xref: /freebsd/sys/vm/vm_pageout.c (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 #include "opt_vm.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/blockcount.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/sdt.h>
93 #include <sys/signalvar.h>
94 #include <sys/smp.h>
95 #include <sys/time.h>
96 #include <sys/vnode.h>
97 #include <sys/vmmeter.h>
98 #include <sys/rwlock.h>
99 #include <sys/sx.h>
100 #include <sys/sysctl.h>
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_phys.h>
110 #include <vm/vm_pagequeue.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 /*
116  * System initialization
117  */
118 
119 /* the kernel process "vm_pageout"*/
120 static void vm_pageout(void);
121 static void vm_pageout_init(void);
122 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
123 static int vm_pageout_cluster(vm_page_t m);
124 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
125     int starting_page_shortage);
126 
127 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
128     NULL);
129 
130 struct proc *pageproc;
131 
132 static struct kproc_desc page_kp = {
133 	"pagedaemon",
134 	vm_pageout,
135 	&pageproc
136 };
137 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
138     &page_kp);
139 
140 SDT_PROVIDER_DEFINE(vm);
141 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
142 
143 /* Pagedaemon activity rates, in subdivisions of one second. */
144 #define	VM_LAUNDER_RATE		10
145 #define	VM_INACT_SCAN_RATE	10
146 
147 static int swapdev_enabled;
148 int vm_pageout_page_count = 32;
149 
150 static int vm_panic_on_oom = 0;
151 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
152     CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
153     "Panic on the given number of out-of-memory errors instead of "
154     "killing the largest process");
155 
156 static int vm_pageout_update_period;
157 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
158     CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
159     "Maximum active LRU update period");
160 
161 static int pageout_cpus_per_thread = 16;
162 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
163     &pageout_cpus_per_thread, 0,
164     "Number of CPUs per pagedaemon worker thread");
165 
166 static int lowmem_period = 10;
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168     "Low memory callback period");
169 
170 static int disable_swap_pageouts;
171 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
172     CTLFLAG_RWTUN, &disable_swap_pageouts, 0,
173     "Disallow swapout of dirty pages");
174 
175 static int pageout_lock_miss;
176 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
177     CTLFLAG_RD, &pageout_lock_miss, 0,
178     "vget() lock misses during pageout");
179 
180 static int vm_pageout_oom_seq = 12;
181 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
182     CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
183     "back-to-back calls to oom detector to start OOM");
184 
185 static int act_scan_laundry_weight = 3;
186 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
187     &act_scan_laundry_weight, 0,
188     "weight given to clean vs. dirty pages in active queue scans");
189 
190 static u_int vm_background_launder_rate = 4096;
191 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
192     &vm_background_launder_rate, 0,
193     "background laundering rate, in kilobytes per second");
194 
195 static u_int vm_background_launder_max = 20 * 1024;
196 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
197     &vm_background_launder_max, 0,
198     "background laundering cap, in kilobytes");
199 
200 u_long vm_page_max_user_wired;
201 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
202     &vm_page_max_user_wired, 0,
203     "system-wide limit to user-wired page count");
204 
205 static u_int isqrt(u_int num);
206 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
207     bool in_shortfall);
208 static void vm_pageout_laundry_worker(void *arg);
209 
210 struct scan_state {
211 	struct vm_batchqueue bq;
212 	struct vm_pagequeue *pq;
213 	vm_page_t	marker;
214 	int		maxscan;
215 	int		scanned;
216 };
217 
218 static void
219 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
220     vm_page_t marker, vm_page_t after, int maxscan)
221 {
222 
223 	vm_pagequeue_assert_locked(pq);
224 	KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
225 	    ("marker %p already enqueued", marker));
226 
227 	if (after == NULL)
228 		TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
229 	else
230 		TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
231 	vm_page_aflag_set(marker, PGA_ENQUEUED);
232 
233 	vm_batchqueue_init(&ss->bq);
234 	ss->pq = pq;
235 	ss->marker = marker;
236 	ss->maxscan = maxscan;
237 	ss->scanned = 0;
238 	vm_pagequeue_unlock(pq);
239 }
240 
241 static void
242 vm_pageout_end_scan(struct scan_state *ss)
243 {
244 	struct vm_pagequeue *pq;
245 
246 	pq = ss->pq;
247 	vm_pagequeue_assert_locked(pq);
248 	KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
249 	    ("marker %p not enqueued", ss->marker));
250 
251 	TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
252 	vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
253 	pq->pq_pdpages += ss->scanned;
254 }
255 
256 /*
257  * Add a small number of queued pages to a batch queue for later processing
258  * without the corresponding queue lock held.  The caller must have enqueued a
259  * marker page at the desired start point for the scan.  Pages will be
260  * physically dequeued if the caller so requests.  Otherwise, the returned
261  * batch may contain marker pages, and it is up to the caller to handle them.
262  *
263  * When processing the batch queue, vm_pageout_defer() must be used to
264  * determine whether the page has been logically dequeued since the batch was
265  * collected.
266  */
267 static __always_inline void
268 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
269 {
270 	struct vm_pagequeue *pq;
271 	vm_page_t m, marker, n;
272 
273 	marker = ss->marker;
274 	pq = ss->pq;
275 
276 	KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
277 	    ("marker %p not enqueued", ss->marker));
278 
279 	vm_pagequeue_lock(pq);
280 	for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
281 	    ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
282 	    m = n, ss->scanned++) {
283 		n = TAILQ_NEXT(m, plinks.q);
284 		if ((m->flags & PG_MARKER) == 0) {
285 			KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
286 			    ("page %p not enqueued", m));
287 			KASSERT((m->flags & PG_FICTITIOUS) == 0,
288 			    ("Fictitious page %p cannot be in page queue", m));
289 			KASSERT((m->oflags & VPO_UNMANAGED) == 0,
290 			    ("Unmanaged page %p cannot be in page queue", m));
291 		} else if (dequeue)
292 			continue;
293 
294 		(void)vm_batchqueue_insert(&ss->bq, m);
295 		if (dequeue) {
296 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
297 			vm_page_aflag_clear(m, PGA_ENQUEUED);
298 		}
299 	}
300 	TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
301 	if (__predict_true(m != NULL))
302 		TAILQ_INSERT_BEFORE(m, marker, plinks.q);
303 	else
304 		TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
305 	if (dequeue)
306 		vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
307 	vm_pagequeue_unlock(pq);
308 }
309 
310 /*
311  * Return the next page to be scanned, or NULL if the scan is complete.
312  */
313 static __always_inline vm_page_t
314 vm_pageout_next(struct scan_state *ss, const bool dequeue)
315 {
316 
317 	if (ss->bq.bq_cnt == 0)
318 		vm_pageout_collect_batch(ss, dequeue);
319 	return (vm_batchqueue_pop(&ss->bq));
320 }
321 
322 /*
323  * Determine whether processing of a page should be deferred and ensure that any
324  * outstanding queue operations are processed.
325  */
326 static __always_inline bool
327 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
328 {
329 	vm_page_astate_t as;
330 
331 	as = vm_page_astate_load(m);
332 	if (__predict_false(as.queue != queue ||
333 	    ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
334 		return (true);
335 	if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
336 		vm_page_pqbatch_submit(m, queue);
337 		return (true);
338 	}
339 	return (false);
340 }
341 
342 /*
343  * Scan for pages at adjacent offsets within the given page's object that are
344  * eligible for laundering, form a cluster of these pages and the given page,
345  * and launder that cluster.
346  */
347 static int
348 vm_pageout_cluster(vm_page_t m)
349 {
350 	vm_object_t object;
351 	vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
352 	vm_pindex_t pindex;
353 	int ib, is, page_base, pageout_count;
354 
355 	object = m->object;
356 	VM_OBJECT_ASSERT_WLOCKED(object);
357 	pindex = m->pindex;
358 
359 	vm_page_assert_xbusied(m);
360 
361 	mc[vm_pageout_page_count] = pb = ps = m;
362 	pageout_count = 1;
363 	page_base = vm_pageout_page_count;
364 	ib = 1;
365 	is = 1;
366 
367 	/*
368 	 * We can cluster only if the page is not clean, busy, or held, and
369 	 * the page is in the laundry queue.
370 	 *
371 	 * During heavy mmap/modification loads the pageout
372 	 * daemon can really fragment the underlying file
373 	 * due to flushing pages out of order and not trying to
374 	 * align the clusters (which leaves sporadic out-of-order
375 	 * holes).  To solve this problem we do the reverse scan
376 	 * first and attempt to align our cluster, then do a
377 	 * forward scan if room remains.
378 	 */
379 more:
380 	while (ib != 0 && pageout_count < vm_pageout_page_count) {
381 		if (ib > pindex) {
382 			ib = 0;
383 			break;
384 		}
385 		if ((p = vm_page_prev(pb)) == NULL ||
386 		    vm_page_tryxbusy(p) == 0) {
387 			ib = 0;
388 			break;
389 		}
390 		if (vm_page_wired(p)) {
391 			ib = 0;
392 			vm_page_xunbusy(p);
393 			break;
394 		}
395 		vm_page_test_dirty(p);
396 		if (p->dirty == 0) {
397 			ib = 0;
398 			vm_page_xunbusy(p);
399 			break;
400 		}
401 		if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
402 			vm_page_xunbusy(p);
403 			ib = 0;
404 			break;
405 		}
406 		mc[--page_base] = pb = p;
407 		++pageout_count;
408 		++ib;
409 
410 		/*
411 		 * We are at an alignment boundary.  Stop here, and switch
412 		 * directions.  Do not clear ib.
