xref: /freebsd/sys/vm/vm_pageout.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 /*
72  *	The proverbial page-out daemon.
73  */
74 
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77 
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/resourcevar.h>
89 #include <sys/sched.h>
90 #include <sys/signalvar.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94 #include <sys/sysctl.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_map.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_extern.h>
105 #include <vm/uma.h>
106 
107 #include <machine/mutex.h>
108 
109 /*
110  * System initialization
111  */
112 
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_scan(int pass);
117 
118 struct proc *pageproc;
119 
120 static struct kproc_desc page_kp = {
121 	"pagedaemon",
122 	vm_pageout,
123 	&pageproc
124 };
125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
126 
127 #if !defined(NO_SWAPPING)
128 /* the kernel process "vm_daemon"*/
129 static void vm_daemon(void);
130 static struct	proc *vmproc;
131 
132 static struct kproc_desc vm_kp = {
133 	"vmdaemon",
134 	vm_daemon,
135 	&vmproc
136 };
137 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
138 #endif
139 
140 
141 int vm_pages_needed;		/* Event on which pageout daemon sleeps */
142 int vm_pageout_deficit;		/* Estimated number of pages deficit */
143 int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
144 
145 #if !defined(NO_SWAPPING)
146 static int vm_pageout_req_swapout;	/* XXX */
147 static int vm_daemon_needed;
148 #endif
149 static int vm_max_launder = 32;
150 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
151 static int vm_pageout_full_stats_interval = 0;
152 static int vm_pageout_algorithm=0;
153 static int defer_swap_pageouts=0;
154 static int disable_swap_pageouts=0;
155 
156 #if defined(NO_SWAPPING)
157 static int vm_swap_enabled=0;
158 static int vm_swap_idle_enabled=0;
159 #else
160 static int vm_swap_enabled=1;
161 static int vm_swap_idle_enabled=0;
162 #endif
163 
164 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
165 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
166 
167 SYSCTL_INT(_vm, OID_AUTO, max_launder,
168 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
171 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
174 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
175 
176 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
177 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
178 
179 #if defined(NO_SWAPPING)
180 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
181 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
182 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
183 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
184 #else
185 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
187 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
189 #endif
190 
191 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
192 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
193 
194 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
195 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
196 
197 static int pageout_lock_miss;
198 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
199 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
200 
201 #define VM_PAGEOUT_PAGE_COUNT 16
202 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
203 
204 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
205 
206 #if !defined(NO_SWAPPING)
207 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
208 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
209 static void vm_req_vmdaemon(void);
210 #endif
211 static void vm_pageout_page_stats(void);
212 
213 /*
214  * vm_pageout_fallback_object_lock:
215  *
216  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
217  * known to have failed and page queue must be either PQ_ACTIVE or
218  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
219  * while locking the vm object.  Use marker page to detect page queue
220  * changes and maintain notion of next page on page queue.  Return
221  * TRUE if no changes were detected, FALSE otherwise.  vm object is
222  * locked on return.
223  *
224  * This function depends on both the lock portion of struct vm_object
225  * and normal struct vm_page being type stable.
226  */
227 static boolean_t
228 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
229 {
230 	struct vm_page marker;
231 	boolean_t unchanged;
232 	u_short queue;
233 	vm_object_t object;
234 
235 	/*
236 	 * Initialize our marker
237 	 */
238 	bzero(&marker, sizeof(marker));
239 	marker.flags = PG_FICTITIOUS | PG_MARKER;
240 	marker.oflags = VPO_BUSY;
241 	marker.queue = m->queue;
242 	marker.wire_count = 1;
243 
244 	queue = m->queue;
245 	object = m->object;
246 
247 	TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
248 			   m, &marker, pageq);
249 	vm_page_unlock_queues();
250 	VM_OBJECT_LOCK(object);
251 	vm_page_lock_queues();
252 
253 	/* Page queue might have changed. */
254 	*next = TAILQ_NEXT(&marker, pageq);
255 	unchanged = (m->queue == queue &&
256 		     m->object == object &&
257 		     &marker == TAILQ_NEXT(m, pageq));
258 	TAILQ_REMOVE(&vm_page_queues[queue].pl,
259 		     &marker, pageq);
260 	return (unchanged);
261 }
262 
263 /*
264  * vm_pageout_clean:
265  *
266  * Clean the page and remove it from the laundry.
267  *
268  * We set the busy bit to cause potential page faults on this page to
269  * block.  Note the careful timing, however, the busy bit isn't set till
270  * late and we cannot do anything that will mess with the page.
271  */
272 static int
273 vm_pageout_clean(m)
274 	vm_page_t m;
275 {
276 	vm_object_t object;
277 	vm_page_t mc[2*vm_pageout_page_count];
278 	int pageout_count;
279 	int ib, is, page_base;
280 	vm_pindex_t pindex = m->pindex;
281 
282 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
283 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
284 
285 	/*
286 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
287 	 * with the new swapper, but we could have serious problems paging
288 	 * out other object types if there is insufficient memory.
289 	 *
290 	 * Unfortunately, checking free memory here is far too late, so the
291 	 * check has been moved up a procedural level.
292 	 */
293 
294 	/*
295 	 * Don't mess with the page if it's busy, held, or special
296 	 */
297 	if ((m->hold_count != 0) ||
298 	    ((m->busy != 0) || (m->oflags & VPO_BUSY) ||
299 	     (m->flags & PG_UNMANAGED))) {
300 		return 0;
301 	}
302 
303 	mc[vm_pageout_page_count] = m;
304 	pageout_count = 1;
305 	page_base = vm_pageout_page_count;
306 	ib = 1;
307 	is = 1;
308 
309 	/*
310 	 * Scan object for clusterable pages.
311 	 *
312 	 * We can cluster ONLY if: ->> the page is NOT
313 	 * clean, wired, busy, held, or mapped into a
314 	 * buffer, and one of the following:
315 	 * 1) The page is inactive, or a seldom used
316 	 *    active page.
317 	 * -or-
318 	 * 2) we force the issue.
319 	 *
320 	 * During heavy mmap/modification loads the pageout
321 	 * daemon can really fragment the underlying file
322 	 * due to flushing pages out of order and not trying
323 	 * align the clusters (which leave sporatic out-of-order
324 	 * holes).  To solve this problem we do the reverse scan
325 	 * first and attempt to align our cluster, then do a
326 	 * forward scan if room remains.
