1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 45 * 46 * 47 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 48 * All rights reserved. 49 * 50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 51 * 52 * Permission to use, copy, modify and distribute this software and 53 * its documentation is hereby granted, provided that both the copyright 54 * notice and this permission notice appear in all copies of the 55 * software, derivative works or modified versions, and any portions 56 * thereof, and that both notices appear in supporting documentation. 57 * 58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 61 * 62 * Carnegie Mellon requests users of this software to return to 63 * 64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 65 * School of Computer Science 66 * Carnegie Mellon University 67 * Pittsburgh PA 15213-3890 68 * 69 * any improvements or extensions that they make and grant Carnegie the 70 * rights to redistribute these changes. 71 */ 72 73 /* 74 * The proverbial page-out daemon. 75 */ 76 77 #include <sys/cdefs.h> 78 __FBSDID("$FreeBSD$"); 79 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/mutex.h> 88 #include <sys/proc.h> 89 #include <sys/kthread.h> 90 #include <sys/ktr.h> 91 #include <sys/mount.h> 92 #include <sys/racct.h> 93 #include <sys/resourcevar.h> 94 #include <sys/sched.h> 95 #include <sys/sdt.h> 96 #include <sys/signalvar.h> 97 #include <sys/smp.h> 98 #include <sys/time.h> 99 #include <sys/vnode.h> 100 #include <sys/vmmeter.h> 101 #include <sys/rwlock.h> 102 #include <sys/sx.h> 103 #include <sys/sysctl.h> 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_map.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_phys.h> 113 #include <vm/vm_pagequeue.h> 114 #include <vm/swap_pager.h> 115 #include <vm/vm_extern.h> 116 #include <vm/uma.h> 117 118 /* 119 * System initialization 120 */ 121 122 /* the kernel process "vm_pageout"*/ 123 static void vm_pageout(void); 124 static void vm_pageout_init(void); 125 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 126 static int vm_pageout_cluster(vm_page_t m); 127 static bool vm_pageout_scan(struct vm_domain *vmd, int pass, int shortage); 128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 129 int starting_page_shortage); 130 131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 132 NULL); 133 134 struct proc *pageproc; 135 136 static struct kproc_desc page_kp = { 137 "pagedaemon", 138 vm_pageout, 139 &pageproc 140 }; 141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 142 &page_kp); 143 144 SDT_PROVIDER_DEFINE(vm); 145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 146 147 /* Pagedaemon activity rates, in subdivisions of one second. */ 148 #define VM_LAUNDER_RATE 10 149 #define VM_INACT_SCAN_RATE 10 150 151 static int vm_pageout_oom_seq = 12; 152 153 static int vm_pageout_update_period; 154 static int disable_swap_pageouts; 155 static int lowmem_period = 10; 156 static time_t lowmem_uptime; 157 static int swapdev_enabled; 158 159 static int vm_panic_on_oom = 0; 160 161 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 162 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 163 "panic on out of memory instead of killing the largest process"); 164 165 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 166 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 167 "Maximum active LRU update period"); 168 169 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 170 "Low memory callback period"); 171 172 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 173 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages"); 174 175 static int pageout_lock_miss; 176 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 177 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout"); 178 179 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 180 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 181 "back-to-back calls to oom detector to start OOM"); 182 183 static int act_scan_laundry_weight = 3; 184 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 185 &act_scan_laundry_weight, 0, 186 "weight given to clean vs. dirty pages in active queue scans"); 187 188 static u_int vm_background_launder_rate = 4096; 189 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 190 &vm_background_launder_rate, 0, 191 "background laundering rate, in kilobytes per second"); 192 193 static u_int vm_background_launder_max = 20 * 1024; 194 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 195 &vm_background_launder_max, 0, "background laundering cap, in kilobytes"); 196 197 int vm_pageout_page_count = 32; 198 199 int vm_page_max_wired; /* XXX max # of wired pages system-wide */ 200 SYSCTL_INT(_vm, OID_AUTO, max_wired, 201 CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count"); 202 203 static u_int isqrt(u_int num); 204 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *); 205 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 206 bool in_shortfall); 207 static void vm_pageout_laundry_worker(void *arg); 208 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *); 209 210 /* 211 * vm_pageout_fallback_object_lock: 212 * 213 * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is 214 * known to have failed and page queue must be either PQ_ACTIVE or 215 * PQ_INACTIVE. To avoid lock order violation, unlock the page queue 216 * while locking the vm object. Use marker page to detect page queue 217 * changes and maintain notion of next page on page queue. Return 218 * TRUE if no changes were detected, FALSE otherwise. vm object is 219 * locked on return. 220 * 221 * This function depends on both the lock portion of struct vm_object 222 * and normal struct vm_page being type stable. 223 */ 224 static boolean_t 225 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next) 226 { 227 struct vm_page marker; 228 struct vm_pagequeue *pq; 229 boolean_t unchanged; 230 vm_object_t object; 231 int queue; 232 233 queue = m->queue; 234 vm_page_init_marker(&marker, queue); 235 pq = vm_page_pagequeue(m); 236 object = m->object; 237 238 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q); 239 vm_pagequeue_unlock(pq); 240 vm_page_unlock(m); 241 VM_OBJECT_WLOCK(object); 242 vm_page_lock(m); 243 vm_pagequeue_lock(pq); 244 245 /* 246 * The page's object might have changed, and/or the page might 247 * have moved from its original position in the queue. If the 248 * page's object has changed, then the caller should abandon 249 * processing the page because the wrong object lock was 250 * acquired. Use the marker's plinks.q, not the page's, to 251 * determine if the page has been moved. The state of the 252 * page's plinks.q can be indeterminate; whereas, the marker's 253 * plinks.q must be valid. 254 */ 255 *next = TAILQ_NEXT(&marker, plinks.q); 256 unchanged = m->object == object && 257 m == TAILQ_PREV(&marker, pglist, plinks.q); 258 KASSERT(!unchanged || m->queue == queue, 259 ("page %p queue %d %d", m, queue, m->queue)); 260 TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q); 261 return (unchanged); 262 } 263 264 /* 265 * Lock the page while holding the page queue lock. Use marker page 266 * to detect page queue changes and maintain notion of next page on 267 * page queue. Return TRUE if no changes were detected, FALSE 268 * otherwise. The page is locked on return. The page queue lock might 269 * be dropped and reacquired. 270 * 271 * This function depends on normal struct vm_page being type stable. 