413 		 */
414 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
415 			break;
416 	}
417 	while (pageout_count < vm_pageout_page_count &&
418 	    pindex + is < object->size) {
419 		if ((p = vm_page_next(ps)) == NULL ||
420 		    vm_page_tryxbusy(p) == 0)
421 			break;
422 		if (vm_page_wired(p)) {
423 			vm_page_xunbusy(p);
424 			break;
425 		}
426 		vm_page_test_dirty(p);
427 		if (p->dirty == 0) {
428 			vm_page_xunbusy(p);
429 			break;
430 		}
431 		if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
432 			vm_page_xunbusy(p);
433 			break;
434 		}
435 		mc[page_base + pageout_count] = ps = p;
436 		++pageout_count;
437 		++is;
438 	}
439 
440 	/*
441 	 * If we exhausted our forward scan, continue with the reverse scan
442 	 * when possible, even past an alignment boundary.  This catches
443 	 * boundary conditions.
444 	 */
445 	if (ib != 0 && pageout_count < vm_pageout_page_count)
446 		goto more;
447 
448 	return (vm_pageout_flush(&mc[page_base], pageout_count,
449 	    VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
450 }
451 
452 /*
453  * vm_pageout_flush() - launder the given pages
454  *
455  *	The given pages are laundered.  Note that we setup for the start of
456  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
457  *	reference count all in here rather then in the parent.  If we want
458  *	the parent to do more sophisticated things we may have to change
459  *	the ordering.
460  *
461  *	Returned runlen is the count of pages between mreq and first
462  *	page after mreq with status VM_PAGER_AGAIN.
463  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
464  *	for any page in runlen set.
465  */
466 int
467 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
468     boolean_t *eio)
469 {
470 	vm_object_t object = mc[0]->object;
471 	int pageout_status[count];
472 	int numpagedout = 0;
473 	int i, runlen;
474 
475 	VM_OBJECT_ASSERT_WLOCKED(object);
476 
477 	/*
478 	 * Initiate I/O.  Mark the pages shared busy and verify that they're
479 	 * valid and read-only.
480 	 *
481 	 * We do not have to fixup the clean/dirty bits here... we can
482 	 * allow the pager to do it after the I/O completes.
483 	 *
484 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
485 	 * edge case with file fragments.
486 	 */
487 	for (i = 0; i < count; i++) {
488 		KASSERT(vm_page_all_valid(mc[i]),
489 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
490 			mc[i], i, count));
491 		KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
492 		    ("vm_pageout_flush: writeable page %p", mc[i]));
493 		vm_page_busy_downgrade(mc[i]);
494 	}
495 	vm_object_pip_add(object, count);
496 
497 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
498 
499 	runlen = count - mreq;
500 	if (eio != NULL)
501 		*eio = FALSE;
502 	for (i = 0; i < count; i++) {
503 		vm_page_t mt = mc[i];
504 
505 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
506 		    !pmap_page_is_write_mapped(mt),
507 		    ("vm_pageout_flush: page %p is not write protected", mt));
508 		switch (pageout_status[i]) {
509 		case VM_PAGER_OK:
510 			/*
511 			 * The page may have moved since laundering started, in
512 			 * which case it should be left alone.
513 			 */
514 			if (vm_page_in_laundry(mt))
515 				vm_page_deactivate_noreuse(mt);
516 			/* FALLTHROUGH */
517 		case VM_PAGER_PEND:
518 			numpagedout++;
519 			break;
520 		case VM_PAGER_BAD:
521 			/*
522 			 * The page is outside the object's range.  We pretend
523 			 * that the page out worked and clean the page, so the
524 			 * changes will be lost if the page is reclaimed by
525 			 * the page daemon.
526 			 */
527 			vm_page_undirty(mt);
528 			if (vm_page_in_laundry(mt))
529 				vm_page_deactivate_noreuse(mt);
530 			break;
531 		case VM_PAGER_ERROR:
532 		case VM_PAGER_FAIL:
533 			/*
534 			 * If the page couldn't be paged out to swap because the
535 			 * pager wasn't able to find space, place the page in
536 			 * the PQ_UNSWAPPABLE holding queue.  This is an
537 			 * optimization that prevents the page daemon from
538 			 * wasting CPU cycles on pages that cannot be reclaimed
539 			 * because no swap device is configured.
540 			 *
541 			 * Otherwise, reactivate the page so that it doesn't
542 			 * clog the laundry and inactive queues.  (We will try
543 			 * paging it out again later.)
544 			 */
545 			if ((object->flags & OBJ_SWAP) != 0 &&
546 			    pageout_status[i] == VM_PAGER_FAIL) {
547 				vm_page_unswappable(mt);
548 				numpagedout++;
549 			} else
550 				vm_page_activate(mt);
551 			if (eio != NULL && i >= mreq && i - mreq < runlen)
552 				*eio = TRUE;
553 			break;
554 		case VM_PAGER_AGAIN:
555 			if (i >= mreq && i - mreq < runlen)
556 				runlen = i - mreq;
557 			break;
558 		}
559 
560 		/*
561 		 * If the operation is still going, leave the page busy to
562 		 * block all other accesses. Also, leave the paging in
563 		 * progress indicator set so that we don't attempt an object
564 		 * collapse.
565 		 */
566 		if (pageout_status[i] != VM_PAGER_PEND) {
567 			vm_object_pip_wakeup(object);
568 			vm_page_sunbusy(mt);
569 		}
570 	}
571 	if (prunlen != NULL)
572 		*prunlen = runlen;
573 	return (numpagedout);
574 }
575 
576 static void
577 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
578 {
579 
580 	atomic_store_rel_int(&swapdev_enabled, 1);
581 }
582 
583 static void
584 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
585 {
586 
587 	if (swap_pager_nswapdev() == 1)
588 		atomic_store_rel_int(&swapdev_enabled, 0);
589 }
590 
591 /*
592  * Attempt to acquire all of the necessary locks to launder a page and
593  * then call through the clustering layer to PUTPAGES.  Wait a short
594  * time for a vnode lock.
595  *
596  * Requires the page and object lock on entry, releases both before return.
597  * Returns 0 on success and an errno otherwise.
598  */
599 static int
600 vm_pageout_clean(vm_page_t m, int *numpagedout)
601 {
602 	struct vnode *vp;
603 	struct mount *mp;
604 	vm_object_t object;
605 	vm_pindex_t pindex;
606 	int error;
607 
608 	object = m->object;
609 	VM_OBJECT_ASSERT_WLOCKED(object);
610 	error = 0;
611 	vp = NULL;
612 	mp = NULL;
613 
614 	/*
615 	 * The object is already known NOT to be dead.   It
616 	 * is possible for the vget() to block the whole
617 	 * pageout daemon, but the new low-memory handling
618 	 * code should prevent it.
619 	 *
620 	 * We can't wait forever for the vnode lock, we might
621 	 * deadlock due to a vn_read() getting stuck in
622 	 * vm_wait while holding this vnode.  We skip the
623 	 * vnode if we can't get it in a reasonable amount
624 	 * of time.
625 	 */
626 	if (object->type == OBJT_VNODE) {
627 		vm_page_xunbusy(m);
628 		vp = object->handle;
629 		if (vp->v_type == VREG &&
630 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
631 			mp = NULL;
632 			error = EDEADLK;
633 			goto unlock_all;
634 		}
635 		KASSERT(mp != NULL,
636 		    ("vp %p with NULL v_mount", vp));
637 		vm_object_reference_locked(object);
638 		pindex = m->pindex;
639 		VM_OBJECT_WUNLOCK(object);
640 		if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) {
641 			vp = NULL;
642 			error = EDEADLK;
643 			goto unlock_mp;
644 		}
645 		VM_OBJECT_WLOCK(object);
646 
647 		/*
648 		 * Ensure that the object and vnode were not disassociated
649 		 * while locks were dropped.
650 		 */
651 		if (vp->v_object != object) {
652 			error = ENOENT;
653 			goto unlock_all;
654 		}
655 
656 		/*
657 		 * While the object was unlocked, the page may have been:
658 		 * (1) moved to a different queue,
659 		 * (2) reallocated to a different object,
660 		 * (3) reallocated to a different offset, or
661 		 * (4) cleaned.
662 		 */
663 		if (!vm_page_in_laundry(m) || m->object != object ||
664 		    m->pindex != pindex || m->dirty == 0) {
665 			error = ENXIO;
666 			goto unlock_all;
667 		}
668 
669 		/*
670 		 * The page may have been busied while the object lock was
671 		 * released.
672 		 */
673 		if (vm_page_tryxbusy(m) == 0) {
674 			error = EBUSY;
675 			goto unlock_all;
676 		}
677 	}
678 
679 	/*
680 	 * Remove all writeable mappings, failing if the page is wired.
681 	 */
682 	if (!vm_page_try_remove_write(m)) {
683 		vm_page_xunbusy(m);
684 		error = EBUSY;
685 		goto unlock_all;
686 	}
687 
688 	/*
689 	 * If a page is dirty, then it is either being washed
690 	 * (but not yet cleaned) or it is still in the
691 	 * laundry.  If it is still in the laundry, then we
692 	 * start the cleaning operation.
693 	 */
694 	if ((*numpagedout = vm_pageout_cluster(m)) == 0)
695 		error = EIO;
696 
697 unlock_all:
698 	VM_OBJECT_WUNLOCK(object);
699 
700 unlock_mp:
701 	if (mp != NULL) {
702 		if (vp != NULL)
703 			vput(vp);
704 		vm_object_deallocate(object);
705 		vn_finished_write(mp);
706 	}
707 
708 	return (error);
709 }
710 
711 /*
712  * Attempt to launder the specified number of pages.
713  *
714  * Returns the number of pages successfully laundered.
715  */
716 static int
717 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
718 {
719 	struct scan_state ss;
720 	struct vm_pagequeue *pq;
721 	vm_object_t object;
722 	vm_page_t m, marker;
723 	vm_page_astate_t new, old;
724 	int act_delta, error, numpagedout, queue, refs, starting_target;
725 	int vnodes_skipped;
726 	bool pageout_ok;
727 
728 	object = NULL;
729 	starting_target = launder;
730 	vnodes_skipped = 0;
731 
732 	/*
733 	 * Scan the laundry queues for pages eligible to be laundered.  We stop
734 	 * once the target number of dirty pages have been laundered, or once
735 	 * we've reached the end of the queue.  A single iteration of this loop
736 	 * may cause more than one page to be laundered because of clustering.
