xref: /freebsd/sys/vm/vm_pageout.c (revision 3193579b66fd7067f898dbc54bdea81a0e6f9bd0)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  *	The proverbial page-out daemon.
71  */
72 
73 #include <sys/cdefs.h>
74 __FBSDID("$FreeBSD$");
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/eventhandler.h>
81 #include <sys/lock.h>
82 #include <sys/mutex.h>
83 #include <sys/proc.h>
84 #include <sys/kthread.h>
85 #include <sys/ktr.h>
86 #include <sys/resourcevar.h>
87 #include <sys/sched.h>
88 #include <sys/signalvar.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92 #include <sys/sysctl.h>
93 
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_extern.h>
103 #include <vm/uma.h>
104 
105 #include <machine/mutex.h>
106 
107 /*
108  * System initialization
109  */
110 
111 /* the kernel process "vm_pageout"*/
112 static void vm_pageout(void);
113 static int vm_pageout_clean(vm_page_t);
114 static void vm_pageout_pmap_collect(void);
115 static void vm_pageout_scan(int pass);
116 
117 struct proc *pageproc;
118 
119 static struct kproc_desc page_kp = {
120 	"pagedaemon",
121 	vm_pageout,
122 	&pageproc
123 };
124 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
125 
126 #if !defined(NO_SWAPPING)
127 /* the kernel process "vm_daemon"*/
128 static void vm_daemon(void);
129 static struct	proc *vmproc;
130 
131 static struct kproc_desc vm_kp = {
132 	"vmdaemon",
133 	vm_daemon,
134 	&vmproc
135 };
136 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
137 #endif
138 
139 
140 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
141 int vm_pageout_deficit;		/* Estimated number of pages deficit */
142 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
143 
144 #if !defined(NO_SWAPPING)
145 static int vm_pageout_req_swapout;	/* XXX */
146 static int vm_daemon_needed;
147 #endif
148 static int vm_max_launder = 32;
149 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
150 static int vm_pageout_full_stats_interval = 0;
151 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
152 static int defer_swap_pageouts=0;
153 static int disable_swap_pageouts=0;
154 
155 #if defined(NO_SWAPPING)
156 static int vm_swap_enabled=0;
157 static int vm_swap_idle_enabled=0;
158 #else
159 static int vm_swap_enabled=1;
160 static int vm_swap_idle_enabled=0;
161 #endif
162 
163 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
164 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
165 
166 SYSCTL_INT(_vm, OID_AUTO, max_launder,
167 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
168 
169 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
170 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
171 
172 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
173 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
174 
175 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
176 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
177 
178 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
179 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
180 
181 #if defined(NO_SWAPPING)
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
186 #else
187 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
188 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
189 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
190 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
191 #endif
192 
193 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
194 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
195 
196 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
197 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
198 
199 static int pageout_lock_miss;
200 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
201 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
202 
203 #define VM_PAGEOUT_PAGE_COUNT 16
204 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
205 
206 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
207 
208 #if !defined(NO_SWAPPING)
209 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
210 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
211 static void vm_req_vmdaemon(void);
212 #endif
213 static void vm_pageout_page_stats(void);
214 
215 /*
216  * vm_pageout_clean:
217  *
218  * Clean the page and remove it from the laundry.
219  *
220  * We set the busy bit to cause potential page faults on this page to
221  * block.  Note the careful timing, however, the busy bit isn't set till
222  * late and we cannot do anything that will mess with the page.
223  */
224 static int
225 vm_pageout_clean(m)
226 	vm_page_t m;
227 {
228 	vm_object_t object;
229 	vm_page_t mc[2*vm_pageout_page_count];
230 	int pageout_count;
231 	int ib, is, page_base;
232 	vm_pindex_t pindex = m->pindex;
233 
234 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
235 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
236 
237 	/*
238 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
239 	 * with the new swapper, but we could have serious problems paging
240 	 * out other object types if there is insufficient memory.
241 	 *
242 	 * Unfortunately, checking free memory here is far too late, so the
243 	 * check has been moved up a procedural level.
244 	 */
245 
246 	/*
247 	 * Don't mess with the page if it's busy, held, or special
248 	 */
249 	if ((m->hold_count != 0) ||
250 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
251 		return 0;
252 	}
253 
254 	mc[vm_pageout_page_count] = m;
255 	pageout_count = 1;
256 	page_base = vm_pageout_page_count;
257 	ib = 1;
258 	is = 1;
259 
260 	/*
261 	 * Scan object for clusterable pages.
262 	 *
263 	 * We can cluster ONLY if: ->> the page is NOT
264 	 * clean, wired, busy, held, or mapped into a
265 	 * buffer, and one of the following:
266 	 * 1) The page is inactive, or a seldom used
267 	 *    active page.
268 	 * -or-
269 	 * 2) we force the issue.
270 	 *
271 	 * During heavy mmap/modification loads the pageout
272 	 * daemon can really fragment the underlying file
273 	 * due to flushing pages out of order and not trying
274 	 * align the clusters (which leave sporatic out-of-order
275 	 * holes).  To solve this problem we do the reverse scan
276 	 * first and attempt to align our cluster, then do a
277 	 * forward scan if room remains.
278 	 */
279 	object = m->object;
280 more:
281 	while (ib && pageout_count < vm_pageout_page_count) {
282 		vm_page_t p;
283 
284 		if (ib > pindex) {
285 			ib = 0;
286 			break;
287 		}
288 
289 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
290 			ib = 0;
291 			break;
292 		}
293 		if (((p->queue - p->pc) == PQ_CACHE) ||
294 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
295 			ib = 0;
296 			break;
297 		}
298 		vm_page_test_dirty(p);
299 		if ((p->dirty & p->valid) == 0 ||
300 		    p->queue != PQ_INACTIVE ||
301 		    p->wire_count != 0 ||	/* may be held by buf cache */
302 		    p->hold_count != 0) {	/* may be undergoing I/O */
303 			ib = 0;
304 			break;
305 		}
306 		mc[--page_base] = p;
307 		++pageout_count;
308 		++ib;
309 		/*
310 		 * alignment boundry, stop here and switch directions.  Do
311 		 * not clear ib.
