1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 45 * 46 * 47 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 48 * All rights reserved. 49 * 50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 51 * 52 * Permission to use, copy, modify and distribute this software and 53 * its documentation is hereby granted, provided that both the copyright 54 * notice and this permission notice appear in all copies of the 55 * software, derivative works or modified versions, and any portions 56 * thereof, and that both notices appear in supporting documentation. 57 * 58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 61 * 62 * Carnegie Mellon requests users of this software to return to 63 * 64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 65 * School of Computer Science 66 * Carnegie Mellon University 67 * Pittsburgh PA 15213-3890 68 * 69 * any improvements or extensions that they make and grant Carnegie the 70 * rights to redistribute these changes. 71 */ 72 73 /* 74 * The proverbial page-out daemon. 75 */ 76 77 #include <sys/cdefs.h> 78 __FBSDID("$FreeBSD$"); 79 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/mutex.h> 88 #include <sys/proc.h> 89 #include <sys/kthread.h> 90 #include <sys/ktr.h> 91 #include <sys/mount.h> 92 #include <sys/racct.h> 93 #include <sys/resourcevar.h> 94 #include <sys/sched.h> 95 #include <sys/sdt.h> 96 #include <sys/signalvar.h> 97 #include <sys/smp.h> 98 #include <sys/time.h> 99 #include <sys/vnode.h> 100 #include <sys/vmmeter.h> 101 #include <sys/rwlock.h> 102 #include <sys/sx.h> 103 #include <sys/sysctl.h> 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_map.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_phys.h> 113 #include <vm/vm_pagequeue.h> 114 #include <vm/swap_pager.h> 115 #include <vm/vm_extern.h> 116 #include <vm/uma.h> 117 118 /* 119 * System initialization 120 */ 121 122 /* the kernel process "vm_pageout"*/ 123 static void vm_pageout(void); 124 static void vm_pageout_init(void); 125 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 126 static int vm_pageout_cluster(vm_page_t m); 127 static bool vm_pageout_scan(struct vm_domain *vmd, int pass, int shortage); 128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 129 int starting_page_shortage); 130 131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 132 NULL); 133 134 struct proc *pageproc; 135 136 static struct kproc_desc page_kp = { 137 "pagedaemon", 138 vm_pageout, 139 &pageproc 140 }; 141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 142 &page_kp); 143 144 SDT_PROVIDER_DEFINE(vm); 145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 146 147 /* Pagedaemon activity rates, in subdivisions of one second. */ 148 #define VM_LAUNDER_RATE 10 149 #define VM_INACT_SCAN_RATE 10 150 151 static int vm_pageout_oom_seq = 12; 152 153 static int vm_pageout_update_period; 154 static int disable_swap_pageouts; 155 static int lowmem_period = 10; 156 static time_t lowmem_uptime; 157 static int swapdev_enabled; 158 159 static int vm_panic_on_oom = 0; 160 161 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 162 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 163 "panic on out of memory instead of killing the largest process"); 164 165 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 166 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 167 "Maximum active LRU update period"); 168 169 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 170 "Low memory callback period"); 171 172 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 173 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages"); 174 175 static int pageout_lock_miss; 176 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 177 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout"); 178 179 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 180 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 181 "back-to-back calls to oom detector to start OOM"); 182 183 static int act_scan_laundry_weight = 3; 184 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 185 &act_scan_laundry_weight, 0, 186 "weight given to clean vs. dirty pages in active queue scans"); 187 188 static u_int vm_background_launder_rate = 4096; 189 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 190 &vm_background_launder_rate, 0, 191 "background laundering rate, in kilobytes per second"); 192 193 static u_int vm_background_launder_max = 20 * 1024; 194 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 195 &vm_background_launder_max, 0, "background laundering cap, in kilobytes"); 196 197 int vm_pageout_page_count = 32; 198 199 int vm_page_max_wired; /* XXX max # of wired pages system-wide */ 200 SYSCTL_INT(_vm, OID_AUTO, max_wired, 201 CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count"); 202 203 static u_int isqrt(u_int num); 204 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 205 bool in_shortfall); 206 static void vm_pageout_laundry_worker(void *arg); 207 208 struct scan_state { 209 struct vm_batchqueue bq; 210 struct vm_pagequeue *pq; 211 vm_page_t marker; 212 int maxscan; 213 int scanned; 214 }; 215 216 static void 217 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 218 vm_page_t marker, vm_page_t after, int maxscan) 219 { 220 221 vm_pagequeue_assert_locked(pq); 222 KASSERT((marker->aflags & PGA_ENQUEUED) == 0, 223 ("marker %p already enqueued", marker)); 224 225 if (after == NULL) 226 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 227 else 228 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 229 vm_page_aflag_set(marker, PGA_ENQUEUED); 230 231 vm_batchqueue_init(&ss->bq); 232 ss->pq = pq; 233 ss->marker = marker; 234 ss->maxscan = maxscan; 235 ss->scanned = 0; 236 vm_pagequeue_unlock(pq); 237 } 238 239 static void 240 vm_pageout_end_scan(struct scan_state *ss) 241 { 242 struct vm_pagequeue *pq; 243 244 pq = ss->pq; 245 vm_pagequeue_assert_locked(pq); 246 KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0, 247 ("marker %p not enqueued", ss->marker)); 248 249 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 250 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 251 VM_CNT_ADD(v_pdpages, ss->scanned); 252 } 253 254 /* 255 * Ensure that the page has not been dequeued after a pageout batch was 256 * collected. See vm_page_dequeue_complete(). 257 */ 258 static inline bool 259 vm_pageout_page_queued(vm_page_t m, int queue) 260 { 261 262 vm_page_assert_locked(m); 263 264 if ((m->aflags & PGA_DEQUEUE) != 0) 265 return (false); 266 atomic_thread_fence_acq(); 267 return (m->queue == queue); 268 } 269 270 /* 271 * Add a small number of queued pages to a batch queue for later processing 272 * without the corresponding queue lock held. The caller must have enqueued a 273 * marker page at the desired start point for the scan. Pages will be 274 * physically dequeued if the caller so requests. Otherwise, the returned 275 * batch may contain marker pages, and it is up to the caller to handle them. 276 * 277 * When processing the batch queue, vm_pageout_page_queued() must be used to 278 * determine whether the page was logically dequeued by another thread. Once 279 * this check is performed, the page lock guarantees that the page will not be 280 * disassociated from the queue. 