737 	 *
738 	 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
739 	 * swap devices are configured.
740 	 */
741 	if (atomic_load_acq_int(&swapdev_enabled))
742 		queue = PQ_UNSWAPPABLE;
743 	else
744 		queue = PQ_LAUNDRY;
745 
746 scan:
747 	marker = &vmd->vmd_markers[queue];
748 	pq = &vmd->vmd_pagequeues[queue];
749 	vm_pagequeue_lock(pq);
750 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
751 	while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
752 		if (__predict_false((m->flags & PG_MARKER) != 0))
753 			continue;
754 
755 		/*
756 		 * Don't touch a page that was removed from the queue after the
757 		 * page queue lock was released.  Otherwise, ensure that any
758 		 * pending queue operations, such as dequeues for wired pages,
759 		 * are handled.
760 		 */
761 		if (vm_pageout_defer(m, queue, true))
762 			continue;
763 
764 		/*
765 		 * Lock the page's object.
766 		 */
767 		if (object == NULL || object != m->object) {
768 			if (object != NULL)
769 				VM_OBJECT_WUNLOCK(object);
770 			object = atomic_load_ptr(&m->object);
771 			if (__predict_false(object == NULL))
772 				/* The page is being freed by another thread. */
773 				continue;
774 
775 			/* Depends on type-stability. */
776 			VM_OBJECT_WLOCK(object);
777 			if (__predict_false(m->object != object)) {
778 				VM_OBJECT_WUNLOCK(object);
779 				object = NULL;
780 				continue;
781 			}
782 		}
783 
784 		if (vm_page_tryxbusy(m) == 0)
785 			continue;
786 
787 		/*
788 		 * Check for wirings now that we hold the object lock and have
789 		 * exclusively busied the page.  If the page is mapped, it may
790 		 * still be wired by pmap lookups.  The call to
791 		 * vm_page_try_remove_all() below atomically checks for such
792 		 * wirings and removes mappings.  If the page is unmapped, the
793 		 * wire count is guaranteed not to increase after this check.
794 		 */
795 		if (__predict_false(vm_page_wired(m)))
796 			goto skip_page;
797 
798 		/*
799 		 * Invalid pages can be easily freed.  They cannot be
800 		 * mapped; vm_page_free() asserts this.
801 		 */
802 		if (vm_page_none_valid(m))
803 			goto free_page;
804 
805 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
806 
807 		for (old = vm_page_astate_load(m);;) {
808 			/*
809 			 * Check to see if the page has been removed from the
810 			 * queue since the first such check.  Leave it alone if
811 			 * so, discarding any references collected by
812 			 * pmap_ts_referenced().
813 			 */
814 			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
815 				goto skip_page;
816 
817 			new = old;
818 			act_delta = refs;
819 			if ((old.flags & PGA_REFERENCED) != 0) {
820 				new.flags &= ~PGA_REFERENCED;
821 				act_delta++;
822 			}
823 			if (act_delta == 0) {
824 				;
825 			} else if (object->ref_count != 0) {
826 				/*
827 				 * Increase the activation count if the page was
828 				 * referenced while in the laundry queue.  This
829 				 * makes it less likely that the page will be
830 				 * returned prematurely to the laundry queue.
831 				 */
832 				new.act_count += ACT_ADVANCE +
833 				    act_delta;
834 				if (new.act_count > ACT_MAX)
835 					new.act_count = ACT_MAX;
836 
837 				new.flags &= ~PGA_QUEUE_OP_MASK;
838 				new.flags |= PGA_REQUEUE;
839 				new.queue = PQ_ACTIVE;
840 				if (!vm_page_pqstate_commit(m, &old, new))
841 					continue;
842 
843 				/*
844 				 * If this was a background laundering, count
845 				 * activated pages towards our target.  The
846 				 * purpose of background laundering is to ensure
847 				 * that pages are eventually cycled through the
848 				 * laundry queue, and an activation is a valid
849 				 * way out.
850 				 */
851 				if (!in_shortfall)
852 					launder--;
853 				VM_CNT_INC(v_reactivated);
854 				goto skip_page;
855 			} else if ((object->flags & OBJ_DEAD) == 0) {
856 				new.flags |= PGA_REQUEUE;
857 				if (!vm_page_pqstate_commit(m, &old, new))
858 					continue;
859 				goto skip_page;
860 			}
861 			break;
862 		}
863 
864 		/*
865 		 * If the page appears to be clean at the machine-independent
866 		 * layer, then remove all of its mappings from the pmap in
867 		 * anticipation of freeing it.  If, however, any of the page's
868 		 * mappings allow write access, then the page may still be
869 		 * modified until the last of those mappings are removed.
870 		 */
871 		if (object->ref_count != 0) {
872 			vm_page_test_dirty(m);
873 			if (m->dirty == 0 && !vm_page_try_remove_all(m))
874 				goto skip_page;
875 		}
876 
877 		/*
878 		 * Clean pages are freed, and dirty pages are paged out unless
879 		 * they belong to a dead object.  Requeueing dirty pages from
880 		 * dead objects is pointless, as they are being paged out and
881 		 * freed by the thread that destroyed the object.
882 		 */
883 		if (m->dirty == 0) {
884 free_page:
885 			/*
886 			 * Now we are guaranteed that no other threads are
887 			 * manipulating the page, check for a last-second
888 			 * reference.
889 			 */
890 			if (vm_pageout_defer(m, queue, true))
891 				goto skip_page;
892 			vm_page_free(m);
893 			VM_CNT_INC(v_dfree);
894 		} else if ((object->flags & OBJ_DEAD) == 0) {
895 			if ((object->flags & OBJ_SWAP) != 0)
896 				pageout_ok = disable_swap_pageouts == 0;
897 			else
898 				pageout_ok = true;
899 			if (!pageout_ok) {
900 				vm_page_launder(m);
901 				goto skip_page;
902 			}
903 
904 			/*
905 			 * Form a cluster with adjacent, dirty pages from the
906 			 * same object, and page out that entire cluster.
907 			 *
908 			 * The adjacent, dirty pages must also be in the
909 			 * laundry.  However, their mappings are not checked
910 			 * for new references.  Consequently, a recently
911 			 * referenced page may be paged out.  However, that
912 			 * page will not be prematurely reclaimed.  After page
913 			 * out, the page will be placed in the inactive queue,
914 			 * where any new references will be detected and the
915 			 * page reactivated.
916 			 */
917 			error = vm_pageout_clean(m, &numpagedout);
918 			if (error == 0) {
919 				launder -= numpagedout;
920 				ss.scanned += numpagedout;
921 			} else if (error == EDEADLK) {
922 				pageout_lock_miss++;
923 				vnodes_skipped++;
924 			}
925 			object = NULL;
926 		} else {
927 skip_page:
928 			vm_page_xunbusy(m);
929 		}
930 	}
931 	if (object != NULL) {
932 		VM_OBJECT_WUNLOCK(object);
933 		object = NULL;
934 	}
935 	vm_pagequeue_lock(pq);
936 	vm_pageout_end_scan(&ss);
937 	vm_pagequeue_unlock(pq);
938 
939 	if (launder > 0 && queue == PQ_UNSWAPPABLE) {
940 		queue = PQ_LAUNDRY;
941 		goto scan;
942 	}
943 
944 	/*
945 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
946 	 * and we didn't launder enough pages.
947 	 */
948 	if (vnodes_skipped > 0 && launder > 0)
949 		(void)speedup_syncer();
950 
951 	return (starting_target - launder);
952 }
953 
954 /*
955  * Compute the integer square root.
956  */
957 static u_int
958 isqrt(u_int num)
959 {
960 	u_int bit, root, tmp;
961 
962 	bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
963 	root = 0;
964 	while (bit != 0) {
965 		tmp = root + bit;
966 		root >>= 1;
967 		if (num >= tmp) {
968 			num -= tmp;
969 			root += bit;
970 		}
971 		bit >>= 2;
972 	}
973 	return (root);
974 }
975 
976 /*
977  * Perform the work of the laundry thread: periodically wake up and determine
978  * whether any pages need to be laundered.  If so, determine the number of pages
979  * that need to be laundered, and launder them.
980  */
981 static void
982 vm_pageout_laundry_worker(void *arg)
983 {
984 	struct vm_domain *vmd;
985 	struct vm_pagequeue *pq;
986 	uint64_t nclean, ndirty, nfreed;
987 	int domain, last_target, launder, shortfall, shortfall_cycle, target;
988 	bool in_shortfall;
989 
990 	domain = (uintptr_t)arg;
991 	vmd = VM_DOMAIN(domain);
992 	pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
993 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
994 
995 	shortfall = 0;
996 	in_shortfall = false;
997 	shortfall_cycle = 0;
998 	last_target = target = 0;
999 	nfreed = 0;
1000 
1001 	/*
1002 	 * Calls to these handlers are serialized by the swap syscall lock.
1003 	 */
1004 	(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1005 	    EVENTHANDLER_PRI_ANY);
1006 	(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1007 	    EVENTHANDLER_PRI_ANY);
1008 
1009 	/*
1010 	 * The pageout laundry worker is never done, so loop forever.
1011 	 */
1012 	for (;;) {
1013 		KASSERT(target >= 0, ("negative target %d", target));
1014 		KASSERT(shortfall_cycle >= 0,
1015 		    ("negative cycle %d", shortfall_cycle));
1016 		launder = 0;
1017 
1018 		/*
1019 		 * First determine whether we need to launder pages to meet a
1020 		 * shortage of free pages.
1021 		 */
1022 		if (shortfall > 0) {
1023 			in_shortfall = true;
1024 			shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1025 			target = shortfall;
1026 		} else if (!in_shortfall)
1027 			goto trybackground;
1028 		else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1029 			/*
1030 			 * We recently entered shortfall and began laundering
1031 			 * pages.  If we have completed that laundering run
1032 			 * (and we are no longer in shortfall) or we have met
1033 			 * our laundry target through other activity, then we
1034 			 * can stop laundering pages.