312 		 */
313 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
314 			break;
315 	}
316 
317 	while (pageout_count < vm_pageout_page_count &&
318 	    pindex + is < object->size) {
319 		vm_page_t p;
320 
321 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
322 			break;
323 		if (((p->queue - p->pc) == PQ_CACHE) ||
324 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
325 			break;
326 		}
327 		vm_page_test_dirty(p);
328 		if ((p->dirty & p->valid) == 0 ||
329 		    p->queue != PQ_INACTIVE ||
330 		    p->wire_count != 0 ||	/* may be held by buf cache */
331 		    p->hold_count != 0) {	/* may be undergoing I/O */
332 			break;
333 		}
334 		mc[page_base + pageout_count] = p;
335 		++pageout_count;
336 		++is;
337 	}
338 
339 	/*
340 	 * If we exhausted our forward scan, continue with the reverse scan
341 	 * when possible, even past a page boundry.  This catches boundry
342 	 * conditions.
343 	 */
344 	if (ib && pageout_count < vm_pageout_page_count)
345 		goto more;
346 
347 	/*
348 	 * we allow reads during pageouts...
349 	 */
350 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
351 }
352 
353 /*
354  * vm_pageout_flush() - launder the given pages
355  *
356  *	The given pages are laundered.  Note that we setup for the start of
357  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
358  *	reference count all in here rather then in the parent.  If we want
359  *	the parent to do more sophisticated things we may have to change
360  *	the ordering.
361  */
362 int
363 vm_pageout_flush(vm_page_t *mc, int count, int flags)
364 {
365 	vm_object_t object = mc[0]->object;
366 	int pageout_status[count];
367 	int numpagedout = 0;
368 	int i;
369 
370 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
371 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
372 	/*
373 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
374 	 * mark the pages read-only.
375 	 *
376 	 * We do not have to fixup the clean/dirty bits here... we can
377 	 * allow the pager to do it after the I/O completes.
378 	 *
379 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
380 	 * edge case with file fragments.
381 	 */
382 	for (i = 0; i < count; i++) {
383 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
384 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
385 			mc[i], i, count));
386 		vm_page_io_start(mc[i]);
387 		pmap_page_protect(mc[i], VM_PROT_READ);
388 	}
389 	vm_page_unlock_queues();
390 	vm_object_pip_add(object, count);
391 
392 	vm_pager_put_pages(object, mc, count,
393 	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
394 	    pageout_status);
395 
396 	vm_page_lock_queues();
397 	for (i = 0; i < count; i++) {
398 		vm_page_t mt = mc[i];
399 
400 		switch (pageout_status[i]) {
401 		case VM_PAGER_OK:
402 		case VM_PAGER_PEND:
403 			numpagedout++;
404 			break;
405 		case VM_PAGER_BAD:
406 			/*
407 			 * Page outside of range of object. Right now we
408 			 * essentially lose the changes by pretending it
409 			 * worked.
410 			 */
411 			pmap_clear_modify(mt);
412 			vm_page_undirty(mt);
413 			break;
414 		case VM_PAGER_ERROR:
415 		case VM_PAGER_FAIL:
416 			/*
417 			 * If page couldn't be paged out, then reactivate the
418 			 * page so it doesn't clog the inactive list.  (We
419 			 * will try paging out it again later).
420 			 */
421 			vm_page_activate(mt);
422 			break;
423 		case VM_PAGER_AGAIN:
424 			break;
425 		}
426 
427 		/*
428 		 * If the operation is still going, leave the page busy to
429 		 * block all other accesses. Also, leave the paging in
430 		 * progress indicator set so that we don't attempt an object
431 		 * collapse.
432 		 */
433 		if (pageout_status[i] != VM_PAGER_PEND) {
434 			vm_object_pip_wakeup(object);
435 			vm_page_io_finish(mt);
436 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
437 				pmap_page_protect(mt, VM_PROT_READ);
438 		}
439 	}
440 	return numpagedout;
441 }
442 
443 #if !defined(NO_SWAPPING)
444 /*
445  *	vm_pageout_object_deactivate_pages
446  *
447  *	deactivate enough pages to satisfy the inactive target
448  *	requirements or if vm_page_proc_limit is set, then
449  *	deactivate all of the pages in the object and its
450  *	backing_objects.
451  *
452  *	The object and map must be locked.
453  */
454 static void
455 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
456 	pmap_t pmap;
457 	vm_object_t first_object;
458 	long desired;
459 {
460 	vm_object_t backing_object, object;
461 	vm_page_t p, next;
462 	int actcount, rcount, remove_mode;
463 
464 	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
465 	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
466 		return;
467 	for (object = first_object;; object = backing_object) {
468 		if (pmap_resident_count(pmap) <= desired)
469 			goto unlock_return;
470 		if (object->paging_in_progress)
471 			goto unlock_return;
472 
473 		remove_mode = 0;
474 		if (object->shadow_count > 1)
475 			remove_mode = 1;
476 		/*
477 		 * scan the objects entire memory queue
478 		 */
479 		rcount = object->resident_page_count;
480 		p = TAILQ_FIRST(&object->memq);
481 		vm_page_lock_queues();
482 		while (p && (rcount-- > 0)) {
483 			if (pmap_resident_count(pmap) <= desired) {
484 				vm_page_unlock_queues();
485 				goto unlock_return;
486 			}
487 			next = TAILQ_NEXT(p, listq);
488 			cnt.v_pdpages++;
489 			if (p->wire_count != 0 ||
490 			    p->hold_count != 0 ||
491 			    p->busy != 0 ||
492 			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
493 			    !pmap_page_exists_quick(pmap, p)) {
494 				p = next;
495 				continue;
496 			}
497 			actcount = pmap_ts_referenced(p);
498 			if (actcount) {
499 				vm_page_flag_set(p, PG_REFERENCED);
500 			} else if (p->flags & PG_REFERENCED) {
501 				actcount = 1;
502 			}
503 			if ((p->queue != PQ_ACTIVE) &&
504 				(p->flags & PG_REFERENCED)) {
505 				vm_page_activate(p);
506 				p->act_count += actcount;
507 				vm_page_flag_clear(p, PG_REFERENCED);
508 			} else if (p->queue == PQ_ACTIVE) {
509 				if ((p->flags & PG_REFERENCED) == 0) {
510 					p->act_count -= min(p->act_count, ACT_DECLINE);
511 					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
512 						pmap_remove_all(p);
513 						vm_page_deactivate(p);
514 					} else {
515 						vm_pageq_requeue(p);
516 					}
517 				} else {
518 					vm_page_activate(p);
519 					vm_page_flag_clear(p, PG_REFERENCED);
520 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
521 						p->act_count += ACT_ADVANCE;
522 					vm_pageq_requeue(p);
523 				}
524 			} else if (p->queue == PQ_INACTIVE) {
525 				pmap_remove_all(p);
526 			}
527 			p = next;
528 		}
529 		vm_page_unlock_queues();
530 		if ((backing_object = object->backing_object) == NULL)
531 			goto unlock_return;
532 		VM_OBJECT_LOCK(backing_object);
533 		if (object != first_object)
534 			VM_OBJECT_UNLOCK(object);
535 	}
536 unlock_return:
537 	if (object != first_object)
538 		VM_OBJECT_UNLOCK(object);
539 }
540 
541 /*
542  * deactivate some number of pages in a map, try to do it fairly, but
543  * that is really hard to do.