281 */ 282 static __always_inline void 283 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 284 { 285 struct vm_pagequeue *pq; 286 vm_page_t m, marker; 287 288 marker = ss->marker; 289 pq = ss->pq; 290 291 KASSERT((marker->aflags & PGA_ENQUEUED) != 0, 292 ("marker %p not enqueued", ss->marker)); 293 294 vm_pagequeue_lock(pq); 295 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 296 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 297 m = TAILQ_NEXT(m, plinks.q), ss->scanned++) { 298 if ((m->flags & PG_MARKER) == 0) { 299 KASSERT((m->aflags & PGA_ENQUEUED) != 0, 300 ("page %p not enqueued", m)); 301 KASSERT((m->flags & PG_FICTITIOUS) == 0, 302 ("Fictitious page %p cannot be in page queue", m)); 303 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 304 ("Unmanaged page %p cannot be in page queue", m)); 305 } else if (dequeue) 306 continue; 307 308 (void)vm_batchqueue_insert(&ss->bq, m); 309 if (dequeue) { 310 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 311 vm_page_aflag_clear(m, PGA_ENQUEUED); 312 } 313 } 314 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 315 if (__predict_true(m != NULL)) 316 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 317 else 318 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 319 if (dequeue) 320 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 321 vm_pagequeue_unlock(pq); 322 } 323 324 /* Return the next page to be scanned, or NULL if the scan is complete. */ 325 static __always_inline vm_page_t 326 vm_pageout_next(struct scan_state *ss, const bool dequeue) 327 { 328 329 if (ss->bq.bq_cnt == 0) 330 vm_pageout_collect_batch(ss, dequeue); 331 return (vm_batchqueue_pop(&ss->bq)); 332 } 333 334 /* 335 * Scan for pages at adjacent offsets within the given page's object that are 336 * eligible for laundering, form a cluster of these pages and the given page, 337 * and launder that cluster. 338 */ 339 static int 340 vm_pageout_cluster(vm_page_t m) 341 { 342 vm_object_t object; 343 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 344 vm_pindex_t pindex; 345 int ib, is, page_base, pageout_count; 346 347 vm_page_assert_locked(m); 348 object = m->object; 349 VM_OBJECT_ASSERT_WLOCKED(object); 350 pindex = m->pindex; 351 352 vm_page_assert_unbusied(m); 353 KASSERT(!vm_page_held(m), ("page %p is held", m)); 354 355 pmap_remove_write(m); 356 vm_page_unlock(m); 357 358 mc[vm_pageout_page_count] = pb = ps = m; 359 pageout_count = 1; 360 page_base = vm_pageout_page_count; 361 ib = 1; 362 is = 1; 363 364 /* 365 * We can cluster only if the page is not clean, busy, or held, and 366 * the page is in the laundry queue. 367 * 368 * During heavy mmap/modification loads the pageout 369 * daemon can really fragment the underlying file 370 * due to flushing pages out of order and not trying to 371 * align the clusters (which leaves sporadic out-of-order 372 * holes). To solve this problem we do the reverse scan 373 * first and attempt to align our cluster, then do a 374 * forward scan if room remains. 375 */ 376 more: 377 while (ib != 0 && pageout_count < vm_pageout_page_count) { 378 if (ib > pindex) { 379 ib = 0; 380 break; 381 } 382 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) { 383 ib = 0; 384 break; 385 } 386 vm_page_test_dirty(p); 387 if (p->dirty == 0) { 388 ib = 0; 389 break; 390 } 391 vm_page_lock(p); 392 if (vm_page_held(p) || !vm_page_in_laundry(p)) { 393 vm_page_unlock(p); 394 ib = 0; 395 break; 396 } 397 pmap_remove_write(p); 398 vm_page_unlock(p); 399 mc[--page_base] = pb = p; 400 ++pageout_count; 401 ++ib; 402 403 /* 404 * We are at an alignment boundary. Stop here, and switch 405 * directions. Do not clear ib. 406 */ 407 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 408 break; 409 } 410 while (pageout_count < vm_pageout_page_count && 411 pindex + is < object->size) { 412 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p)) 413 break; 414 vm_page_test_dirty(p); 415 if (p->dirty == 0) 416 break; 417 vm_page_lock(p); 418 if (vm_page_held(p) || !vm_page_in_laundry(p)) { 419 vm_page_unlock(p); 420 break; 421 } 422 pmap_remove_write(p); 423 vm_page_unlock(p); 424 mc[page_base + pageout_count] = ps = p; 425 ++pageout_count; 426 ++is; 427 } 428 429 /* 430 * If we exhausted our forward scan, continue with the reverse scan 431 * when possible, even past an alignment boundary. This catches 432 * boundary conditions. 433 */ 434 if (ib != 0 && pageout_count < vm_pageout_page_count) 435 goto more; 436 437 return (vm_pageout_flush(&mc[page_base], pageout_count, 438 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 439 } 440 441 /* 442 * vm_pageout_flush() - launder the given pages 443 * 444 * The given pages are laundered. Note that we setup for the start of 445 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 446 * reference count all in here rather then in the parent. If we want 447 * the parent to do more sophisticated things we may have to change 448 * the ordering. 449 * 450 * Returned runlen is the count of pages between mreq and first 451 * page after mreq with status VM_PAGER_AGAIN. 452 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 453 * for any page in runlen set. 454 */ 455 int 456 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 457 boolean_t *eio) 458 { 459 vm_object_t object = mc[0]->object; 460 int pageout_status[count]; 461 int numpagedout = 0; 462 int i, runlen; 463 464 VM_OBJECT_ASSERT_WLOCKED(object); 465 466 /* 467 * Initiate I/O. Mark the pages busy and verify that they're valid 468 * and read-only. 469 * 470 * We do not have to fixup the clean/dirty bits here... we can 471 * allow the pager to do it after the I/O completes. 472 * 473 * NOTE! mc[i]->dirty may be partial or fragmented due to an 474 * edge case with file fragments. 475 */ 476 for (i = 0; i < count; i++) { 477 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, 478 ("vm_pageout_flush: partially invalid page %p index %d/%d", 479 mc[i], i, count)); 480 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0, 481 ("vm_pageout_flush: writeable page %p", mc[i])); 482 vm_page_sbusy(mc[i]); 483 } 484 vm_object_pip_add(object, count); 485 486 vm_pager_put_pages(object, mc, count, flags, pageout_status); 487 488 runlen = count - mreq; 489 if (eio != NULL) 490 *eio = FALSE; 491 for (i = 0; i < count; i++) { 492 vm_page_t mt = mc[i]; 493 494 KASSERT(pageout_status[i] == VM_PAGER_PEND || 495 !pmap_page_is_write_mapped(mt), 496 ("vm_pageout_flush: page %p is not write protected", mt)); 497 switch (pageout_status[i]) { 498 case VM_PAGER_OK: 499 vm_page_lock(mt); 500 if (vm_page_in_laundry(mt)) 501 vm_page_deactivate_noreuse(mt); 502 vm_page_unlock(mt); 503 /* FALLTHROUGH */ 504 case VM_PAGER_PEND: 505 numpagedout++; 506 break; 507 case VM_PAGER_BAD: 508 /* 509 * The page is outside the object's range. We pretend 510 * that the page out worked and clean the page, so the 511 * changes will be lost if the page is reclaimed by 512 * the page daemon. 513 */ 514 vm_page_undirty(mt); 515 vm_page_lock(mt); 516 if (vm_page_in_laundry(mt)) 517 vm_page_deactivate_noreuse(mt); 518 vm_page_unlock(mt); 519 break; 520 case VM_PAGER_ERROR: 521 case VM_PAGER_FAIL: 522 /* 523 * If the page couldn't be paged out to swap because the 524 * pager wasn't able to find space, place the page in 525 * the PQ_UNSWAPPABLE holding queue. This is an 526 * optimization that prevents the page daemon from 527 * wasting CPU cycles on pages that cannot be reclaimed 528 * becase no swap device is configured. 529 * 530 * Otherwise, reactivate the page so that it doesn't 531 * clog the laundry and inactive queues. (We will try 532 * paging it out again later.) 533 */ 534 vm_page_lock(mt); 535 if (object->type == OBJT_SWAP && 536 pageout_status[i] == VM_PAGER_FAIL) { 537 vm_page_unswappable(mt); 538 numpagedout++; 539 } else 540 vm_page_activate(mt); 541 vm_page_unlock(mt); 542 if (eio != NULL && i >= mreq && i - mreq < runlen) 543 *eio = TRUE; 544 break; 545 case VM_PAGER_AGAIN: 546 if (i >= mreq && i - mreq < runlen) 547 runlen = i - mreq; 548 break; 549 } 550 551 /* 552 * If the operation is still going, leave the page busy to 553 * block all other accesses. Also, leave the paging in 554 * progress indicator set so that we don't attempt an object 555 * collapse. 