1035 			 */
1036 			in_shortfall = false;
1037 			target = 0;
1038 			goto trybackground;
1039 		}
1040 		launder = target / shortfall_cycle--;
1041 		goto dolaundry;
1042 
1043 		/*
1044 		 * There's no immediate need to launder any pages; see if we
1045 		 * meet the conditions to perform background laundering:
1046 		 *
1047 		 * 1. The ratio of dirty to clean inactive pages exceeds the
1048 		 *    background laundering threshold, or
1049 		 * 2. we haven't yet reached the target of the current
1050 		 *    background laundering run.
1051 		 *
1052 		 * The background laundering threshold is not a constant.
1053 		 * Instead, it is a slowly growing function of the number of
1054 		 * clean pages freed by the page daemon since the last
1055 		 * background laundering.  Thus, as the ratio of dirty to
1056 		 * clean inactive pages grows, the amount of memory pressure
1057 		 * required to trigger laundering decreases.  We ensure
1058 		 * that the threshold is non-zero after an inactive queue
1059 		 * scan, even if that scan failed to free a single clean page.
1060 		 */
1061 trybackground:
1062 		nclean = vmd->vmd_free_count +
1063 		    vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1064 		ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1065 		if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1066 		    vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1067 			target = vmd->vmd_background_launder_target;
1068 		}
1069 
1070 		/*
1071 		 * We have a non-zero background laundering target.  If we've
1072 		 * laundered up to our maximum without observing a page daemon
1073 		 * request, just stop.  This is a safety belt that ensures we
1074 		 * don't launder an excessive amount if memory pressure is low
1075 		 * and the ratio of dirty to clean pages is large.  Otherwise,
1076 		 * proceed at the background laundering rate.
1077 		 */
1078 		if (target > 0) {
1079 			if (nfreed > 0) {
1080 				nfreed = 0;
1081 				last_target = target;
1082 			} else if (last_target - target >=
1083 			    vm_background_launder_max * PAGE_SIZE / 1024) {
1084 				target = 0;
1085 			}
1086 			launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1087 			launder /= VM_LAUNDER_RATE;
1088 			if (launder > target)
1089 				launder = target;
1090 		}
1091 
1092 dolaundry:
1093 		if (launder > 0) {
1094 			/*
1095 			 * Because of I/O clustering, the number of laundered
1096 			 * pages could exceed "target" by the maximum size of
1097 			 * a cluster minus one.
1098 			 */
1099 			target -= min(vm_pageout_launder(vmd, launder,
1100 			    in_shortfall), target);
1101 			pause("laundp", hz / VM_LAUNDER_RATE);
1102 		}
1103 
1104 		/*
1105 		 * If we're not currently laundering pages and the page daemon
1106 		 * hasn't posted a new request, sleep until the page daemon
1107 		 * kicks us.
1108 		 */
1109 		vm_pagequeue_lock(pq);
1110 		if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1111 			(void)mtx_sleep(&vmd->vmd_laundry_request,
1112 			    vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1113 
1114 		/*
1115 		 * If the pagedaemon has indicated that it's in shortfall, start
1116 		 * a shortfall laundering unless we're already in the middle of
1117 		 * one.  This may preempt a background laundering.
1118 		 */
1119 		if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1120 		    (!in_shortfall || shortfall_cycle == 0)) {
1121 			shortfall = vm_laundry_target(vmd) +
1122 			    vmd->vmd_pageout_deficit;
1123 			target = 0;
1124 		} else
1125 			shortfall = 0;
1126 
1127 		if (target == 0)
1128 			vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1129 		nfreed += vmd->vmd_clean_pages_freed;
1130 		vmd->vmd_clean_pages_freed = 0;
1131 		vm_pagequeue_unlock(pq);
1132 	}
1133 }
1134 
1135 /*
1136  * Compute the number of pages we want to try to move from the
1137  * active queue to either the inactive or laundry queue.
1138  *
1139  * When scanning active pages during a shortage, we make clean pages
1140  * count more heavily towards the page shortage than dirty pages.
1141  * This is because dirty pages must be laundered before they can be
1142  * reused and thus have less utility when attempting to quickly
1143  * alleviate a free page shortage.  However, this weighting also
1144  * causes the scan to deactivate dirty pages more aggressively,
1145  * improving the effectiveness of clustering.
1146  */
1147 static int
1148 vm_pageout_active_target(struct vm_domain *vmd)
1149 {
1150 	int shortage;
1151 
1152 	shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1153 	    (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1154 	    vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1155 	shortage *= act_scan_laundry_weight;
1156 	return (shortage);
1157 }
1158 
1159 /*
1160  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1161  * small portion of the queue in order to maintain quasi-LRU.
1162  */
1163 static void
1164 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1165 {
1166 	struct scan_state ss;
1167 	vm_object_t object;
1168 	vm_page_t m, marker;
1169 	struct vm_pagequeue *pq;
1170 	vm_page_astate_t old, new;
1171 	long min_scan;
1172 	int act_delta, max_scan, ps_delta, refs, scan_tick;
1173 	uint8_t nqueue;
1174 
1175 	marker = &vmd->vmd_markers[PQ_ACTIVE];
1176 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1177 	vm_pagequeue_lock(pq);
1178 
1179 	/*
1180 	 * If we're just idle polling attempt to visit every
1181 	 * active page within 'update_period' seconds.
1182 	 */
1183 	scan_tick = ticks;
1184 	if (vm_pageout_update_period != 0) {
1185 		min_scan = pq->pq_cnt;
1186 		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1187 		min_scan /= hz * vm_pageout_update_period;
1188 	} else
1189 		min_scan = 0;
1190 	if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1191 		vmd->vmd_last_active_scan = scan_tick;
1192 
1193 	/*
1194 	 * Scan the active queue for pages that can be deactivated.  Update
1195 	 * the per-page activity counter and use it to identify deactivation
1196 	 * candidates.  Held pages may be deactivated.
1197 	 *
1198 	 * To avoid requeuing each page that remains in the active queue, we
1199 	 * implement the CLOCK algorithm.  To keep the implementation of the
1200 	 * enqueue operation consistent for all page queues, we use two hands,
1201 	 * represented by marker pages. Scans begin at the first hand, which
1202 	 * precedes the second hand in the queue.  When the two hands meet,
1203 	 * they are moved back to the head and tail of the queue, respectively,
1204 	 * and scanning resumes.
1205 	 */
1206 	max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1207 act_scan:
1208 	vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1209 	while ((m = vm_pageout_next(&ss, false)) != NULL) {
1210 		if (__predict_false(m == &vmd->vmd_clock[1])) {
1211 			vm_pagequeue_lock(pq);
1212 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1213 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1214 			TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1215 			    plinks.q);
1216 			TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1217 			    plinks.q);
1218 			max_scan -= ss.scanned;
1219 			vm_pageout_end_scan(&ss);
1220 			goto act_scan;
1221 		}
1222 		if (__predict_false((m->flags & PG_MARKER) != 0))
1223 			continue;
1224 
1225 		/*
1226 		 * Don't touch a page that was removed from the queue after the
1227 		 * page queue lock was released.  Otherwise, ensure that any
1228 		 * pending queue operations, such as dequeues for wired pages,
1229 		 * are handled.
1230 		 */
1231 		if (vm_pageout_defer(m, PQ_ACTIVE, true))
1232 			continue;
1233 
1234 		/*
1235 		 * A page's object pointer may be set to NULL before
1236 		 * the object lock is acquired.
1237 		 */
1238 		object = atomic_load_ptr(&m->object);
1239 		if (__predict_false(object == NULL))
1240 			/*
1241 			 * The page has been removed from its object.
1242 			 */
1243 			continue;
1244 
1245 		/* Deferred free of swap space. */
1246 		if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1247 		    VM_OBJECT_TRYWLOCK(object)) {
1248 			if (m->object == object)
1249 				vm_pager_page_unswapped(m);
1250 			VM_OBJECT_WUNLOCK(object);
1251 		}
1252 
1253 		/*
1254 		 * Check to see "how much" the page has been used.
1255 		 *
1256 		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1257 		 * that a reference from a concurrently destroyed mapping is
1258 		 * observed here and now.
1259 		 *
1260 		 * Perform an unsynchronized object ref count check.  While
1261 		 * the page lock ensures that the page is not reallocated to
1262 		 * another object, in particular, one with unmanaged mappings
1263 		 * that cannot support pmap_ts_referenced(), two races are,
1264 		 * nonetheless, possible:
1265 		 * 1) The count was transitioning to zero, but we saw a non-
1266 		 *    zero value.  pmap_ts_referenced() will return zero
1267 		 *    because the page is not mapped.
1268 		 * 2) The count was transitioning to one, but we saw zero.
1269 		 *    This race delays the detection of a new reference.  At
1270 		 *    worst, we will deactivate and reactivate the page.
1271 		 */
1272 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1273 
1274 		old = vm_page_astate_load(m);
1275 		do {
1276 			/*
1277 			 * Check to see if the page has been removed from the
1278 			 * queue since the first such check.  Leave it alone if
1279 			 * so, discarding any references collected by
1280 			 * pmap_ts_referenced().
1281 			 */
1282 			if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
1283 				ps_delta = 0;
1284 				break;
1285 			}
1286 
1287 			/*
1288 			 * Advance or decay the act_count based on recent usage.