544  */
545 static void
546 vm_pageout_map_deactivate_pages(map, desired)
547 	vm_map_t map;
548 	long desired;
549 {
550 	vm_map_entry_t tmpe;
551 	vm_object_t obj, bigobj;
552 	int nothingwired;
553 
554 	if (!vm_map_trylock(map))
555 		return;
556 
557 	bigobj = NULL;
558 	nothingwired = TRUE;
559 
560 	/*
561 	 * first, search out the biggest object, and try to free pages from
562 	 * that.
563 	 */
564 	tmpe = map->header.next;
565 	while (tmpe != &map->header) {
566 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
567 			obj = tmpe->object.vm_object;
568 			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
569 				if (obj->shadow_count <= 1 &&
570 				    (bigobj == NULL ||
571 				     bigobj->resident_page_count < obj->resident_page_count)) {
572 					if (bigobj != NULL)
573 						VM_OBJECT_UNLOCK(bigobj);
574 					bigobj = obj;
575 				} else
576 					VM_OBJECT_UNLOCK(obj);
577 			}
578 		}
579 		if (tmpe->wired_count > 0)
580 			nothingwired = FALSE;
581 		tmpe = tmpe->next;
582 	}
583 
584 	if (bigobj != NULL) {
585 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
586 		VM_OBJECT_UNLOCK(bigobj);
587 	}
588 	/*
589 	 * Next, hunt around for other pages to deactivate.  We actually
590 	 * do this search sort of wrong -- .text first is not the best idea.
591 	 */
592 	tmpe = map->header.next;
593 	while (tmpe != &map->header) {
594 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
595 			break;
596 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
597 			obj = tmpe->object.vm_object;
598 			if (obj != NULL) {
599 				VM_OBJECT_LOCK(obj);
600 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
601 				VM_OBJECT_UNLOCK(obj);
602 			}
603 		}
604 		tmpe = tmpe->next;
605 	}
606 
607 	/*
608 	 * Remove all mappings if a process is swapped out, this will free page
609 	 * table pages.
610 	 */
611 	if (desired == 0 && nothingwired) {
612 		GIANT_REQUIRED;
613 		vm_page_lock_queues();
614 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
615 		    vm_map_max(map));
616 		vm_page_unlock_queues();
617 	}
618 	vm_map_unlock(map);
619 }
620 #endif		/* !defined(NO_SWAPPING) */
621 
622 /*
623  * This routine is very drastic, but can save the system
624  * in a pinch.
625  */
626 static void
627 vm_pageout_pmap_collect(void)
628 {
629 	int i;
630 	vm_page_t m;
631 	static int warningdone;
632 
633 	if (pmap_pagedaemon_waken == 0)
634 		return;
635 	if (warningdone < 5) {
636 		printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
637 		warningdone++;
638 	}
639 	vm_page_lock_queues();
640 	for (i = 0; i < vm_page_array_size; i++) {
641 		m = &vm_page_array[i];
642 		if (m->wire_count || m->hold_count || m->busy ||
643 		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
644 			continue;
645 		pmap_remove_all(m);
646 	}
647 	vm_page_unlock_queues();
648 	pmap_pagedaemon_waken = 0;
649 }
650 
651 /*
652  *	vm_pageout_scan does the dirty work for the pageout daemon.
653  */
654 static void
655 vm_pageout_scan(int pass)
656 {
657 	vm_page_t m, next;
658 	struct vm_page marker;
659 	int page_shortage, maxscan, pcount;
660 	int addl_page_shortage, addl_page_shortage_init;
661 	struct proc *p, *bigproc;
662 	vm_offset_t size, bigsize;
663 	vm_object_t object;
664 	int actcount;
665 	int vnodes_skipped = 0;
666 	int maxlaunder;
667 	int s;
668 	struct thread *td;
669 
670 	mtx_lock(&Giant);
671 	/*
672 	 * Decrease registered cache sizes.
673 	 */
674 	EVENTHANDLER_INVOKE(vm_lowmem, 0);
675 	/*
676 	 * We do this explicitly after the caches have been drained above.
677 	 */
678 	uma_reclaim();
679 	/*
680 	 * Do whatever cleanup that the pmap code can.
681 	 */
682 	vm_pageout_pmap_collect();
683 
684 	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
685 
686 	/*
687 	 * Calculate the number of pages we want to either free or move
688 	 * to the cache.
