1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 45 * 46 * 47 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 48 * All rights reserved. 49 * 50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 51 * 52 * Permission to use, copy, modify and distribute this software and 53 * its documentation is hereby granted, provided that both the copyright 54 * notice and this permission notice appear in all copies of the 55 * software, derivative works or modified versions, and any portions 56 * thereof, and that both notices appear in supporting documentation. 57 * 58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 61 * 62 * Carnegie Mellon requests users of this software to return to 63 * 64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 65 * School of Computer Science 66 * Carnegie Mellon University 67 * Pittsburgh PA 15213-3890 68 * 69 * any improvements or extensions that they make and grant Carnegie the 70 * rights to redistribute these changes. 71 */ 72 73 /* 74 * The proverbial page-out daemon. 75 */ 76 77 #include <sys/cdefs.h> 78 __FBSDID("$FreeBSD$"); 79 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/blockcount.h> 86 #include <sys/eventhandler.h> 87 #include <sys/lock.h> 88 #include <sys/mutex.h> 89 #include <sys/proc.h> 90 #include <sys/kthread.h> 91 #include <sys/ktr.h> 92 #include <sys/mount.h> 93 #include <sys/racct.h> 94 #include <sys/resourcevar.h> 95 #include <sys/sched.h> 96 #include <sys/sdt.h> 97 #include <sys/signalvar.h> 98 #include <sys/smp.h> 99 #include <sys/time.h> 100 #include <sys/vnode.h> 101 #include <sys/vmmeter.h> 102 #include <sys/rwlock.h> 103 #include <sys/sx.h> 104 #include <sys/sysctl.h> 105 106 #include <vm/vm.h> 107 #include <vm/vm_param.h> 108 #include <vm/vm_object.h> 109 #include <vm/vm_page.h> 110 #include <vm/vm_map.h> 111 #include <vm/vm_pageout.h> 112 #include <vm/vm_pager.h> 113 #include <vm/vm_phys.h> 114 #include <vm/vm_pagequeue.h> 115 #include <vm/swap_pager.h> 116 #include <vm/vm_extern.h> 117 #include <vm/uma.h> 118 119 /* 120 * System initialization 121 */ 122 123 /* the kernel process "vm_pageout"*/ 124 static void vm_pageout(void); 125 static void vm_pageout_init(void); 126 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 127 static int vm_pageout_cluster(vm_page_t m); 128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 129 int starting_page_shortage); 130 131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 132 NULL); 133 134 struct proc *pageproc; 135 136 static struct kproc_desc page_kp = { 137 "pagedaemon", 138 vm_pageout, 139 &pageproc 140 }; 141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 142 &page_kp); 143 144 SDT_PROVIDER_DEFINE(vm); 145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 146 147 /* Pagedaemon activity rates, in subdivisions of one second. */ 148 #define VM_LAUNDER_RATE 10 149 #define VM_INACT_SCAN_RATE 10 150 151 static int swapdev_enabled; 152 int vm_pageout_page_count = 32; 153 154 static int vm_panic_on_oom = 0; 155 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 156 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 157 "Panic on the given number of out-of-memory errors instead of " 158 "killing the largest process"); 159 160 static int vm_pageout_update_period; 161 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 162 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 163 "Maximum active LRU update period"); 164 165 static int pageout_cpus_per_thread = 16; 166 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN, 167 &pageout_cpus_per_thread, 0, 168 "Number of CPUs per pagedaemon worker thread"); 169 170 static int lowmem_period = 10; 171 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 172 "Low memory callback period"); 173 174 static int disable_swap_pageouts; 175 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 176 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, 177 "Disallow swapout of dirty pages"); 178 179 static int pageout_lock_miss; 180 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 181 CTLFLAG_RD, &pageout_lock_miss, 0, 182 "vget() lock misses during pageout"); 183 184 static int vm_pageout_oom_seq = 12; 185 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 186 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 187 "back-to-back calls to oom detector to start OOM"); 188 189 static int act_scan_laundry_weight = 3; 190 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 191 &act_scan_laundry_weight, 0, 192 "weight given to clean vs. dirty pages in active queue scans"); 193 194 static u_int vm_background_launder_rate = 4096; 195 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 196 &vm_background_launder_rate, 0, 197 "background laundering rate, in kilobytes per second"); 198 199 static u_int vm_background_launder_max = 20 * 1024; 200 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 201 &vm_background_launder_max, 0, 202 "background laundering cap, in kilobytes"); 203 204 u_long vm_page_max_user_wired; 205 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW, 206 &vm_page_max_user_wired, 0, 207 "system-wide limit to user-wired page count"); 208 209 static u_int isqrt(u_int num); 210 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 211 bool in_shortfall); 212 static void vm_pageout_laundry_worker(void *arg); 213 214 struct scan_state { 215 struct vm_batchqueue bq; 216 struct vm_pagequeue *pq; 217 vm_page_t marker; 218 int maxscan; 219 int scanned; 220 }; 221 222 static void 223 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 224 vm_page_t marker, vm_page_t after, int maxscan) 225 { 226 227 vm_pagequeue_assert_locked(pq); 228 KASSERT((marker->a.flags & PGA_ENQUEUED) == 0, 229 ("marker %p already enqueued", marker)); 230 231 if (after == NULL) 232 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 233 else 234 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 235 vm_page_aflag_set(marker, PGA_ENQUEUED); 236 237 vm_batchqueue_init(&ss->bq); 238 ss->pq = pq; 239 ss->marker = marker; 240 ss->maxscan = maxscan; 241 ss->scanned = 0; 242 vm_pagequeue_unlock(pq); 243 } 244 245 static void 246 vm_pageout_end_scan(struct scan_state *ss) 247 { 248 struct vm_pagequeue *pq; 249 250 pq = ss->pq; 251 vm_pagequeue_assert_locked(pq); 252 KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0, 253 ("marker %p not enqueued", ss->marker)); 254 255 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 256 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 257 pq->pq_pdpages += ss->scanned; 258 } 259 260 /* 261 * Add a small number of queued pages to a batch queue for later processing 262 * without the corresponding queue lock held. The caller must have enqueued a 263 * marker page at the desired start point for the scan. Pages will be 264 * physically dequeued if the caller so requests. Otherwise, the returned 265 * batch may contain marker pages, and it is up to the caller to handle them. 266 * 267 * When processing the batch queue, vm_pageout_defer() must be used to 268 * determine whether the page has been logically dequeued since the batch was 269 * collected. 