272 */ 273 static boolean_t 274 vm_pageout_page_lock(vm_page_t m, vm_page_t *next) 275 { 276 struct vm_page marker; 277 struct vm_pagequeue *pq; 278 boolean_t unchanged; 279 int queue; 280 281 vm_page_lock_assert(m, MA_NOTOWNED); 282 if (vm_page_trylock(m)) 283 return (TRUE); 284 285 queue = m->queue; 286 vm_page_init_marker(&marker, queue); 287 pq = vm_page_pagequeue(m); 288 289 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q); 290 vm_pagequeue_unlock(pq); 291 vm_page_lock(m); 292 vm_pagequeue_lock(pq); 293 294 /* Page queue might have changed. */ 295 *next = TAILQ_NEXT(&marker, plinks.q); 296 unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q); 297 KASSERT(!unchanged || m->queue == queue, 298 ("page %p queue %d %d", m, queue, m->queue)); 299 TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q); 300 return (unchanged); 301 } 302 303 /* 304 * Scan for pages at adjacent offsets within the given page's object that are 305 * eligible for laundering, form a cluster of these pages and the given page, 306 * and launder that cluster. 307 */ 308 static int 309 vm_pageout_cluster(vm_page_t m) 310 { 311 vm_object_t object; 312 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 313 vm_pindex_t pindex; 314 int ib, is, page_base, pageout_count; 315 316 vm_page_assert_locked(m); 317 object = m->object; 318 VM_OBJECT_ASSERT_WLOCKED(object); 319 pindex = m->pindex; 320 321 vm_page_assert_unbusied(m); 322 KASSERT(!vm_page_held(m), ("page %p is held", m)); 323 324 pmap_remove_write(m); 325 vm_page_unlock(m); 326 327 mc[vm_pageout_page_count] = pb = ps = m; 328 pageout_count = 1; 329 page_base = vm_pageout_page_count; 330 ib = 1; 331 is = 1; 332 333 /* 334 * We can cluster only if the page is not clean, busy, or held, and 335 * the page is in the laundry queue. 336 * 337 * During heavy mmap/modification loads the pageout 338 * daemon can really fragment the underlying file 339 * due to flushing pages out of order and not trying to 340 * align the clusters (which leaves sporadic out-of-order 341 * holes). To solve this problem we do the reverse scan 342 * first and attempt to align our cluster, then do a 343 * forward scan if room remains. 344 */ 345 more: 346 while (ib != 0 && pageout_count < vm_pageout_page_count) { 347 if (ib > pindex) { 348 ib = 0; 349 break; 350 } 351 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) { 352 ib = 0; 353 break; 354 } 355 vm_page_test_dirty(p); 356 if (p->dirty == 0) { 357 ib = 0; 358 break; 359 } 360 vm_page_lock(p); 361 if (!vm_page_in_laundry(p) || vm_page_held(p)) { 362 vm_page_unlock(p); 363 ib = 0; 364 break; 365 } 366 pmap_remove_write(p); 367 vm_page_unlock(p); 368 mc[--page_base] = pb = p; 369 ++pageout_count; 370 ++ib; 371 372 /* 373 * We are at an alignment boundary. Stop here, and switch 374 * directions. Do not clear ib. 375 */ 376 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 377 break; 378 } 379 while (pageout_count < vm_pageout_page_count && 380 pindex + is < object->size) { 381 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p)) 382 break; 383 vm_page_test_dirty(p); 384 if (p->dirty == 0) 385 break; 386 vm_page_lock(p); 387 if (!vm_page_in_laundry(p) || vm_page_held(p)) { 388 vm_page_unlock(p); 389 break; 390 } 391 pmap_remove_write(p); 392 vm_page_unlock(p); 393 mc[page_base + pageout_count] = ps = p; 394 ++pageout_count; 395 ++is; 396 } 397 398 /* 399 * If we exhausted our forward scan, continue with the reverse scan 400 * when possible, even past an alignment boundary. This catches 401 * boundary conditions. 402 */ 403 if (ib != 0 && pageout_count < vm_pageout_page_count) 404 goto more; 405 406 return (vm_pageout_flush(&mc[page_base], pageout_count, 407 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 408 } 409 410 /* 411 * vm_pageout_flush() - launder the given pages 412 * 413 * The given pages are laundered. Note that we setup for the start of 414 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 415 * reference count all in here rather then in the parent. If we want 416 * the parent to do more sophisticated things we may have to change 417 * the ordering. 418 * 419 * Returned runlen is the count of pages between mreq and first 420 * page after mreq with status VM_PAGER_AGAIN. 421 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 422 * for any page in runlen set. 423 */ 424 int 425 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 426 boolean_t *eio) 427 { 428 vm_object_t object = mc[0]->object; 429 int pageout_status[count]; 430 int numpagedout = 0; 431 int i, runlen; 432 433 VM_OBJECT_ASSERT_WLOCKED(object); 434 435 /* 436 * Initiate I/O. Mark the pages busy and verify that they're valid 437 * and read-only. 438 * 439 * We do not have to fixup the clean/dirty bits here... we can 440 * allow the pager to do it after the I/O completes. 441 * 442 * NOTE! mc[i]->dirty may be partial or fragmented due to an 443 * edge case with file fragments. 444 */ 445 for (i = 0; i < count; i++) { 446 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, 447 ("vm_pageout_flush: partially invalid page %p index %d/%d", 448 mc[i], i, count)); 449 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0, 450 ("vm_pageout_flush: writeable page %p", mc[i])); 451 vm_page_sbusy(mc[i]); 452 } 453 vm_object_pip_add(object, count); 454 455 vm_pager_put_pages(object, mc, count, flags, pageout_status); 456 457 runlen = count - mreq; 458 if (eio != NULL) 459 *eio = FALSE; 460 for (i = 0; i < count; i++) { 461 vm_page_t mt = mc[i]; 462 463 KASSERT(pageout_status[i] == VM_PAGER_PEND || 464 !pmap_page_is_write_mapped(mt), 465 ("vm_pageout_flush: page %p is not write protected", mt)); 466 switch (pageout_status[i]) { 467 case VM_PAGER_OK: 468 vm_page_lock(mt); 469 if (vm_page_in_laundry(mt)) 470 vm_page_deactivate_noreuse(mt); 471 vm_page_unlock(mt); 472 /* FALLTHROUGH */ 473 case VM_PAGER_PEND: 474 numpagedout++; 475 break; 476 case VM_PAGER_BAD: 477 /* 478 * The page is outside the object's range. We pretend 479 * that the page out worked and clean the page, so the 480 * changes will be lost if the page is reclaimed by 481 * the page daemon. 482 */ 483 vm_page_undirty(mt); 484 vm_page_lock(mt); 485 if (vm_page_in_laundry(mt)) 486 vm_page_deactivate_noreuse(mt); 487 vm_page_unlock(mt); 488 break; 489 case VM_PAGER_ERROR: 490 case VM_PAGER_FAIL: 491 /* 492 * If the page couldn't be paged out to swap because the 493 * pager wasn't able to find space, place the page in 494 * the PQ_UNSWAPPABLE holding queue. This is an 495 * optimization that prevents the page daemon from 496 * wasting CPU cycles on pages that cannot be reclaimed 497 * becase no swap device is configured. 498 * 499 * Otherwise, reactivate the page so that it doesn't 500 * clog the laundry and inactive queues. (We will try 501 * paging it out again later.) 502 */ 503 vm_page_lock(mt); 504 if (object->type == OBJT_SWAP && 505 pageout_status[i] == VM_PAGER_FAIL) { 506 vm_page_unswappable(mt); 507 numpagedout++; 508 } else 509 vm_page_activate(mt); 510 vm_page_unlock(mt); 511 if (eio != NULL && i >= mreq && i - mreq < runlen) 512 *eio = TRUE; 513 break; 514 case VM_PAGER_AGAIN: 515 if (i >= mreq && i - mreq < runlen) 516 runlen = i - mreq; 517 break; 518 } 519 520 /* 521 * If the operation is still going, leave the page busy to 522 * block all other accesses. Also, leave the paging in 523 * progress indicator set so that we don't attempt an object 524 * collapse. 