = cnt.v_free_count / 3;
1688 
1689 	/* XXX does not really belong here */
1690 	if (vm_page_max_wired == 0)
1691 		vm_page_max_wired = cnt.v_free_count / 3;
1692 
1693 	if (vm_pageout_stats_max == 0)
1694 		vm_pageout_stats_max = cnt.v_free_target;
1695 
1696 	/*
1697 	 * Set interval in seconds for stats scan.
1698 	 */
1699 	if (vm_pageout_stats_interval == 0)
1700 		vm_pageout_stats_interval = 5;
1701 	if (vm_pageout_full_stats_interval == 0)
1702 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1703 
1704 	swap_pager_swap_init();
1705 	pass = 0;
1706 	/*
1707 	 * The pageout daemon is never done, so loop forever.
1708 	 */
1709 	while (TRUE) {
1710 		/*
1711 		 * If we have enough free memory, wakeup waiters.  Do
1712 		 * not clear vm_pages_needed until we reach our target,
1713 		 * otherwise we may be woken up over and over again and
1714 		 * waste a lot of cpu.
1715 		 */
1716 		mtx_lock(&vm_page_queue_free_mtx);
1717 		if (vm_pages_needed && !vm_page_count_min()) {
1718 			if (!vm_paging_needed())
1719 				vm_pages_needed = 0;
1720 			wakeup(&cnt.v_free_count);
1721 		}
1722 		if (vm_pages_needed) {
1723 			/*
1724 			 * Still not done, take a second pass without waiting
1725 			 * (unlimited dirty cleaning), otherwise sleep a bit
1726 			 * and try again.
1727 			 */
1728 			++pass;
1729 			if (pass > 1)
1730 				msleep(&vm_pages_needed,
1731 				    &vm_page_queue_free_mtx, PVM, "psleep",
1732 				    hz / 2);
1733 		} else {
1734 			/*
1735 			 * Good enough, sleep & handle stats.  Prime the pass
1736 			 * for the next run.
1737 			 */
1738 			if (pass > 1)
1739 				pass = 1;
1740 			else
1741 				pass = 0;
1742 			error = msleep(&vm_pages_needed,
1743 			    &vm_page_queue_free_mtx, PVM, "psleep",
1744 			    vm_pageout_stats_interval * hz);
1745 			if (error && !vm_pages_needed) {
1746 				mtx_unlock(&vm_page_queue_free_mtx);
1747 				pass = 0;
1748 				vm_pageout_page_stats();
1749 				continue;
1750 			}
1751 		}
1752 		if (vm_pages_needed)
1753 			cnt.v_pdwakeups++;
1754 		mtx_unlock(&vm_page_queue_free_mtx);
1755 		vm_pageout_scan(pass);
1756 	}
1757 }
1758 
1759 /*
1760  * Unless the free page queue lock is held by the caller, this function
1761  * should be regarded as advisory.  Specifically, the caller should
1762  * not msleep() on &cnt.v_free_count following this function unless
1763  * the free page queue lock is held until the msleep() is performed.
1764  */
1765 void
1766 pagedaemon_wakeup()
1767 {
1768 
1769 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1770 		vm_pages_needed = 1;
1771 		wakeup(&vm_pages_needed);
1772 	}
1773 }
1774 
1775 #if !defined(NO_SWAPPING)
1776 static void
1777 vm_req_vmdaemon(int req)
1778 {
1779 	static int lastrun = 0;
1780 
1781 	mtx_lock(&vm_daemon_mtx);
1782 	vm_pageout_req_swapout |= req;
1783 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1784 		wakeup(&vm_daemon_needed);
1785 		lastrun = ticks;
1786 	}
1787 	mtx_unlock(&vm_daemon_mtx);
1788 }
1789 
1790 static void
1791 vm_daemon()
1792 {
1793 	struct rlimit rsslim;
1794 	struct proc *p;
1795 	struct thread *td;
1796 	struct vmspace *vm;
1797 	int breakout, swapout_flags, tryagain, attempts;
1798 #ifdef RACCT
1799 	uint64_t rsize, ravailable;
1800 #endif
1801 
1802 	while (TRUE) {
1803 		mtx_lock(&vm_daemon_mtx);
1804 #ifdef RACCT
1805 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1806 #else
1807 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1808 #endif
1809 		swapout_flags = vm_pageout_req_swapout;
1810 		vm_pageout_req_swapout = 0;
1811 		mtx_unlock(&vm_daemon_mtx);
1812 		if (swapout_flags)
1813 			swapout_procs(swapout_flags);
1814 
1815 		/*
1816 		 * scan the processes for exceeding their rlimits or if
1817 		 * process is swapped out -- deactivate pages
1818 		 */
1819 		tryagain = 0;
1820 		attempts = 0;
1821 again:
1822 		attempts++;
1823 		sx_slock(&allproc_lock);
1824 		FOREACH_PROC_IN_SYSTEM(p) {
1825 			vm_pindex_t limit, size;
1826 
1827 			/*
1828 			 * if this is a system process or if we have already
1829 			 * looked at this process, skip it.