327 	 */
328 	object = m->object;
329 more:
330 	while (ib && pageout_count < vm_pageout_page_count) {
331 		vm_page_t p;
332 
333 		if (ib > pindex) {
334 			ib = 0;
335 			break;
336 		}
337 
338 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
339 			ib = 0;
340 			break;
341 		}
342 		if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
343 		    (p->oflags & VPO_BUSY) || p->busy ||
344 		    (p->flags & PG_UNMANAGED)) {
345 			ib = 0;
346 			break;
347 		}
348 		vm_page_test_dirty(p);
349 		if ((p->dirty & p->valid) == 0 ||
350 		    p->queue != PQ_INACTIVE ||
351 		    p->wire_count != 0 ||	/* may be held by buf cache */
352 		    p->hold_count != 0) {	/* may be undergoing I/O */
353 			ib = 0;
354 			break;
355 		}
356 		mc[--page_base] = p;
357 		++pageout_count;
358 		++ib;
359 		/*
360 		 * alignment boundry, stop here and switch directions.  Do
361 		 * not clear ib.
362 		 */
363 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
364 			break;
365 	}
366 
367 	while (pageout_count < vm_pageout_page_count &&
368 	    pindex + is < object->size) {
369 		vm_page_t p;
370 
371 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
372 			break;
373 		if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
374 		    (p->oflags & VPO_BUSY) || p->busy ||
375 		    (p->flags & PG_UNMANAGED)) {
376 			break;
377 		}
378 		vm_page_test_dirty(p);
379 		if ((p->dirty & p->valid) == 0 ||
380 		    p->queue != PQ_INACTIVE ||
381 		    p->wire_count != 0 ||	/* may be held by buf cache */
382 		    p->hold_count != 0) {	/* may be undergoing I/O */
383 			break;
384 		}
385 		mc[page_base + pageout_count] = p;
386 		++pageout_count;
387 		++is;
388 	}
389 
390 	/*
391 	 * If we exhausted our forward scan, continue with the reverse scan
392 	 * when possible, even past a page boundry.  This catches boundry
393 	 * conditions.
394 	 */
395 	if (ib && pageout_count < vm_pageout_page_count)
396 		goto more;
397 
398 	/*
399 	 * we allow reads during pageouts...
400 	 */
401 	return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
402 }
403 
404 /*
405  * vm_pageout_flush() - launder the given pages
406  *
407  *	The given pages are laundered.  Note that we setup for the start of
408  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
409  *	reference count all in here rather then in the parent.  If we want
410  *	the parent to do more sophisticated things we may have to change
411  *	the ordering.
412  */
413 int
414 vm_pageout_flush(vm_page_t *mc, int count, int flags)
415 {
416 	vm_object_t object = mc[0]->object;
417 	int pageout_status[count];
418 	int numpagedout = 0;
419 	int i;
420 
421 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
422 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
423 	/*
424 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
425 	 * mark the pages read-only.
426 	 *
427 	 * We do not have to fixup the clean/dirty bits here... we can
428 	 * allow the pager to do it after the I/O completes.
429 	 *
430 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
431 	 * edge case with file fragments.
432 	 */
433 	for (i = 0; i < count; i++) {
434 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
435 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
436 			mc[i], i, count));
437 		vm_page_io_start(mc[i]);
438 		pmap_remove_write(mc[i]);
439 	}
440 	vm_page_unlock_queues();
441 	vm_object_pip_add(object, count);
442 
443 	vm_pager_put_pages(object, mc, count,
444 	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
445 	    pageout_status);
446 
447 	vm_page_lock_queues();
448 	for (i = 0; i < count; i++) {
449 		vm_page_t mt = mc[i];
450 
451 		KASSERT((mt->flags & PG_WRITEABLE) == 0,
452 		    ("vm_pageout_flush: page %p is not write protected", mt));
453 		switch (pageout_status[i]) {
454 		case VM_PAGER_OK:
455 		case VM_PAGER_PEND:
456 			numpagedout++;
457 			break;
458 		case VM_PAGER_BAD:
459 			/*
460 			 * Page outside of range of object. Right now we
461 			 * essentially lose the changes by pretending it
462 			 * worked.
463 			 */
464 			pmap_clear_modify(mt);
465 			vm_page_undirty(mt);
466 			break;
467 		case VM_PAGER_ERROR:
468 		case VM_PAGER_FAIL:
469 			/*
470 			 * If page couldn't be paged out, then reactivate the
471 			 * page so it doesn't clog the inactive list.  (We
472 			 * will try paging out it again later).
473 			 */
474 			vm_page_activate(mt);
475 			break;
476 		case VM_PAGER_AGAIN:
477 			break;
478 		}
479 
480 		/*
481 		 * If the operation is still going, leave the page busy to
482 		 * block all other accesses. Also, leave the paging in
483 		 * progress indicator set so that we don't attempt an object
484 		 * collapse.
485 		 */
486 		if (pageout_status[i] != VM_PAGER_PEND) {
487 			vm_object_pip_wakeup(object);
488 			vm_page_io_finish(mt);
489 			if (vm_page_count_severe())
490 				vm_page_try_to_cache(mt);
491 		}
492 	}
493 	return numpagedout;
494 }
495 
496 #if !defined(NO_SWAPPING)
497 /*
498  *	vm_pageout_object_deactivate_pages
499  *
500  *	deactivate enough pages to satisfy the inactive target
501  *	requirements or if vm_page_proc_limit is set, then
502  *	deactivate all of the pages in the object and its
503  *	backing_objects.
504  *
505  *	The object and map must be locked.