525 */ 526 if (pageout_status[i] != VM_PAGER_PEND) { 527 vm_object_pip_wakeup(object); 528 vm_page_sunbusy(mt); 529 } 530 } 531 if (prunlen != NULL) 532 *prunlen = runlen; 533 return (numpagedout); 534 } 535 536 static void 537 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 538 { 539 540 atomic_store_rel_int(&swapdev_enabled, 1); 541 } 542 543 static void 544 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 545 { 546 547 if (swap_pager_nswapdev() == 1) 548 atomic_store_rel_int(&swapdev_enabled, 0); 549 } 550 551 /* 552 * Attempt to acquire all of the necessary locks to launder a page and 553 * then call through the clustering layer to PUTPAGES. Wait a short 554 * time for a vnode lock. 555 * 556 * Requires the page and object lock on entry, releases both before return. 557 * Returns 0 on success and an errno otherwise. 558 */ 559 static int 560 vm_pageout_clean(vm_page_t m, int *numpagedout) 561 { 562 struct vnode *vp; 563 struct mount *mp; 564 vm_object_t object; 565 vm_pindex_t pindex; 566 int error, lockmode; 567 568 vm_page_assert_locked(m); 569 object = m->object; 570 VM_OBJECT_ASSERT_WLOCKED(object); 571 error = 0; 572 vp = NULL; 573 mp = NULL; 574 575 /* 576 * The object is already known NOT to be dead. It 577 * is possible for the vget() to block the whole 578 * pageout daemon, but the new low-memory handling 579 * code should prevent it. 580 * 581 * We can't wait forever for the vnode lock, we might 582 * deadlock due to a vn_read() getting stuck in 583 * vm_wait while holding this vnode. We skip the 584 * vnode if we can't get it in a reasonable amount 585 * of time. 586 */ 587 if (object->type == OBJT_VNODE) { 588 vm_page_unlock(m); 589 vp = object->handle; 590 if (vp->v_type == VREG && 591 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 592 mp = NULL; 593 error = EDEADLK; 594 goto unlock_all; 595 } 596 KASSERT(mp != NULL, 597 ("vp %p with NULL v_mount", vp)); 598 vm_object_reference_locked(object); 599 pindex = m->pindex; 600 VM_OBJECT_WUNLOCK(object); 601 lockmode = MNT_SHARED_WRITES(vp->v_mount) ? 602 LK_SHARED : LK_EXCLUSIVE; 603 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) { 604 vp = NULL; 605 error = EDEADLK; 606 goto unlock_mp; 607 } 608 VM_OBJECT_WLOCK(object); 609 610 /* 611 * Ensure that the object and vnode were not disassociated 612 * while locks were dropped. 613 */ 614 if (vp->v_object != object) { 615 error = ENOENT; 616 goto unlock_all; 617 } 618 vm_page_lock(m); 619 620 /* 621 * While the object and page were unlocked, the page 622 * may have been: 623 * (1) moved to a different queue, 624 * (2) reallocated to a different object, 625 * (3) reallocated to a different offset, or 626 * (4) cleaned. 627 */ 628 if (!vm_page_in_laundry(m) || m->object != object || 629 m->pindex != pindex || m->dirty == 0) { 630 vm_page_unlock(m); 631 error = ENXIO; 632 goto unlock_all; 633 } 634 635 /* 636 * The page may have been busied or referenced while the object 637 * and page locks were released. 638 */ 639 if (vm_page_busied(m) || vm_page_held(m)) { 640 vm_page_unlock(m); 641 error = EBUSY; 642 goto unlock_all; 643 } 644 } 645 646 /* 647 * If a page is dirty, then it is either being washed 648 * (but not yet cleaned) or it is still in the 649 * laundry. If it is still in the laundry, then we 650 * start the cleaning operation. 651 */ 652 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 653 error = EIO; 654 655 unlock_all: 656 VM_OBJECT_WUNLOCK(object); 657 658 unlock_mp: 659 vm_page_lock_assert(m, MA_NOTOWNED); 660 if (mp != NULL) { 661 if (vp != NULL) 662 vput(vp); 663 vm_object_deallocate(object); 664 vn_finished_write(mp); 665 } 666 667 return (error); 668 } 669 670 /* 671 * Attempt to launder the specified number of pages. 672 * 673 * Returns the number of pages successfully laundered. 674 */ 675 static int 676 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 677 { 678 struct vm_pagequeue *pq; 679 vm_object_t object; 680 vm_page_t m, marker, next; 681 int act_delta, error, maxscan, numpagedout, queue, starting_target; 682 int vnodes_skipped; 683 bool pageout_ok, queue_locked; 684 685 starting_target = launder; 686 vnodes_skipped = 0; 687 688 /* 689 * Scan the laundry queues for pages eligible to be laundered. We stop 690 * once the target number of dirty pages have been laundered, or once 691 * we've reached the end of the queue. A single iteration of this loop 692 * may cause more than one page to be laundered because of clustering. 693 * 694 * maxscan ensures that we don't re-examine requeued pages. Any 695 * additional pages written as part of a cluster are subtracted from 696 * maxscan since they must be taken from the laundry queue. 697 * 698 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 699 * swap devices are configured. 700 */ 701 if (atomic_load_acq_int(&swapdev_enabled)) 702 queue = PQ_UNSWAPPABLE; 703 else 704 queue = PQ_LAUNDRY; 705 706 scan: 707 pq = &vmd->vmd_pagequeues[queue]; 708 marker = &vmd->vmd_markers[queue]; 709 710 vm_pagequeue_lock(pq); 711 maxscan = pq->pq_cnt; 712 queue_locked = true; 713 for (m = TAILQ_FIRST(&pq->pq_pl); 714 m != NULL && maxscan-- > 0 && launder > 0; 715 m = next) { 716 vm_pagequeue_assert_locked(pq); 717 KASSERT(queue_locked, ("unlocked laundry queue")); 718 KASSERT(vm_page_in_laundry(m), 719 ("page %p has an inconsistent queue", m)); 720 next = TAILQ_NEXT(m, plinks.q); 721 if ((m->flags & PG_MARKER) != 0) 722 continue; 723 KASSERT((m->flags & PG_FICTITIOUS) == 0, 724 ("PG_FICTITIOUS page %p cannot be in laundry queue", m)); 725 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 726 ("VPO_UNMANAGED page %p cannot be in laundry queue", m)); 727 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) { 728 vm_page_unlock(m); 729 continue; 730 } 731 if (m->wire_count != 0) { 732 vm_page_dequeue_locked(m); 733 vm_page_unlock(m); 734 continue; 735 } 736 object = m->object; 737 if ((!VM_OBJECT_TRYWLOCK(object) && 738 (!vm_pageout_fallback_object_lock(m, &next) || 739 vm_page_held(m))) || vm_page_busied(m)) { 740 VM_OBJECT_WUNLOCK(object); 741 if (m->wire_count != 0 && vm_page_pagequeue(m) == pq) 742 vm_page_dequeue_locked(m); 743 vm_page_unlock(m); 744 continue; 745 } 746 747 /* 748 * Unlock the laundry queue, invalidating the 'next' pointer. 749 * Use a marker to remember our place in the laundry queue. 750 */ 751 TAILQ_INSERT_AFTER(&pq->pq_pl, m, marker, plinks.q); 752 vm_pagequeue_unlock(pq); 753 queue_locked = false; 754 755 /* 756 * Invalid pages can be easily freed. They cannot be 757 * mapped; vm_page_free() asserts this. 758 */ 759 if (m->valid == 0) 760 goto free_page; 761 762 /* 763 * If the page has been referenced and the object is not dead, 764 * reactivate or requeue the page depending on whether the 765 * object is mapped. 766 */ 767 if ((m->aflags & PGA_REFERENCED) != 0) { 768 vm_page_aflag_clear(m, PGA_REFERENCED); 769 act_delta = 1; 770 } else 771 act_delta = 0; 772 if (object->ref_count != 0) 773 act_delta += pmap_ts_referenced(m); 774 else { 775 KASSERT(!pmap_page_is_mapped(m), 776 ("page %p is mapped", m)); 777 } 778 if (act_delta != 0) { 779 if (object->ref_count != 0) { 780 VM_CNT_INC(v_reactivated); 781 vm_page_activate(m); 782 783 /* 784 * Increase the activation count if the page 785 * was referenced while in the laundry queue. 786 * This makes it less likely that the page will 787 * be returned prematurely to the inactive 788 * queue. 