1830 			 */
1831 			PROC_LOCK(p);
1832 			if (p->p_state != PRS_NORMAL ||
1833 			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1834 				PROC_UNLOCK(p);
1835 				continue;
1836 			}
1837 			/*
1838 			 * if the process is in a non-running type state,
1839 			 * don't touch it.
1840 			 */
1841 			breakout = 0;
1842 			FOREACH_THREAD_IN_PROC(p, td) {
1843 				thread_lock(td);
1844 				if (!TD_ON_RUNQ(td) &&
1845 				    !TD_IS_RUNNING(td) &&
1846 				    !TD_IS_SLEEPING(td) &&
1847 				    !TD_IS_SUSPENDED(td)) {
1848 					thread_unlock(td);
1849 					breakout = 1;
1850 					break;
1851 				}
1852 				thread_unlock(td);
1853 			}
1854 			if (breakout) {
1855 				PROC_UNLOCK(p);
1856 				continue;
1857 			}
1858 			/*
1859 			 * get a limit
1860 			 */
1861 			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1862 			limit = OFF_TO_IDX(
1863 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1864 
1865 			/*
1866 			 * let processes that are swapped out really be
1867 			 * swapped out set the limit to nothing (will force a
1868 			 * swap-out.)
1869 			 */
1870 			if ((p->p_flag & P_INMEM) == 0)
1871 				limit = 0;	/* XXX */
1872 			vm = vmspace_acquire_ref(p);
1873 			PROC_UNLOCK(p);
1874 			if (vm == NULL)
1875 				continue;
1876 
1877 			size = vmspace_resident_count(vm);
1878 			if (limit >= 0 && size >= limit) {
1879 				vm_pageout_map_deactivate_pages(
1880 				    &vm->vm_map, limit);
1881 			}
1882 #ifdef RACCT
1883 			rsize = IDX_TO_OFF(size);
1884 			PROC_LOCK(p);
1885 			racct_set(p, RACCT_RSS, rsize);
1886 			ravailable = racct_get_available(p, RACCT_RSS);
1887 			PROC_UNLOCK(p);
1888 			if (rsize > ravailable) {
1889 				/*
1890 				 * Don't be overly aggressive; this might be
1891 				 * an innocent process, and the limit could've
1892 				 * been exceeded by some memory hog.  Don't
1893 				 * try to deactivate more than 1/4th of process'
1894 				 * resident set size.
1895 				 */
1896 				if (attempts <= 8) {
1897 					if (ravailable < rsize - (rsize / 4))
1898 						ravailable = rsize - (rsize / 4);
1899 				}
1900 				vm_pageout_map_deactivate_pages(
1901 				    &vm->vm_map, OFF_TO_IDX(ravailable));
1902 				/* Update RSS usage after paging out. */
1903 				size = vmspace_resident_count(vm);
1904 				rsize = IDX_TO_OFF(size);
1905 				PROC_LOCK(p);
1906 				racct_set(p, RACCT_RSS, rsize);
1907 				PROC_UNLOCK(p);
1908 				if (rsize > ravailable)
1909 					tryagain = 1;
1910 			}
1911 #endif
1912 			vmspace_free(vm);
1913 		}
1914 		sx_sunlock(&allproc_lock);
1915 		if (tryagain != 0 && attempts <= 10)
1916 			goto again;
1917 	}
1918 }
1919 #endif			/* !defined(NO_SWAPPING) */
1920