689 	 */
690 	page_shortage = vm_paging_target() + addl_page_shortage_init;
691 
692 	/*
693 	 * Initialize our marker
694 	 */
695 	bzero(&marker, sizeof(marker));
696 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
697 	marker.queue = PQ_INACTIVE;
698 	marker.wire_count = 1;
699 
700 	/*
701 	 * Start scanning the inactive queue for pages we can move to the
702 	 * cache or free.  The scan will stop when the target is reached or
703 	 * we have scanned the entire inactive queue.  Note that m->act_count
704 	 * is not used to form decisions for the inactive queue, only for the
705 	 * active queue.
706 	 *
707 	 * maxlaunder limits the number of dirty pages we flush per scan.
708 	 * For most systems a smaller value (16 or 32) is more robust under
709 	 * extreme memory and disk pressure because any unnecessary writes
710 	 * to disk can result in extreme performance degredation.  However,
711 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
712 	 * used) will die horribly with limited laundering.  If the pageout
713 	 * daemon cannot clean enough pages in the first pass, we let it go
714 	 * all out in succeeding passes.
715 	 */
716 	if ((maxlaunder = vm_max_launder) <= 1)
717 		maxlaunder = 1;
718 	if (pass)
719 		maxlaunder = 10000;
720 	vm_page_lock_queues();
721 rescan0:
722 	addl_page_shortage = addl_page_shortage_init;
723 	maxscan = cnt.v_inactive_count;
724 
725 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
726 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
727 	     m = next) {
728 
729 		cnt.v_pdpages++;
730 
731 		if (m->queue != PQ_INACTIVE) {
732 			goto rescan0;
733 		}
734 
735 		next = TAILQ_NEXT(m, pageq);
736 
737 		/*
738 		 * skip marker pages
739 		 */
740 		if (m->flags & PG_MARKER)
741 			continue;
742 
743 		/*
744 		 * A held page may be undergoing I/O, so skip it.
745 		 */
746 		if (m->hold_count) {
747 			vm_pageq_requeue(m);
748 			addl_page_shortage++;
749 			continue;
750 		}
751 		/*
752 		 * Don't mess with busy pages, keep in the front of the
753 		 * queue, most likely are being paged out.
754 		 */
755 		if (m->busy || (m->flags & PG_BUSY)) {
756 			addl_page_shortage++;
757 			continue;
758 		}
759 
760 		/*
761 		 * If the object is not being used, we ignore previous
762 		 * references.
763 		 */
764 		if (m->object->ref_count == 0) {
765 			vm_page_flag_clear(m, PG_REFERENCED);
766 			pmap_clear_reference(m);
767 
768 		/*
769 		 * Otherwise, if the page has been referenced while in the
770 		 * inactive queue, we bump the "activation count" upwards,
771 		 * making it less likely that the page will be added back to
772 		 * the inactive queue prematurely again.  Here we check the
773 		 * page tables (or emulated bits, if any), given the upper
774 		 * level VM system not knowing anything about existing
775 		 * references.
776 		 */
777 		} else if (((m->flags & PG_REFERENCED) == 0) &&
778 			(actcount = pmap_ts_referenced(m))) {
779 			vm_page_activate(m);
780 			m->act_count += (actcount + ACT_ADVANCE);
781 			continue;
782 		}
783 
784 		/*
785 		 * If the upper level VM system knows about any page
786 		 * references, we activate the page.  We also set the
787 		 * "activation count" higher than normal so that we will less
788 		 * likely place pages back onto the inactive queue again.
789 		 */
790 		if ((m->flags & PG_REFERENCED) != 0) {
791 			vm_page_flag_clear(m, PG_REFERENCED);
792 			actcount = pmap_ts_referenced(m);
793 			vm_page_activate(m);
794 			m->act_count += (actcount + ACT_ADVANCE + 1);
795 			continue;
796 		}
797 
798 		/*
799 		 * If the upper level VM system doesn't know anything about
800 		 * the page being dirty, we have to check for it again.  As
801 		 * far as the VM code knows, any partially dirty pages are
802 		 * fully dirty.
803 		 */
804 		if (m->dirty == 0) {
805 			vm_page_test_dirty(m);
806 		} else {
807 			vm_page_dirty(m);
808 		}
809 		object = m->object;
810 		if (!VM_OBJECT_TRYLOCK(object))
811 			continue;
812 		if (m->valid == 0) {
813 			/*
814 			 * Invalid pages can be easily freed
815 			 */
816 			vm_page_busy(m);
817 			pmap_remove_all(m);
818 			vm_page_free(m);
819 			cnt.v_dfree++;
820 			--page_shortage;
821 		} else if (m->dirty == 0) {
822 			/*
823 			 * Clean pages can be placed onto the cache queue.
824 			 * This effectively frees them.
825 			 */
826 			vm_page_cache(m);
827 			--page_shortage;
828 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
829 			/*
830 			 * Dirty pages need to be paged out, but flushing
831 			 * a page is extremely expensive verses freeing
832 			 * a clean page.  Rather then artificially limiting
833 			 * the number of pages we can flush, we instead give
834 			 * dirty pages extra priority on the inactive queue
835 			 * by forcing them to be cycled through the queue
836 			 * twice before being flushed, after which the
837 			 * (now clean) page will cycle through once more
838 			 * before being freed.  This significantly extends
839 			 * the thrash point for a heavily loaded machine.
840 			 */
841 			vm_page_flag_set(m, PG_WINATCFLS);
842 			vm_pageq_requeue(m);
843 		} else if (maxlaunder > 0) {
844 			/*
845 			 * We always want to try to flush some dirty pages if
846 			 * we encounter them, to keep the system stable.
847 			 * Normally this number is small, but under extreme
848 			 * pressure where there are insufficient clean pages
849 			 * on the inactive queue, we may have to go all out.
850 			 */
851 			int swap_pageouts_ok;
852 			struct vnode *vp = NULL;
853 			struct mount *mp;
854 
855 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
856 				swap_pageouts_ok = 1;
857 			} else {
858 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
859 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
860 				vm_page_count_min());
861 
862 			}
863 
864 			/*
865 			 * We don't bother paging objects that are "dead".
866 			 * Those objects are in a "rundown" state.