506  */
507 static void
508 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
509 	pmap_t pmap;
510 	vm_object_t first_object;
511 	long desired;
512 {
513 	vm_object_t backing_object, object;
514 	vm_page_t p, next;
515 	int actcount, rcount, remove_mode;
516 
517 	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
518 	if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
519 		return;
520 	for (object = first_object;; object = backing_object) {
521 		if (pmap_resident_count(pmap) <= desired)
522 			goto unlock_return;
523 		if (object->paging_in_progress)
524 			goto unlock_return;
525 
526 		remove_mode = 0;
527 		if (object->shadow_count > 1)
528 			remove_mode = 1;
529 		/*
530 		 * scan the objects entire memory queue
531 		 */
532 		rcount = object->resident_page_count;
533 		p = TAILQ_FIRST(&object->memq);
534 		vm_page_lock_queues();
535 		while (p && (rcount-- > 0)) {
536 			if (pmap_resident_count(pmap) <= desired) {
537 				vm_page_unlock_queues();
538 				goto unlock_return;
539 			}
540 			next = TAILQ_NEXT(p, listq);
541 			cnt.v_pdpages++;
542 			if (p->wire_count != 0 ||
543 			    p->hold_count != 0 ||
544 			    p->busy != 0 ||
545 			    (p->oflags & VPO_BUSY) ||
546 			    (p->flags & PG_UNMANAGED) ||
547 			    !pmap_page_exists_quick(pmap, p)) {
548 				p = next;
549 				continue;
550 			}
551 			actcount = pmap_ts_referenced(p);
552 			if (actcount) {
553 				vm_page_flag_set(p, PG_REFERENCED);
554 			} else if (p->flags & PG_REFERENCED) {
555 				actcount = 1;
556 			}
557 			if ((p->queue != PQ_ACTIVE) &&
558 				(p->flags & PG_REFERENCED)) {
559 				vm_page_activate(p);
560 				p->act_count += actcount;
561 				vm_page_flag_clear(p, PG_REFERENCED);
562 			} else if (p->queue == PQ_ACTIVE) {
563 				if ((p->flags & PG_REFERENCED) == 0) {
564 					p->act_count -= min(p->act_count, ACT_DECLINE);
565 					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
566 						pmap_remove_all(p);
567 						vm_page_deactivate(p);
568 					} else {
569 						vm_pageq_requeue(p);
570 					}
571 				} else {
572 					vm_page_activate(p);
573 					vm_page_flag_clear(p, PG_REFERENCED);
574 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
575 						p->act_count += ACT_ADVANCE;
576 					vm_pageq_requeue(p);
577 				}
578 			} else if (p->queue == PQ_INACTIVE) {
579 				pmap_remove_all(p);
580 			}
581 			p = next;
582 		}
583 		vm_page_unlock_queues();
584 		if ((backing_object = object->backing_object) == NULL)
585 			goto unlock_return;
586 		VM_OBJECT_LOCK(backing_object);
587 		if (object != first_object)
588 			VM_OBJECT_UNLOCK(object);
589 	}
590 unlock_return:
591 	if (object != first_object)
592 		VM_OBJECT_UNLOCK(object);
593 }
594 
595 /*
596  * deactivate some number of pages in a map, try to do it fairly, but
597  * that is really hard to do.
598  */
599 static void
600 vm_pageout_map_deactivate_pages(map, desired)
601 	vm_map_t map;
602 	long desired;
603 {
604 	vm_map_entry_t tmpe;
605 	vm_object_t obj, bigobj;
606 	int nothingwired;
607 
608 	if (!vm_map_trylock(map))
609 		return;
610 
611 	bigobj = NULL;
612 	nothingwired = TRUE;
613 
614 	/*
615 	 * first, search out the biggest object, and try to free pages from
616 	 * that.
617 	 */
618 	tmpe = map->header.next;
619 	while (tmpe != &map->header) {
620 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
621 			obj = tmpe->object.vm_object;
622 			if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
623 				if (obj->shadow_count <= 1 &&
624 				    (bigobj == NULL ||
625 				     bigobj->resident_page_count < obj->resident_page_count)) {
626 					if (bigobj != NULL)
627 						VM_OBJECT_UNLOCK(bigobj);
628 					bigobj = obj;
629 				} else
630 					VM_OBJECT_UNLOCK(obj);
631 			}
632 		}
633 		if (tmpe->wired_count > 0)
634 			nothingwired = FALSE;
635 		tmpe = tmpe->next;
636 	}
637 
638 	if (bigobj != NULL) {
639 		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
640 		VM_OBJECT_UNLOCK(bigobj);
641 	}
642 	/*
643 	 * Next, hunt around for other pages to deactivate.  We actually
644 	 * do this search sort of wrong -- .text first is not the best idea.
645 	 */
646 	tmpe = map->header.next;
647 	while (tmpe != &map->header) {
648 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
649 			break;
650 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
651 			obj = tmpe->object.vm_object;
652 			if (obj != NULL) {
653 				VM_OBJECT_LOCK(obj);
654 				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
655 				VM_OBJECT_UNLOCK(obj);
656 			}
657 		}
658 		tmpe = tmpe->next;
659 	}
660 
661 	/*
662 	 * Remove all mappings if a process is swapped out, this will free page
663 	 * table pages.
664 	 */
665 	if (desired == 0 && nothingwired) {
666 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
667 		    vm_map_max(map));
668 	}
669 	vm_map_unlock(map);
670 }
671 #endif		/* !defined(NO_SWAPPING) */
672 
673 /*
674  *	vm_pageout_scan does the dirty work for the pageout daemon.
675  */
676 static void
677 vm_pageout_scan(int pass)
678 {
679 	vm_page_t m, next;
680 	struct vm_page marker;
681 	int page_shortage, maxscan, pcount;
682 	int addl_page_shortage, addl_page_shortage_init;
683 	struct proc *p, *bigproc;
684 	struct thread *td;
685 	vm_offset_t size, bigsize;
686 	vm_object_t object;
687 	int actcount, cache_cur, cache_first_failure;
688 	static int cache_last_free;
689 	int vnodes_skipped = 0;
690 	int maxlaunder;
691 
692 	mtx_lock(&Giant);
693 	/*
694 	 * Decrease registered cache sizes.
695 	 */
696 	EVENTHANDLER_INVOKE(vm_lowmem, 0);
697 	/*
698 	 * We do this explicitly after the caches have been drained above.
699 	 */
700 	uma_reclaim();
701 
702 	addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
703 
704 	/*
705 	 * Calculate the number of pages we want to either free or move
706 	 * to the cache.
707 	 */
708 	page_shortage = vm_paging_target() + addl_page_shortage_init;
709 
710 	/*
711 	 * Initialize our marker
712 	 */
713 	bzero(&marker, sizeof(marker));
714 	marker.flags = PG_FICTITIOUS | PG_MARKER;
715 	marker.oflags = VPO_BUSY;
716 	marker.queue = PQ_INACTIVE;
717 	marker.wire_count = 1;
718 
719 	/*
720 	 * Start scanning the inactive queue for pages we can move to the
721 	 * cache or free.  The scan will stop when the target is reached or
722 	 * we have scanned the entire inactive queue.  Note that m->act_count
723 	 * is not used to form decisions for the inactive queue, only for the
724 	 * active queue.
725 	 *
726 	 * maxlaunder limits the number of dirty pages we flush per scan.
727 	 * For most systems a smaller value (16 or 32) is more robust under
728 	 * extreme memory and disk pressure because any unnecessary writes
729 	 * to disk can result in extreme performance degredation.  However,
730 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
731 	 * used) will die horribly with limited laundering.  If the pageout
732 	 * daemon cannot clean enough pages in the first pass, we let it go
733 	 * all out in succeeding passes.