556 */ 557 if (pageout_status[i] != VM_PAGER_PEND) { 558 vm_object_pip_wakeup(object); 559 vm_page_sunbusy(mt); 560 } 561 } 562 if (prunlen != NULL) 563 *prunlen = runlen; 564 return (numpagedout); 565 } 566 567 static void 568 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 569 { 570 571 atomic_store_rel_int(&swapdev_enabled, 1); 572 } 573 574 static void 575 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 576 { 577 578 if (swap_pager_nswapdev() == 1) 579 atomic_store_rel_int(&swapdev_enabled, 0); 580 } 581 582 /* 583 * Attempt to acquire all of the necessary locks to launder a page and 584 * then call through the clustering layer to PUTPAGES. Wait a short 585 * time for a vnode lock. 586 * 587 * Requires the page and object lock on entry, releases both before return. 588 * Returns 0 on success and an errno otherwise. 589 */ 590 static int 591 vm_pageout_clean(vm_page_t m, int *numpagedout) 592 { 593 struct vnode *vp; 594 struct mount *mp; 595 vm_object_t object; 596 vm_pindex_t pindex; 597 int error, lockmode; 598 599 vm_page_assert_locked(m); 600 object = m->object; 601 VM_OBJECT_ASSERT_WLOCKED(object); 602 error = 0; 603 vp = NULL; 604 mp = NULL; 605 606 /* 607 * The object is already known NOT to be dead. It 608 * is possible for the vget() to block the whole 609 * pageout daemon, but the new low-memory handling 610 * code should prevent it. 611 * 612 * We can't wait forever for the vnode lock, we might 613 * deadlock due to a vn_read() getting stuck in 614 * vm_wait while holding this vnode. We skip the 615 * vnode if we can't get it in a reasonable amount 616 * of time. 617 */ 618 if (object->type == OBJT_VNODE) { 619 vm_page_unlock(m); 620 vp = object->handle; 621 if (vp->v_type == VREG && 622 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 623 mp = NULL; 624 error = EDEADLK; 625 goto unlock_all; 626 } 627 KASSERT(mp != NULL, 628 ("vp %p with NULL v_mount", vp)); 629 vm_object_reference_locked(object); 630 pindex = m->pindex; 631 VM_OBJECT_WUNLOCK(object); 632 lockmode = MNT_SHARED_WRITES(vp->v_mount) ? 633 LK_SHARED : LK_EXCLUSIVE; 634 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) { 635 vp = NULL; 636 error = EDEADLK; 637 goto unlock_mp; 638 } 639 VM_OBJECT_WLOCK(object); 640 641 /* 642 * Ensure that the object and vnode were not disassociated 643 * while locks were dropped. 644 */ 645 if (vp->v_object != object) { 646 error = ENOENT; 647 goto unlock_all; 648 } 649 vm_page_lock(m); 650 651 /* 652 * While the object and page were unlocked, the page 653 * may have been: 654 * (1) moved to a different queue, 655 * (2) reallocated to a different object, 656 * (3) reallocated to a different offset, or 657 * (4) cleaned. 658 */ 659 if (!vm_page_in_laundry(m) || m->object != object || 660 m->pindex != pindex || m->dirty == 0) { 661 vm_page_unlock(m); 662 error = ENXIO; 663 goto unlock_all; 664 } 665 666 /* 667 * The page may have been busied or referenced while the object 668 * and page locks were released. 669 */ 670 if (vm_page_busied(m) || vm_page_held(m)) { 671 vm_page_unlock(m); 672 error = EBUSY; 673 goto unlock_all; 674 } 675 } 676 677 /* 678 * If a page is dirty, then it is either being washed 679 * (but not yet cleaned) or it is still in the 680 * laundry. If it is still in the laundry, then we 681 * start the cleaning operation. 682 */ 683 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 684 error = EIO; 685 686 unlock_all: 687 VM_OBJECT_WUNLOCK(object); 688 689 unlock_mp: 690 vm_page_lock_assert(m, MA_NOTOWNED); 691 if (mp != NULL) { 692 if (vp != NULL) 693 vput(vp); 694 vm_object_deallocate(object); 695 vn_finished_write(mp); 696 } 697 698 return (error); 699 } 700 701 /* 702 * Attempt to launder the specified number of pages. 703 * 704 * Returns the number of pages successfully laundered. 705 */ 706 static int 707 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 708 { 709 struct scan_state ss; 710 struct vm_pagequeue *pq; 711 struct mtx *mtx; 712 vm_object_t object; 713 vm_page_t m, marker; 714 int act_delta, error, numpagedout, queue, starting_target; 715 int vnodes_skipped; 716 bool obj_locked, pageout_ok; 717 718 mtx = NULL; 719 obj_locked = false; 720 object = NULL; 721 starting_target = launder; 722 vnodes_skipped = 0; 723 724 /* 725 * Scan the laundry queues for pages eligible to be laundered. We stop 726 * once the target number of dirty pages have been laundered, or once 727 * we've reached the end of the queue. A single iteration of this loop 728 * may cause more than one page to be laundered because of clustering. 729 * 730 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 731 * swap devices are configured. 732 */ 733 if (atomic_load_acq_int(&swapdev_enabled)) 734 queue = PQ_UNSWAPPABLE; 735 else 736 queue = PQ_LAUNDRY; 737 738 scan: 739 marker = &vmd->vmd_markers[queue]; 740 pq = &vmd->vmd_pagequeues[queue]; 741 vm_pagequeue_lock(pq); 742 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 743 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 744 if (__predict_false((m->flags & PG_MARKER) != 0)) 745 continue; 746 747 vm_page_change_lock(m, &mtx); 748 749 recheck: 750 /* 751 * The page may have been disassociated from the queue 752 * while locks were dropped. 753 */ 754 if (!vm_pageout_page_queued(m, queue)) 755 continue; 756 757 /* 758 * A requeue was requested, so this page gets a second 759 * chance. 760 */ 761 if ((m->aflags & PGA_REQUEUE) != 0) { 762 vm_page_requeue(m); 763 continue; 764 } 765 766 /* 767 * Held pages are essentially stuck in the queue. 768 * 769 * Wired pages may not be freed. Complete their removal 770 * from the queue now to avoid needless revisits during 771 * future scans. 772 */ 773 if (m->hold_count != 0) 774 continue; 775 if (m->wire_count != 0) { 776 vm_page_dequeue_deferred(m); 777 continue; 778 } 779 780 if (object != m->object) { 781 if (obj_locked) { 782 VM_OBJECT_WUNLOCK(object); 783 obj_locked = false; 784 } 785 object = m->object; 786 } 787 if (!obj_locked) { 788 if (!VM_OBJECT_TRYWLOCK(object)) { 789 mtx_unlock(mtx); 790 /* Depends on type-stability. */ 791 VM_OBJECT_WLOCK(object); 792 obj_locked = true; 793 mtx_lock(mtx); 794 goto recheck; 795 } else 796 obj_locked = true; 797 } 798 799 if (vm_page_busied(m)) 800 continue; 801 802 /* 803 * Invalid pages can be easily freed. They cannot be 804 * mapped; vm_page_free() asserts this. 805 */ 806 if (m->valid == 0) 807 goto free_page; 808 809 /* 810 * If the page has been referenced and the object is not dead, 811 * reactivate or requeue the page depending on whether the 812 * object is mapped. 813 */ 814 if ((m->aflags & PGA_REFERENCED) != 0) { 815 vm_page_aflag_clear(m, PGA_REFERENCED); 816 act_delta = 1; 817 } else 818 act_delta = 0; 819 if (object->ref_count != 0) 820 act_delta += pmap_ts_referenced(m); 821 else { 822 KASSERT(!pmap_page_is_mapped(m), 823 ("page %p is mapped", m)); 824 } 825 if (act_delta != 0) { 826 if (object->ref_count != 0) { 827 VM_CNT_INC(v_reactivated); 828 vm_page_activate(m); 829 830 /* 831 * Increase the activation count if the page 832 * was referenced while in the laundry queue. 833 * This makes it less likely that the page will 834 * be returned prematurely to the inactive 835 * queue. 836 */ 837 m->act_count += act_delta + ACT_ADVANCE; 838 839 /* 840 * If this was a background laundering, count 841 * activated pages towards our target. The 842 * purpose of background laundering is to ensure 843 * that pages are eventually cycled through the 844 * laundry queue, and an activation is a valid 845 * way out. 846 */ 847 if (!in_shortfall) 848 launder--; 849 continue; 850 } else if ((object->flags & OBJ_DEAD) == 0) { 851 vm_page_requeue(m); 852 continue; 853 } 854 } 855 856 /* 857 * If the page appears to be clean at the machine-independent 858 * layer, then remove all of its mappings from the pmap in 859 * anticipation of freeing it. If, however, any of the page's 860 * mappings allow write access, then the page may still be 861 * modified until the last of those mappings are removed. 