867 			 */
868 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
869 				VM_OBJECT_UNLOCK(object);
870 				vm_pageq_requeue(m);
871 				continue;
872 			}
873 
874 			/*
875 			 * The object is already known NOT to be dead.   It
876 			 * is possible for the vget() to block the whole
877 			 * pageout daemon, but the new low-memory handling
878 			 * code should prevent it.
879 			 *
880 			 * The previous code skipped locked vnodes and, worse,
881 			 * reordered pages in the queue.  This results in
882 			 * completely non-deterministic operation and, on a
883 			 * busy system, can lead to extremely non-optimal
884 			 * pageouts.  For example, it can cause clean pages
885 			 * to be freed and dirty pages to be moved to the end
886 			 * of the queue.  Since dirty pages are also moved to
887 			 * the end of the queue once-cleaned, this gives
888 			 * way too large a weighting to defering the freeing
889 			 * of dirty pages.
890 			 *
891 			 * We can't wait forever for the vnode lock, we might
892 			 * deadlock due to a vn_read() getting stuck in
893 			 * vm_wait while holding this vnode.  We skip the
894 			 * vnode if we can't get it in a reasonable amount
895 			 * of time.
896 			 */
897 			if (object->type == OBJT_VNODE) {
898 				vp = object->handle;
899 				mp = NULL;
900 				if (vp->v_type == VREG)
901 					vn_start_write(vp, &mp, V_NOWAIT);
902 				vm_page_unlock_queues();
903 				VI_LOCK(vp);
904 				VM_OBJECT_UNLOCK(object);
905 				if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
906 				    LK_TIMELOCK, curthread)) {
907 					VM_OBJECT_LOCK(object);
908 					vm_page_lock_queues();
909 					++pageout_lock_miss;
910 					vn_finished_write(mp);
911 					if (object->flags & OBJ_MIGHTBEDIRTY)
912 						vnodes_skipped++;
913 					VM_OBJECT_UNLOCK(object);
914 					continue;
915 				}
916 				VM_OBJECT_LOCK(object);
917 				vm_page_lock_queues();
918 				/*
919 				 * The page might have been moved to another
920 				 * queue during potential blocking in vget()
921 				 * above.  The page might have been freed and
922 				 * reused for another vnode.  The object might
923 				 * have been reused for another vnode.
924 				 */
925 				if (m->queue != PQ_INACTIVE ||
926 				    m->object != object ||
927 				    object->handle != vp) {
928 					if (object->flags & OBJ_MIGHTBEDIRTY)
929 						vnodes_skipped++;
930 					goto unlock_and_continue;
931 				}
932 
933 				/*
934 				 * The page may have been busied during the
935 				 * blocking in vput();  We don't move the
936 				 * page back onto the end of the queue so that
937 				 * statistics are more correct if we don't.
938 				 */
939 				if (m->busy || (m->flags & PG_BUSY)) {
940 					goto unlock_and_continue;
941 				}
942 
943 				/*
944 				 * If the page has become held it might
945 				 * be undergoing I/O, so skip it
946 				 */
947 				if (m->hold_count) {
948 					vm_pageq_requeue(m);
949 					if (object->flags & OBJ_MIGHTBEDIRTY)
950 						vnodes_skipped++;
951 					goto unlock_and_continue;
952 				}
953 			}
954 
955 			/*
956 			 * If a page is dirty, then it is either being washed
957 			 * (but not yet cleaned) or it is still in the
958 			 * laundry.  If it is still in the laundry, then we
959 			 * start the cleaning operation.
960 			 *
961 			 * This operation may cluster, invalidating the 'next'
962 			 * pointer.  To prevent an inordinate number of
963 			 * restarts we use our marker to remember our place.
964 			 *
965 			 * decrement page_shortage on success to account for
966 			 * the (future) cleaned page.  Otherwise we could wind
967 			 * up laundering or cleaning too many pages.
968 			 */
969 			s = splvm();
970 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
971 			splx(s);
972 			if (vm_pageout_clean(m) != 0) {
973 				--page_shortage;
974 				--maxlaunder;
975 			}
976 			s = splvm();
977 			next = TAILQ_NEXT(&marker, pageq);
978 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
979 			splx(s);
980 unlock_and_continue:
981 			VM_OBJECT_UNLOCK(object);
982 			if (vp) {
983 				vm_page_unlock_queues();
984 				vput(vp);
985 				vn_finished_write(mp);
986 				vm_page_lock_queues();
987 			}
988 			continue;
989 		}
990 		VM_OBJECT_UNLOCK(object);
991 	}
992 
993 	/*
994 	 * Compute the number of pages we want to try to move from the
995 	 * active queue to the inactive queue.
996 	 */
997 	page_shortage = vm_paging_target() +
998 		cnt.v_inactive_target - cnt.v_inactive_count;
999 	page_shortage += addl_page_shortage;
1000 
1001 	/*
1002 	 * Scan the active queue for things we can deactivate. We nominally
1003 	 * track the per-page activity counter and use it to locate
1004 	 * deactivation candidates.
1005 	 */
1006 	pcount = cnt.v_active_count;
1007 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1008 
1009 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1010 
1011 		KASSERT(m->queue == PQ_ACTIVE,
1012 		    ("vm_pageout_scan: page %p isn't active", m));
1013 
1014 		next = TAILQ_NEXT(m, pageq);
1015 		/*
1016 		 * Don't deactivate pages that are busy.
1017 		 */
1018 		if ((m->busy != 0) ||
1019 		    (m->flags & PG_BUSY) ||
1020 		    (m->hold_count != 0)) {
1021 			vm_pageq_requeue(m);
1022 			m = next;
1023 			continue;
1024 		}
1025 
1026 		/*
1027 		 * The count for pagedaemon pages is done after checking the
1028 		 * page for eligibility...
1029 		 */
1030 		cnt.v_pdpages++;
1031 
1032 		/*
1033 		 * Check to see "how much" the page has been used.