734 	 */
735 	if ((maxlaunder = vm_max_launder) <= 1)
736 		maxlaunder = 1;
737 	if (pass)
738 		maxlaunder = 10000;
739 	vm_page_lock_queues();
740 rescan0:
741 	addl_page_shortage = addl_page_shortage_init;
742 	maxscan = cnt.v_inactive_count;
743 
744 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
745 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
746 	     m = next) {
747 
748 		cnt.v_pdpages++;
749 
750 		if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
751 			goto rescan0;
752 		}
753 
754 		next = TAILQ_NEXT(m, pageq);
755 		object = m->object;
756 
757 		/*
758 		 * skip marker pages
759 		 */
760 		if (m->flags & PG_MARKER)
761 			continue;
762 
763 		/*
764 		 * A held page may be undergoing I/O, so skip it.
765 		 */
766 		if (m->hold_count) {
767 			vm_pageq_requeue(m);
768 			addl_page_shortage++;
769 			continue;
770 		}
771 		/*
772 		 * Don't mess with busy pages, keep in the front of the
773 		 * queue, most likely are being paged out.
774 		 */
775 		if (!VM_OBJECT_TRYLOCK(object) &&
776 		    (!vm_pageout_fallback_object_lock(m, &next) ||
777 		     m->hold_count != 0)) {
778 			VM_OBJECT_UNLOCK(object);
779 			addl_page_shortage++;
780 			continue;
781 		}
782 		if (m->busy || (m->oflags & VPO_BUSY)) {
783 			VM_OBJECT_UNLOCK(object);
784 			addl_page_shortage++;
785 			continue;
786 		}
787 
788 		/*
789 		 * If the object is not being used, we ignore previous
790 		 * references.
791 		 */
792 		if (object->ref_count == 0) {
793 			vm_page_flag_clear(m, PG_REFERENCED);
794 			pmap_clear_reference(m);
795 
796 		/*
797 		 * Otherwise, if the page has been referenced while in the
798 		 * inactive queue, we bump the "activation count" upwards,
799 		 * making it less likely that the page will be added back to
800 		 * the inactive queue prematurely again.  Here we check the
801 		 * page tables (or emulated bits, if any), given the upper
802 		 * level VM system not knowing anything about existing
803 		 * references.
804 		 */
805 		} else if (((m->flags & PG_REFERENCED) == 0) &&
806 			(actcount = pmap_ts_referenced(m))) {
807 			vm_page_activate(m);
808 			VM_OBJECT_UNLOCK(object);
809 			m->act_count += (actcount + ACT_ADVANCE);
810 			continue;
811 		}
812 
813 		/*
814 		 * If the upper level VM system knows about any page
815 		 * references, we activate the page.  We also set the
816 		 * "activation count" higher than normal so that we will less
817 		 * likely place pages back onto the inactive queue again.
818 		 */
819 		if ((m->flags & PG_REFERENCED) != 0) {
820 			vm_page_flag_clear(m, PG_REFERENCED);
821 			actcount = pmap_ts_referenced(m);
822 			vm_page_activate(m);
823 			VM_OBJECT_UNLOCK(object);
824 			m->act_count += (actcount + ACT_ADVANCE + 1);
825 			continue;
826 		}
827 
828 		/*
829 		 * If the upper level VM system doesn't know anything about
830 		 * the page being dirty, we have to check for it again.  As
831 		 * far as the VM code knows, any partially dirty pages are
832 		 * fully dirty.
833 		 */
834 		if (m->dirty == 0 && !pmap_is_modified(m)) {
835 			/*
836 			 * Avoid a race condition: Unless write access is
837 			 * removed from the page, another processor could
838 			 * modify it before all access is removed by the call
839 			 * to vm_page_cache() below.  If vm_page_cache() finds
840 			 * that the page has been modified when it removes all
841 			 * access, it panics because it cannot cache dirty
842 			 * pages.  In principle, we could eliminate just write
843 			 * access here rather than all access.  In the expected
844 			 * case, when there are no last instant modifications
845 			 * to the page, removing all access will be cheaper
846 			 * overall.
847 			 */
848 			if ((m->flags & PG_WRITEABLE) != 0)
849 				pmap_remove_all(m);
850 		} else {
851 			vm_page_dirty(m);
852 		}
853 
854 		if (m->valid == 0) {
855 			/*
856 			 * Invalid pages can be easily freed
857 			 */
858 			vm_page_free(m);
859 			cnt.v_dfree++;
860 			--page_shortage;
861 		} else if (m->dirty == 0) {
862 			/*
863 			 * Clean pages can be placed onto the cache queue.
864 			 * This effectively frees them.
865 			 */
866 			vm_page_cache(m);
867 			--page_shortage;
868 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
869 			/*
870 			 * Dirty pages need to be paged out, but flushing
871 			 * a page is extremely expensive verses freeing
872 			 * a clean page.  Rather then artificially limiting
873 			 * the number of pages we can flush, we instead give
874 			 * dirty pages extra priority on the inactive queue
875 			 * by forcing them to be cycled through the queue
876 			 * twice before being flushed, after which the
877 			 * (now clean) page will cycle through once more
878 			 * before being freed.  This significantly extends
879 			 * the thrash point for a heavily loaded machine.
880 			 */
881 			vm_page_flag_set(m, PG_WINATCFLS);
882 			vm_pageq_requeue(m);
883 		} else if (maxlaunder > 0) {
884 			/*
885 			 * We always want to try to flush some dirty pages if
886 			 * we encounter them, to keep the system stable.
887 			 * Normally this number is small, but under extreme
888 			 * pressure where there are insufficient clean pages
889 			 * on the inactive queue, we may have to go all out.
890 			 */
891 			int swap_pageouts_ok;
892 			struct vnode *vp = NULL;
893 			struct mount *mp;
894 
895 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
896 				swap_pageouts_ok = 1;
897 			} else {
898 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
899 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
900 				vm_page_count_min());
901 
902 			}
903 
904 			/*
905 			 * We don't bother paging objects that are "dead".
906 			 * Those objects are in a "rundown" state.
907 			 */
908 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
909 				VM_OBJECT_UNLOCK(object);
910 				vm_pageq_requeue(m);
911 				continue;
912 			}
913 
914 			/*
915 			 * Following operations may unlock
916 			 * vm_page_queue_mtx, invalidating the 'next'
917 			 * pointer.  To prevent an inordinate number
918 			 * of restarts we use our marker to remember
919 			 * our place.