1289 			 */
1290 			new = old;
1291 			act_delta = refs;
1292 			if ((old.flags & PGA_REFERENCED) != 0) {
1293 				new.flags &= ~PGA_REFERENCED;
1294 				act_delta++;
1295 			}
1296 			if (act_delta != 0) {
1297 				new.act_count += ACT_ADVANCE + act_delta;
1298 				if (new.act_count > ACT_MAX)
1299 					new.act_count = ACT_MAX;
1300 			} else {
1301 				new.act_count -= min(new.act_count,
1302 				    ACT_DECLINE);
1303 			}
1304 
1305 			if (new.act_count > 0) {
1306 				/*
1307 				 * Adjust the activation count and keep the page
1308 				 * in the active queue.  The count might be left
1309 				 * unchanged if it is saturated.  The page may
1310 				 * have been moved to a different queue since we
1311 				 * started the scan, in which case we move it
1312 				 * back.
1313 				 */
1314 				ps_delta = 0;
1315 				if (old.queue != PQ_ACTIVE) {
1316 					new.flags &= ~PGA_QUEUE_OP_MASK;
1317 					new.flags |= PGA_REQUEUE;
1318 					new.queue = PQ_ACTIVE;
1319 				}
1320 			} else {
1321 				/*
1322 				 * When not short for inactive pages, let dirty
1323 				 * pages go through the inactive queue before
1324 				 * moving to the laundry queue.  This gives them
1325 				 * some extra time to be reactivated,
1326 				 * potentially avoiding an expensive pageout.
1327 				 * However, during a page shortage, the inactive
1328 				 * queue is necessarily small, and so dirty
1329 				 * pages would only spend a trivial amount of
1330 				 * time in the inactive queue.  Therefore, we
1331 				 * might as well place them directly in the
1332 				 * laundry queue to reduce queuing overhead.
1333 				 *
1334 				 * Calling vm_page_test_dirty() here would
1335 				 * require acquisition of the object's write
1336 				 * lock.  However, during a page shortage,
1337 				 * directing dirty pages into the laundry queue
1338 				 * is only an optimization and not a
1339 				 * requirement.  Therefore, we simply rely on
1340 				 * the opportunistic updates to the page's dirty
1341 				 * field by the pmap.
1342 				 */
1343 				if (page_shortage <= 0) {
1344 					nqueue = PQ_INACTIVE;
1345 					ps_delta = 0;
1346 				} else if (m->dirty == 0) {
1347 					nqueue = PQ_INACTIVE;
1348 					ps_delta = act_scan_laundry_weight;
1349 				} else {
1350 					nqueue = PQ_LAUNDRY;
1351 					ps_delta = 1;
1352 				}
1353 
1354 				new.flags &= ~PGA_QUEUE_OP_MASK;
1355 				new.flags |= PGA_REQUEUE;
1356 				new.queue = nqueue;
1357 			}
1358 		} while (!vm_page_pqstate_commit(m, &old, new));
1359 
1360 		page_shortage -= ps_delta;
1361 	}
1362 	vm_pagequeue_lock(pq);
1363 	TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1364 	TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1365 	vm_pageout_end_scan(&ss);
1366 	vm_pagequeue_unlock(pq);
1367 }
1368 
1369 static int
1370 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1371     vm_page_t m)
1372 {
1373 	vm_page_astate_t as;
1374 
1375 	vm_pagequeue_assert_locked(pq);
1376 
1377 	as = vm_page_astate_load(m);
1378 	if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1379 		return (0);
1380 	vm_page_aflag_set(m, PGA_ENQUEUED);
1381 	TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1382 	return (1);
1383 }
1384 
1385 /*
1386  * Re-add stuck pages to the inactive queue.  We will examine them again
1387  * during the next scan.  If the queue state of a page has changed since
1388  * it was physically removed from the page queue in
1389  * vm_pageout_collect_batch(), don't do anything with that page.
1390  */
1391 static void
1392 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1393     vm_page_t m)
1394 {
1395 	struct vm_pagequeue *pq;
1396 	vm_page_t marker;
1397 	int delta;
1398 
1399 	delta = 0;
1400 	marker = ss->marker;
1401 	pq = ss->pq;
1402 
1403 	if (m != NULL) {
1404 		if (vm_batchqueue_insert(bq, m) != 0)
1405 			return;
1406 		vm_pagequeue_lock(pq);
1407 		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1408 	} else
1409 		vm_pagequeue_lock(pq);
1410 	while ((m = vm_batchqueue_pop(bq)) != NULL)
1411 		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1412 	vm_pagequeue_cnt_add(pq, delta);
1413 	vm_pagequeue_unlock(pq);
1414 	vm_batchqueue_init(bq);
1415 }
1416 
1417 static void
1418 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1419 {
1420 	struct timeval start, end;
1421 	struct scan_state ss;
1422 	struct vm_batchqueue rq;
1423 	struct vm_page marker_page;
1424 	vm_page_t m, marker;
1425 	struct vm_pagequeue *pq;
1426 	vm_object_t object;
1427 	vm_page_astate_t old, new;
1428 	int act_delta, addl_page_shortage, starting_page_shortage, refs;
1429 
1430 	object = NULL;
1431 	vm_batchqueue_init(&rq);
1432 	getmicrouptime(&start);
1433 
1434 	/*
1435 	 * The addl_page_shortage is an estimate of the number of temporarily
1436 	 * stuck pages in the inactive queue.  In other words, the
1437 	 * number of pages from the inactive count that should be
1438 	 * discounted in setting the target for the active queue scan.
1439 	 */
1440 	addl_page_shortage = 0;
1441 
1442 	/*
1443 	 * Start scanning the inactive queue for pages that we can free.  The
1444 	 * scan will stop when we reach the target or we have scanned the
1445 	 * entire queue.  (Note that m->a.act_count is not used to make
1446 	 * decisions for the inactive queue, only for the active queue.)
1447 	 */
1448 	starting_page_shortage = page_shortage;
1449 	marker = &marker_page;
1450 	vm_page_init_marker(marker, PQ_INACTIVE, 0);
1451 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1452 	vm_pagequeue_lock(pq);
1453 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1454 	while (page_shortage > 0) {
1455 		/*
1456 		 * If we need to refill the scan batch queue, release any
1457 		 * optimistically held object lock.  This gives someone else a
1458 		 * chance to grab the lock, and also avoids holding it while we
1459 		 * do unrelated work.
1460 		 */
1461 		if (object != NULL && vm_batchqueue_empty(&ss.bq)) {
1462 			VM_OBJECT_WUNLOCK(object);
1463 			object = NULL;
1464 		}
1465 
1466 		m = vm_pageout_next(&ss, true);
1467 		if (m == NULL)
1468 			break;
1469 		KASSERT((m->flags & PG_MARKER) == 0,
1470 		    ("marker page %p was dequeued", m));
1471 
1472 		/*
1473 		 * Don't touch a page that was removed from the queue after the
1474 		 * page queue lock was released.  Otherwise, ensure that any
1475 		 * pending queue operations, such as dequeues for wired pages,
1476 		 * are handled.
1477 		 */
1478 		if (vm_pageout_defer(m, PQ_INACTIVE, false))
1479 			continue;
1480 
1481 		/*
1482 		 * Lock the page's object.
1483 		 */
1484 		if (object == NULL || object != m->object) {
1485 			if (object != NULL)
1486 				VM_OBJECT_WUNLOCK(object);
1487 			object = atomic_load_ptr(&m->object);
1488 			if (__predict_false(object == NULL))
1489 				/* The page is being freed by another thread. */
1490 				continue;
1491 
1492 			/* Depends on type-stability. */
1493 			VM_OBJECT_WLOCK(object);
1494 			if (__predict_false(m->object != object)) {
1495 				VM_OBJECT_WUNLOCK(object);
1496 				object = NULL;
1497 				goto reinsert;
1498 			}
1499 		}
1500 
1501 		if (vm_page_tryxbusy(m) == 0) {
1502 			/*
1503 			 * Don't mess with busy pages.  Leave them at
1504 			 * the front of the queue.  Most likely, they
1505 			 * are being paged out and will leave the
1506 			 * queue shortly after the scan finishes.  So,
1507 			 * they ought to be discounted from the
1508 			 * inactive count.
1509 			 */
1510 			addl_page_shortage++;
1511 			goto reinsert;
1512 		}
1513 
1514 		/* Deferred free of swap space. */
1515 		if ((m->a.flags & PGA_SWAP_FREE) != 0)
1516 			vm_pager_page_unswapped(m);
1517 
1518 		/*
1519 		 * Check for wirings now that we hold the object lock and have
1520 		 * exclusively busied the page.  If the page is mapped, it may
1521 		 * still be wired by pmap lookups.  The call to
1522 		 * vm_page_try_remove_all() below atomically checks for such
1523 		 * wirings and removes mappings.  If the page is unmapped, the
1524 		 * wire count is guaranteed not to increase after this check.
1525 		 */
1526 		if (__predict_false(vm_page_wired(m)))
1527 			goto skip_page;
1528 
1529 		/*
1530 		 * Invalid pages can be easily freed. They cannot be
1531 		 * mapped, vm_page_free() asserts this.
1532 		 */
1533 		if (vm_page_none_valid(m))
1534 			goto free_page;
1535 
1536 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1537 
1538 		for (old = vm_page_astate_load(m);;) {
1539 			/*
1540 			 * Check to see if the page has been removed from the
1541 			 * queue since the first such check.  Leave it alone if
1542 			 * so, discarding any references collected by
1543 			 * pmap_ts_referenced().
1544 			 */
1545 			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1546 				goto skip_page;
1547 
1548 			new = old;
1549 			act_delta = refs;
1550 			if ((old.flags & PGA_REFERENCED) != 0) {
1551 				new.flags &= ~PGA_REFERENCED;
1552 				act_delta++;
1553 			}
1554 			if (act_delta == 0) {
1555 				;
1556 			} else if (object->ref_count != 0) {
1557 				/*
1558 				 * Increase the activation count if the
1559 				 * page was referenced while in the
1560 				 * inactive queue.  This makes it less
1561 				 * likely that the page will be returned
1562 				 * prematurely to the inactive queue.