862 */ 863 if (object->ref_count != 0) { 864 vm_page_test_dirty(m); 865 if (m->dirty == 0) 866 pmap_remove_all(m); 867 } 868 869 /* 870 * Clean pages are freed, and dirty pages are paged out unless 871 * they belong to a dead object. Requeueing dirty pages from 872 * dead objects is pointless, as they are being paged out and 873 * freed by the thread that destroyed the object. 874 */ 875 if (m->dirty == 0) { 876 free_page: 877 vm_page_free(m); 878 VM_CNT_INC(v_dfree); 879 } else if ((object->flags & OBJ_DEAD) == 0) { 880 if (object->type != OBJT_SWAP && 881 object->type != OBJT_DEFAULT) 882 pageout_ok = true; 883 else if (disable_swap_pageouts) 884 pageout_ok = false; 885 else 886 pageout_ok = true; 887 if (!pageout_ok) { 888 vm_page_requeue(m); 889 continue; 890 } 891 892 /* 893 * Form a cluster with adjacent, dirty pages from the 894 * same object, and page out that entire cluster. 895 * 896 * The adjacent, dirty pages must also be in the 897 * laundry. However, their mappings are not checked 898 * for new references. Consequently, a recently 899 * referenced page may be paged out. However, that 900 * page will not be prematurely reclaimed. After page 901 * out, the page will be placed in the inactive queue, 902 * where any new references will be detected and the 903 * page reactivated. 904 */ 905 error = vm_pageout_clean(m, &numpagedout); 906 if (error == 0) { 907 launder -= numpagedout; 908 ss.scanned += numpagedout; 909 } else if (error == EDEADLK) { 910 pageout_lock_miss++; 911 vnodes_skipped++; 912 } 913 mtx = NULL; 914 obj_locked = false; 915 } 916 } 917 if (mtx != NULL) { 918 mtx_unlock(mtx); 919 mtx = NULL; 920 } 921 if (obj_locked) { 922 VM_OBJECT_WUNLOCK(object); 923 obj_locked = false; 924 } 925 vm_pagequeue_lock(pq); 926 vm_pageout_end_scan(&ss); 927 vm_pagequeue_unlock(pq); 928 929 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 930 queue = PQ_LAUNDRY; 931 goto scan; 932 } 933 934 /* 935 * Wakeup the sync daemon if we skipped a vnode in a writeable object 936 * and we didn't launder enough pages. 937 */ 938 if (vnodes_skipped > 0 && launder > 0) 939 (void)speedup_syncer(); 940 941 return (starting_target - launder); 942 } 943 944 /* 945 * Compute the integer square root. 946 */ 947 static u_int 948 isqrt(u_int num) 949 { 950 u_int bit, root, tmp; 951 952 bit = 1u << ((NBBY * sizeof(u_int)) - 2); 953 while (bit > num) 954 bit >>= 2; 955 root = 0; 956 while (bit != 0) { 957 tmp = root + bit; 958 root >>= 1; 959 if (num >= tmp) { 960 num -= tmp; 961 root += bit; 962 } 963 bit >>= 2; 964 } 965 return (root); 966 } 967 968 /* 969 * Perform the work of the laundry thread: periodically wake up and determine 970 * whether any pages need to be laundered. If so, determine the number of pages 971 * that need to be laundered, and launder them. 972 */ 973 static void 974 vm_pageout_laundry_worker(void *arg) 975 { 976 struct vm_domain *vmd; 977 struct vm_pagequeue *pq; 978 uint64_t nclean, ndirty, nfreed; 979 int domain, last_target, launder, shortfall, shortfall_cycle, target; 980 bool in_shortfall; 981 982 domain = (uintptr_t)arg; 983 vmd = VM_DOMAIN(domain); 984 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 985 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 986 987 shortfall = 0; 988 in_shortfall = false; 989 shortfall_cycle = 0; 990 target = 0; 991 nfreed = 0; 992 993 /* 994 * Calls to these handlers are serialized by the swap syscall lock. 995 */ 996 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 997 EVENTHANDLER_PRI_ANY); 998 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 999 EVENTHANDLER_PRI_ANY); 1000 1001 /* 1002 * The pageout laundry worker is never done, so loop forever. 1003 */ 1004 for (;;) { 1005 KASSERT(target >= 0, ("negative target %d", target)); 1006 KASSERT(shortfall_cycle >= 0, 1007 ("negative cycle %d", shortfall_cycle)); 1008 launder = 0; 1009 1010 /* 1011 * First determine whether we need to launder pages to meet a 1012 * shortage of free pages. 1013 */ 1014 if (shortfall > 0) { 1015 in_shortfall = true; 1016 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 1017 target = shortfall; 1018 } else if (!in_shortfall) 1019 goto trybackground; 1020 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 1021 /* 1022 * We recently entered shortfall and began laundering 1023 * pages. If we have completed that laundering run 1024 * (and we are no longer in shortfall) or we have met 1025 * our laundry target through other activity, then we 1026 * can stop laundering pages. 1027 */ 1028 in_shortfall = false; 1029 target = 0; 1030 goto trybackground; 1031 } 1032 launder = target / shortfall_cycle--; 1033 goto dolaundry; 1034 1035 /* 1036 * There's no immediate need to launder any pages; see if we 1037 * meet the conditions to perform background laundering: 1038 * 1039 * 1. The ratio of dirty to clean inactive pages exceeds the 1040 * background laundering threshold, or 1041 * 2. we haven't yet reached the target of the current 1042 * background laundering run. 1043 * 1044 * The background laundering threshold is not a constant. 1045 * Instead, it is a slowly growing function of the number of 1046 * clean pages freed by the page daemon since the last 1047 * background laundering. Thus, as the ratio of dirty to 1048 * clean inactive pages grows, the amount of memory pressure 1049 * required to trigger laundering decreases. We ensure 1050 * that the threshold is non-zero after an inactive queue 1051 * scan, even if that scan failed to free a single clean page. 1052 */ 1053 trybackground: 1054 nclean = vmd->vmd_free_count + 1055 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1056 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1057 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1058 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1059 target = vmd->vmd_background_launder_target; 1060 } 1061 1062 /* 1063 * We have a non-zero background laundering target. If we've 1064 * laundered up to our maximum without observing a page daemon 1065 * request, just stop. This is a safety belt that ensures we 1066 * don't launder an excessive amount if memory pressure is low 1067 * and the ratio of dirty to clean pages is large. Otherwise, 1068 * proceed at the background laundering rate. 1069 */ 1070 if (target > 0) { 1071 if (nfreed > 0) { 1072 nfreed = 0; 1073 last_target = target; 1074 } else if (last_target - target >= 1075 vm_background_launder_max * PAGE_SIZE / 1024) { 1076 target = 0; 1077 } 1078 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1079 launder /= VM_LAUNDER_RATE; 1080 if (launder > target) 1081 launder = target; 1082 } 1083 1084 dolaundry: 1085 if (launder > 0) { 1086 /* 1087 * Because of I/O clustering, the number of laundered 1088 * pages could exceed "target" by the maximum size of 1089 * a cluster minus one. 1090 */ 1091 target -= min(vm_pageout_launder(vmd, launder, 1092 in_shortfall), target); 1093 pause("laundp", hz / VM_LAUNDER_RATE); 1094 } 1095 1096 /* 1097 * If we're not currently laundering pages and the page daemon 1098 * hasn't posted a new request, sleep until the page daemon 1099 * kicks us. 1100 */ 1101 vm_pagequeue_lock(pq); 1102 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1103 (void)mtx_sleep(&vmd->vmd_laundry_request, 1104 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1105 1106 /* 1107 * If the pagedaemon has indicated that it's in shortfall, start 1108 * a shortfall laundering unless we're already in the middle of 1109 * one. This may preempt a background laundering. 