789 */ 790 m->act_count += act_delta + ACT_ADVANCE; 791 792 /* 793 * If this was a background laundering, count 794 * activated pages towards our target. The 795 * purpose of background laundering is to ensure 796 * that pages are eventually cycled through the 797 * laundry queue, and an activation is a valid 798 * way out. 799 */ 800 if (!in_shortfall) 801 launder--; 802 goto drop_page; 803 } else if ((object->flags & OBJ_DEAD) == 0) 804 goto requeue_page; 805 } 806 807 /* 808 * If the page appears to be clean at the machine-independent 809 * layer, then remove all of its mappings from the pmap in 810 * anticipation of freeing it. If, however, any of the page's 811 * mappings allow write access, then the page may still be 812 * modified until the last of those mappings are removed. 813 */ 814 if (object->ref_count != 0) { 815 vm_page_test_dirty(m); 816 if (m->dirty == 0) 817 pmap_remove_all(m); 818 } 819 820 /* 821 * Clean pages are freed, and dirty pages are paged out unless 822 * they belong to a dead object. Requeueing dirty pages from 823 * dead objects is pointless, as they are being paged out and 824 * freed by the thread that destroyed the object. 825 */ 826 if (m->dirty == 0) { 827 free_page: 828 vm_page_free(m); 829 VM_CNT_INC(v_dfree); 830 } else if ((object->flags & OBJ_DEAD) == 0) { 831 if (object->type != OBJT_SWAP && 832 object->type != OBJT_DEFAULT) 833 pageout_ok = true; 834 else if (disable_swap_pageouts) 835 pageout_ok = false; 836 else 837 pageout_ok = true; 838 if (!pageout_ok) { 839 requeue_page: 840 vm_pagequeue_lock(pq); 841 queue_locked = true; 842 vm_page_requeue_locked(m); 843 goto drop_page; 844 } 845 846 /* 847 * Form a cluster with adjacent, dirty pages from the 848 * same object, and page out that entire cluster. 849 * 850 * The adjacent, dirty pages must also be in the 851 * laundry. However, their mappings are not checked 852 * for new references. Consequently, a recently 853 * referenced page may be paged out. However, that 854 * page will not be prematurely reclaimed. After page 855 * out, the page will be placed in the inactive queue, 856 * where any new references will be detected and the 857 * page reactivated. 858 */ 859 error = vm_pageout_clean(m, &numpagedout); 860 if (error == 0) { 861 launder -= numpagedout; 862 maxscan -= numpagedout - 1; 863 } else if (error == EDEADLK) { 864 pageout_lock_miss++; 865 vnodes_skipped++; 866 } 867 goto relock_queue; 868 } 869 drop_page: 870 vm_page_unlock(m); 871 VM_OBJECT_WUNLOCK(object); 872 relock_queue: 873 if (!queue_locked) { 874 vm_pagequeue_lock(pq); 875 queue_locked = true; 876 } 877 next = TAILQ_NEXT(marker, plinks.q); 878 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 879 } 880 vm_pagequeue_unlock(pq); 881 882 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 883 queue = PQ_LAUNDRY; 884 goto scan; 885 } 886 887 /* 888 * Wakeup the sync daemon if we skipped a vnode in a writeable object 889 * and we didn't launder enough pages. 890 */ 891 if (vnodes_skipped > 0 && launder > 0) 892 (void)speedup_syncer(); 893 894 return (starting_target - launder); 895 } 896 897 /* 898 * Compute the integer square root. 899 */ 900 static u_int 901 isqrt(u_int num) 902 { 903 u_int bit, root, tmp; 904 905 bit = 1u << ((NBBY * sizeof(u_int)) - 2); 906 while (bit > num) 907 bit >>= 2; 908 root = 0; 909 while (bit != 0) { 910 tmp = root + bit; 911 root >>= 1; 912 if (num >= tmp) { 913 num -= tmp; 914 root += bit; 915 } 916 bit >>= 2; 917 } 918 return (root); 919 } 920 921 /* 922 * Perform the work of the laundry thread: periodically wake up and determine 923 * whether any pages need to be laundered. If so, determine the number of pages 924 * that need to be laundered, and launder them. 925 */ 926 static void 927 vm_pageout_laundry_worker(void *arg) 928 { 929 struct vm_domain *vmd; 930 struct vm_pagequeue *pq; 931 uint64_t nclean, ndirty, nfreed; 932 int domain, last_target, launder, shortfall, shortfall_cycle, target; 933 bool in_shortfall; 934 935 domain = (uintptr_t)arg; 936 vmd = VM_DOMAIN(domain); 937 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 938 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 939 940 shortfall = 0; 941 in_shortfall = false; 942 shortfall_cycle = 0; 943 target = 0; 944 nfreed = 0; 945 946 /* 947 * Calls to these handlers are serialized by the swap syscall lock. 948 */ 949 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 950 EVENTHANDLER_PRI_ANY); 951 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 952 EVENTHANDLER_PRI_ANY); 953 954 /* 955 * The pageout laundry worker is never done, so loop forever. 956 */ 957 for (;;) { 958 KASSERT(target >= 0, ("negative target %d", target)); 959 KASSERT(shortfall_cycle >= 0, 960 ("negative cycle %d", shortfall_cycle)); 961 launder = 0; 962 963 /* 964 * First determine whether we need to launder pages to meet a 965 * shortage of free pages. 966 */ 967 if (shortfall > 0) { 968 in_shortfall = true; 969 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 970 target = shortfall; 971 } else if (!in_shortfall) 972 goto trybackground; 973 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 974 /* 975 * We recently entered shortfall and began laundering 976 * pages. If we have completed that laundering run 977 * (and we are no longer in shortfall) or we have met 978 * our laundry target through other activity, then we 979 * can stop laundering pages. 980 */ 981 in_shortfall = false; 982 target = 0; 983 goto trybackground; 984 } 985 launder = target / shortfall_cycle--; 986 goto dolaundry; 987 988 /* 989 * There's no immediate need to launder any pages; see if we 990 * meet the conditions to perform background laundering: 991 * 992 * 1. The ratio of dirty to clean inactive pages exceeds the 993 * background laundering threshold, or 994 * 2. we haven't yet reached the target of the current 995 * background laundering run. 996 * 997 * The background laundering threshold is not a constant. 998 * Instead, it is a slowly growing function of the number of 999 * clean pages freed by the page daemon since the last 1000 * background laundering. Thus, as the ratio of dirty to 1001 * clean inactive pages grows, the amount of memory pressure 1002 * required to trigger laundering decreases. We ensure 1003 * that the threshold is non-zero after an inactive queue 1004 * scan, even if that scan failed to free a single clean page. 1005 */ 1006 trybackground: 1007 nclean = vmd->vmd_free_count + 1008 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1009 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1010 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1011 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1012 target = vmd->vmd_background_launder_target; 1013 } 1014 1015 /* 1016 * We have a non-zero background laundering target. If we've 1017 * laundered up to our maximum without observing a page daemon 1018 * request, just stop. This is a safety belt that ensures we 1019 * don't launder an excessive amount if memory pressure is low 1020 * and the ratio of dirty to clean pages is large. Otherwise, 1021 * proceed at the background laundering rate. 1022 */ 1023 if (target > 0) { 1024 if (nfreed > 0) { 1025 nfreed = 0; 1026 last_target = target; 1027 } else if (last_target - target >= 1028 vm_background_launder_max * PAGE_SIZE / 1024) { 1029 target = 0; 1030 } 1031 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1032 launder /= VM_LAUNDER_RATE; 1033 if (launder > target) 1034 launder = target; 1035 } 1036 1037 dolaundry: 1038 if (launder > 0) { 1039 /* 1040 * Because of I/O clustering, the number of laundered 1041 * pages could exceed "target" by the maximum size of 1042 * a cluster minus one. 1043 */ 1044 target -= min(vm_pageout_launder(vmd, launder, 1045 in_shortfall), target); 1046 pause("laundp", hz / VM_LAUNDER_RATE); 1047 } 1048 1049 /* 1050 * If we're not currently laundering pages and the page daemon 1051 * hasn't posted a new request, sleep until the page daemon 1052 * kicks us. 1053 */ 1054 vm_pagequeue_lock(pq); 1055 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1056 (void)mtx_sleep(&vmd->vmd_laundry_request, 1057 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1058 1059 /* 1060 * If the pagedaemon has indicated that it's in shortfall, start 1061 * a shortfall laundering unless we're already in the middle of 1062 * one. This may preempt a background laundering. 