270 */ 271 static __always_inline void 272 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 273 { 274 struct vm_pagequeue *pq; 275 vm_page_t m, marker, n; 276 277 marker = ss->marker; 278 pq = ss->pq; 279 280 KASSERT((marker->a.flags & PGA_ENQUEUED) != 0, 281 ("marker %p not enqueued", ss->marker)); 282 283 vm_pagequeue_lock(pq); 284 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 285 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 286 m = n, ss->scanned++) { 287 n = TAILQ_NEXT(m, plinks.q); 288 if ((m->flags & PG_MARKER) == 0) { 289 KASSERT((m->a.flags & PGA_ENQUEUED) != 0, 290 ("page %p not enqueued", m)); 291 KASSERT((m->flags & PG_FICTITIOUS) == 0, 292 ("Fictitious page %p cannot be in page queue", m)); 293 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 294 ("Unmanaged page %p cannot be in page queue", m)); 295 } else if (dequeue) 296 continue; 297 298 (void)vm_batchqueue_insert(&ss->bq, m); 299 if (dequeue) { 300 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 301 vm_page_aflag_clear(m, PGA_ENQUEUED); 302 } 303 } 304 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 305 if (__predict_true(m != NULL)) 306 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 307 else 308 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 309 if (dequeue) 310 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 311 vm_pagequeue_unlock(pq); 312 } 313 314 /* 315 * Return the next page to be scanned, or NULL if the scan is complete. 316 */ 317 static __always_inline vm_page_t 318 vm_pageout_next(struct scan_state *ss, const bool dequeue) 319 { 320 321 if (ss->bq.bq_cnt == 0) 322 vm_pageout_collect_batch(ss, dequeue); 323 return (vm_batchqueue_pop(&ss->bq)); 324 } 325 326 /* 327 * Determine whether processing of a page should be deferred and ensure that any 328 * outstanding queue operations are processed. 329 */ 330 static __always_inline bool 331 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued) 332 { 333 vm_page_astate_t as; 334 335 as = vm_page_astate_load(m); 336 if (__predict_false(as.queue != queue || 337 ((as.flags & PGA_ENQUEUED) != 0) != enqueued)) 338 return (true); 339 if ((as.flags & PGA_QUEUE_OP_MASK) != 0) { 340 vm_page_pqbatch_submit(m, queue); 341 return (true); 342 } 343 return (false); 344 } 345 346 /* 347 * Scan for pages at adjacent offsets within the given page's object that are 348 * eligible for laundering, form a cluster of these pages and the given page, 349 * and launder that cluster. 350 */ 351 static int 352 vm_pageout_cluster(vm_page_t m) 353 { 354 vm_object_t object; 355 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 356 vm_pindex_t pindex; 357 int ib, is, page_base, pageout_count; 358 359 object = m->object; 360 VM_OBJECT_ASSERT_WLOCKED(object); 361 pindex = m->pindex; 362 363 vm_page_assert_xbusied(m); 364 365 mc[vm_pageout_page_count] = pb = ps = m; 366 pageout_count = 1; 367 page_base = vm_pageout_page_count; 368 ib = 1; 369 is = 1; 370 371 /* 372 * We can cluster only if the page is not clean, busy, or held, and 373 * the page is in the laundry queue. 374 * 375 * During heavy mmap/modification loads the pageout 376 * daemon can really fragment the underlying file 377 * due to flushing pages out of order and not trying to 378 * align the clusters (which leaves sporadic out-of-order 379 * holes). To solve this problem we do the reverse scan 380 * first and attempt to align our cluster, then do a 381 * forward scan if room remains. 382 */ 383 more: 384 while (ib != 0 && pageout_count < vm_pageout_page_count) { 385 if (ib > pindex) { 386 ib = 0; 387 break; 388 } 389 if ((p = vm_page_prev(pb)) == NULL || 390 vm_page_tryxbusy(p) == 0) { 391 ib = 0; 392 break; 393 } 394 if (vm_page_wired(p)) { 395 ib = 0; 396 vm_page_xunbusy(p); 397 break; 398 } 399 vm_page_test_dirty(p); 400 if (p->dirty == 0) { 401 ib = 0; 402 vm_page_xunbusy(p); 403 break; 404 } 405 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 406 vm_page_xunbusy(p); 407 ib = 0; 408 break; 409 } 410 mc[--page_base] = pb = p; 411 ++pageout_count; 412 ++ib; 413 414 /* 415 * We are at an alignment boundary. Stop here, and switch 416 * directions. Do not clear ib. 417 */ 418 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 419 break; 420 } 421 while (pageout_count < vm_pageout_page_count && 422 pindex + is < object->size) { 423 if ((p = vm_page_next(ps)) == NULL || 424 vm_page_tryxbusy(p) == 0) 425 break; 426 if (vm_page_wired(p)) { 427 vm_page_xunbusy(p); 428 break; 429 } 430 vm_page_test_dirty(p); 431 if (p->dirty == 0) { 432 vm_page_xunbusy(p); 433 break; 434 } 435 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 436 vm_page_xunbusy(p); 437 break; 438 } 439 mc[page_base + pageout_count] = ps = p; 440 ++pageout_count; 441 ++is; 442 } 443 444 /* 445 * If we exhausted our forward scan, continue with the reverse scan 446 * when possible, even past an alignment boundary. This catches 447 * boundary conditions. 448 */ 449 if (ib != 0 && pageout_count < vm_pageout_page_count) 450 goto more; 451 452 return (vm_pageout_flush(&mc[page_base], pageout_count, 453 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 454 } 455 456 /* 457 * vm_pageout_flush() - launder the given pages 458 * 459 * The given pages are laundered. Note that we setup for the start of 460 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 461 * reference count all in here rather then in the parent. If we want 462 * the parent to do more sophisticated things we may have to change 463 * the ordering. 464 * 465 * Returned runlen is the count of pages between mreq and first 466 * page after mreq with status VM_PAGER_AGAIN. 467 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 468 * for any page in runlen set. 469 */ 470 int 471 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 472 boolean_t *eio) 473 { 474 vm_object_t object = mc[0]->object; 475 int pageout_status[count]; 476 int numpagedout = 0; 477 int i, runlen; 478 479 VM_OBJECT_ASSERT_WLOCKED(object); 480 481 /* 482 * Initiate I/O. Mark the pages shared busy and verify that they're 483 * valid and read-only. 484 * 485 * We do not have to fixup the clean/dirty bits here... we can 486 * allow the pager to do it after the I/O completes. 