1034 		 */
1035 		actcount = 0;
1036 		if (m->object->ref_count != 0) {
1037 			if (m->flags & PG_REFERENCED) {
1038 				actcount += 1;
1039 			}
1040 			actcount += pmap_ts_referenced(m);
1041 			if (actcount) {
1042 				m->act_count += ACT_ADVANCE + actcount;
1043 				if (m->act_count > ACT_MAX)
1044 					m->act_count = ACT_MAX;
1045 			}
1046 		}
1047 
1048 		/*
1049 		 * Since we have "tested" this bit, we need to clear it now.
1050 		 */
1051 		vm_page_flag_clear(m, PG_REFERENCED);
1052 
1053 		/*
1054 		 * Only if an object is currently being used, do we use the
1055 		 * page activation count stats.
1056 		 */
1057 		if (actcount && (m->object->ref_count != 0)) {
1058 			vm_pageq_requeue(m);
1059 		} else {
1060 			m->act_count -= min(m->act_count, ACT_DECLINE);
1061 			if (vm_pageout_algorithm ||
1062 			    m->object->ref_count == 0 ||
1063 			    m->act_count == 0) {
1064 				page_shortage--;
1065 				if (m->object->ref_count == 0) {
1066 					pmap_remove_all(m);
1067 					if (m->dirty == 0)
1068 						vm_page_cache(m);
1069 					else
1070 						vm_page_deactivate(m);
1071 				} else {
1072 					vm_page_deactivate(m);
1073 				}
1074 			} else {
1075 				vm_pageq_requeue(m);
1076 			}
1077 		}
1078 		m = next;
1079 	}
1080 	s = splvm();
1081 
1082 	/*
1083 	 * We try to maintain some *really* free pages, this allows interrupt
1084 	 * code to be guaranteed space.  Since both cache and free queues
1085 	 * are considered basically 'free', moving pages from cache to free
1086 	 * does not effect other calculations.
1087 	 */
1088 	while (cnt.v_free_count < cnt.v_free_reserved) {
1089 		static int cache_rover = 0;
1090 
1091 		if ((m = vm_page_select_cache(cache_rover)) == NULL)
1092 			break;
1093 		cache_rover = (m->pc + PQ_PRIME2) & PQ_L2_MASK;
1094 		object = m->object;
1095 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1096 		vm_page_busy(m);
1097 		pmap_remove_all(m);
1098 		vm_page_free(m);
1099 		VM_OBJECT_UNLOCK(object);
1100 		cnt.v_dfree++;
1101 	}
1102 	splx(s);
1103 	vm_page_unlock_queues();
1104 #if !defined(NO_SWAPPING)
1105 	/*
1106 	 * Idle process swapout -- run once per second.
1107 	 */
1108 	if (vm_swap_idle_enabled) {
1109 		static long lsec;
1110 		if (time_second != lsec) {
1111 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1112 			vm_req_vmdaemon();
1113 			lsec = time_second;
1114 		}
1115 	}
1116 #endif
1117 
1118 	/*
1119 	 * If we didn't get enough free pages, and we have skipped a vnode
1120 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1121 	 * if we did not get enough free pages.
1122 	 */
1123 	if (vm_paging_target() > 0) {
1124 		if (vnodes_skipped && vm_page_count_min())
1125 			(void) speedup_syncer();
1126 #if !defined(NO_SWAPPING)
1127 		if (vm_swap_enabled && vm_page_count_target()) {
1128 			vm_req_vmdaemon();
1129 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1130 		}
1131 #endif
1132 	}
1133 
1134 	/*
1135 	 * If we are critically low on one of RAM or swap and low on
1136 	 * the other, kill the largest process.  However, we avoid
1137 	 * doing this on the first pass in order to give ourselves a
1138 	 * chance to flush out dirty vnode-backed pages and to allow
1139 	 * active pages to be moved to the inactive queue and reclaimed.
1140 	 *
1141 	 * We keep the process bigproc locked once we find it to keep anyone
1142 	 * from messing with it; however, there is a possibility of
1143 	 * deadlock if process B is bigproc and one of it's child processes
1144 	 * attempts to propagate a signal to B while we are waiting for A's
1145 	 * lock while walking this list.  To avoid this, we don't block on
1146 	 * the process lock but just skip a process if it is already locked.
1147 	 */
1148 	if (pass != 0 &&
1149 	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1150 	     (swap_pager_full && vm_paging_target() > 0))) {
1151 		bigproc = NULL;
1152 		bigsize = 0;
1153 		sx_slock(&allproc_lock);
1154 		FOREACH_PROC_IN_SYSTEM(p) {
1155 			int breakout;
1156 			/*
1157 			 * If this process is already locked, skip it.
1158 			 */
1159 			if (PROC_TRYLOCK(p) == 0)
1160 				continue;
1161 			/*
1162 			 * If this is a system or protected process, skip it.
1163 			 */
1164 			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1165 			    (p->p_flag & P_PROTECTED) ||
1166 			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1167 				PROC_UNLOCK(p);
1168 				continue;
1169 			}
1170 			/*
1171 			 * if the process is in a non-running type state,
1172 			 * don't touch it. Check all the threads individually.
1173 			 */
1174 			mtx_lock_spin(&sched_lock);
1175 			breakout = 0;
1176 			FOREACH_THREAD_IN_PROC(p, td) {
1177 				if (!TD_ON_RUNQ(td) &&
1178 				    !TD_IS_RUNNING(td) &&
1179 				    !TD_IS_SLEEPING(td)) {
1180 					breakout = 1;
1181 					break;
1182 				}
1183 			}
1184 			if (breakout) {
1185 				mtx_unlock_spin(&sched_lock);
1186 				PROC_UNLOCK(p);
1187 				continue;
1188 			}
1189 			mtx_unlock_spin(&sched_lock);
1190 			/*
1191 			 * get the process size
1192 			 */
1193 			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1194 				PROC_UNLOCK(p);
1195 				continue;
1196 			}
1197 			size = vmspace_swap_count(p->p_vmspace);
1198 			vm_map_unlock_read(&p->p_vmspace->vm_map);
1199 			size += vmspace_resident_count(p->p_vmspace);
1200 			/*
1201 			 * if the this process is bigger than the biggest one
1202 			 * remember it.