920 			 *
921 			 */
922 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
923 					   m, &marker, pageq);
924 			/*
925 			 * The object is already known NOT to be dead.   It
926 			 * is possible for the vget() to block the whole
927 			 * pageout daemon, but the new low-memory handling
928 			 * code should prevent it.
929 			 *
930 			 * The previous code skipped locked vnodes and, worse,
931 			 * reordered pages in the queue.  This results in
932 			 * completely non-deterministic operation and, on a
933 			 * busy system, can lead to extremely non-optimal
934 			 * pageouts.  For example, it can cause clean pages
935 			 * to be freed and dirty pages to be moved to the end
936 			 * of the queue.  Since dirty pages are also moved to
937 			 * the end of the queue once-cleaned, this gives
938 			 * way too large a weighting to defering the freeing
939 			 * of dirty pages.
940 			 *
941 			 * We can't wait forever for the vnode lock, we might
942 			 * deadlock due to a vn_read() getting stuck in
943 			 * vm_wait while holding this vnode.  We skip the
944 			 * vnode if we can't get it in a reasonable amount
945 			 * of time.
946 			 */
947 			if (object->type == OBJT_VNODE) {
948 				vp = object->handle;
949 				mp = NULL;
950 				if (vp->v_type == VREG &&
951 				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
952 					++pageout_lock_miss;
953 					if (object->flags & OBJ_MIGHTBEDIRTY)
954 						vnodes_skipped++;
955 					vp = NULL;
956 					goto unlock_and_continue;
957 				}
958 				vm_page_unlock_queues();
959 				VI_LOCK(vp);
960 				VM_OBJECT_UNLOCK(object);
961 				if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
962 				    LK_TIMELOCK, curthread)) {
963 					VM_OBJECT_LOCK(object);
964 					vm_page_lock_queues();
965 					++pageout_lock_miss;
966 					vn_finished_write(mp);
967 					if (object->flags & OBJ_MIGHTBEDIRTY)
968 						vnodes_skipped++;
969 					vp = NULL;
970 					goto unlock_and_continue;
971 				}
972 				VM_OBJECT_LOCK(object);
973 				vm_page_lock_queues();
974 				/*
975 				 * The page might have been moved to another
976 				 * queue during potential blocking in vget()
977 				 * above.  The page might have been freed and
978 				 * reused for another vnode.  The object might
979 				 * have been reused for another vnode.
980 				 */
981 				if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
982 				    m->object != object ||
983 				    object->handle != vp ||
984 				    TAILQ_NEXT(m, pageq) != &marker) {
985 					if (object->flags & OBJ_MIGHTBEDIRTY)
986 						vnodes_skipped++;
987 					goto unlock_and_continue;
988 				}
989 
990 				/*
991 				 * The page may have been busied during the
992 				 * blocking in vput();  We don't move the
993 				 * page back onto the end of the queue so that
994 				 * statistics are more correct if we don't.
995 				 */
996 				if (m->busy || (m->oflags & VPO_BUSY)) {
997 					goto unlock_and_continue;
998 				}
999 
1000 				/*
1001 				 * If the page has become held it might
1002 				 * be undergoing I/O, so skip it
1003 				 */
1004 				if (m->hold_count) {
1005 					vm_pageq_requeue(m);
1006 					if (object->flags & OBJ_MIGHTBEDIRTY)
1007 						vnodes_skipped++;
1008 					goto unlock_and_continue;
1009 				}
1010 			}
1011 
1012 			/*
1013 			 * If a page is dirty, then it is either being washed
1014 			 * (but not yet cleaned) or it is still in the
1015 			 * laundry.  If it is still in the laundry, then we
1016 			 * start the cleaning operation.
1017 			 *
1018 			 * decrement page_shortage on success to account for
1019 			 * the (future) cleaned page.  Otherwise we could wind
1020 			 * up laundering or cleaning too many pages.
1021 			 */
1022 			if (vm_pageout_clean(m) != 0) {
1023 				--page_shortage;
1024 				--maxlaunder;
1025 			}
1026 unlock_and_continue:
1027 			VM_OBJECT_UNLOCK(object);
1028 			if (vp) {
1029 				vm_page_unlock_queues();
1030 				vput(vp);
1031 				vn_finished_write(mp);
1032 				vm_page_lock_queues();
1033 			}
1034 			next = TAILQ_NEXT(&marker, pageq);
1035 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1036 				     &marker, pageq);
1037 			continue;
1038 		}
1039 		VM_OBJECT_UNLOCK(object);
1040 	}
1041 
1042 	/*
1043 	 * Compute the number of pages we want to try to move from the
1044 	 * active queue to the inactive queue.
1045 	 */
1046 	page_shortage = vm_paging_target() +
1047 		cnt.v_inactive_target - cnt.v_inactive_count;
1048 	page_shortage += addl_page_shortage;
1049 
1050 	/*
1051 	 * Scan the active queue for things we can deactivate. We nominally
1052 	 * track the per-page activity counter and use it to locate
1053 	 * deactivation candidates.
1054 	 */
1055 	pcount = cnt.v_active_count;
1056 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1057 
1058 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1059 
1060 		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1061 		    ("vm_pageout_scan: page %p isn't active", m));
1062 
1063 		next = TAILQ_NEXT(m, pageq);
1064 		object = m->object;
1065 		if ((m->flags & PG_MARKER) != 0) {
1066 			m = next;
1067 			continue;
1068 		}
1069 		if (!VM_OBJECT_TRYLOCK(object) &&
1070 		    !vm_pageout_fallback_object_lock(m, &next)) {
1071 			VM_OBJECT_UNLOCK(object);
1072 			m = next;
1073 			continue;
1074 		}
1075 
1076 		/*
1077 		 * Don't deactivate pages that are busy.
1078 		 */
1079 		if ((m->busy != 0) ||
1080 		    (m->oflags & VPO_BUSY) ||
1081 		    (m->hold_count != 0)) {
1082 			VM_OBJECT_UNLOCK(object);
1083 			vm_pageq_requeue(m);
1084 			m = next;
1085 			continue;
1086 		}
1087 
1088 		/*
1089 		 * The count for pagedaemon pages is done after checking the
1090 		 * page for eligibility...
1091 		 */
1092 		cnt.v_pdpages++;
1093 
1094 		/*
1095 		 * Check to see "how much" the page has been used.