487 * 488 * NOTE! mc[i]->dirty may be partial or fragmented due to an 489 * edge case with file fragments. 490 */ 491 for (i = 0; i < count; i++) { 492 KASSERT(vm_page_all_valid(mc[i]), 493 ("vm_pageout_flush: partially invalid page %p index %d/%d", 494 mc[i], i, count)); 495 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0, 496 ("vm_pageout_flush: writeable page %p", mc[i])); 497 vm_page_busy_downgrade(mc[i]); 498 } 499 vm_object_pip_add(object, count); 500 501 vm_pager_put_pages(object, mc, count, flags, pageout_status); 502 503 runlen = count - mreq; 504 if (eio != NULL) 505 *eio = FALSE; 506 for (i = 0; i < count; i++) { 507 vm_page_t mt = mc[i]; 508 509 KASSERT(pageout_status[i] == VM_PAGER_PEND || 510 !pmap_page_is_write_mapped(mt), 511 ("vm_pageout_flush: page %p is not write protected", mt)); 512 switch (pageout_status[i]) { 513 case VM_PAGER_OK: 514 /* 515 * The page may have moved since laundering started, in 516 * which case it should be left alone. 517 */ 518 if (vm_page_in_laundry(mt)) 519 vm_page_deactivate_noreuse(mt); 520 /* FALLTHROUGH */ 521 case VM_PAGER_PEND: 522 numpagedout++; 523 break; 524 case VM_PAGER_BAD: 525 /* 526 * The page is outside the object's range. We pretend 527 * that the page out worked and clean the page, so the 528 * changes will be lost if the page is reclaimed by 529 * the page daemon. 530 */ 531 vm_page_undirty(mt); 532 if (vm_page_in_laundry(mt)) 533 vm_page_deactivate_noreuse(mt); 534 break; 535 case VM_PAGER_ERROR: 536 case VM_PAGER_FAIL: 537 /* 538 * If the page couldn't be paged out to swap because the 539 * pager wasn't able to find space, place the page in 540 * the PQ_UNSWAPPABLE holding queue. This is an 541 * optimization that prevents the page daemon from 542 * wasting CPU cycles on pages that cannot be reclaimed 543 * because no swap device is configured. 544 * 545 * Otherwise, reactivate the page so that it doesn't 546 * clog the laundry and inactive queues. (We will try 547 * paging it out again later.) 548 */ 549 if ((object->flags & OBJ_SWAP) != 0 && 550 pageout_status[i] == VM_PAGER_FAIL) { 551 vm_page_unswappable(mt); 552 numpagedout++; 553 } else 554 vm_page_activate(mt); 555 if (eio != NULL && i >= mreq && i - mreq < runlen) 556 *eio = TRUE; 557 break; 558 case VM_PAGER_AGAIN: 559 if (i >= mreq && i - mreq < runlen) 560 runlen = i - mreq; 561 break; 562 } 563 564 /* 565 * If the operation is still going, leave the page busy to 566 * block all other accesses. Also, leave the paging in 567 * progress indicator set so that we don't attempt an object 568 * collapse. 569 */ 570 if (pageout_status[i] != VM_PAGER_PEND) { 571 vm_object_pip_wakeup(object); 572 vm_page_sunbusy(mt); 573 } 574 } 575 if (prunlen != NULL) 576 *prunlen = runlen; 577 return (numpagedout); 578 } 579 580 static void 581 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 582 { 583 584 atomic_store_rel_int(&swapdev_enabled, 1); 585 } 586 587 static void 588 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 589 { 590 591 if (swap_pager_nswapdev() == 1) 592 atomic_store_rel_int(&swapdev_enabled, 0); 593 } 594 595 /* 596 * Attempt to acquire all of the necessary locks to launder a page and 597 * then call through the clustering layer to PUTPAGES. Wait a short 598 * time for a vnode lock. 599 * 600 * Requires the page and object lock on entry, releases both before return. 601 * Returns 0 on success and an errno otherwise. 602 */ 603 static int 604 vm_pageout_clean(vm_page_t m, int *numpagedout) 605 { 606 struct vnode *vp; 607 struct mount *mp; 608 vm_object_t object; 609 vm_pindex_t pindex; 610 int error; 611 612 object = m->object; 613 VM_OBJECT_ASSERT_WLOCKED(object); 614 error = 0; 615 vp = NULL; 616 mp = NULL; 617 618 /* 619 * The object is already known NOT to be dead. It 620 * is possible for the vget() to block the whole 621 * pageout daemon, but the new low-memory handling 622 * code should prevent it. 623 * 624 * We can't wait forever for the vnode lock, we might 625 * deadlock due to a vn_read() getting stuck in 626 * vm_wait while holding this vnode. We skip the 627 * vnode if we can't get it in a reasonable amount 628 * of time. 629 */ 630 if (object->type == OBJT_VNODE) { 631 vm_page_xunbusy(m); 632 vp = object->handle; 633 if (vp->v_type == VREG && 634 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 635 mp = NULL; 636 error = EDEADLK; 637 goto unlock_all; 638 } 639 KASSERT(mp != NULL, 640 ("vp %p with NULL v_mount", vp)); 641 vm_object_reference_locked(object); 642 pindex = m->pindex; 643 VM_OBJECT_WUNLOCK(object); 644 if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) { 645 vp = NULL; 646 error = EDEADLK; 647 goto unlock_mp; 648 } 649 VM_OBJECT_WLOCK(object); 650 651 /* 652 * Ensure that the object and vnode were not disassociated 653 * while locks were dropped. 654 */ 655 if (vp->v_object != object) { 656 error = ENOENT; 657 goto unlock_all; 658 } 659 660 /* 661 * While the object was unlocked, the page may have been: 662 * (1) moved to a different queue, 663 * (2) reallocated to a different object, 664 * (3) reallocated to a different offset, or 665 * (4) cleaned. 666 */ 667 if (!vm_page_in_laundry(m) || m->object != object || 668 m->pindex != pindex || m->dirty == 0) { 669 error = ENXIO; 670 goto unlock_all; 671 } 672 673 /* 674 * The page may have been busied while the object lock was 675 * released. 676 */ 677 if (vm_page_tryxbusy(m) == 0) { 678 error = EBUSY; 679 goto unlock_all; 680 } 681 } 682 683 /* 684 * Remove all writeable mappings, failing if the page is wired. 685 */ 686 if (!vm_page_try_remove_write(m)) { 687 vm_page_xunbusy(m); 688 error = EBUSY; 689 goto unlock_all; 690 } 691 692 /* 693 * If a page is dirty, then it is either being washed 694 * (but not yet cleaned) or it is still in the 695 * laundry. If it is still in the laundry, then we 696 * start the cleaning operation. 697 */ 698 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 699 error = EIO; 700 701 unlock_all: 702 VM_OBJECT_WUNLOCK(object); 703 704 unlock_mp: 705 if (mp != NULL) { 706 if (vp != NULL) 707 vput(vp); 708 vm_object_deallocate(object); 709 vn_finished_write(mp); 710 } 711 712 return (error); 713 } 714 715 /* 716 * Check if the object is active. Non-anonymous swap objects are 717 * always referenced by the owner, for them require ref_count > 1 in 718 * order to ignore the ownership ref. 719 * 720 * Perform an unsynchronized object ref count check. While 721 * the page lock ensures that the page is not reallocated to 722 * another object, in particular, one with unmanaged mappings 723 * that cannot support pmap_ts_referenced(), two races are, 724 * nonetheless, possible: 725 * 1) The count was transitioning to zero, but we saw a non- 726 * zero value. pmap_ts_referenced() will return zero 727 * because the page is not mapped. 