1110 */ 1111 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1112 (!in_shortfall || shortfall_cycle == 0)) { 1113 shortfall = vm_laundry_target(vmd) + 1114 vmd->vmd_pageout_deficit; 1115 target = 0; 1116 } else 1117 shortfall = 0; 1118 1119 if (target == 0) 1120 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1121 nfreed += vmd->vmd_clean_pages_freed; 1122 vmd->vmd_clean_pages_freed = 0; 1123 vm_pagequeue_unlock(pq); 1124 } 1125 } 1126 1127 static int 1128 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m) 1129 { 1130 struct vm_domain *vmd; 1131 1132 if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0) 1133 return (0); 1134 vm_page_aflag_set(m, PGA_ENQUEUED); 1135 if ((m->aflags & PGA_REQUEUE_HEAD) != 0) { 1136 vmd = vm_pagequeue_domain(m); 1137 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 1138 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1139 } else if ((m->aflags & PGA_REQUEUE) != 0) { 1140 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q); 1141 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1142 } else 1143 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q); 1144 return (1); 1145 } 1146 1147 /* 1148 * Re-add stuck pages to the inactive queue. We will examine them again 1149 * during the next scan. If the queue state of a page has changed since 1150 * it was physically removed from the page queue in 1151 * vm_pageout_collect_batch(), don't do anything with that page. 1152 */ 1153 static void 1154 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1155 vm_page_t m) 1156 { 1157 struct vm_pagequeue *pq; 1158 int delta; 1159 1160 delta = 0; 1161 pq = ss->pq; 1162 1163 if (m != NULL) { 1164 if (vm_batchqueue_insert(bq, m)) 1165 return; 1166 vm_pagequeue_lock(pq); 1167 delta += vm_pageout_reinsert_inactive_page(ss, m); 1168 } else 1169 vm_pagequeue_lock(pq); 1170 while ((m = vm_batchqueue_pop(bq)) != NULL) 1171 delta += vm_pageout_reinsert_inactive_page(ss, m); 1172 vm_pagequeue_cnt_add(pq, delta); 1173 vm_pagequeue_unlock(pq); 1174 vm_batchqueue_init(bq); 1175 } 1176 1177 /* 1178 * vm_pageout_scan does the dirty work for the pageout daemon. 1179 * 1180 * pass == 0: Update active LRU/deactivate pages 1181 * pass >= 1: Free inactive pages 1182 * 1183 * Returns true if pass was zero or enough pages were freed by the inactive 1184 * queue scan to meet the target. 1185 */ 1186 static bool 1187 vm_pageout_scan(struct vm_domain *vmd, int pass, int shortage) 1188 { 1189 struct scan_state ss; 1190 struct vm_batchqueue rq; 1191 struct mtx *mtx; 1192 vm_page_t m, marker; 1193 struct vm_pagequeue *pq; 1194 vm_object_t object; 1195 long min_scan; 1196 int act_delta, addl_page_shortage, deficit, inactq_shortage, max_scan; 1197 int page_shortage, scan_tick, starting_page_shortage; 1198 bool obj_locked; 1199 1200 /* 1201 * If we need to reclaim memory ask kernel caches to return 1202 * some. We rate limit to avoid thrashing. 1203 */ 1204 if (vmd == VM_DOMAIN(0) && pass > 0 && 1205 (time_uptime - lowmem_uptime) >= lowmem_period) { 1206 /* 1207 * Decrease registered cache sizes. 1208 */ 1209 SDT_PROBE0(vm, , , vm__lowmem_scan); 1210 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 1211 /* 1212 * We do this explicitly after the caches have been 1213 * drained above. 1214 */ 1215 uma_reclaim(); 1216 lowmem_uptime = time_uptime; 1217 } 1218 1219 /* 1220 * The addl_page_shortage is the number of temporarily 1221 * stuck pages in the inactive queue. In other words, the 1222 * number of pages from the inactive count that should be 1223 * discounted in setting the target for the active queue scan. 1224 */ 1225 addl_page_shortage = 0; 1226 1227 /* 1228 * Calculate the number of pages that we want to free. This number 1229 * can be negative if many pages are freed between the wakeup call to 1230 * the page daemon and this calculation. 1231 */ 1232 if (pass > 0) { 1233 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1234 page_shortage = shortage + deficit; 1235 } else 1236 page_shortage = deficit = 0; 1237 starting_page_shortage = page_shortage; 1238 1239 mtx = NULL; 1240 obj_locked = false; 1241 object = NULL; 1242 vm_batchqueue_init(&rq); 1243 1244 /* 1245 * Start scanning the inactive queue for pages that we can free. The 1246 * scan will stop when we reach the target or we have scanned the 1247 * entire queue. (Note that m->act_count is not used to make 1248 * decisions for the inactive queue, only for the active queue.) 1249 */ 1250 marker = &vmd->vmd_markers[PQ_INACTIVE]; 1251 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1252 vm_pagequeue_lock(pq); 1253 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1254 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) { 1255 KASSERT((m->flags & PG_MARKER) == 0, 1256 ("marker page %p was dequeued", m)); 1257 1258 vm_page_change_lock(m, &mtx); 1259 1260 recheck: 1261 /* 1262 * The page may have been disassociated from the queue 1263 * while locks were dropped. 1264 */ 1265 if (!vm_pageout_page_queued(m, PQ_INACTIVE)) { 1266 addl_page_shortage++; 1267 continue; 1268 } 1269 1270 /* 1271 * The page was re-enqueued after the page queue lock was 1272 * dropped, or a requeue was requested. This page gets a second 1273 * chance. 1274 */ 1275 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE | 1276 PGA_REQUEUE_HEAD)) != 0) 1277 goto reinsert; 1278 1279 /* 1280 * Held pages are essentially stuck in the queue. So, 1281 * they ought to be discounted from the inactive count. 1282 * See the calculation of inactq_shortage before the 1283 * loop over the active queue below. 1284 * 1285 * Wired pages may not be freed. Complete their removal 1286 * from the queue now to avoid needless revisits during 1287 * future scans. 1288 */ 1289 if (m->hold_count != 0) { 1290 addl_page_shortage++; 1291 goto reinsert; 1292 } 1293 if (m->wire_count != 0) { 1294 addl_page_shortage++; 1295 vm_page_dequeue_deferred(m); 1296 continue; 1297 } 1298 1299 if (object != m->object) { 1300 if (obj_locked) { 1301 VM_OBJECT_WUNLOCK(object); 1302 obj_locked = false; 1303 } 1304 object = m->object; 1305 } 1306 if (!obj_locked) { 1307 if (!VM_OBJECT_TRYWLOCK(object)) { 1308 mtx_unlock(mtx); 1309 /* Depends on type-stability. */ 1310 VM_OBJECT_WLOCK(object); 1311 obj_locked = true; 1312 mtx_lock(mtx); 1313 goto recheck; 1314 } else 1315 obj_locked = true; 1316 } 1317 1318 if (vm_page_busied(m)) { 1319 /* 1320 * Don't mess with busy pages. Leave them at 1321 * the front of the queue. Most likely, they 1322 * are being paged out and will leave the 1323 * queue shortly after the scan finishes. So, 1324 * they ought to be discounted from the 1325 * inactive count. 1326 */ 1327 addl_page_shortage++; 1328 goto reinsert; 1329 } 1330 1331 /* 1332 * Invalid pages can be easily freed. They cannot be 1333 * mapped, vm_page_free() asserts this. 1334 */ 1335 if (m->valid == 0) 1336 goto free_page; 1337 1338 /* 1339 * If the page has been referenced and the object is not dead, 1340 * reactivate or requeue the page depending on whether the 1341 * object is mapped. 1342 */ 1343 if ((m->aflags & PGA_REFERENCED) != 0) { 1344 vm_page_aflag_clear(m, PGA_REFERENCED); 1345 act_delta = 1; 1346 } else 1347 act_delta = 0; 1348 if (object->ref_count != 0) { 1349 act_delta += pmap_ts_referenced(m); 1350 } else { 1351 KASSERT(!pmap_page_is_mapped(m), 1352 ("vm_pageout_scan: page %p is mapped", m)); 1353 } 1354 if (act_delta != 0) { 1355 if (object->ref_count != 0) { 1356 VM_CNT_INC(v_reactivated); 1357 vm_page_activate(m); 1358 1359 /* 1360 * Increase the activation count if the page 1361 * was referenced while in the inactive queue. 