1096 		 */
1097 		actcount = 0;
1098 		if (object->ref_count != 0) {
1099 			if (m->flags & PG_REFERENCED) {
1100 				actcount += 1;
1101 			}
1102 			actcount += pmap_ts_referenced(m);
1103 			if (actcount) {
1104 				m->act_count += ACT_ADVANCE + actcount;
1105 				if (m->act_count > ACT_MAX)
1106 					m->act_count = ACT_MAX;
1107 			}
1108 		}
1109 
1110 		/*
1111 		 * Since we have "tested" this bit, we need to clear it now.
1112 		 */
1113 		vm_page_flag_clear(m, PG_REFERENCED);
1114 
1115 		/*
1116 		 * Only if an object is currently being used, do we use the
1117 		 * page activation count stats.
1118 		 */
1119 		if (actcount && (object->ref_count != 0)) {
1120 			vm_pageq_requeue(m);
1121 		} else {
1122 			m->act_count -= min(m->act_count, ACT_DECLINE);
1123 			if (vm_pageout_algorithm ||
1124 			    object->ref_count == 0 ||
1125 			    m->act_count == 0) {
1126 				page_shortage--;
1127 				if (object->ref_count == 0) {
1128 					pmap_remove_all(m);
1129 					if (m->dirty == 0)
1130 						vm_page_cache(m);
1131 					else
1132 						vm_page_deactivate(m);
1133 				} else {
1134 					vm_page_deactivate(m);
1135 				}
1136 			} else {
1137 				vm_pageq_requeue(m);
1138 			}
1139 		}
1140 		VM_OBJECT_UNLOCK(object);
1141 		m = next;
1142 	}
1143 
1144 	/*
1145 	 * We try to maintain some *really* free pages, this allows interrupt
1146 	 * code to be guaranteed space.  Since both cache and free queues
1147 	 * are considered basically 'free', moving pages from cache to free
1148 	 * does not effect other calculations.
1149 	 */
1150 	cache_cur = cache_last_free;
1151 	cache_first_failure = -1;
1152 	while (cnt.v_free_count < cnt.v_free_reserved && (cache_cur =
1153 	    (cache_cur + PQ_PRIME2) & PQ_COLORMASK) != cache_first_failure) {
1154 		TAILQ_FOREACH(m, &vm_page_queues[PQ_CACHE + cache_cur].pl,
1155 		    pageq) {
1156 			KASSERT(m->dirty == 0,
1157 			    ("Found dirty cache page %p", m));
1158 			KASSERT(!pmap_page_is_mapped(m),
1159 			    ("Found mapped cache page %p", m));
1160 			KASSERT((m->flags & PG_UNMANAGED) == 0,
1161 			    ("Found unmanaged cache page %p", m));
1162 			KASSERT(m->wire_count == 0,
1163 			    ("Found wired cache page %p", m));
1164 			if (m->hold_count == 0 && VM_OBJECT_TRYLOCK(object =
1165 			    m->object)) {
1166 				KASSERT((m->oflags & VPO_BUSY) == 0 &&
1167 				    m->busy == 0, ("Found busy cache page %p",
1168 				    m));
1169 				vm_page_free(m);
1170 				VM_OBJECT_UNLOCK(object);
1171 				cnt.v_dfree++;
1172 				cache_last_free = cache_cur;
1173 				cache_first_failure = -1;
1174 				break;
1175 			}
1176 		}
1177 		if (m == NULL && cache_first_failure == -1)
1178 			cache_first_failure = cache_cur;
1179 	}
1180 	vm_page_unlock_queues();
1181 #if !defined(NO_SWAPPING)
1182 	/*
1183 	 * Idle process swapout -- run once per second.
1184 	 */
1185 	if (vm_swap_idle_enabled) {
1186 		static long lsec;
1187 		if (time_second != lsec) {
1188 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1189 			vm_req_vmdaemon();
1190 			lsec = time_second;
1191 		}
1192 	}
1193 #endif
1194 
1195 	/*
1196 	 * If we didn't get enough free pages, and we have skipped a vnode
1197 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1198 	 * if we did not get enough free pages.
1199 	 */
1200 	if (vm_paging_target() > 0) {
1201 		if (vnodes_skipped && vm_page_count_min())
1202 			(void) speedup_syncer();
1203 #if !defined(NO_SWAPPING)
1204 		if (vm_swap_enabled && vm_page_count_target()) {
1205 			vm_req_vmdaemon();
1206 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1207 		}
1208 #endif
1209 	}
1210 
1211 	/*
1212 	 * If we are critically low on one of RAM or swap and low on
1213 	 * the other, kill the largest process.  However, we avoid
1214 	 * doing this on the first pass in order to give ourselves a
1215 	 * chance to flush out dirty vnode-backed pages and to allow
1216 	 * active pages to be moved to the inactive queue and reclaimed.
1217 	 *
1218 	 * We keep the process bigproc locked once we find it to keep anyone
1219 	 * from messing with it; however, there is a possibility of
1220 	 * deadlock if process B is bigproc and one of it's child processes
1221 	 * attempts to propagate a signal to B while we are waiting for A's
1222 	 * lock while walking this list.  To avoid this, we don't block on
1223 	 * the process lock but just skip a process if it is already locked.
1224 	 */
1225 	if (pass != 0 &&
1226 	    ((swap_pager_avail < 64 && vm_page_count_min()) ||
1227 	     (swap_pager_full && vm_paging_target() > 0))) {
1228 		bigproc = NULL;
1229 		bigsize = 0;
1230 		sx_slock(&allproc_lock);
1231 		FOREACH_PROC_IN_SYSTEM(p) {
1232 			int breakout;
1233 
1234 			if (PROC_TRYLOCK(p) == 0)
1235 				continue;
1236 			/*
1237 			 * If this is a system or protected process, skip it.
1238 			 */
1239 			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1240 			    (p->p_flag & P_PROTECTED) ||
1241 			    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1242 				PROC_UNLOCK(p);
1243 				continue;
1244 			}
1245 			/*
1246 			 * If the process is in a non-running type state,
1247 			 * don't touch it.  Check all the threads individually.