728 * 2) The count was transitioning to one, but we saw zero. 729 * This race delays the detection of a new reference. At 730 * worst, we will deactivate and reactivate the page. 731 */ 732 static bool 733 vm_pageout_object_act(vm_object_t object) 734 { 735 return (object->ref_count > 736 ((object->flags & (OBJ_SWAP | OBJ_ANON)) == OBJ_SWAP ? 1 : 0)); 737 } 738 739 static int 740 vm_pageout_page_ts_referenced(vm_object_t object, vm_page_t m) 741 { 742 if (!vm_pageout_object_act(object)) 743 return (0); 744 return (pmap_ts_referenced(m)); 745 } 746 747 /* 748 * Attempt to launder the specified number of pages. 749 * 750 * Returns the number of pages successfully laundered. 751 */ 752 static int 753 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 754 { 755 struct scan_state ss; 756 struct vm_pagequeue *pq; 757 vm_object_t object; 758 vm_page_t m, marker; 759 vm_page_astate_t new, old; 760 int act_delta, error, numpagedout, queue, refs, starting_target; 761 int vnodes_skipped; 762 bool pageout_ok; 763 764 object = NULL; 765 starting_target = launder; 766 vnodes_skipped = 0; 767 768 /* 769 * Scan the laundry queues for pages eligible to be laundered. We stop 770 * once the target number of dirty pages have been laundered, or once 771 * we've reached the end of the queue. A single iteration of this loop 772 * may cause more than one page to be laundered because of clustering. 773 * 774 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 775 * swap devices are configured. 776 */ 777 if (atomic_load_acq_int(&swapdev_enabled)) 778 queue = PQ_UNSWAPPABLE; 779 else 780 queue = PQ_LAUNDRY; 781 782 scan: 783 marker = &vmd->vmd_markers[queue]; 784 pq = &vmd->vmd_pagequeues[queue]; 785 vm_pagequeue_lock(pq); 786 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 787 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 788 if (__predict_false((m->flags & PG_MARKER) != 0)) 789 continue; 790 791 /* 792 * Don't touch a page that was removed from the queue after the 793 * page queue lock was released. Otherwise, ensure that any 794 * pending queue operations, such as dequeues for wired pages, 795 * are handled. 796 */ 797 if (vm_pageout_defer(m, queue, true)) 798 continue; 799 800 /* 801 * Lock the page's object. 802 */ 803 if (object == NULL || object != m->object) { 804 if (object != NULL) 805 VM_OBJECT_WUNLOCK(object); 806 object = atomic_load_ptr(&m->object); 807 if (__predict_false(object == NULL)) 808 /* The page is being freed by another thread. */ 809 continue; 810 811 /* Depends on type-stability. */ 812 VM_OBJECT_WLOCK(object); 813 if (__predict_false(m->object != object)) { 814 VM_OBJECT_WUNLOCK(object); 815 object = NULL; 816 continue; 817 } 818 } 819 820 if (vm_page_tryxbusy(m) == 0) 821 continue; 822 823 /* 824 * Check for wirings now that we hold the object lock and have 825 * exclusively busied the page. If the page is mapped, it may 826 * still be wired by pmap lookups. The call to 827 * vm_page_try_remove_all() below atomically checks for such 828 * wirings and removes mappings. If the page is unmapped, the 829 * wire count is guaranteed not to increase after this check. 830 */ 831 if (__predict_false(vm_page_wired(m))) 832 goto skip_page; 833 834 /* 835 * Invalid pages can be easily freed. They cannot be 836 * mapped; vm_page_free() asserts this. 837 */ 838 if (vm_page_none_valid(m)) 839 goto free_page; 840 841 refs = vm_pageout_page_ts_referenced(object, m); 842 843 for (old = vm_page_astate_load(m);;) { 844 /* 845 * Check to see if the page has been removed from the 846 * queue since the first such check. Leave it alone if 847 * so, discarding any references collected by 848 * pmap_ts_referenced(). 849 */ 850 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 851 goto skip_page; 852 853 new = old; 854 act_delta = refs; 855 if ((old.flags & PGA_REFERENCED) != 0) { 856 new.flags &= ~PGA_REFERENCED; 857 act_delta++; 858 } 859 if (act_delta == 0) { 860 ; 861 } else if (vm_pageout_object_act(object)) { 862 /* 863 * Increase the activation count if the page was 864 * referenced while in the laundry queue. This 865 * makes it less likely that the page will be 866 * returned prematurely to the laundry queue. 867 */ 868 new.act_count += ACT_ADVANCE + 869 act_delta; 870 if (new.act_count > ACT_MAX) 871 new.act_count = ACT_MAX; 872 873 new.flags &= ~PGA_QUEUE_OP_MASK; 874 new.flags |= PGA_REQUEUE; 875 new.queue = PQ_ACTIVE; 876 if (!vm_page_pqstate_commit(m, &old, new)) 877 continue; 878 879 /* 880 * If this was a background laundering, count 881 * activated pages towards our target. The 882 * purpose of background laundering is to ensure 883 * that pages are eventually cycled through the 884 * laundry queue, and an activation is a valid 885 * way out. 886 */ 887 if (!in_shortfall) 888 launder--; 889 VM_CNT_INC(v_reactivated); 890 goto skip_page; 891 } else if ((object->flags & OBJ_DEAD) == 0) { 892 new.flags |= PGA_REQUEUE; 893 if (!vm_page_pqstate_commit(m, &old, new)) 894 continue; 895 goto skip_page; 896 } 897 break; 898 } 899 900 /* 901 * If the page appears to be clean at the machine-independent 902 * layer, then remove all of its mappings from the pmap in 903 * anticipation of freeing it. If, however, any of the page's 904 * mappings allow write access, then the page may still be 905 * modified until the last of those mappings are removed. 906 */ 907 if (object->ref_count != 0) { 908 vm_page_test_dirty(m); 909 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 910 goto skip_page; 911 } 912 913 /* 914 * Clean pages are freed, and dirty pages are paged out unless 915 * they belong to a dead object. Requeueing dirty pages from 916 * dead objects is pointless, as they are being paged out and 917 * freed by the thread that destroyed the object. 918 */ 919 if (m->dirty == 0) { 920 free_page: 921 /* 922 * Now we are guaranteed that no other threads are 923 * manipulating the page, check for a last-second 924 * reference. 