1063 */ 1064 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1065 (!in_shortfall || shortfall_cycle == 0)) { 1066 shortfall = vm_laundry_target(vmd) + 1067 vmd->vmd_pageout_deficit; 1068 target = 0; 1069 } else 1070 shortfall = 0; 1071 1072 if (target == 0) 1073 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1074 nfreed += vmd->vmd_clean_pages_freed; 1075 vmd->vmd_clean_pages_freed = 0; 1076 vm_pagequeue_unlock(pq); 1077 } 1078 } 1079 1080 /* 1081 * vm_pageout_scan does the dirty work for the pageout daemon. 1082 * 1083 * pass == 0: Update active LRU/deactivate pages 1084 * pass >= 1: Free inactive pages 1085 * 1086 * Returns true if pass was zero or enough pages were freed by the inactive 1087 * queue scan to meet the target. 1088 */ 1089 static bool 1090 vm_pageout_scan(struct vm_domain *vmd, int pass, int shortage) 1091 { 1092 vm_page_t m, marker, next; 1093 struct vm_pagequeue *pq; 1094 vm_object_t object; 1095 long min_scan; 1096 int act_delta, addl_page_shortage, deficit, inactq_shortage, maxscan; 1097 int page_shortage, scan_tick, scanned, starting_page_shortage; 1098 boolean_t queue_locked; 1099 1100 /* 1101 * If we need to reclaim memory ask kernel caches to return 1102 * some. We rate limit to avoid thrashing. 1103 */ 1104 if (vmd == VM_DOMAIN(0) && pass > 0 && 1105 (time_uptime - lowmem_uptime) >= lowmem_period) { 1106 /* 1107 * Decrease registered cache sizes. 1108 */ 1109 SDT_PROBE0(vm, , , vm__lowmem_scan); 1110 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 1111 /* 1112 * We do this explicitly after the caches have been 1113 * drained above. 1114 */ 1115 uma_reclaim(); 1116 lowmem_uptime = time_uptime; 1117 } 1118 1119 /* 1120 * The addl_page_shortage is the number of temporarily 1121 * stuck pages in the inactive queue. In other words, the 1122 * number of pages from the inactive count that should be 1123 * discounted in setting the target for the active queue scan. 1124 */ 1125 addl_page_shortage = 0; 1126 1127 /* 1128 * Calculate the number of pages that we want to free. This number 1129 * can be negative if many pages are freed between the wakeup call to 1130 * the page daemon and this calculation. 1131 */ 1132 if (pass > 0) { 1133 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1134 page_shortage = shortage + deficit; 1135 } else 1136 page_shortage = deficit = 0; 1137 starting_page_shortage = page_shortage; 1138 1139 /* 1140 * Start scanning the inactive queue for pages that we can free. The 1141 * scan will stop when we reach the target or we have scanned the 1142 * entire queue. (Note that m->act_count is not used to make 1143 * decisions for the inactive queue, only for the active queue.) 1144 */ 1145 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1146 marker = &vmd->vmd_markers[PQ_INACTIVE]; 1147 maxscan = pq->pq_cnt; 1148 vm_pagequeue_lock(pq); 1149 queue_locked = TRUE; 1150 for (m = TAILQ_FIRST(&pq->pq_pl); 1151 m != NULL && maxscan-- > 0 && page_shortage > 0; 1152 m = next) { 1153 vm_pagequeue_assert_locked(pq); 1154 KASSERT(queue_locked, ("unlocked inactive queue")); 1155 KASSERT(vm_page_inactive(m), ("Inactive queue %p", m)); 1156 1157 VM_CNT_INC(v_pdpages); 1158 next = TAILQ_NEXT(m, plinks.q); 1159 1160 /* 1161 * skip marker pages 1162 */ 1163 if (m->flags & PG_MARKER) 1164 continue; 1165 1166 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1167 ("Fictitious page %p cannot be in inactive queue", m)); 1168 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1169 ("Unmanaged page %p cannot be in inactive queue", m)); 1170 1171 /* 1172 * The page or object lock acquisitions fail if the 1173 * page was removed from the queue or moved to a 1174 * different position within the queue. In either 1175 * case, addl_page_shortage should not be incremented. 1176 */ 1177 if (!vm_pageout_page_lock(m, &next)) 1178 goto unlock_page; 1179 else if (m->wire_count != 0) { 1180 /* 1181 * Wired pages may not be freed, and unwiring a queued 1182 * page will cause it to be requeued. Thus, remove them 1183 * from the queue now to avoid unnecessary revisits. 1184 */ 1185 vm_page_dequeue_locked(m); 1186 addl_page_shortage++; 1187 goto unlock_page; 1188 } else if (m->hold_count != 0) { 1189 /* 1190 * Held pages are essentially stuck in the 1191 * queue. So, they ought to be discounted 1192 * from the inactive count. See the 1193 * calculation of inactq_shortage before the 1194 * loop over the active queue below. 1195 */ 1196 addl_page_shortage++; 1197 goto unlock_page; 1198 } 1199 object = m->object; 1200 if (!VM_OBJECT_TRYWLOCK(object)) { 1201 if (!vm_pageout_fallback_object_lock(m, &next)) 1202 goto unlock_object; 1203 else if (m->wire_count != 0) { 1204 vm_page_dequeue_locked(m); 1205 addl_page_shortage++; 1206 goto unlock_object; 1207 } else if (m->hold_count != 0) { 1208 addl_page_shortage++; 1209 goto unlock_object; 1210 } 1211 } 1212 if (vm_page_busied(m)) { 1213 /* 1214 * Don't mess with busy pages. Leave them at 1215 * the front of the queue. Most likely, they 1216 * are being paged out and will leave the 1217 * queue shortly after the scan finishes. So, 1218 * they ought to be discounted from the 1219 * inactive count. 1220 */ 1221 addl_page_shortage++; 1222 unlock_object: 1223 VM_OBJECT_WUNLOCK(object); 1224 unlock_page: 1225 vm_page_unlock(m); 1226 continue; 1227 } 1228 KASSERT(!vm_page_held(m), ("Held page %p", m)); 1229 1230 /* 1231 * Dequeue the inactive page and unlock the inactive page 1232 * queue, invalidating the 'next' pointer. Dequeueing the 1233 * page here avoids a later reacquisition (and release) of 1234 * the inactive page queue lock when vm_page_activate(), 1235 * vm_page_free(), or vm_page_launder() is called. Use a 1236 * marker to remember our place in the inactive queue. 1237 */ 1238 TAILQ_INSERT_AFTER(&pq->pq_pl, m, marker, plinks.q); 1239 vm_page_dequeue_locked(m); 1240 vm_pagequeue_unlock(pq); 1241 queue_locked = FALSE; 1242 1243 /* 1244 * Invalid pages can be easily freed. They cannot be 1245 * mapped, vm_page_free() asserts this. 1246 */ 1247 if (m->valid == 0) 1248 goto free_page; 1249 1250 /* 1251 * If the page has been referenced and the object is not dead, 1252 * reactivate or requeue the page depending on whether the 1253 * object is mapped. 1254 */ 1255 if ((m->aflags & PGA_REFERENCED) != 0) { 1256 vm_page_aflag_clear(m, PGA_REFERENCED); 1257 act_delta = 1; 1258 } else 1259 act_delta = 0; 1260 if (object->ref_count != 0) { 1261 act_delta += pmap_ts_referenced(m); 1262 } else { 1263 KASSERT(!pmap_page_is_mapped(m), 1264 ("vm_pageout_scan: page %p is mapped", m)); 1265 } 1266 if (act_delta != 0) { 1267 if (object->ref_count != 0) { 1268 VM_CNT_INC(v_reactivated); 1269 vm_page_activate(m); 1270 1271 /* 1272 * Increase the activation count if the page 1273 * was referenced while in the inactive queue. 