1248 			 */
1249 			mtx_lock_spin(&sched_lock);
1250 			breakout = 0;
1251 			FOREACH_THREAD_IN_PROC(p, td) {
1252 				if (!TD_ON_RUNQ(td) &&
1253 				    !TD_IS_RUNNING(td) &&
1254 				    !TD_IS_SLEEPING(td)) {
1255 					breakout = 1;
1256 					break;
1257 				}
1258 			}
1259 			if (breakout) {
1260 				mtx_unlock_spin(&sched_lock);
1261 				PROC_UNLOCK(p);
1262 				continue;
1263 			}
1264 			mtx_unlock_spin(&sched_lock);
1265 			/*
1266 			 * get the process size
1267 			 */
1268 			if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1269 				PROC_UNLOCK(p);
1270 				continue;
1271 			}
1272 			size = vmspace_swap_count(p->p_vmspace);
1273 			vm_map_unlock_read(&p->p_vmspace->vm_map);
1274 			size += vmspace_resident_count(p->p_vmspace);
1275 			/*
1276 			 * if the this process is bigger than the biggest one
1277 			 * remember it.
1278 			 */
1279 			if (size > bigsize) {
1280 				if (bigproc != NULL)
1281 					PROC_UNLOCK(bigproc);
1282 				bigproc = p;
1283 				bigsize = size;
1284 			} else
1285 				PROC_UNLOCK(p);
1286 		}
1287 		sx_sunlock(&allproc_lock);
1288 		if (bigproc != NULL) {
1289 			killproc(bigproc, "out of swap space");
1290 			mtx_lock_spin(&sched_lock);
1291 			sched_nice(bigproc, PRIO_MIN);
1292 			mtx_unlock_spin(&sched_lock);
1293 			PROC_UNLOCK(bigproc);
1294 			wakeup(&cnt.v_free_count);
1295 		}
1296 	}
1297 	mtx_unlock(&Giant);
1298 }
1299 
1300 /*
1301  * This routine tries to maintain the pseudo LRU active queue,
1302  * so that during long periods of time where there is no paging,
1303  * that some statistic accumulation still occurs.  This code
1304  * helps the situation where paging just starts to occur.
1305  */
1306 static void
1307 vm_pageout_page_stats()
1308 {
1309 	vm_object_t object;
1310 	vm_page_t m,next;
1311 	int pcount,tpcount;		/* Number of pages to check */
1312 	static int fullintervalcount = 0;
1313 	int page_shortage;
1314 
1315 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1316 	page_shortage =
1317 	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1318 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1319 
1320 	if (page_shortage <= 0)
1321 		return;
1322 
1323 	pcount = cnt.v_active_count;
1324 	fullintervalcount += vm_pageout_stats_interval;
1325 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1326 		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1327 		if (pcount > tpcount)
1328 			pcount = tpcount;
1329 	} else {
1330 		fullintervalcount = 0;
1331 	}
1332 
1333 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1334 	while ((m != NULL) && (pcount-- > 0)) {
1335 		int actcount;
1336 
1337 		KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1338 		    ("vm_pageout_page_stats: page %p isn't active", m));
1339 
1340 		next = TAILQ_NEXT(m, pageq);
1341 		object = m->object;
1342 
1343 		if ((m->flags & PG_MARKER) != 0) {
1344 			m = next;
1345 			continue;
1346 		}
1347 		if (!VM_OBJECT_TRYLOCK(object) &&
1348 		    !vm_pageout_fallback_object_lock(m, &next)) {
1349 			VM_OBJECT_UNLOCK(object);
1350 			m = next;
1351 			continue;
1352 		}
1353 
1354 		/*
1355 		 * Don't deactivate pages that are busy.
1356 		 */
1357 		if ((m->busy != 0) ||
1358 		    (m->oflags & VPO_BUSY) ||
1359 		    (m->hold_count != 0)) {
1360 			VM_OBJECT_UNLOCK(object);
1361 			vm_pageq_requeue(m);
1362 			m = next;
1363 			continue;
1364 		}
1365 
1366 		actcount = 0;
1367 		if (m->flags & PG_REFERENCED) {
1368 			vm_page_flag_clear(m, PG_REFERENCED);
1369 			actcount += 1;
1370 		}
1371 
1372 		actcount += pmap_ts_referenced(m);
1373 		if (actcount) {
1374 			m->act_count += ACT_ADVANCE + actcount;
1375 			if (m->act_count > ACT_MAX)
1376 				m->act_count = ACT_MAX;
1377 			vm_pageq_requeue(m);
1378 		} else {
1379 			if (m->act_count == 0) {
1380 				/*
1381 				 * We turn off page access, so that we have
1382 				 * more accurate RSS stats.  We don't do this
1383 				 * in the normal page deactivation when the
1384 				 * system is loaded VM wise, because the
1385 				 * cost of the large number of page protect
1386 				 * operations would be higher than the value
1387 				 * of doing the operation.
1388 				 */
1389 				pmap_remove_all(m);
1390 				vm_page_deactivate(m);
1391 			} else {
1392 				m->act_count -= min(m->act_count, ACT_DECLINE);
1393 				vm_pageq_requeue(m);
1394 			}
1395 		}
1396 		VM_OBJECT_UNLOCK(object);
1397 		m = next;
1398 	}
1399 }
1400 
1401 /*
1402  *	vm_pageout is the high level pageout daemon.
1403  */
1404 static void
1405 vm_pageout()
1406 {
1407 	int error, pass;
1408 
1409 	/*
1410 	 * Initialize some paging parameters.
1411 	 */
1412 	cnt.v_interrupt_free_min = 2;
1413 	if (cnt.v_page_count < 2000)
1414 		vm_pageout_page_count = 8;
1415 
1416 	/*
1417 	 * v_free_reserved needs to include enough for the largest
1418 	 * swap pager structures plus enough for any pv_entry structs
1419 	 * when paging.
1420 	 */
1421 	if (cnt.v_page_count > 1024)
1422 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1423 	else
1424 		cnt.v_free_min = 4;
1425 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1426 	    cnt.v_interrupt_free_min;
1427 	cnt.v_free_reserved = vm_pageout_page_count +
1428 	    cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_NUMCOLORS;
1429 	cnt.v_free_severe = cnt.v_free_min / 2;
1430 	cnt.v_free_min += cnt.v_free_reserved;
1431 	cnt.v_free_severe += cnt.v_free_reserved;
1432 
1433 	/*
1434 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1435 	 * that these are more a measure of the VM cache queue hysteresis
1436 	 * then the VM free queue.  Specifically, v_free_target is the
1437 	 * high water mark (free+cache pages).
1438 	 *
1439 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1440 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1441 	 * be big enough to handle memory needs while the pageout daemon
1442 	 * is signalled and run to free more pages.