925 */ 926 if (vm_pageout_defer(m, queue, true)) 927 goto skip_page; 928 vm_page_free(m); 929 VM_CNT_INC(v_dfree); 930 } else if ((object->flags & OBJ_DEAD) == 0) { 931 if ((object->flags & OBJ_SWAP) == 0 && 932 object->type != OBJT_DEFAULT) 933 pageout_ok = true; 934 else if (disable_swap_pageouts) 935 pageout_ok = false; 936 else 937 pageout_ok = true; 938 if (!pageout_ok) { 939 vm_page_launder(m); 940 goto skip_page; 941 } 942 943 /* 944 * Form a cluster with adjacent, dirty pages from the 945 * same object, and page out that entire cluster. 946 * 947 * The adjacent, dirty pages must also be in the 948 * laundry. However, their mappings are not checked 949 * for new references. Consequently, a recently 950 * referenced page may be paged out. However, that 951 * page will not be prematurely reclaimed. After page 952 * out, the page will be placed in the inactive queue, 953 * where any new references will be detected and the 954 * page reactivated. 955 */ 956 error = vm_pageout_clean(m, &numpagedout); 957 if (error == 0) { 958 launder -= numpagedout; 959 ss.scanned += numpagedout; 960 } else if (error == EDEADLK) { 961 pageout_lock_miss++; 962 vnodes_skipped++; 963 } 964 object = NULL; 965 } else { 966 skip_page: 967 vm_page_xunbusy(m); 968 } 969 } 970 if (object != NULL) { 971 VM_OBJECT_WUNLOCK(object); 972 object = NULL; 973 } 974 vm_pagequeue_lock(pq); 975 vm_pageout_end_scan(&ss); 976 vm_pagequeue_unlock(pq); 977 978 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 979 queue = PQ_LAUNDRY; 980 goto scan; 981 } 982 983 /* 984 * Wakeup the sync daemon if we skipped a vnode in a writeable object 985 * and we didn't launder enough pages. 986 */ 987 if (vnodes_skipped > 0 && launder > 0) 988 (void)speedup_syncer(); 989 990 return (starting_target - launder); 991 } 992 993 /* 994 * Compute the integer square root. 995 */ 996 static u_int 997 isqrt(u_int num) 998 { 999 u_int bit, root, tmp; 1000 1001 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0; 1002 root = 0; 1003 while (bit != 0) { 1004 tmp = root + bit; 1005 root >>= 1; 1006 if (num >= tmp) { 1007 num -= tmp; 1008 root += bit; 1009 } 1010 bit >>= 2; 1011 } 1012 return (root); 1013 } 1014 1015 /* 1016 * Perform the work of the laundry thread: periodically wake up and determine 1017 * whether any pages need to be laundered. If so, determine the number of pages 1018 * that need to be laundered, and launder them. 1019 */ 1020 static void 1021 vm_pageout_laundry_worker(void *arg) 1022 { 1023 struct vm_domain *vmd; 1024 struct vm_pagequeue *pq; 1025 uint64_t nclean, ndirty, nfreed; 1026 int domain, last_target, launder, shortfall, shortfall_cycle, target; 1027 bool in_shortfall; 1028 1029 domain = (uintptr_t)arg; 1030 vmd = VM_DOMAIN(domain); 1031 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1032 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 1033 1034 shortfall = 0; 1035 in_shortfall = false; 1036 shortfall_cycle = 0; 1037 last_target = target = 0; 1038 nfreed = 0; 1039 1040 /* 1041 * Calls to these handlers are serialized by the swap syscall lock. 1042 */ 1043 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 1044 EVENTHANDLER_PRI_ANY); 1045 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 1046 EVENTHANDLER_PRI_ANY); 1047 1048 /* 1049 * The pageout laundry worker is never done, so loop forever. 1050 */ 1051 for (;;) { 1052 KASSERT(target >= 0, ("negative target %d", target)); 1053 KASSERT(shortfall_cycle >= 0, 1054 ("negative cycle %d", shortfall_cycle)); 1055 launder = 0; 1056 1057 /* 1058 * First determine whether we need to launder pages to meet a 1059 * shortage of free pages. 1060 */ 1061 if (shortfall > 0) { 1062 in_shortfall = true; 1063 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 1064 target = shortfall; 1065 } else if (!in_shortfall) 1066 goto trybackground; 1067 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 1068 /* 1069 * We recently entered shortfall and began laundering 1070 * pages. If we have completed that laundering run 1071 * (and we are no longer in shortfall) or we have met 1072 * our laundry target through other activity, then we 1073 * can stop laundering pages. 1074 */ 1075 in_shortfall = false; 1076 target = 0; 1077 goto trybackground; 1078 } 1079 launder = target / shortfall_cycle--; 1080 goto dolaundry; 1081 1082 /* 1083 * There's no immediate need to launder any pages; see if we 1084 * meet the conditions to perform background laundering: 1085 * 1086 * 1. The ratio of dirty to clean inactive pages exceeds the 1087 * background laundering threshold, or 1088 * 2. we haven't yet reached the target of the current 1089 * background laundering run. 1090 * 1091 * The background laundering threshold is not a constant. 1092 * Instead, it is a slowly growing function of the number of 1093 * clean pages freed by the page daemon since the last 1094 * background laundering. Thus, as the ratio of dirty to 1095 * clean inactive pages grows, the amount of memory pressure 1096 * required to trigger laundering decreases. We ensure 1097 * that the threshold is non-zero after an inactive queue 1098 * scan, even if that scan failed to free a single clean page. 1099 */ 1100 trybackground: 1101 nclean = vmd->vmd_free_count + 1102 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1103 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1104 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1105 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1106 target = vmd->vmd_background_launder_target; 1107 } 1108 1109 /* 1110 * We have a non-zero background laundering target. If we've 1111 * laundered up to our maximum without observing a page daemon 1112 * request, just stop. This is a safety belt that ensures we 1113 * don't launder an excessive amount if memory pressure is low 1114 * and the ratio of dirty to clean pages is large. Otherwise, 1115 * proceed at the background laundering rate. 1116 */ 1117 if (target > 0) { 1118 if (nfreed > 0) { 1119 nfreed = 0; 1120 last_target = target; 1121 } else if (last_target - target >= 1122 vm_background_launder_max * PAGE_SIZE / 1024) { 1123 target = 0; 1124 } 1125 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1126 launder /= VM_LAUNDER_RATE; 1127 if (launder > target) 1128 launder = target; 1129 } 1130 1131 dolaundry: 1132 if (launder > 0) { 1133 /* 1134 * Because of I/O clustering, the number of laundered 1135 * pages could exceed "target" by the maximum size of 1136 * a cluster minus one. 1137 */ 1138 target -= min(vm_pageout_launder(vmd, launder, 1139 in_shortfall), target); 1140 pause("laundp", hz / VM_LAUNDER_RATE); 1141 } 1142 1143 /* 1144 * If we're not currently laundering pages and the page daemon 1145 * hasn't posted a new request, sleep until the page daemon 1146 * kicks us. 1147 */ 1148 vm_pagequeue_lock(pq); 1149 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1150 (void)mtx_sleep(&vmd->vmd_laundry_request, 1151 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1152 1153 /* 1154 * If the pagedaemon has indicated that it's in shortfall, start 1155 * a shortfall laundering unless we're already in the middle of 1156 * one. This may preempt a background laundering. 