1563 				 */
1564 				new.act_count += ACT_ADVANCE +
1565 				    act_delta;
1566 				if (new.act_count > ACT_MAX)
1567 					new.act_count = ACT_MAX;
1568 
1569 				new.flags &= ~PGA_QUEUE_OP_MASK;
1570 				new.flags |= PGA_REQUEUE;
1571 				new.queue = PQ_ACTIVE;
1572 				if (!vm_page_pqstate_commit(m, &old, new))
1573 					continue;
1574 
1575 				VM_CNT_INC(v_reactivated);
1576 				goto skip_page;
1577 			} else if ((object->flags & OBJ_DEAD) == 0) {
1578 				new.queue = PQ_INACTIVE;
1579 				new.flags |= PGA_REQUEUE;
1580 				if (!vm_page_pqstate_commit(m, &old, new))
1581 					continue;
1582 				goto skip_page;
1583 			}
1584 			break;
1585 		}
1586 
1587 		/*
1588 		 * If the page appears to be clean at the machine-independent
1589 		 * layer, then remove all of its mappings from the pmap in
1590 		 * anticipation of freeing it.  If, however, any of the page's
1591 		 * mappings allow write access, then the page may still be
1592 		 * modified until the last of those mappings are removed.
1593 		 */
1594 		if (object->ref_count != 0) {
1595 			vm_page_test_dirty(m);
1596 			if (m->dirty == 0 && !vm_page_try_remove_all(m))
1597 				goto skip_page;
1598 		}
1599 
1600 		/*
1601 		 * Clean pages can be freed, but dirty pages must be sent back
1602 		 * to the laundry, unless they belong to a dead object.
1603 		 * Requeueing dirty pages from dead objects is pointless, as
1604 		 * they are being paged out and freed by the thread that
1605 		 * destroyed the object.
1606 		 */
1607 		if (m->dirty == 0) {
1608 free_page:
1609 			/*
1610 			 * Now we are guaranteed that no other threads are
1611 			 * manipulating the page, check for a last-second
1612 			 * reference that would save it from doom.
1613 			 */
1614 			if (vm_pageout_defer(m, PQ_INACTIVE, false))
1615 				goto skip_page;
1616 
1617 			/*
1618 			 * Because we dequeued the page and have already checked
1619 			 * for pending dequeue and enqueue requests, we can
1620 			 * safely disassociate the page from the inactive queue
1621 			 * without holding the queue lock.
1622 			 */
1623 			m->a.queue = PQ_NONE;
1624 			vm_page_free(m);
1625 			page_shortage--;
1626 			continue;
1627 		}
1628 		if ((object->flags & OBJ_DEAD) == 0)
1629 			vm_page_launder(m);
1630 skip_page:
1631 		vm_page_xunbusy(m);
1632 		continue;
1633 reinsert:
1634 		vm_pageout_reinsert_inactive(&ss, &rq, m);
1635 	}
1636 	if (object != NULL)
1637 		VM_OBJECT_WUNLOCK(object);
1638 	vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1639 	vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1640 	vm_pagequeue_lock(pq);
1641 	vm_pageout_end_scan(&ss);
1642 	vm_pagequeue_unlock(pq);
1643 
1644 	/*
1645 	 * Record the remaining shortage and the progress and rate it was made.
1646 	 */
1647 	atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1648 	getmicrouptime(&end);
1649 	timevalsub(&end, &start);
1650 	atomic_add_int(&vmd->vmd_inactive_us,
1651 	    end.tv_sec * 1000000 + end.tv_usec);
1652 	atomic_add_int(&vmd->vmd_inactive_freed,
1653 	    starting_page_shortage - page_shortage);
1654 }
1655 
1656 /*
1657  * Dispatch a number of inactive threads according to load and collect the
1658  * results to present a coherent view of paging activity on this domain.
1659  */
1660 static int
1661 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1662 {
1663 	u_int freed, pps, slop, threads, us;
1664 
1665 	vmd->vmd_inactive_shortage = shortage;
1666 	slop = 0;
1667 
1668 	/*
1669 	 * If we have more work than we can do in a quarter of our interval, we
1670 	 * fire off multiple threads to process it.
1671 	 */
1672 	threads = vmd->vmd_inactive_threads;
1673 	if (threads > 1 && vmd->vmd_inactive_pps != 0 &&
1674 	    shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1675 		vmd->vmd_inactive_shortage /= threads;
1676 		slop = shortage % threads;
1677 		vm_domain_pageout_lock(vmd);
1678 		blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1679 		blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1680 		wakeup(&vmd->vmd_inactive_shortage);
1681 		vm_domain_pageout_unlock(vmd);
1682 	}
1683 
1684 	/* Run the local thread scan. */
1685 	vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
1686 
1687 	/*
1688 	 * Block until helper threads report results and then accumulate
1689 	 * totals.
1690 	 */
1691 	blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1692 	freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1693 	VM_CNT_ADD(v_dfree, freed);
1694 
1695 	/*
1696 	 * Calculate the per-thread paging rate with an exponential decay of
1697 	 * prior results.  Careful to avoid integer rounding errors with large
1698 	 * us values.
1699 	 */
1700 	us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1701 	if (us > 1000000)
1702 		/* Keep rounding to tenths */
1703 		pps = (freed * 10) / ((us * 10) / 1000000);
1704 	else
1705 		pps = (1000000 / us) * freed;
1706 	vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1707 
1708 	return (shortage - freed);
1709 }
1710 
1711 /*
1712  * Attempt to reclaim the requested number of pages from the inactive queue.
1713  * Returns true if the shortage was addressed.
1714  */
1715 static int
1716 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1717 {
1718 	struct vm_pagequeue *pq;
1719 	u_int addl_page_shortage, deficit, page_shortage;
1720 	u_int starting_page_shortage;
1721 
1722 	/*
1723 	 * vmd_pageout_deficit counts the number of pages requested in
1724 	 * allocations that failed because of a free page shortage.  We assume
1725 	 * that the allocations will be reattempted and thus include the deficit
1726 	 * in our scan target.
1727 	 */
1728 	deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1729 	starting_page_shortage = shortage + deficit;
1730 
1731 	/*
1732 	 * Run the inactive scan on as many threads as is necessary.
1733 	 */
1734 	page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1735 	addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1736 
1737 	/*
1738 	 * Wake up the laundry thread so that it can perform any needed
1739 	 * laundering.  If we didn't meet our target, we're in shortfall and
1740 	 * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1741 	 * swap devices are configured, the laundry thread has no work to do, so
1742 	 * don't bother waking it up.
1743 	 *
1744 	 * The laundry thread uses the number of inactive queue scans elapsed
1745 	 * since the last laundering to determine whether to launder again, so
1746 	 * keep count.
1747 	 */
1748 	if (starting_page_shortage > 0) {
1749 		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1750 		vm_pagequeue_lock(pq);
1751 		if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1752 		    (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1753 			if (page_shortage > 0) {
1754 				vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1755 				VM_CNT_INC(v_pdshortfalls);
1756 			} else if (vmd->vmd_laundry_request !=
1757 			    VM_LAUNDRY_SHORTFALL)
1758 				vmd->vmd_laundry_request =
1759 				    VM_LAUNDRY_BACKGROUND;
1760 			wakeup(&vmd->vmd_laundry_request);
1761 		}
1762 		vmd->vmd_clean_pages_freed +=
1763 		    starting_page_shortage - page_shortage;
1764 		vm_pagequeue_unlock(pq);
1765 	}
1766 
1767 	/*
1768 	 * If the inactive queue scan fails repeatedly to meet its
1769 	 * target, kill the largest process.
1770 	 */
1771 	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1772 
1773 	/*
1774 	 * See the description of addl_page_shortage above.
1775 	 */
1776 	*addl_shortage = addl_page_shortage + deficit;
1777 
1778 	return (page_shortage <= 0);
1779 }
1780 
1781 static int vm_pageout_oom_vote;
1782 
1783 /*
1784  * The pagedaemon threads randlomly select one to perform the
1785  * OOM.  Trying to kill processes before all pagedaemons
1786  * failed to reach free target is premature.
1787  */
1788 static void
1789 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1790     int starting_page_shortage)
1791 {
1792 	int old_vote;
1793 
1794 	if (starting_page_shortage <= 0 || starting_page_shortage !=
1795 	    page_shortage)
1796 		vmd->vmd_oom_seq = 0;
1797 	else
1798 		vmd->vmd_oom_seq++;
1799 	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1800 		if (vmd->vmd_oom) {
1801 			vmd->vmd_oom = FALSE;
1802 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1803 		}
1804 		return;
1805 	}
1806 
1807 	/*
1808 	 * Do not follow the call sequence until OOM condition is
1809 	 * cleared.
1810 	 */
1811 	vmd->vmd_oom_seq = 0;
1812 
1813 	if (vmd->vmd_oom)
1814 		return;
1815 
1816 	vmd->vmd_oom = TRUE;
1817 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1818 	if (old_vote != vm_ndomains - 1)
1819 		return;
1820 
1821 	/*
1822 	 * The current pagedaemon thread is the last in the quorum to
1823 	 * start OOM.  Initiate the selection and signaling of the
1824 	 * victim.
1825 	 */
1826 	vm_pageout_oom(VM_OOM_MEM);
1827 
1828 	/*
1829 	 * After one round of OOM terror, recall our vote.  On the
1830 	 * next pass, current pagedaemon would vote again if the low
1831 	 * memory condition is still there, due to vmd_oom being
1832 	 * false.
1833 	 */
1834 	vmd->vmd_oom = FALSE;
1835 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1836 }
1837 
1838 /*
1839  * The OOM killer is the page daemon's action of last resort when
1840  * memory allocation requests have been stalled for a prolonged period
1841  * of time because it cannot reclaim memory.  This function computes
1842  * the approximate number of physical pages that could be reclaimed if
1843  * the specified address space is destroyed.
1844  *
1845  * Private, anonymous memory owned by the address space is the
1846  * principal resource that we expect to recover after an OOM kill.