1203 			 */
1204 			if (size > bigsize) {
1205 				if (bigproc != NULL)
1206 					PROC_UNLOCK(bigproc);
1207 				bigproc = p;
1208 				bigsize = size;
1209 			} else
1210 				PROC_UNLOCK(p);
1211 		}
1212 		sx_sunlock(&allproc_lock);
1213 		if (bigproc != NULL) {
1214 			struct ksegrp *kg;
1215 			killproc(bigproc, "out of swap space");
1216 			mtx_lock_spin(&sched_lock);
1217 			FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
1218 				sched_nice(kg, PRIO_MIN); /* XXXKSE ??? */
1219 			}
1220 			mtx_unlock_spin(&sched_lock);
1221 			PROC_UNLOCK(bigproc);
1222 			wakeup(&cnt.v_free_count);
1223 		}
1224 	}
1225 	mtx_unlock(&Giant);
1226 }
1227 
1228 /*
1229  * This routine tries to maintain the pseudo LRU active queue,
1230  * so that during long periods of time where there is no paging,
1231  * that some statistic accumulation still occurs.  This code
1232  * helps the situation where paging just starts to occur.
1233  */
1234 static void
1235 vm_pageout_page_stats()
1236 {
1237 	vm_page_t m,next;
1238 	int pcount,tpcount;		/* Number of pages to check */
1239 	static int fullintervalcount = 0;
1240 	int page_shortage;
1241 	int s0;
1242 
1243 	page_shortage =
1244 	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1245 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1246 
1247 	if (page_shortage <= 0)
1248 		return;
1249 
1250 	s0 = splvm();
1251 	vm_page_lock_queues();
1252 	pcount = cnt.v_active_count;
1253 	fullintervalcount += vm_pageout_stats_interval;
1254 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1255 		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1256 		if (pcount > tpcount)
1257 			pcount = tpcount;
1258 	} else {
1259 		fullintervalcount = 0;
1260 	}
1261 
1262 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1263 	while ((m != NULL) && (pcount-- > 0)) {
1264 		int actcount;
1265 
1266 		KASSERT(m->queue == PQ_ACTIVE,
1267 		    ("vm_pageout_page_stats: page %p isn't active", m));
1268 
1269 		next = TAILQ_NEXT(m, pageq);
1270 		/*
1271 		 * Don't deactivate pages that are busy.
1272 		 */
1273 		if ((m->busy != 0) ||
1274 		    (m->flags & PG_BUSY) ||
1275 		    (m->hold_count != 0)) {
1276 			vm_pageq_requeue(m);
1277 			m = next;
1278 			continue;
1279 		}
1280 
1281 		actcount = 0;
1282 		if (m->flags & PG_REFERENCED) {
1283 			vm_page_flag_clear(m, PG_REFERENCED);
1284 			actcount += 1;
1285 		}
1286 
1287 		actcount += pmap_ts_referenced(m);
1288 		if (actcount) {
1289 			m->act_count += ACT_ADVANCE + actcount;
1290 			if (m->act_count > ACT_MAX)
1291 				m->act_count = ACT_MAX;
1292 			vm_pageq_requeue(m);
1293 		} else {
1294 			if (m->act_count == 0) {
1295 				/*
1296 				 * We turn off page access, so that we have
1297 				 * more accurate RSS stats.  We don't do this
1298 				 * in the normal page deactivation when the
1299 				 * system is loaded VM wise, because the
1300 				 * cost of the large number of page protect
1301 				 * operations would be higher than the value
1302 				 * of doing the operation.
1303 				 */
1304 				pmap_remove_all(m);
1305 				vm_page_deactivate(m);
1306 			} else {
1307 				m->act_count -= min(m->act_count, ACT_DECLINE);
1308 				vm_pageq_requeue(m);
1309 			}
1310 		}
1311 
1312 		m = next;
1313 	}
1314 	vm_page_unlock_queues();
1315 	splx(s0);
1316 }
1317 
1318 /*
1319  *	vm_pageout is the high level pageout daemon.
1320  */
1321 static void
1322 vm_pageout()
1323 {
1324 	int error, pass, s;
1325 
1326 	/*
1327 	 * Initialize some paging parameters.
1328 	 */
1329 	cnt.v_interrupt_free_min = 2;
1330 	if (cnt.v_page_count < 2000)
1331 		vm_pageout_page_count = 8;
1332 
1333 	/*
1334 	 * v_free_reserved needs to include enough for the largest
1335 	 * swap pager structures plus enough for any pv_entry structs
1336 	 * when paging.
1337 	 */
1338 	if (cnt.v_page_count > 1024)
1339 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1340 	else
1341 		cnt.v_free_min = 4;
1342 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1343 	    cnt.v_interrupt_free_min;
1344 	cnt.v_free_reserved = vm_pageout_page_count +
1345 	    cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
1346 	cnt.v_free_severe = cnt.v_free_min / 2;
1347 	cnt.v_free_min += cnt.v_free_reserved;
1348 	cnt.v_free_severe += cnt.v_free_reserved;
1349 
1350 	/*
1351 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1352 	 * that these are more a measure of the VM cache queue hysteresis
1353 	 * then the VM free queue.  Specifically, v_free_target is the
1354 	 * high water mark (free+cache pages).
1355 	 *
1356 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1357 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1358 	 * be big enough to handle memory needs while the pageout daemon
1359 	 * is signalled and run to free more pages.
1360 	 */
1361 	if (cnt.v_free_count > 6144)
1362 		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1363 	else
1364 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1365 
1366 	if (cnt.v_free_count > 2048) {
1367 		cnt.v_cache_min = cnt.v_free_target;
1368 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1369 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1370 	} else {
1371 		cnt.v_cache_min = 0;
1372 		cnt.v_cache_max = 0;
1373 		cnt.v_inactive_target = cnt.v_free_count / 4;
1374 	}
1375 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1376 		cnt.v_inactive_target = cnt.v_free_count / 3;
1377 
1378 	/* XXX does not really belong here */
1379 	if (vm_page_max_wired == 0)
1380 		vm_page_max_wired = cnt.v_free_count / 3;
1381 
1382 	if (vm_pageout_stats_max == 0)
1383 		vm_pageout_stats_max = cnt.v_free_target;
1384 
1385 	/*
1386 	 * Set interval in seconds for stats scan.