1157 */ 1158 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1159 (!in_shortfall || shortfall_cycle == 0)) { 1160 shortfall = vm_laundry_target(vmd) + 1161 vmd->vmd_pageout_deficit; 1162 target = 0; 1163 } else 1164 shortfall = 0; 1165 1166 if (target == 0) 1167 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1168 nfreed += vmd->vmd_clean_pages_freed; 1169 vmd->vmd_clean_pages_freed = 0; 1170 vm_pagequeue_unlock(pq); 1171 } 1172 } 1173 1174 /* 1175 * Compute the number of pages we want to try to move from the 1176 * active queue to either the inactive or laundry queue. 1177 * 1178 * When scanning active pages during a shortage, we make clean pages 1179 * count more heavily towards the page shortage than dirty pages. 1180 * This is because dirty pages must be laundered before they can be 1181 * reused and thus have less utility when attempting to quickly 1182 * alleviate a free page shortage. However, this weighting also 1183 * causes the scan to deactivate dirty pages more aggressively, 1184 * improving the effectiveness of clustering. 1185 */ 1186 static int 1187 vm_pageout_active_target(struct vm_domain *vmd) 1188 { 1189 int shortage; 1190 1191 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) - 1192 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt + 1193 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight); 1194 shortage *= act_scan_laundry_weight; 1195 return (shortage); 1196 } 1197 1198 /* 1199 * Scan the active queue. If there is no shortage of inactive pages, scan a 1200 * small portion of the queue in order to maintain quasi-LRU. 1201 */ 1202 static void 1203 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage) 1204 { 1205 struct scan_state ss; 1206 vm_object_t object; 1207 vm_page_t m, marker; 1208 struct vm_pagequeue *pq; 1209 vm_page_astate_t old, new; 1210 long min_scan; 1211 int act_delta, max_scan, ps_delta, refs, scan_tick; 1212 uint8_t nqueue; 1213 1214 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1215 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1216 vm_pagequeue_lock(pq); 1217 1218 /* 1219 * If we're just idle polling attempt to visit every 1220 * active page within 'update_period' seconds. 1221 */ 1222 scan_tick = ticks; 1223 if (vm_pageout_update_period != 0) { 1224 min_scan = pq->pq_cnt; 1225 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1226 min_scan /= hz * vm_pageout_update_period; 1227 } else 1228 min_scan = 0; 1229 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0)) 1230 vmd->vmd_last_active_scan = scan_tick; 1231 1232 /* 1233 * Scan the active queue for pages that can be deactivated. Update 1234 * the per-page activity counter and use it to identify deactivation 1235 * candidates. Held pages may be deactivated. 1236 * 1237 * To avoid requeuing each page that remains in the active queue, we 1238 * implement the CLOCK algorithm. To keep the implementation of the 1239 * enqueue operation consistent for all page queues, we use two hands, 1240 * represented by marker pages. Scans begin at the first hand, which 1241 * precedes the second hand in the queue. When the two hands meet, 1242 * they are moved back to the head and tail of the queue, respectively, 1243 * and scanning resumes. 1244 */ 1245 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan; 1246 act_scan: 1247 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1248 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1249 if (__predict_false(m == &vmd->vmd_clock[1])) { 1250 vm_pagequeue_lock(pq); 1251 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1252 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1253 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1254 plinks.q); 1255 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1256 plinks.q); 1257 max_scan -= ss.scanned; 1258 vm_pageout_end_scan(&ss); 1259 goto act_scan; 1260 } 1261 if (__predict_false((m->flags & PG_MARKER) != 0)) 1262 continue; 1263 1264 /* 1265 * Don't touch a page that was removed from the queue after the 1266 * page queue lock was released. Otherwise, ensure that any 1267 * pending queue operations, such as dequeues for wired pages, 1268 * are handled. 1269 */ 1270 if (vm_pageout_defer(m, PQ_ACTIVE, true)) 1271 continue; 1272 1273 /* 1274 * A page's object pointer may be set to NULL before 1275 * the object lock is acquired. 1276 */ 1277 object = atomic_load_ptr(&m->object); 1278 if (__predict_false(object == NULL)) 1279 /* 1280 * The page has been removed from its object. 1281 */ 1282 continue; 1283 1284 /* Deferred free of swap space. */ 1285 if ((m->a.flags & PGA_SWAP_FREE) != 0 && 1286 VM_OBJECT_TRYWLOCK(object)) { 1287 if (m->object == object) 1288 vm_pager_page_unswapped(m); 1289 VM_OBJECT_WUNLOCK(object); 1290 } 1291 1292 /* 1293 * Check to see "how much" the page has been used. 1294 * 1295 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1296 * that a reference from a concurrently destroyed mapping is 1297 * observed here and now. 1298 */ 1299 refs = vm_pageout_page_ts_referenced(object, m); 1300 1301 old = vm_page_astate_load(m); 1302 do { 1303 /* 1304 * Check to see if the page has been removed from the 1305 * queue since the first such check. Leave it alone if 1306 * so, discarding any references collected by 1307 * pmap_ts_referenced(). 1308 */ 1309 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) { 1310 ps_delta = 0; 1311 break; 1312 } 1313 1314 /* 1315 * Advance or decay the act_count based on recent usage. 1316 */ 1317 new = old; 1318 act_delta = refs; 1319 if ((old.flags & PGA_REFERENCED) != 0) { 1320 new.flags &= ~PGA_REFERENCED; 1321 act_delta++; 1322 } 1323 if (act_delta != 0) { 1324 new.act_count += ACT_ADVANCE + act_delta; 1325 if (new.act_count > ACT_MAX) 1326 new.act_count = ACT_MAX; 1327 } else { 1328 new.act_count -= min(new.act_count, 1329 ACT_DECLINE); 1330 } 1331 1332 if (new.act_count > 0) { 1333 /* 1334 * Adjust the activation count and keep the page 1335 * in the active queue. The count might be left 1336 * unchanged if it is saturated. The page may 1337 * have been moved to a different queue since we 1338 * started the scan, in which case we move it 1339 * back. 1340 */ 1341 ps_delta = 0; 1342 if (old.queue != PQ_ACTIVE) { 1343 new.flags &= ~PGA_QUEUE_OP_MASK; 1344 new.flags |= PGA_REQUEUE; 1345 new.queue = PQ_ACTIVE; 1346 } 1347 } else { 1348 /* 1349 * When not short for inactive pages, let dirty 1350 * pages go through the inactive queue before 1351 * moving to the laundry queue. This gives them 1352 * some extra time to be reactivated, 1353 * potentially avoiding an expensive pageout. 