1274 * This makes it less likely that the page will 1275 * be returned prematurely to the inactive 1276 * queue. 1277 */ 1278 m->act_count += act_delta + ACT_ADVANCE; 1279 goto drop_page; 1280 } else if ((object->flags & OBJ_DEAD) == 0) { 1281 vm_pagequeue_lock(pq); 1282 queue_locked = TRUE; 1283 m->queue = PQ_INACTIVE; 1284 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 1285 vm_pagequeue_cnt_inc(pq); 1286 goto drop_page; 1287 } 1288 } 1289 1290 /* 1291 * If the page appears to be clean at the machine-independent 1292 * layer, then remove all of its mappings from the pmap in 1293 * anticipation of freeing it. If, however, any of the page's 1294 * mappings allow write access, then the page may still be 1295 * modified until the last of those mappings are removed. 1296 */ 1297 if (object->ref_count != 0) { 1298 vm_page_test_dirty(m); 1299 if (m->dirty == 0) 1300 pmap_remove_all(m); 1301 } 1302 1303 /* 1304 * Clean pages can be freed, but dirty pages must be sent back 1305 * to the laundry, unless they belong to a dead object. 1306 * Requeueing dirty pages from dead objects is pointless, as 1307 * they are being paged out and freed by the thread that 1308 * destroyed the object. 1309 */ 1310 if (m->dirty == 0) { 1311 free_page: 1312 vm_page_free(m); 1313 VM_CNT_INC(v_dfree); 1314 --page_shortage; 1315 } else if ((object->flags & OBJ_DEAD) == 0) 1316 vm_page_launder(m); 1317 drop_page: 1318 vm_page_unlock(m); 1319 VM_OBJECT_WUNLOCK(object); 1320 if (!queue_locked) { 1321 vm_pagequeue_lock(pq); 1322 queue_locked = TRUE; 1323 } 1324 next = TAILQ_NEXT(marker, plinks.q); 1325 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 1326 } 1327 vm_pagequeue_unlock(pq); 1328 1329 /* 1330 * Wake up the laundry thread so that it can perform any needed 1331 * laundering. If we didn't meet our target, we're in shortfall and 1332 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1333 * swap devices are configured, the laundry thread has no work to do, so 1334 * don't bother waking it up. 1335 * 1336 * The laundry thread uses the number of inactive queue scans elapsed 1337 * since the last laundering to determine whether to launder again, so 1338 * keep count. 1339 */ 1340 if (starting_page_shortage > 0) { 1341 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1342 vm_pagequeue_lock(pq); 1343 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1344 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1345 if (page_shortage > 0) { 1346 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1347 VM_CNT_INC(v_pdshortfalls); 1348 } else if (vmd->vmd_laundry_request != 1349 VM_LAUNDRY_SHORTFALL) 1350 vmd->vmd_laundry_request = 1351 VM_LAUNDRY_BACKGROUND; 1352 wakeup(&vmd->vmd_laundry_request); 1353 } 1354 vmd->vmd_clean_pages_freed += 1355 starting_page_shortage - page_shortage; 1356 vm_pagequeue_unlock(pq); 1357 } 1358 1359 /* 1360 * Wakeup the swapout daemon if we didn't free the targeted number of 1361 * pages. 1362 */ 1363 if (page_shortage > 0) 1364 vm_swapout_run(); 1365 1366 /* 1367 * If the inactive queue scan fails repeatedly to meet its 1368 * target, kill the largest process. 1369 */ 1370 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1371 1372 /* 1373 * Compute the number of pages we want to try to move from the 1374 * active queue to either the inactive or laundry queue. 1375 * 1376 * When scanning active pages, we make clean pages count more heavily 1377 * towards the page shortage than dirty pages. This is because dirty 1378 * pages must be laundered before they can be reused and thus have less 1379 * utility when attempting to quickly alleviate a shortage. However, 1380 * this weighting also causes the scan to deactivate dirty pages more 1381 * more aggressively, improving the effectiveness of clustering and 1382 * ensuring that they can eventually be reused. 1383 */ 1384 inactq_shortage = vmd->vmd_inactive_target - (pq->pq_cnt + 1385 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight) + 1386 vm_paging_target(vmd) + deficit + addl_page_shortage; 1387 inactq_shortage *= act_scan_laundry_weight; 1388 1389 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1390 vm_pagequeue_lock(pq); 1391 maxscan = pq->pq_cnt; 1392 1393 /* 1394 * If we're just idle polling attempt to visit every 1395 * active page within 'update_period' seconds. 1396 */ 1397 scan_tick = ticks; 1398 if (vm_pageout_update_period != 0) { 1399 min_scan = pq->pq_cnt; 1400 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1401 min_scan /= hz * vm_pageout_update_period; 1402 } else 1403 min_scan = 0; 1404 if (min_scan > 0 || (inactq_shortage > 0 && maxscan > 0)) 1405 vmd->vmd_last_active_scan = scan_tick; 1406 1407 /* 1408 * Scan the active queue for pages that can be deactivated. Update 1409 * the per-page activity counter and use it to identify deactivation 1410 * candidates. Held pages may be deactivated. 1411 */ 1412 for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned < 1413 min_scan || (inactq_shortage > 0 && scanned < maxscan)); m = next, 1414 scanned++) { 1415 KASSERT(m->queue == PQ_ACTIVE, 1416 ("vm_pageout_scan: page %p isn't active", m)); 1417 next = TAILQ_NEXT(m, plinks.q); 1418 if ((m->flags & PG_MARKER) != 0) 1419 continue; 1420 KASSERT((m->flags & PG_FICTITIOUS) == 0, 1421 ("Fictitious page %p cannot be in active queue", m)); 1422 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1423 ("Unmanaged page %p cannot be in active queue", m)); 1424 if (!vm_pageout_page_lock(m, &next)) { 1425 vm_page_unlock(m); 1426 continue; 1427 } 1428 1429 /* 1430 * The count for page daemon pages is updated after checking 1431 * the page for eligibility. 1432 */ 1433 VM_CNT_INC(v_pdpages); 1434 1435 /* 1436 * Wired pages are dequeued lazily. 1437 */ 1438 if (m->wire_count != 0) { 1439 vm_page_dequeue_locked(m); 1440 vm_page_unlock(m); 1441 continue; 1442 } 1443 1444 /* 1445 * Check to see "how much" the page has been used. 1446 */ 1447 if ((m->aflags & PGA_REFERENCED) != 0) { 1448 vm_page_aflag_clear(m, PGA_REFERENCED); 1449 act_delta = 1; 1450 } else 1451 act_delta = 0; 1452 1453 /* 1454 * Perform an unsynchronized object ref count check. While 1455 * the page lock ensures that the page is not reallocated to 1456 * another object, in particular, one with unmanaged mappings 1457 * that cannot support pmap_ts_referenced(), two races are, 1458 * nonetheless, possible: 1459 * 1) The count was transitioning to zero, but we saw a non- 1460 * zero value. pmap_ts_referenced() will return zero 1461 * because the page is not mapped. 1462 * 2) The count was transitioning to one, but we saw zero. 1463 * This race delays the detection of a new reference. At 1464 * worst, we will deactivate and reactivate the page. 1465 */ 1466 if (m->object->ref_count != 0) 1467 act_delta += pmap_ts_referenced(m); 1468 1469 /* 1470 * Advance or decay the act_count based on recent usage. 1471 */ 1472 if (act_delta != 0) { 1473 m->act_count += ACT_ADVANCE + act_delta; 1474 if (m->act_count > ACT_MAX) 1475 m->act_count = ACT_MAX; 1476 } else 1477 m->act_count -= min(m->act_count, ACT_DECLINE); 1478 1479 /* 1480 * Move this page to the tail of the active, inactive or laundry 1481 * queue depending on usage. 