1443 	 */
1444 	if (cnt.v_free_count > 6144)
1445 		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1446 	else
1447 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1448 
1449 	if (cnt.v_free_count > 2048) {
1450 		cnt.v_cache_min = cnt.v_free_target;
1451 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1452 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1453 	} else {
1454 		cnt.v_cache_min = 0;
1455 		cnt.v_cache_max = 0;
1456 		cnt.v_inactive_target = cnt.v_free_count / 4;
1457 	}
1458 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1459 		cnt.v_inactive_target = cnt.v_free_count / 3;
1460 
1461 	/* XXX does not really belong here */
1462 	if (vm_page_max_wired == 0)
1463 		vm_page_max_wired = cnt.v_free_count / 3;
1464 
1465 	if (vm_pageout_stats_max == 0)
1466 		vm_pageout_stats_max = cnt.v_free_target;
1467 
1468 	/*
1469 	 * Set interval in seconds for stats scan.
1470 	 */
1471 	if (vm_pageout_stats_interval == 0)
1472 		vm_pageout_stats_interval = 5;
1473 	if (vm_pageout_full_stats_interval == 0)
1474 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1475 
1476 	swap_pager_swap_init();
1477 	pass = 0;
1478 	/*
1479 	 * The pageout daemon is never done, so loop forever.
1480 	 */
1481 	while (TRUE) {
1482 		/*
1483 		 * If we have enough free memory, wakeup waiters.  Do
1484 		 * not clear vm_pages_needed until we reach our target,
1485 		 * otherwise we may be woken up over and over again and
1486 		 * waste a lot of cpu.
1487 		 */
1488 		mtx_lock(&vm_page_queue_free_mtx);
1489 		if (vm_pages_needed && !vm_page_count_min()) {
1490 			if (!vm_paging_needed())
1491 				vm_pages_needed = 0;
1492 			wakeup(&cnt.v_free_count);
1493 		}
1494 		if (vm_pages_needed) {
1495 			/*
1496 			 * Still not done, take a second pass without waiting
1497 			 * (unlimited dirty cleaning), otherwise sleep a bit
1498 			 * and try again.
1499 			 */
1500 			++pass;
1501 			if (pass > 1)
1502 				msleep(&vm_pages_needed,
1503 				    &vm_page_queue_free_mtx, PVM, "psleep",
1504 				    hz / 2);
1505 		} else {
1506 			/*
1507 			 * Good enough, sleep & handle stats.  Prime the pass
1508 			 * for the next run.
1509 			 */
1510 			if (pass > 1)
1511 				pass = 1;
1512 			else
1513 				pass = 0;
1514 			error = msleep(&vm_pages_needed,
1515 			    &vm_page_queue_free_mtx, PVM, "psleep",
1516 			    vm_pageout_stats_interval * hz);
1517 			if (error && !vm_pages_needed) {
1518 				mtx_unlock(&vm_page_queue_free_mtx);
1519 				pass = 0;
1520 				vm_page_lock_queues();
1521 				vm_pageout_page_stats();
1522 				vm_page_unlock_queues();
1523 				continue;
1524 			}
1525 		}
1526 		if (vm_pages_needed)
1527 			cnt.v_pdwakeups++;
1528 		mtx_unlock(&vm_page_queue_free_mtx);
1529 		vm_pageout_scan(pass);
1530 	}
1531 }
1532 
1533 /*
1534  * Unless the free page queue lock is held by the caller, this function
1535  * should be regarded as advisory.  Specifically, the caller should
1536  * not msleep() on &cnt.v_free_count following this function unless
1537  * the free page queue lock is held until the msleep() is performed.
1538  */
1539 void
1540 pagedaemon_wakeup()
1541 {
1542 
1543 	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1544 		vm_pages_needed = 1;
1545 		wakeup(&vm_pages_needed);
1546 	}
1547 }
1548 
1549 #if !defined(NO_SWAPPING)
1550 static void
1551 vm_req_vmdaemon()
1552 {
1553 	static int lastrun = 0;
1554 
1555 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1556 		wakeup(&vm_daemon_needed);
1557 		lastrun = ticks;
1558 	}
1559 }
1560 
1561 static void
1562 vm_daemon()
1563 {
1564 	struct rlimit rsslim;
1565 	struct proc *p;
1566 	struct thread *td;
1567 	int breakout;
1568 
1569 	mtx_lock(&Giant);
1570 	while (TRUE) {
1571 		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1572 		if (vm_pageout_req_swapout) {
1573 			swapout_procs(vm_pageout_req_swapout);
1574 			vm_pageout_req_swapout = 0;
1575 		}
1576 		/*
1577 		 * scan the processes for exceeding their rlimits or if
1578 		 * process is swapped out -- deactivate pages
1579 		 */
1580 		sx_slock(&allproc_lock);
1581 		FOREACH_PROC_IN_SYSTEM(p) {
1582 			vm_pindex_t limit, size;
1583 
1584 			/*
1585 			 * if this is a system process or if we have already
1586 			 * looked at this process, skip it.
1587 			 */
1588 			PROC_LOCK(p);
1589 			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1590 				PROC_UNLOCK(p);
1591 				continue;
1592 			}
1593 			/*
1594 			 * if the process is in a non-running type state,
1595 			 * don't touch it.
1596 			 */
1597 			mtx_lock_spin(&sched_lock);
1598 			breakout = 0;
1599 			FOREACH_THREAD_IN_PROC(p, td) {
1600 				if (!TD_ON_RUNQ(td) &&
1601 				    !TD_IS_RUNNING(td) &&
1602 				    !TD_IS_SLEEPING(td)) {
1603 					breakout = 1;
1604 					break;
1605 				}
1606 			}
1607 			mtx_unlock_spin(&sched_lock);
1608 			if (breakout) {
1609 				PROC_UNLOCK(p);
1610 				continue;
1611 			}
1612 			/*
1613 			 * get a limit
1614 			 */
1615 			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1616 			limit = OFF_TO_IDX(
1617 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1618 
1619 			/*
1620 			 * let processes that are swapped out really be
1621 			 * swapped out set the limit to nothing (will force a
1622 			 * swap-out.)
1623 			 */
1624 			if ((p->p_sflag & PS_INMEM) == 0)
1625 				limit = 0;	/* XXX */
1626 			PROC_UNLOCK(p);
1627 
1628 			size = vmspace_resident_count(p->p_vmspace);
1629 			if (limit >= 0 && size >= limit) {
1630 				vm_pageout_map_deactivate_pages(
1631 				    &p->p_vmspace->vm_map, limit);
1632 			}
1633 		}
1634 		sx_sunlock(&allproc_lock);
1635 	}
1636 }
1637 #endif			/* !defined(NO_SWAPPING) */
1638