1354 * However, during a page shortage, the inactive 1355 * queue is necessarily small, and so dirty 1356 * pages would only spend a trivial amount of 1357 * time in the inactive queue. Therefore, we 1358 * might as well place them directly in the 1359 * laundry queue to reduce queuing overhead. 1360 * 1361 * Calling vm_page_test_dirty() here would 1362 * require acquisition of the object's write 1363 * lock. However, during a page shortage, 1364 * directing dirty pages into the laundry queue 1365 * is only an optimization and not a 1366 * requirement. Therefore, we simply rely on 1367 * the opportunistic updates to the page's dirty 1368 * field by the pmap. 1369 */ 1370 if (page_shortage <= 0) { 1371 nqueue = PQ_INACTIVE; 1372 ps_delta = 0; 1373 } else if (m->dirty == 0) { 1374 nqueue = PQ_INACTIVE; 1375 ps_delta = act_scan_laundry_weight; 1376 } else { 1377 nqueue = PQ_LAUNDRY; 1378 ps_delta = 1; 1379 } 1380 1381 new.flags &= ~PGA_QUEUE_OP_MASK; 1382 new.flags |= PGA_REQUEUE; 1383 new.queue = nqueue; 1384 } 1385 } while (!vm_page_pqstate_commit(m, &old, new)); 1386 1387 page_shortage -= ps_delta; 1388 } 1389 vm_pagequeue_lock(pq); 1390 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1391 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1392 vm_pageout_end_scan(&ss); 1393 vm_pagequeue_unlock(pq); 1394 } 1395 1396 static int 1397 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker, 1398 vm_page_t m) 1399 { 1400 vm_page_astate_t as; 1401 1402 vm_pagequeue_assert_locked(pq); 1403 1404 as = vm_page_astate_load(m); 1405 if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0) 1406 return (0); 1407 vm_page_aflag_set(m, PGA_ENQUEUED); 1408 TAILQ_INSERT_BEFORE(marker, m, plinks.q); 1409 return (1); 1410 } 1411 1412 /* 1413 * Re-add stuck pages to the inactive queue. We will examine them again 1414 * during the next scan. If the queue state of a page has changed since 1415 * it was physically removed from the page queue in 1416 * vm_pageout_collect_batch(), don't do anything with that page. 1417 */ 1418 static void 1419 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1420 vm_page_t m) 1421 { 1422 struct vm_pagequeue *pq; 1423 vm_page_t marker; 1424 int delta; 1425 1426 delta = 0; 1427 marker = ss->marker; 1428 pq = ss->pq; 1429 1430 if (m != NULL) { 1431 if (vm_batchqueue_insert(bq, m)) 1432 return; 1433 vm_pagequeue_lock(pq); 1434 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1435 } else 1436 vm_pagequeue_lock(pq); 1437 while ((m = vm_batchqueue_pop(bq)) != NULL) 1438 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1439 vm_pagequeue_cnt_add(pq, delta); 1440 vm_pagequeue_unlock(pq); 1441 vm_batchqueue_init(bq); 1442 } 1443 1444 static void 1445 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage) 1446 { 1447 struct timeval start, end; 1448 struct scan_state ss; 1449 struct vm_batchqueue rq; 1450 struct vm_page marker_page; 1451 vm_page_t m, marker; 1452 struct vm_pagequeue *pq; 1453 vm_object_t object; 1454 vm_page_astate_t old, new; 1455 int act_delta, addl_page_shortage, starting_page_shortage, refs; 1456 1457 object = NULL; 1458 vm_batchqueue_init(&rq); 1459 getmicrouptime(&start); 1460 1461 /* 1462 * The addl_page_shortage is an estimate of the number of temporarily 1463 * stuck pages in the inactive queue. In other words, the 1464 * number of pages from the inactive count that should be 1465 * discounted in setting the target for the active queue scan. 1466 */ 1467 addl_page_shortage = 0; 1468 1469 /* 1470 * Start scanning the inactive queue for pages that we can free. The 1471 * scan will stop when we reach the target or we have scanned the 1472 * entire queue. (Note that m->a.act_count is not used to make 1473 * decisions for the inactive queue, only for the active queue.) 1474 */ 1475 starting_page_shortage = page_shortage; 1476 marker = &marker_page; 1477 vm_page_init_marker(marker, PQ_INACTIVE, 0); 1478 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1479 vm_pagequeue_lock(pq); 1480 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1481 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) { 1482 KASSERT((m->flags & PG_MARKER) == 0, 1483 ("marker page %p was dequeued", m)); 1484 1485 /* 1486 * Don't touch a page that was removed from the queue after the 1487 * page queue lock was released. Otherwise, ensure that any 1488 * pending queue operations, such as dequeues for wired pages, 1489 * are handled. 1490 */ 1491 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1492 continue; 1493 1494 /* 1495 * Lock the page's object. 1496 */ 1497 if (object == NULL || object != m->object) { 1498 if (object != NULL) 1499 VM_OBJECT_WUNLOCK(object); 1500 object = atomic_load_ptr(&m->object); 1501 if (__predict_false(object == NULL)) 1502 /* The page is being freed by another thread. */ 1503 continue; 1504 1505 /* Depends on type-stability. */ 1506 VM_OBJECT_WLOCK(object); 1507 if (__predict_false(m->object != object)) { 1508 VM_OBJECT_WUNLOCK(object); 1509 object = NULL; 1510 goto reinsert; 1511 } 1512 } 1513 1514 if (vm_page_tryxbusy(m) == 0) { 1515 /* 1516 * Don't mess with busy pages. Leave them at 1517 * the front of the queue. Most likely, they 1518 * are being paged out and will leave the 1519 * queue shortly after the scan finishes. So, 1520 * they ought to be discounted from the 1521 * inactive count. 1522 */ 1523 addl_page_shortage++; 1524 goto reinsert; 1525 } 1526 1527 /* Deferred free of swap space. */ 1528 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1529 vm_pager_page_unswapped(m); 1530 1531 /* 1532 * Check for wirings now that we hold the object lock and have 1533 * exclusively busied the page. If the page is mapped, it may 1534 * still be wired by pmap lookups. The call to 1535 * vm_page_try_remove_all() below atomically checks for such 1536 * wirings and removes mappings. If the page is unmapped, the 1537 * wire count is guaranteed not to increase after this check. 