1482 */ 1483 if (m->act_count == 0) { 1484 /* Dequeue to avoid later lock recursion. */ 1485 vm_page_dequeue_locked(m); 1486 1487 /* 1488 * When not short for inactive pages, let dirty pages go 1489 * through the inactive queue before moving to the 1490 * laundry queues. This gives them some extra time to 1491 * be reactivated, potentially avoiding an expensive 1492 * pageout. During a page shortage, the inactive queue 1493 * is necessarily small, so we may move dirty pages 1494 * directly to the laundry queue. 1495 */ 1496 if (inactq_shortage <= 0) 1497 vm_page_deactivate(m); 1498 else { 1499 /* 1500 * Calling vm_page_test_dirty() here would 1501 * require acquisition of the object's write 1502 * lock. However, during a page shortage, 1503 * directing dirty pages into the laundry 1504 * queue is only an optimization and not a 1505 * requirement. Therefore, we simply rely on 1506 * the opportunistic updates to the page's 1507 * dirty field by the pmap. 1508 */ 1509 if (m->dirty == 0) { 1510 vm_page_deactivate(m); 1511 inactq_shortage -= 1512 act_scan_laundry_weight; 1513 } else { 1514 vm_page_launder(m); 1515 inactq_shortage--; 1516 } 1517 } 1518 } else 1519 vm_page_requeue_locked(m); 1520 vm_page_unlock(m); 1521 } 1522 vm_pagequeue_unlock(pq); 1523 if (pass > 0) 1524 vm_swapout_run_idle(); 1525 return (page_shortage <= 0); 1526 } 1527 1528 static int vm_pageout_oom_vote; 1529 1530 /* 1531 * The pagedaemon threads randlomly select one to perform the 1532 * OOM. Trying to kill processes before all pagedaemons 1533 * failed to reach free target is premature. 1534 */ 1535 static void 1536 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1537 int starting_page_shortage) 1538 { 1539 int old_vote; 1540 1541 if (starting_page_shortage <= 0 || starting_page_shortage != 1542 page_shortage) 1543 vmd->vmd_oom_seq = 0; 1544 else 1545 vmd->vmd_oom_seq++; 1546 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1547 if (vmd->vmd_oom) { 1548 vmd->vmd_oom = FALSE; 1549 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1550 } 1551 return; 1552 } 1553 1554 /* 1555 * Do not follow the call sequence until OOM condition is 1556 * cleared. 1557 */ 1558 vmd->vmd_oom_seq = 0; 1559 1560 if (vmd->vmd_oom) 1561 return; 1562 1563 vmd->vmd_oom = TRUE; 1564 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1565 if (old_vote != vm_ndomains - 1) 1566 return; 1567 1568 /* 1569 * The current pagedaemon thread is the last in the quorum to 1570 * start OOM. Initiate the selection and signaling of the 1571 * victim. 1572 */ 1573 vm_pageout_oom(VM_OOM_MEM); 1574 1575 /* 1576 * After one round of OOM terror, recall our vote. On the 1577 * next pass, current pagedaemon would vote again if the low 1578 * memory condition is still there, due to vmd_oom being 1579 * false. 1580 */ 1581 vmd->vmd_oom = FALSE; 1582 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1583 } 1584 1585 /* 1586 * The OOM killer is the page daemon's action of last resort when 1587 * memory allocation requests have been stalled for a prolonged period 1588 * of time because it cannot reclaim memory. This function computes 1589 * the approximate number of physical pages that could be reclaimed if 1590 * the specified address space is destroyed. 1591 * 1592 * Private, anonymous memory owned by the address space is the 1593 * principal resource that we expect to recover after an OOM kill. 1594 * Since the physical pages mapped by the address space's COW entries 1595 * are typically shared pages, they are unlikely to be released and so 1596 * they are not counted. 1597 * 1598 * To get to the point where the page daemon runs the OOM killer, its 1599 * efforts to write-back vnode-backed pages may have stalled. This 1600 * could be caused by a memory allocation deadlock in the write path 1601 * that might be resolved by an OOM kill. Therefore, physical pages 1602 * belonging to vnode-backed objects are counted, because they might 1603 * be freed without being written out first if the address space holds 1604 * the last reference to an unlinked vnode. 1605 * 1606 * Similarly, physical pages belonging to OBJT_PHYS objects are 1607 * counted because the address space might hold the last reference to 1608 * the object. 1609 */ 1610 static long 1611 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1612 { 1613 vm_map_t map; 1614 vm_map_entry_t entry; 1615 vm_object_t obj; 1616 long res; 1617 1618 map = &vmspace->vm_map; 1619 KASSERT(!map->system_map, ("system map")); 1620 sx_assert(&map->lock, SA_LOCKED); 1621 res = 0; 1622 for (entry = map->header.next; entry != &map->header; 1623 entry = entry->next) { 1624 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1625 continue; 1626 obj = entry->object.vm_object; 1627 if (obj == NULL) 1628 continue; 1629 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1630 obj->ref_count != 1) 1631 continue; 1632 switch (obj->type) { 1633 case OBJT_DEFAULT: 1634 case OBJT_SWAP: 1635 case OBJT_PHYS: 1636 case OBJT_VNODE: 1637 res += obj->resident_page_count; 1638 break; 1639 } 1640 } 1641 return (res); 1642 } 1643 1644 void 1645 vm_pageout_oom(int shortage) 1646 { 1647 struct proc *p, *bigproc; 1648 vm_offset_t size, bigsize; 1649 struct thread *td; 1650 struct vmspace *vm; 1651 bool breakout; 1652 1653 /* 1654 * We keep the process bigproc locked once we find it to keep anyone 1655 * from messing with it; however, there is a possibility of 1656 * deadlock if process B is bigproc and one of its child processes 1657 * attempts to propagate a signal to B while we are waiting for A's 1658 * lock while walking this list. To avoid this, we don't block on 1659 * the process lock but just skip a process if it is already locked. 1660 */ 1661 bigproc = NULL; 1662 bigsize = 0; 1663 sx_slock(&allproc_lock); 1664 FOREACH_PROC_IN_SYSTEM(p) { 1665 PROC_LOCK(p); 1666 1667 /* 1668 * If this is a system, protected or killed process, skip it. 1669 */ 1670 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1671 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1672 p->p_pid == 1 || P_KILLED(p) || 1673 (p->p_pid < 48 && swap_pager_avail != 0)) { 1674 PROC_UNLOCK(p); 1675 continue; 1676 } 1677 /* 1678 * If the process is in a non-running type state, 1679 * don't touch it. Check all the threads individually. 1680 */ 1681 breakout = false; 1682 FOREACH_THREAD_IN_PROC(p, td) { 1683 thread_lock(td); 1684 if (!TD_ON_RUNQ(td) && 1685 !TD_IS_RUNNING(td) && 1686 !TD_IS_SLEEPING(td) && 1687 !TD_IS_SUSPENDED(td) && 1688 !TD_IS_SWAPPED(td)) { 1689 thread_unlock(td); 1690 breakout = true; 1691 break; 1692 } 1693 thread_unlock(td); 1694 } 1695 if (breakout) { 1696 PROC_UNLOCK(p); 1697 continue; 1698 } 1699 /* 1700 * get the process size 1701 */ 1702 vm = vmspace_acquire_ref(p); 1703 if (vm == NULL) { 1704 PROC_UNLOCK(p); 1705 continue; 1706 } 1707 _PHOLD_LITE(p); 1708 PROC_UNLOCK(p); 1709 sx_sunlock(&allproc_lock); 1710 if (!vm_map_trylock_read(&vm->vm_map)) { 1711 vmspace_free(vm); 1712 sx_slock(&allproc_lock); 1713 PRELE(p); 1714 continue; 1715 } 1716 size = vmspace_swap_count(vm); 1717 if (shortage == VM_OOM_MEM) 1718 size += vm_pageout_oom_pagecount(vm); 1719 vm_map_unlock_read(&vm->vm_map); 1720 vmspace_free(vm); 1721 sx_slock(&allproc_lock); 1722 1723 /* 1724 * If this process is bigger than the biggest one, 1725 * remember it. 1726 */ 1727 if (size > bigsize) { 1728 if (bigproc != NULL) 1729 PRELE(bigproc); 1730 bigproc = p; 1731 bigsize = size; 1732 } else { 1733 PRELE(p); 1734 } 1735 } 1736 sx_sunlock(&allproc_lock); 1737 if (bigproc != NULL) { 1738 if (vm_panic_on_oom != 0) 1739 panic("out of swap space"); 1740 PROC_LOCK(bigproc); 1741 killproc(bigproc, "out of swap space"); 1742 sched_nice(bigproc, PRIO_MIN); 1743 _PRELE(bigproc); 1744 PROC_UNLOCK(bigproc); 1745 } 1746 } 1747 1748 static void 1749 vm_pageout_worker(void *arg) 1750 { 1751 struct vm_domain *vmd; 1752 int domain, pass, shortage; 1753 bool target_met; 1754 1755 domain = (uintptr_t)arg; 1756 vmd = VM_DOMAIN(domain); 1757 pass = 0; 1758 shortage = 0; 1759 target_met = true; 1760 1761 /* 1762 * XXXKIB It could be useful to bind pageout daemon threads to 1763 * the cores belonging to the domain, from which vm_page_array 1764 * is allocated. 