1387 	 */
1388 	if (vm_pageout_stats_interval == 0)
1389 		vm_pageout_stats_interval = 5;
1390 	if (vm_pageout_full_stats_interval == 0)
1391 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1392 
1393 	/*
1394 	 * Set maximum free per pass
1395 	 */
1396 	if (vm_pageout_stats_free_max == 0)
1397 		vm_pageout_stats_free_max = 5;
1398 
1399 	swap_pager_swap_init();
1400 	pass = 0;
1401 	/*
1402 	 * The pageout daemon is never done, so loop forever.
1403 	 */
1404 	while (TRUE) {
1405 		s = splvm();
1406 		vm_page_lock_queues();
1407 		/*
1408 		 * If we have enough free memory, wakeup waiters.  Do
1409 		 * not clear vm_pages_needed until we reach our target,
1410 		 * otherwise we may be woken up over and over again and
1411 		 * waste a lot of cpu.
1412 		 */
1413 		if (vm_pages_needed && !vm_page_count_min()) {
1414 			if (!vm_paging_needed())
1415 				vm_pages_needed = 0;
1416 			wakeup(&cnt.v_free_count);
1417 		}
1418 		if (vm_pages_needed) {
1419 			/*
1420 			 * Still not done, take a second pass without waiting
1421 			 * (unlimited dirty cleaning), otherwise sleep a bit
1422 			 * and try again.
1423 			 */
1424 			++pass;
1425 			if (pass > 1)
1426 				msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1427 				       "psleep", hz/2);
1428 		} else {
1429 			/*
1430 			 * Good enough, sleep & handle stats.  Prime the pass
1431 			 * for the next run.
1432 			 */
1433 			if (pass > 1)
1434 				pass = 1;
1435 			else
1436 				pass = 0;
1437 			error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1438 				    "psleep", vm_pageout_stats_interval * hz);
1439 			if (error && !vm_pages_needed) {
1440 				vm_page_unlock_queues();
1441 				splx(s);
1442 				pass = 0;
1443 				vm_pageout_page_stats();
1444 				continue;
1445 			}
1446 		}
1447 		if (vm_pages_needed)
1448 			cnt.v_pdwakeups++;
1449 		vm_page_unlock_queues();
1450 		splx(s);
1451 		vm_pageout_scan(pass);
1452 	}
1453 }
1454 
1455 /*
1456  * Unless the page queue lock is held by the caller, this function
1457  * should be regarded as advisory.  Specifically, the caller should
1458  * not msleep() on &cnt.v_free_count following this function unless
1459  * the page queue lock is held until the msleep() is performed.
1460  */
1461 void
1462 pagedaemon_wakeup()
1463 {
1464 
1465 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1466 		vm_pages_needed = 1;
1467 		wakeup(&vm_pages_needed);
1468 	}
1469 }
1470 
1471 #if !defined(NO_SWAPPING)
1472 static void
1473 vm_req_vmdaemon()
1474 {
1475 	static int lastrun = 0;
1476 
1477 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1478 		wakeup(&vm_daemon_needed);
1479 		lastrun = ticks;
1480 	}
1481 }
1482 
1483 static void
1484 vm_daemon()
1485 {
1486 	struct proc *p;
1487 	int breakout;
1488 	struct thread *td;
1489 
1490 	mtx_lock(&Giant);
1491 	while (TRUE) {
1492 		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1493 		if (vm_pageout_req_swapout) {
1494 			swapout_procs(vm_pageout_req_swapout);
1495 			vm_pageout_req_swapout = 0;
1496 		}
1497 		/*
1498 		 * scan the processes for exceeding their rlimits or if
1499 		 * process is swapped out -- deactivate pages
1500 		 */
1501 		sx_slock(&allproc_lock);
1502 		LIST_FOREACH(p, &allproc, p_list) {
1503 			vm_pindex_t limit, size;
1504 
1505 			/*
1506 			 * if this is a system process or if we have already
1507 			 * looked at this process, skip it.
1508 			 */
1509 			PROC_LOCK(p);
1510 			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1511 				PROC_UNLOCK(p);
1512 				continue;
1513 			}
1514 			/*
1515 			 * if the process is in a non-running type state,
1516 			 * don't touch it.
1517 			 */
1518 			mtx_lock_spin(&sched_lock);
1519 			breakout = 0;
1520 			FOREACH_THREAD_IN_PROC(p, td) {
1521 				if (!TD_ON_RUNQ(td) &&
1522 				    !TD_IS_RUNNING(td) &&
1523 				    !TD_IS_SLEEPING(td)) {
1524 					breakout = 1;
1525 					break;
1526 				}
1527 			}
1528 			mtx_unlock_spin(&sched_lock);
1529 			if (breakout) {
1530 				PROC_UNLOCK(p);
1531 				continue;
1532 			}
1533 			/*
1534 			 * get a limit
1535 			 */
1536 			limit = OFF_TO_IDX(
1537 			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1538 				p->p_rlimit[RLIMIT_RSS].rlim_max));
1539 
1540 			/*
1541 			 * let processes that are swapped out really be
1542 			 * swapped out set the limit to nothing (will force a
1543 			 * swap-out.)
1544 			 */
1545 			if ((p->p_sflag & PS_INMEM) == 0)
1546 				limit = 0;	/* XXX */
1547 			PROC_UNLOCK(p);
1548 
1549 			size = vmspace_resident_count(p->p_vmspace);
1550 			if (limit >= 0 && size >= limit) {
1551 				vm_pageout_map_deactivate_pages(
1552 				    &p->p_vmspace->vm_map, limit);
1553 			}
1554 		}
1555 		sx_sunlock(&allproc_lock);
1556 	}
1557 }
1558 #endif			/* !defined(NO_SWAPPING) */
1559