1362 * This makes it less likely that the page will 1363 * be returned prematurely to the inactive 1364 * queue. 1365 */ 1366 m->act_count += act_delta + ACT_ADVANCE; 1367 continue; 1368 } else if ((object->flags & OBJ_DEAD) == 0) { 1369 vm_page_aflag_set(m, PGA_REQUEUE); 1370 goto reinsert; 1371 } 1372 } 1373 1374 /* 1375 * If the page appears to be clean at the machine-independent 1376 * layer, then remove all of its mappings from the pmap in 1377 * anticipation of freeing it. If, however, any of the page's 1378 * mappings allow write access, then the page may still be 1379 * modified until the last of those mappings are removed. 1380 */ 1381 if (object->ref_count != 0) { 1382 vm_page_test_dirty(m); 1383 if (m->dirty == 0) 1384 pmap_remove_all(m); 1385 } 1386 1387 /* 1388 * Clean pages can be freed, but dirty pages must be sent back 1389 * to the laundry, unless they belong to a dead object. 1390 * Requeueing dirty pages from dead objects is pointless, as 1391 * they are being paged out and freed by the thread that 1392 * destroyed the object. 1393 */ 1394 if (m->dirty == 0) { 1395 free_page: 1396 /* 1397 * Because we dequeued the page and have already 1398 * checked for concurrent dequeue and enqueue 1399 * requests, we can safely disassociate the page 1400 * from the inactive queue. 1401 */ 1402 KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0, 1403 ("page %p has queue state", m)); 1404 m->queue = PQ_NONE; 1405 vm_page_free(m); 1406 page_shortage--; 1407 } else if ((object->flags & OBJ_DEAD) == 0) 1408 vm_page_launder(m); 1409 continue; 1410 reinsert: 1411 vm_pageout_reinsert_inactive(&ss, &rq, m); 1412 } 1413 if (mtx != NULL) { 1414 mtx_unlock(mtx); 1415 mtx = NULL; 1416 } 1417 if (obj_locked) { 1418 VM_OBJECT_WUNLOCK(object); 1419 obj_locked = false; 1420 } 1421 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1422 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1423 vm_pagequeue_lock(pq); 1424 vm_pageout_end_scan(&ss); 1425 vm_pagequeue_unlock(pq); 1426 1427 VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage); 1428 1429 /* 1430 * Wake up the laundry thread so that it can perform any needed 1431 * laundering. If we didn't meet our target, we're in shortfall and 1432 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1433 * swap devices are configured, the laundry thread has no work to do, so 1434 * don't bother waking it up. 1435 * 1436 * The laundry thread uses the number of inactive queue scans elapsed 1437 * since the last laundering to determine whether to launder again, so 1438 * keep count. 1439 */ 1440 if (starting_page_shortage > 0) { 1441 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1442 vm_pagequeue_lock(pq); 1443 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1444 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1445 if (page_shortage > 0) { 1446 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1447 VM_CNT_INC(v_pdshortfalls); 1448 } else if (vmd->vmd_laundry_request != 1449 VM_LAUNDRY_SHORTFALL) 1450 vmd->vmd_laundry_request = 1451 VM_LAUNDRY_BACKGROUND; 1452 wakeup(&vmd->vmd_laundry_request); 1453 } 1454 vmd->vmd_clean_pages_freed += 1455 starting_page_shortage - page_shortage; 1456 vm_pagequeue_unlock(pq); 1457 } 1458 1459 /* 1460 * Wakeup the swapout daemon if we didn't free the targeted number of 1461 * pages. 1462 */ 1463 if (page_shortage > 0) 1464 vm_swapout_run(); 1465 1466 /* 1467 * If the inactive queue scan fails repeatedly to meet its 1468 * target, kill the largest process. 1469 */ 1470 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1471 1472 /* 1473 * Compute the number of pages we want to try to move from the 1474 * active queue to either the inactive or laundry queue. 1475 * 1476 * When scanning active pages, we make clean pages count more heavily 1477 * towards the page shortage than dirty pages. This is because dirty 1478 * pages must be laundered before they can be reused and thus have less 1479 * utility when attempting to quickly alleviate a shortage. However, 1480 * this weighting also causes the scan to deactivate dirty pages more 1481 * more aggressively, improving the effectiveness of clustering and 1482 * ensuring that they can eventually be reused. 1483 */ 1484 inactq_shortage = vmd->vmd_inactive_target - (pq->pq_cnt + 1485 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight) + 1486 vm_paging_target(vmd) + deficit + addl_page_shortage; 1487 inactq_shortage *= act_scan_laundry_weight; 1488 1489 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1490 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1491 vm_pagequeue_lock(pq); 1492 1493 /* 1494 * If we're just idle polling attempt to visit every 1495 * active page within 'update_period' seconds. 1496 */ 1497 scan_tick = ticks; 1498 if (vm_pageout_update_period != 0) { 1499 min_scan = pq->pq_cnt; 1500 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1501 min_scan /= hz * vm_pageout_update_period; 1502 } else 1503 min_scan = 0; 1504 if (min_scan > 0 || (inactq_shortage > 0 && pq->pq_cnt > 0)) 1505 vmd->vmd_last_active_scan = scan_tick; 1506 1507 /* 1508 * Scan the active queue for pages that can be deactivated. Update 1509 * the per-page activity counter and use it to identify deactivation 1510 * candidates. Held pages may be deactivated. 1511 * 1512 * To avoid requeuing each page that remains in the active queue, we 1513 * implement the CLOCK algorithm. To maintain consistency in the 1514 * generic page queue code, pages are inserted at the tail of the 1515 * active queue. We thus use two hands, represented by marker pages: 1516 * scans begin at the first hand, which precedes the second hand in 1517 * the queue. When the two hands meet, they are moved back to the 1518 * head and tail of the queue, respectively, and scanning resumes. 1519 */ 1520 max_scan = inactq_shortage > 0 ? pq->pq_cnt : min_scan; 1521 act_scan: 1522 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1523 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1524 if (__predict_false(m == &vmd->vmd_clock[1])) { 1525 vm_pagequeue_lock(pq); 1526 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1527 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1528 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1529 plinks.q); 1530 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1531 plinks.q); 1532 max_scan -= ss.scanned; 1533 vm_pageout_end_scan(&ss); 1534 goto act_scan; 1535 } 1536 if (__predict_false((m->flags & PG_MARKER) != 0)) 1537 continue; 1538 1539 vm_page_change_lock(m, &mtx); 1540 1541 /* 1542 * The page may have been disassociated from the queue 1543 * while locks were dropped. 1544 */ 1545 if (!vm_pageout_page_queued(m, PQ_ACTIVE)) 1546 continue; 1547 1548 /* 1549 * Wired pages are dequeued lazily. 1550 */ 1551 if (m->wire_count != 0) { 1552 vm_page_dequeue_deferred(m); 1553 continue; 1554 } 1555 1556 /* 1557 * Check to see "how much" the page has been used. 1558 */ 1559 if ((m->aflags & PGA_REFERENCED) != 0) { 1560 vm_page_aflag_clear(m, PGA_REFERENCED); 1561 act_delta = 1; 1562 } else 1563 act_delta = 0; 1564 1565 /* 1566 * Perform an unsynchronized object ref count check. While 1567 * the page lock ensures that the page is not reallocated to 1568 * another object, in particular, one with unmanaged mappings 1569 * that cannot support pmap_ts_referenced(), two races are, 1570 * nonetheless, possible: 1571 * 1) The count was transitioning to zero, but we saw a non- 1572 * zero value. pmap_ts_referenced() will return zero 1573 * because the page is not mapped. 