1765 */ 1766 1767 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 1768 vmd->vmd_last_active_scan = ticks; 1769 1770 /* 1771 * The pageout daemon worker is never done, so loop forever. 1772 */ 1773 while (TRUE) { 1774 vm_domain_pageout_lock(vmd); 1775 /* 1776 * We need to clear wanted before we check the limits. This 1777 * prevents races with wakers who will check wanted after they 1778 * reach the limit. 1779 */ 1780 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 1781 1782 /* 1783 * Might the page daemon need to run again? 1784 */ 1785 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 1786 /* 1787 * Yes, the scan failed to free enough pages. If 1788 * we have performed a level >= 1 (page reclamation) 1789 * scan, then sleep a bit and try again. 1790 */ 1791 vm_domain_pageout_unlock(vmd); 1792 if (pass > 1) 1793 pause("pwait", hz / VM_INACT_SCAN_RATE); 1794 } else { 1795 /* 1796 * No, sleep until the next wakeup or until pages 1797 * need to have their reference stats updated. 1798 */ 1799 if (mtx_sleep(&vmd->vmd_pageout_wanted, 1800 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 1801 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 1802 VM_CNT_INC(v_pdwakeups); 1803 } 1804 /* Prevent spurious wakeups by ensuring that wanted is set. */ 1805 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 1806 1807 /* 1808 * Use the controller to calculate how many pages to free in 1809 * this interval. 1810 */ 1811 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 1812 if (shortage && pass == 0) 1813 pass = 1; 1814 1815 target_met = vm_pageout_scan(vmd, pass, shortage); 1816 /* 1817 * If the target was not met we must increase the pass to 1818 * more aggressively reclaim. 1819 */ 1820 if (!target_met) 1821 pass++; 1822 } 1823 } 1824 1825 /* 1826 * vm_pageout_init initialises basic pageout daemon settings. 1827 */ 1828 static void 1829 vm_pageout_init_domain(int domain) 1830 { 1831 struct vm_domain *vmd; 1832 struct sysctl_oid *oid; 1833 1834 vmd = VM_DOMAIN(domain); 1835 vmd->vmd_interrupt_free_min = 2; 1836 1837 /* 1838 * v_free_reserved needs to include enough for the largest 1839 * swap pager structures plus enough for any pv_entry structs 1840 * when paging. 1841 */ 1842 if (vmd->vmd_page_count > 1024) 1843 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200; 1844 else 1845 vmd->vmd_free_min = 4; 1846 vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE + 1847 vmd->vmd_interrupt_free_min; 1848 vmd->vmd_free_reserved = vm_pageout_page_count + 1849 vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768); 1850 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 1851 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 1852 vmd->vmd_free_min += vmd->vmd_free_reserved; 1853 vmd->vmd_free_severe += vmd->vmd_free_reserved; 1854 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 1855 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 1856 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 1857 1858 /* 1859 * Set the default wakeup threshold to be 10% below the paging 1860 * target. This keeps the steady state out of shortfall. 1861 */ 1862 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 1863 1864 /* 1865 * Target amount of memory to move out of the laundry queue during a 1866 * background laundering. This is proportional to the amount of system 1867 * memory. 1868 */ 1869 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 1870 vmd->vmd_free_min) / 10; 1871 1872 /* Initialize the pageout daemon pid controller. */ 1873 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 1874 vmd->vmd_free_target, PIDCTRL_BOUND, 1875 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 1876 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 1877 "pidctrl", CTLFLAG_RD, NULL, ""); 1878 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 1879 } 1880 1881 static void 1882 vm_pageout_init(void) 1883 { 1884 u_int freecount; 1885 int i; 1886 1887 /* 1888 * Initialize some paging parameters. 1889 */ 1890 if (vm_cnt.v_page_count < 2000) 1891 vm_pageout_page_count = 8; 1892 1893 freecount = 0; 1894 for (i = 0; i < vm_ndomains; i++) { 1895 struct vm_domain *vmd; 1896 1897 vm_pageout_init_domain(i); 1898 vmd = VM_DOMAIN(i); 1899 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 1900 vm_cnt.v_free_target += vmd->vmd_free_target; 1901 vm_cnt.v_free_min += vmd->vmd_free_min; 1902 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 1903 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 1904 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 1905 vm_cnt.v_free_severe += vmd->vmd_free_severe; 1906 freecount += vmd->vmd_free_count; 1907 } 1908 1909 /* 1910 * Set interval in seconds for active scan. We want to visit each 1911 * page at least once every ten minutes. This is to prevent worst 1912 * case paging behaviors with stale active LRU. 1913 */ 1914 if (vm_pageout_update_period == 0) 1915 vm_pageout_update_period = 600; 1916 1917 if (vm_page_max_wired == 0) 1918 vm_page_max_wired = freecount / 3; 1919 } 1920 1921 /* 1922 * vm_pageout is the high level pageout daemon. 1923 */ 1924 static void 1925 vm_pageout(void) 1926 { 1927 int error; 1928 int i; 1929 1930 swap_pager_swap_init(); 1931 snprintf(curthread->td_name, sizeof(curthread->td_name), "dom0"); 1932 error = kthread_add(vm_pageout_laundry_worker, NULL, curproc, NULL, 1933 0, 0, "laundry: dom0"); 1934 if (error != 0) 1935 panic("starting laundry for domain 0, error %d", error); 1936 for (i = 1; i < vm_ndomains; i++) { 1937 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i, 1938 curproc, NULL, 0, 0, "dom%d", i); 1939 if (error != 0) { 1940 panic("starting pageout for domain %d, error %d\n", 1941 i, error); 1942 } 1943 error = kthread_add(vm_pageout_laundry_worker, 1944 (void *)(uintptr_t)i, curproc, NULL, 0, 0, 1945 "laundry: dom%d", i); 1946 if (error != 0) 1947 panic("starting laundry for domain %d, error %d", 1948 i, error); 1949 } 1950 error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL, 1951 0, 0, "uma"); 1952 if (error != 0) 1953 panic("starting uma_reclaim helper, error %d\n", error); 1954 vm_pageout_worker((void *)(uintptr_t)0); 1955 } 1956 1957 /* 1958 * Perform an advisory wakeup of the page daemon. 1959 */ 1960 void 1961 pagedaemon_wakeup(int domain) 1962 { 1963 struct vm_domain *vmd; 1964 1965 vmd = VM_DOMAIN(domain); 1966 vm_domain_pageout_assert_unlocked(vmd); 1967 if (curproc == pageproc) 1968 return; 1969 1970 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 1971 vm_domain_pageout_lock(vmd); 1972 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 1973 wakeup(&vmd->vmd_pageout_wanted); 1974 vm_domain_pageout_unlock(vmd); 1975 } 1976 } 1977