1847  * Since the physical pages mapped by the address space's COW entries
1848  * are typically shared pages, they are unlikely to be released and so
1849  * they are not counted.
1850  *
1851  * To get to the point where the page daemon runs the OOM killer, its
1852  * efforts to write-back vnode-backed pages may have stalled.  This
1853  * could be caused by a memory allocation deadlock in the write path
1854  * that might be resolved by an OOM kill.  Therefore, physical pages
1855  * belonging to vnode-backed objects are counted, because they might
1856  * be freed without being written out first if the address space holds
1857  * the last reference to an unlinked vnode.
1858  *
1859  * Similarly, physical pages belonging to OBJT_PHYS objects are
1860  * counted because the address space might hold the last reference to
1861  * the object.
1862  */
1863 static long
1864 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1865 {
1866 	vm_map_t map;
1867 	vm_map_entry_t entry;
1868 	vm_object_t obj;
1869 	long res;
1870 
1871 	map = &vmspace->vm_map;
1872 	KASSERT(!map->system_map, ("system map"));
1873 	sx_assert(&map->lock, SA_LOCKED);
1874 	res = 0;
1875 	VM_MAP_ENTRY_FOREACH(entry, map) {
1876 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1877 			continue;
1878 		obj = entry->object.vm_object;
1879 		if (obj == NULL)
1880 			continue;
1881 		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1882 		    obj->ref_count != 1)
1883 			continue;
1884 		if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE ||
1885 		    (obj->flags & OBJ_SWAP) != 0)
1886 			res += obj->resident_page_count;
1887 	}
1888 	return (res);
1889 }
1890 
1891 static int vm_oom_ratelim_last;
1892 static int vm_oom_pf_secs = 10;
1893 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1894     "");
1895 static struct mtx vm_oom_ratelim_mtx;
1896 
1897 void
1898 vm_pageout_oom(int shortage)
1899 {
1900 	const char *reason;
1901 	struct proc *p, *bigproc;
1902 	vm_offset_t size, bigsize;
1903 	struct thread *td;
1904 	struct vmspace *vm;
1905 	int now;
1906 	bool breakout;
1907 
1908 	/*
1909 	 * For OOM requests originating from vm_fault(), there is a high
1910 	 * chance that a single large process faults simultaneously in
1911 	 * several threads.  Also, on an active system running many
1912 	 * processes of middle-size, like buildworld, all of them
1913 	 * could fault almost simultaneously as well.
1914 	 *
1915 	 * To avoid killing too many processes, rate-limit OOMs
1916 	 * initiated by vm_fault() time-outs on the waits for free
1917 	 * pages.
1918 	 */
1919 	mtx_lock(&vm_oom_ratelim_mtx);
1920 	now = ticks;
1921 	if (shortage == VM_OOM_MEM_PF &&
1922 	    (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1923 		mtx_unlock(&vm_oom_ratelim_mtx);
1924 		return;
1925 	}
1926 	vm_oom_ratelim_last = now;
1927 	mtx_unlock(&vm_oom_ratelim_mtx);
1928 
1929 	/*
1930 	 * We keep the process bigproc locked once we find it to keep anyone
1931 	 * from messing with it; however, there is a possibility of
1932 	 * deadlock if process B is bigproc and one of its child processes
1933 	 * attempts to propagate a signal to B while we are waiting for A's
1934 	 * lock while walking this list.  To avoid this, we don't block on
1935 	 * the process lock but just skip a process if it is already locked.
1936 	 */
1937 	bigproc = NULL;
1938 	bigsize = 0;
1939 	sx_slock(&allproc_lock);
1940 	FOREACH_PROC_IN_SYSTEM(p) {
1941 		PROC_LOCK(p);
1942 
1943 		/*
1944 		 * If this is a system, protected or killed process, skip it.
1945 		 */
1946 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1947 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1948 		    p->p_pid == 1 || P_KILLED(p) ||
1949 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1950 			PROC_UNLOCK(p);
1951 			continue;
1952 		}
1953 		/*
1954 		 * If the process is in a non-running type state,
1955 		 * don't touch it.  Check all the threads individually.
1956 		 */
1957 		breakout = false;
1958 		FOREACH_THREAD_IN_PROC(p, td) {
1959 			thread_lock(td);
1960 			if (!TD_ON_RUNQ(td) &&
1961 			    !TD_IS_RUNNING(td) &&
1962 			    !TD_IS_SLEEPING(td) &&
1963 			    !TD_IS_SUSPENDED(td)) {
1964 				thread_unlock(td);
1965 				breakout = true;
1966 				break;
1967 			}
1968 			thread_unlock(td);
1969 		}
1970 		if (breakout) {
1971 			PROC_UNLOCK(p);
1972 			continue;
1973 		}
1974 		/*
1975 		 * get the process size
1976 		 */
1977 		vm = vmspace_acquire_ref(p);
1978 		if (vm == NULL) {
1979 			PROC_UNLOCK(p);
1980 			continue;
1981 		}
1982 		_PHOLD(p);
1983 		PROC_UNLOCK(p);
1984 		sx_sunlock(&allproc_lock);
1985 		if (!vm_map_trylock_read(&vm->vm_map)) {
1986 			vmspace_free(vm);
1987 			sx_slock(&allproc_lock);
1988 			PRELE(p);
1989 			continue;
1990 		}
1991 		size = vmspace_swap_count(vm);
1992 		if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1993 			size += vm_pageout_oom_pagecount(vm);
1994 		vm_map_unlock_read(&vm->vm_map);
1995 		vmspace_free(vm);
1996 		sx_slock(&allproc_lock);
1997 
1998 		/*
1999 		 * If this process is bigger than the biggest one,
2000 		 * remember it.
2001 		 */
2002 		if (size > bigsize) {
2003 			if (bigproc != NULL)
2004 				PRELE(bigproc);
2005 			bigproc = p;
2006 			bigsize = size;
2007 		} else {
2008 			PRELE(p);
2009 		}
2010 	}
2011 	sx_sunlock(&allproc_lock);
2012 
2013 	if (bigproc != NULL) {
2014 		switch (shortage) {
2015 		case VM_OOM_MEM:
2016 			reason = "failed to reclaim memory";
2017 			break;
2018 		case VM_OOM_MEM_PF:
2019 			reason = "a thread waited too long to allocate a page";
2020 			break;
2021 		case VM_OOM_SWAPZ:
2022 			reason = "out of swap space";
2023 			break;
2024 		default:
2025 			panic("unknown OOM reason %d", shortage);
2026 		}
2027 		if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2028 			panic("%s", reason);
2029 		PROC_LOCK(bigproc);
2030 		killproc(bigproc, reason);
2031 		sched_nice(bigproc, PRIO_MIN);
2032 		_PRELE(bigproc);
2033 		PROC_UNLOCK(bigproc);
2034 	}
2035 }
2036 
2037 /*
2038  * Signal a free page shortage to subsystems that have registered an event
2039  * handler.  Reclaim memory from UMA in the event of a severe shortage.
2040  * Return true if the free page count should be re-evaluated.
2041  */
2042 static bool
2043 vm_pageout_lowmem(void)
2044 {
2045 	static int lowmem_ticks = 0;
2046 	int last;
2047 	bool ret;
2048 
2049 	ret = false;
2050 
2051 	last = atomic_load_int(&lowmem_ticks);
2052 	while ((u_int)(ticks - last) / hz >= lowmem_period) {
2053 		if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2054 			continue;
2055 
2056 		/*
2057 		 * Decrease registered cache sizes.
2058 		 */
2059 		SDT_PROBE0(vm, , , vm__lowmem_scan);
2060 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2061 
2062 		/*
2063 		 * We do this explicitly after the caches have been
2064 		 * drained above.
2065 		 */
2066 		uma_reclaim(UMA_RECLAIM_TRIM);
2067 		ret = true;
2068 		break;
2069 	}
2070 
2071 	/*
2072 	 * Kick off an asynchronous reclaim of cached memory if one of the
2073 	 * page daemons is failing to keep up with demand.  Use the "severe"
2074 	 * threshold instead of "min" to ensure that we do not blow away the
2075 	 * caches if a subset of the NUMA domains are depleted by kernel memory
2076 	 * allocations; the domainset iterators automatically skip domains
2077 	 * below the "min" threshold on the first pass.
2078 	 *
2079 	 * UMA reclaim worker has its own rate-limiting mechanism, so don't
2080 	 * worry about kicking it too often.
2081 	 */
2082 	if (vm_page_count_severe())
2083 		uma_reclaim_wakeup();
2084 
2085 	return (ret);
2086 }
2087 
2088 static void
2089 vm_pageout_worker(void *arg)
2090 {
2091 	struct vm_domain *vmd;
2092 	u_int ofree;
2093 	int addl_shortage, domain, shortage;
2094 	bool target_met;
2095 
2096 	domain = (uintptr_t)arg;
2097 	vmd = VM_DOMAIN(domain);
2098 	shortage = 0;
2099 	target_met = true;
2100 
2101 	/*
2102 	 * XXXKIB It could be useful to bind pageout daemon threads to
2103 	 * the cores belonging to the domain, from which vm_page_array
2104 	 * is allocated.
2105 	 */
2106 
2107 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2108 	vmd->vmd_last_active_scan = ticks;
2109 
2110 	/*
2111 	 * The pageout daemon worker is never done, so loop forever.
2112 	 */
2113 	while (TRUE) {
2114 		vm_domain_pageout_lock(vmd);
2115 
2116 		/*
2117 		 * We need to clear wanted before we check the limits.  This
2118 		 * prevents races with wakers who will check wanted after they
2119 		 * reach the limit.
2120 		 */
2121 		atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2122 
2123 		/*
2124 		 * Might the page daemon need to run again?
2125 		 */
2126 		if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2127 			/*
2128 			 * Yes.  If the scan failed to produce enough free
2129 			 * pages, sleep uninterruptibly for some time in the
2130 			 * hope that the laundry thread will clean some pages.