1574 * 2) The count was transitioning to one, but we saw zero. 1575 * This race delays the detection of a new reference. At 1576 * worst, we will deactivate and reactivate the page. 1577 */ 1578 if (m->object->ref_count != 0) 1579 act_delta += pmap_ts_referenced(m); 1580 1581 /* 1582 * Advance or decay the act_count based on recent usage. 1583 */ 1584 if (act_delta != 0) { 1585 m->act_count += ACT_ADVANCE + act_delta; 1586 if (m->act_count > ACT_MAX) 1587 m->act_count = ACT_MAX; 1588 } else 1589 m->act_count -= min(m->act_count, ACT_DECLINE); 1590 1591 if (m->act_count == 0) { 1592 /* 1593 * When not short for inactive pages, let dirty pages go 1594 * through the inactive queue before moving to the 1595 * laundry queues. This gives them some extra time to 1596 * be reactivated, potentially avoiding an expensive 1597 * pageout. During a page shortage, the inactive queue 1598 * is necessarily small, so we may move dirty pages 1599 * directly to the laundry queue. 1600 */ 1601 if (inactq_shortage <= 0) 1602 vm_page_deactivate(m); 1603 else { 1604 /* 1605 * Calling vm_page_test_dirty() here would 1606 * require acquisition of the object's write 1607 * lock. However, during a page shortage, 1608 * directing dirty pages into the laundry 1609 * queue is only an optimization and not a 1610 * requirement. Therefore, we simply rely on 1611 * the opportunistic updates to the page's 1612 * dirty field by the pmap. 1613 */ 1614 if (m->dirty == 0) { 1615 vm_page_deactivate(m); 1616 inactq_shortage -= 1617 act_scan_laundry_weight; 1618 } else { 1619 vm_page_launder(m); 1620 inactq_shortage--; 1621 } 1622 } 1623 } 1624 } 1625 if (mtx != NULL) { 1626 mtx_unlock(mtx); 1627 mtx = NULL; 1628 } 1629 vm_pagequeue_lock(pq); 1630 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1631 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1632 vm_pageout_end_scan(&ss); 1633 vm_pagequeue_unlock(pq); 1634 1635 if (pass > 0) 1636 vm_swapout_run_idle(); 1637 return (page_shortage <= 0); 1638 } 1639 1640 static int vm_pageout_oom_vote; 1641 1642 /* 1643 * The pagedaemon threads randlomly select one to perform the 1644 * OOM. Trying to kill processes before all pagedaemons 1645 * failed to reach free target is premature. 1646 */ 1647 static void 1648 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1649 int starting_page_shortage) 1650 { 1651 int old_vote; 1652 1653 if (starting_page_shortage <= 0 || starting_page_shortage != 1654 page_shortage) 1655 vmd->vmd_oom_seq = 0; 1656 else 1657 vmd->vmd_oom_seq++; 1658 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1659 if (vmd->vmd_oom) { 1660 vmd->vmd_oom = FALSE; 1661 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1662 } 1663 return; 1664 } 1665 1666 /* 1667 * Do not follow the call sequence until OOM condition is 1668 * cleared. 1669 */ 1670 vmd->vmd_oom_seq = 0; 1671 1672 if (vmd->vmd_oom) 1673 return; 1674 1675 vmd->vmd_oom = TRUE; 1676 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1677 if (old_vote != vm_ndomains - 1) 1678 return; 1679 1680 /* 1681 * The current pagedaemon thread is the last in the quorum to 1682 * start OOM. Initiate the selection and signaling of the 1683 * victim. 1684 */ 1685 vm_pageout_oom(VM_OOM_MEM); 1686 1687 /* 1688 * After one round of OOM terror, recall our vote. On the 1689 * next pass, current pagedaemon would vote again if the low 1690 * memory condition is still there, due to vmd_oom being 1691 * false. 1692 */ 1693 vmd->vmd_oom = FALSE; 1694 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1695 } 1696 1697 /* 1698 * The OOM killer is the page daemon's action of last resort when 1699 * memory allocation requests have been stalled for a prolonged period 1700 * of time because it cannot reclaim memory. This function computes 1701 * the approximate number of physical pages that could be reclaimed if 1702 * the specified address space is destroyed. 1703 * 1704 * Private, anonymous memory owned by the address space is the 1705 * principal resource that we expect to recover after an OOM kill. 1706 * Since the physical pages mapped by the address space's COW entries 1707 * are typically shared pages, they are unlikely to be released and so 1708 * they are not counted. 1709 * 1710 * To get to the point where the page daemon runs the OOM killer, its 1711 * efforts to write-back vnode-backed pages may have stalled. This 1712 * could be caused by a memory allocation deadlock in the write path 1713 * that might be resolved by an OOM kill. Therefore, physical pages 1714 * belonging to vnode-backed objects are counted, because they might 1715 * be freed without being written out first if the address space holds 1716 * the last reference to an unlinked vnode. 1717 * 1718 * Similarly, physical pages belonging to OBJT_PHYS objects are 1719 * counted because the address space might hold the last reference to 1720 * the object. 1721 */ 1722 static long 1723 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1724 { 1725 vm_map_t map; 1726 vm_map_entry_t entry; 1727 vm_object_t obj; 1728 long res; 1729 1730 map = &vmspace->vm_map; 1731 KASSERT(!map->system_map, ("system map")); 1732 sx_assert(&map->lock, SA_LOCKED); 1733 res = 0; 1734 for (entry = map->header.next; entry != &map->header; 1735 entry = entry->next) { 1736 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1737 continue; 1738 obj = entry->object.vm_object; 1739 if (obj == NULL) 1740 continue; 1741 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1742 obj->ref_count != 1) 1743 continue; 1744 switch (obj->type) { 1745 case OBJT_DEFAULT: 1746 case OBJT_SWAP: 1747 case OBJT_PHYS: 1748 case OBJT_VNODE: 1749 res += obj->resident_page_count; 1750 break; 1751 } 1752 } 1753 return (res); 1754 } 1755 1756 void 1757 vm_pageout_oom(int shortage) 1758 { 1759 struct proc *p, *bigproc; 1760 vm_offset_t size, bigsize; 1761 struct thread *td; 1762 struct vmspace *vm; 1763 bool breakout; 1764 1765 /* 1766 * We keep the process bigproc locked once we find it to keep anyone 1767 * from messing with it; however, there is a possibility of 1768 * deadlock if process B is bigproc and one of its child processes 1769 * attempts to propagate a signal to B while we are waiting for A's 1770 * lock while walking this list. To avoid this, we don't block on 1771 * the process lock but just skip a process if it is already locked. 1772 */ 1773 bigproc = NULL; 1774 bigsize = 0; 1775 sx_slock(&allproc_lock); 1776 FOREACH_PROC_IN_SYSTEM(p) { 1777 PROC_LOCK(p); 1778 1779 /* 1780 * If this is a system, protected or killed process, skip it. 1781 */ 1782 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1783 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1784 p->p_pid == 1 || P_KILLED(p) || 1785 (p->p_pid < 48 && swap_pager_avail != 0)) { 1786 PROC_UNLOCK(p); 1787 continue; 1788 } 1789 /* 1790 * If the process is in a non-running type state, 1791 * don't touch it. Check all the threads individually. 1792 */ 1793 breakout = false; 1794 FOREACH_THREAD_IN_PROC(p, td) { 1795 thread_lock(td); 1796 if (!TD_ON_RUNQ(td) && 1797 !TD_IS_RUNNING(td) && 1798 !TD_IS_SLEEPING(td) && 1799 !TD_IS_SUSPENDED(td) && 1800 !TD_IS_SWAPPED(td)) { 1801 thread_unlock(td); 1802 breakout = true; 1803 break; 1804 } 1805 thread_unlock(td); 1806 } 1807 if (breakout) { 1808 PROC_UNLOCK(p); 1809 continue; 1810 } 1811 /* 1812 * get the process size 1813 */ 1814 vm = vmspace_acquire_ref(p); 1815 if (vm == NULL) { 1816 PROC_UNLOCK(p); 1817 continue; 1818 } 1819 _PHOLD_LITE(p); 1820 PROC_UNLOCK(p); 1821 sx_sunlock(&allproc_lock); 1822 if (!vm_map_trylock_read(&vm->vm_map)) { 1823 vmspace_free(vm); 1824 sx_slock(&allproc_lock); 1825 PRELE(p); 1826 continue; 1827 } 1828 size = vmspace_swap_count(vm); 1829 if (shortage == VM_OOM_MEM) 1830 size += vm_pageout_oom_pagecount(vm); 1831 vm_map_unlock_read(&vm->vm_map); 1832 vmspace_free(vm); 1833 sx_slock(&allproc_lock); 1834 1835 /* 1836 * If this process is bigger than the biggest one, 1837 * remember it. 1838 */ 1839 if (size > bigsize) { 1840 if (bigproc != NULL) 1841 PRELE(bigproc); 1842 bigproc = p; 1843 bigsize = size; 1844 } else { 1845 PRELE(p); 1846 } 1847 } 1848 sx_sunlock(&allproc_lock); 1849 if (bigproc != NULL) { 1850 if (vm_panic_on_oom != 0) 1851 panic("out of swap space"); 1852 PROC_LOCK(bigproc); 1853 killproc(bigproc, "out of swap space"); 1854 sched_nice(bigproc, PRIO_MIN); 1855 _PRELE(bigproc); 1856 PROC_UNLOCK(bigproc); 1857 } 1858 } 1859 1860 static void 1861 vm_pageout_worker(void *arg) 1862 { 1863 struct vm_domain *vmd; 1864 int domain, pass, shortage; 1865 bool target_met; 1866 1867 domain = (uintptr_t)arg; 1868 vmd = VM_DOMAIN(domain); 1869 pass = 0; 1870 shortage = 0; 1871 target_met = true; 1872 1873 /* 1874 * XXXKIB It could be useful to bind pageout daemon threads to 1875 * the cores belonging to the domain, from which vm_page_array 1876 * is allocated. 1877 */ 1878 1879 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 1880 vmd->vmd_last_active_scan = ticks; 1881 1882 /* 1883 * The pageout daemon worker is never done, so loop forever. 1884 */ 1885 while (TRUE) { 1886 vm_domain_pageout_lock(vmd); 1887 /* 1888 * We need to clear wanted before we check the limits. This 1889 * prevents races with wakers who will check wanted after they 1890 * reach the limit. 1891 */ 1892 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 1893 1894 /* 1895 * Might the page daemon need to run again? 1896 */ 1897 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 1898 /* 1899 * Yes, the scan failed to free enough pages. If 1900 * we have performed a level >= 1 (page reclamation) 1901 * scan, then sleep a bit and try again. 1902 */ 1903 vm_domain_pageout_unlock(vmd); 1904 if (pass > 1) 1905 pause("pwait", hz / VM_INACT_SCAN_RATE); 1906 } else { 1907 /* 1908 * No, sleep until the next wakeup or until pages 1909 * need to have their reference stats updated. 1910 */ 1911 if (mtx_sleep(&vmd->vmd_pageout_wanted, 1912 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 1913 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 1914 VM_CNT_INC(v_pdwakeups); 1915 } 1916 /* Prevent spurious wakeups by ensuring that wanted is set. */ 1917 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 1918 1919 /* 1920 * Use the controller to calculate how many pages to free in 1921 * this interval. 1922 */ 1923 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 1924 if (shortage && pass == 0) 1925 pass = 1; 1926 1927 target_met = vm_pageout_scan(vmd, pass, shortage); 1928 /* 1929 * If the target was not met we must increase the pass to 1930 * more aggressively reclaim. 1931 */ 1932 if (!target_met) 1933 pass++; 1934 } 1935 } 1936 1937 /* 1938 * vm_pageout_init initialises basic pageout daemon settings. 1939 */ 1940 static void 1941 vm_pageout_init_domain(int domain) 1942 { 1943 struct vm_domain *vmd; 1944 struct sysctl_oid *oid; 1945 1946 vmd = VM_DOMAIN(domain); 1947 vmd->vmd_interrupt_free_min = 2; 1948 1949 /* 1950 * v_free_reserved needs to include enough for the largest 1951 * swap pager structures plus enough for any pv_entry structs 1952 * when paging. 1953 */ 1954 if (vmd->vmd_page_count > 1024) 1955 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200; 1956 else 1957 vmd->vmd_free_min = 4; 1958 vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE + 1959 vmd->vmd_interrupt_free_min; 1960 vmd->vmd_free_reserved = vm_pageout_page_count + 1961 vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768); 1962 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 1963 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 1964 vmd->vmd_free_min += vmd->vmd_free_reserved; 1965 vmd->vmd_free_severe += vmd->vmd_free_reserved; 1966 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 1967 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 1968 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 1969 1970 /* 1971 * Set the default wakeup threshold to be 10% below the paging 1972 * target. This keeps the steady state out of shortfall. 1973 */ 1974 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 1975 1976 /* 1977 * Target amount of memory to move out of the laundry queue during a 1978 * background laundering. This is proportional to the amount of system 1979 * memory. 1980 */ 1981 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 1982 vmd->vmd_free_min) / 10; 1983 1984 /* Initialize the pageout daemon pid controller. */ 1985 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 1986 vmd->vmd_free_target, PIDCTRL_BOUND, 1987 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 1988 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 1989 "pidctrl", CTLFLAG_RD, NULL, ""); 1990 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 1991 } 1992 1993 static void 1994 vm_pageout_init(void) 1995 { 1996 u_int freecount; 1997 int i; 1998 1999 /* 2000 * Initialize some paging parameters. 2001 */ 2002 if (vm_cnt.v_page_count < 2000) 2003 vm_pageout_page_count = 8; 2004 2005 freecount = 0; 2006 for (i = 0; i < vm_ndomains; i++) { 2007 struct vm_domain *vmd; 2008 2009 vm_pageout_init_domain(i); 2010 vmd = VM_DOMAIN(i); 2011 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2012 vm_cnt.v_free_target += vmd->vmd_free_target; 2013 vm_cnt.v_free_min += vmd->vmd_free_min; 2014 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2015 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2016 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2017 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2018 freecount += vmd->vmd_free_count; 2019 } 2020 2021 /* 2022 * Set interval in seconds for active scan. We want to visit each 2023 * page at least once every ten minutes. This is to prevent worst 2024 * case paging behaviors with stale active LRU. 2025 */ 2026 if (vm_pageout_update_period == 0) 2027 vm_pageout_update_period = 600; 2028 2029 if (vm_page_max_wired == 0) 2030 vm_page_max_wired = freecount / 3; 2031 } 2032 2033 /* 2034 * vm_pageout is the high level pageout daemon. 2035 */ 2036 static void 2037 vm_pageout(void) 2038 { 2039 int error; 2040 int i; 2041 2042 swap_pager_swap_init(); 2043 snprintf(curthread->td_name, sizeof(curthread->td_name), "dom0"); 2044 error = kthread_add(vm_pageout_laundry_worker, NULL, curproc, NULL, 2045 0, 0, "laundry: dom0"); 2046 if (error != 0) 2047 panic("starting laundry for domain 0, error %d", error); 2048 for (i = 1; i < vm_ndomains; i++) { 2049 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i, 2050 curproc, NULL, 0, 0, "dom%d", i); 2051 if (error != 0) { 2052 panic("starting pageout for domain %d, error %d\n", 2053 i, error); 2054 } 2055 error = kthread_add(vm_pageout_laundry_worker, 2056 (void *)(uintptr_t)i, curproc, NULL, 0, 0, 2057 "laundry: dom%d", i); 2058 if (error != 0) 2059 panic("starting laundry for domain %d, error %d", 2060 i, error); 2061 } 2062 error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL, 2063 0, 0, "uma"); 2064 if (error != 0) 2065 panic("starting uma_reclaim helper, error %d\n", error); 2066 vm_pageout_worker((void *)(uintptr_t)0); 2067 } 2068 2069 /* 2070 * Perform an advisory wakeup of the page daemon. 2071 */ 2072 void 2073 pagedaemon_wakeup(int domain) 2074 { 2075 struct vm_domain *vmd; 2076 2077 vmd = VM_DOMAIN(domain); 2078 vm_domain_pageout_assert_unlocked(vmd); 2079 if (curproc == pageproc) 2080 return; 2081 2082 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2083 vm_domain_pageout_lock(vmd); 2084 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2085 wakeup(&vmd->vmd_pageout_wanted); 2086 vm_domain_pageout_unlock(vmd); 2087 } 2088 } 2089