2131 			 */
2132 			vm_domain_pageout_unlock(vmd);
2133 			if (!target_met)
2134 				pause("pwait", hz / VM_INACT_SCAN_RATE);
2135 		} else {
2136 			/*
2137 			 * No, sleep until the next wakeup or until pages
2138 			 * need to have their reference stats updated.
2139 			 */
2140 			if (mtx_sleep(&vmd->vmd_pageout_wanted,
2141 			    vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2142 			    "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2143 				VM_CNT_INC(v_pdwakeups);
2144 		}
2145 
2146 		/* Prevent spurious wakeups by ensuring that wanted is set. */
2147 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2148 
2149 		/*
2150 		 * Use the controller to calculate how many pages to free in
2151 		 * this interval, and scan the inactive queue.  If the lowmem
2152 		 * handlers appear to have freed up some pages, subtract the
2153 		 * difference from the inactive queue scan target.
2154 		 */
2155 		shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2156 		if (shortage > 0) {
2157 			ofree = vmd->vmd_free_count;
2158 			if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2159 				shortage -= min(vmd->vmd_free_count - ofree,
2160 				    (u_int)shortage);
2161 			target_met = vm_pageout_inactive(vmd, shortage,
2162 			    &addl_shortage);
2163 		} else
2164 			addl_shortage = 0;
2165 
2166 		/*
2167 		 * Scan the active queue.  A positive value for shortage
2168 		 * indicates that we must aggressively deactivate pages to avoid
2169 		 * a shortfall.
2170 		 */
2171 		shortage = vm_pageout_active_target(vmd) + addl_shortage;
2172 		vm_pageout_scan_active(vmd, shortage);
2173 	}
2174 }
2175 
2176 /*
2177  * vm_pageout_helper runs additional pageout daemons in times of high paging
2178  * activity.
2179  */
2180 static void
2181 vm_pageout_helper(void *arg)
2182 {
2183 	struct vm_domain *vmd;
2184 	int domain;
2185 
2186 	domain = (uintptr_t)arg;
2187 	vmd = VM_DOMAIN(domain);
2188 
2189 	vm_domain_pageout_lock(vmd);
2190 	for (;;) {
2191 		msleep(&vmd->vmd_inactive_shortage,
2192 		    vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2193 		blockcount_release(&vmd->vmd_inactive_starting, 1);
2194 
2195 		vm_domain_pageout_unlock(vmd);
2196 		vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2197 		vm_domain_pageout_lock(vmd);
2198 
2199 		/*
2200 		 * Release the running count while the pageout lock is held to
2201 		 * prevent wakeup races.
2202 		 */
2203 		blockcount_release(&vmd->vmd_inactive_running, 1);
2204 	}
2205 }
2206 
2207 static int
2208 get_pageout_threads_per_domain(const struct vm_domain *vmd)
2209 {
2210 	unsigned total_pageout_threads, eligible_cpus, domain_cpus;
2211 
2212 	if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
2213 		return (0);
2214 
2215 	/*
2216 	 * Semi-arbitrarily constrain pagedaemon threads to less than half the
2217 	 * total number of CPUs in the system as an upper limit.
2218 	 */
2219 	if (pageout_cpus_per_thread < 2)
2220 		pageout_cpus_per_thread = 2;
2221 	else if (pageout_cpus_per_thread > mp_ncpus)
2222 		pageout_cpus_per_thread = mp_ncpus;
2223 
2224 	total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
2225 	domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
2226 
2227 	/* Pagedaemons are not run in empty domains. */
2228 	eligible_cpus = mp_ncpus;
2229 	for (unsigned i = 0; i < vm_ndomains; i++)
2230 		if (VM_DOMAIN_EMPTY(i))
2231 			eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
2232 
2233 	/*
2234 	 * Assign a portion of the total pageout threads to this domain
2235 	 * corresponding to the fraction of pagedaemon-eligible CPUs in the
2236 	 * domain.  In asymmetric NUMA systems, domains with more CPUs may be
2237 	 * allocated more threads than domains with fewer CPUs.
2238 	 */
2239 	return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
2240 }
2241 
2242 /*
2243  * Initialize basic pageout daemon settings.  See the comment above the
2244  * definition of vm_domain for some explanation of how these thresholds are
2245  * used.
2246  */
2247 static void
2248 vm_pageout_init_domain(int domain)
2249 {
2250 	struct vm_domain *vmd;
2251 	struct sysctl_oid *oid;
2252 
2253 	vmd = VM_DOMAIN(domain);
2254 	vmd->vmd_interrupt_free_min = 2;
2255 
2256 	/*
2257 	 * v_free_reserved needs to include enough for the largest
2258 	 * swap pager structures plus enough for any pv_entry structs
2259 	 * when paging.
2260 	 */
2261 	vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2262 	    vmd->vmd_interrupt_free_min;
2263 	vmd->vmd_free_reserved = vm_pageout_page_count +
2264 	    vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2265 	vmd->vmd_free_min = vmd->vmd_page_count / 200;
2266 	vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2267 	vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2268 	vmd->vmd_free_min += vmd->vmd_free_reserved;
2269 	vmd->vmd_free_severe += vmd->vmd_free_reserved;
2270 	vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2271 	if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2272 		vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2273 
2274 	/*
2275 	 * Set the default wakeup threshold to be 10% below the paging
2276 	 * target.  This keeps the steady state out of shortfall.
2277 	 */
2278 	vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2279 
2280 	/*
2281 	 * Target amount of memory to move out of the laundry queue during a
2282 	 * background laundering.  This is proportional to the amount of system
2283 	 * memory.
2284 	 */
2285 	vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2286 	    vmd->vmd_free_min) / 10;
2287 
2288 	/* Initialize the pageout daemon pid controller. */
2289 	pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2290 	    vmd->vmd_free_target, PIDCTRL_BOUND,
2291 	    PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2292 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2293 	    "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2294 	pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2295 
2296 	vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
2297 }
2298 
2299 static void
2300 vm_pageout_init(void)
2301 {
2302 	u_long freecount;
2303 	int i;
2304 
2305 	/*
2306 	 * Initialize some paging parameters.
2307 	 */
2308 	if (vm_cnt.v_page_count < 2000)
2309 		vm_pageout_page_count = 8;
2310 
2311 	freecount = 0;
2312 	for (i = 0; i < vm_ndomains; i++) {
2313 		struct vm_domain *vmd;
2314 
2315 		vm_pageout_init_domain(i);
2316 		vmd = VM_DOMAIN(i);
2317 		vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2318 		vm_cnt.v_free_target += vmd->vmd_free_target;
2319 		vm_cnt.v_free_min += vmd->vmd_free_min;
2320 		vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2321 		vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2322 		vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2323 		vm_cnt.v_free_severe += vmd->vmd_free_severe;
2324 		freecount += vmd->vmd_free_count;
2325 	}
2326 
2327 	/*
2328 	 * Set interval in seconds for active scan.  We want to visit each
2329 	 * page at least once every ten minutes.  This is to prevent worst
2330 	 * case paging behaviors with stale active LRU.
2331 	 */
2332 	if (vm_pageout_update_period == 0)
2333 		vm_pageout_update_period = 600;
2334 
2335 	/*
2336 	 * Set the maximum number of user-wired virtual pages.  Historically the
2337 	 * main source of such pages was mlock(2) and mlockall(2).  Hypervisors
2338 	 * may also request user-wired memory.
2339 	 */
2340 	if (vm_page_max_user_wired == 0)
2341 		vm_page_max_user_wired = 4 * freecount / 5;
2342 }
2343 
2344 /*
2345  *     vm_pageout is the high level pageout daemon.
2346  */
2347 static void
2348 vm_pageout(void)
2349 {
2350 	struct proc *p;
2351 	struct thread *td;
2352 	int error, first, i, j, pageout_threads;
2353 
2354 	p = curproc;
2355 	td = curthread;
2356 
2357 	mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2358 	swap_pager_swap_init();
2359 	for (first = -1, i = 0; i < vm_ndomains; i++) {
2360 		if (VM_DOMAIN_EMPTY(i)) {
2361 			if (bootverbose)
2362 				printf("domain %d empty; skipping pageout\n",
2363 				    i);
2364 			continue;
2365 		}
2366 		if (first == -1)
2367 			first = i;
2368 		else {
2369 			error = kthread_add(vm_pageout_worker,
2370 			    (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2371 			if (error != 0)
2372 				panic("starting pageout for domain %d: %d\n",
2373 				    i, error);
2374 		}
2375 		pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
2376 		for (j = 0; j < pageout_threads - 1; j++) {
2377 			error = kthread_add(vm_pageout_helper,
2378 			    (void *)(uintptr_t)i, p, NULL, 0, 0,
2379 			    "dom%d helper%d", i, j);
2380 			if (error != 0)
2381 				panic("starting pageout helper %d for domain "
2382 				    "%d: %d\n", j, i, error);
2383 		}
2384 		error = kthread_add(vm_pageout_laundry_worker,
2385 		    (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2386 		if (error != 0)
2387 			panic("starting laundry for domain %d: %d", i, error);
2388 	}
2389 	error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2390 	if (error != 0)
2391 		panic("starting uma_reclaim helper, error %d\n", error);
2392 
2393 	snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2394 	vm_pageout_worker((void *)(uintptr_t)first);
2395 }
2396 
2397 /*
2398  * Perform an advisory wakeup of the page daemon.
2399  */
2400 void
2401 pagedaemon_wakeup(int domain)
2402 {
2403 	struct vm_domain *vmd;
2404 
2405 	vmd = VM_DOMAIN(domain);
2406 	vm_domain_pageout_assert_unlocked(vmd);
2407 	if (curproc == pageproc)
2408 		return;
2409 
2410 	if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2411 		vm_domain_pageout_lock(vmd);
2412 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2413 		wakeup(&vmd->vmd_pageout_wanted);
2414 		vm_domain_pageout_unlock(vmd);
2415 	}
2416 }
2417