1538 */ 1539 if (__predict_false(vm_page_wired(m))) 1540 goto skip_page; 1541 1542 /* 1543 * Invalid pages can be easily freed. They cannot be 1544 * mapped, vm_page_free() asserts this. 1545 */ 1546 if (vm_page_none_valid(m)) 1547 goto free_page; 1548 1549 refs = vm_pageout_page_ts_referenced(object, m); 1550 1551 for (old = vm_page_astate_load(m);;) { 1552 /* 1553 * Check to see if the page has been removed from the 1554 * queue since the first such check. Leave it alone if 1555 * so, discarding any references collected by 1556 * pmap_ts_referenced(). 1557 */ 1558 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 1559 goto skip_page; 1560 1561 new = old; 1562 act_delta = refs; 1563 if ((old.flags & PGA_REFERENCED) != 0) { 1564 new.flags &= ~PGA_REFERENCED; 1565 act_delta++; 1566 } 1567 if (act_delta == 0) { 1568 ; 1569 } else if (vm_pageout_object_act(object)) { 1570 /* 1571 * Increase the activation count if the 1572 * page was referenced while in the 1573 * inactive queue. This makes it less 1574 * likely that the page will be returned 1575 * prematurely to the inactive queue. 1576 */ 1577 new.act_count += ACT_ADVANCE + 1578 act_delta; 1579 if (new.act_count > ACT_MAX) 1580 new.act_count = ACT_MAX; 1581 1582 new.flags &= ~PGA_QUEUE_OP_MASK; 1583 new.flags |= PGA_REQUEUE; 1584 new.queue = PQ_ACTIVE; 1585 if (!vm_page_pqstate_commit(m, &old, new)) 1586 continue; 1587 1588 VM_CNT_INC(v_reactivated); 1589 goto skip_page; 1590 } else if ((object->flags & OBJ_DEAD) == 0) { 1591 new.queue = PQ_INACTIVE; 1592 new.flags |= PGA_REQUEUE; 1593 if (!vm_page_pqstate_commit(m, &old, new)) 1594 continue; 1595 goto skip_page; 1596 } 1597 break; 1598 } 1599 1600 /* 1601 * If the page appears to be clean at the machine-independent 1602 * layer, then remove all of its mappings from the pmap in 1603 * anticipation of freeing it. If, however, any of the page's 1604 * mappings allow write access, then the page may still be 1605 * modified until the last of those mappings are removed. 1606 */ 1607 if (vm_pageout_object_act(object)) { 1608 vm_page_test_dirty(m); 1609 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 1610 goto skip_page; 1611 } 1612 1613 /* 1614 * Clean pages can be freed, but dirty pages must be sent back 1615 * to the laundry, unless they belong to a dead object. 1616 * Requeueing dirty pages from dead objects is pointless, as 1617 * they are being paged out and freed by the thread that 1618 * destroyed the object. 1619 */ 1620 if (m->dirty == 0) { 1621 free_page: 1622 /* 1623 * Now we are guaranteed that no other threads are 1624 * manipulating the page, check for a last-second 1625 * reference that would save it from doom. 1626 */ 1627 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1628 goto skip_page; 1629 1630 /* 1631 * Because we dequeued the page and have already checked 1632 * for pending dequeue and enqueue requests, we can 1633 * safely disassociate the page from the inactive queue 1634 * without holding the queue lock. 1635 */ 1636 m->a.queue = PQ_NONE; 1637 vm_page_free(m); 1638 page_shortage--; 1639 continue; 1640 } 1641 if ((object->flags & OBJ_DEAD) == 0) 1642 vm_page_launder(m); 1643 skip_page: 1644 vm_page_xunbusy(m); 1645 continue; 1646 reinsert: 1647 vm_pageout_reinsert_inactive(&ss, &rq, m); 1648 } 1649 if (object != NULL) 1650 VM_OBJECT_WUNLOCK(object); 1651 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1652 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1653 vm_pagequeue_lock(pq); 1654 vm_pageout_end_scan(&ss); 1655 vm_pagequeue_unlock(pq); 1656 1657 /* 1658 * Record the remaining shortage and the progress and rate it was made. 1659 */ 1660 atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage); 1661 getmicrouptime(&end); 1662 timevalsub(&end, &start); 1663 atomic_add_int(&vmd->vmd_inactive_us, 1664 end.tv_sec * 1000000 + end.tv_usec); 1665 atomic_add_int(&vmd->vmd_inactive_freed, 1666 starting_page_shortage - page_shortage); 1667 } 1668 1669 /* 1670 * Dispatch a number of inactive threads according to load and collect the 1671 * results to present a coherent view of paging activity on this domain. 1672 */ 1673 static int 1674 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage) 1675 { 1676 u_int freed, pps, slop, threads, us; 1677 1678 vmd->vmd_inactive_shortage = shortage; 1679 slop = 0; 1680 1681 /* 1682 * If we have more work than we can do in a quarter of our interval, we 1683 * fire off multiple threads to process it. 1684 */ 1685 threads = vmd->vmd_inactive_threads; 1686 if (threads > 1 && vmd->vmd_inactive_pps != 0 && 1687 shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) { 1688 vmd->vmd_inactive_shortage /= threads; 1689 slop = shortage % threads; 1690 vm_domain_pageout_lock(vmd); 1691 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1); 1692 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1); 1693 wakeup(&vmd->vmd_inactive_shortage); 1694 vm_domain_pageout_unlock(vmd); 1695 } 1696 1697 /* Run the local thread scan. */ 1698 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop); 1699 1700 /* 1701 * Block until helper threads report results and then accumulate 1702 * totals. 1703 */ 1704 blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM); 1705 freed = atomic_readandclear_int(&vmd->vmd_inactive_freed); 1706 VM_CNT_ADD(v_dfree, freed); 1707 1708 /* 1709 * Calculate the per-thread paging rate with an exponential decay of 1710 * prior results. Careful to avoid integer rounding errors with large 1711 * us values. 1712 */ 1713 us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1); 1714 if (us > 1000000) 1715 /* Keep rounding to tenths */ 1716 pps = (freed * 10) / ((us * 10) / 1000000); 1717 else 1718 pps = (1000000 / us) * freed; 1719 vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2); 1720 1721 return (shortage - freed); 1722 } 1723 1724 /* 1725 * Attempt to reclaim the requested number of pages from the inactive queue. 1726 * Returns true if the shortage was addressed. 1727 */ 1728 static int 1729 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage) 1730 { 1731 struct vm_pagequeue *pq; 1732 u_int addl_page_shortage, deficit, page_shortage; 1733 u_int starting_page_shortage; 1734 1735 /* 1736 * vmd_pageout_deficit counts the number of pages requested in 1737 * allocations that failed because of a free page shortage. We assume 1738 * that the allocations will be reattempted and thus include the deficit 1739 * in our scan target. 1740 */ 1741 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1742 starting_page_shortage = shortage + deficit; 1743 1744 /* 1745 * Run the inactive scan on as many threads as is necessary. 1746 */ 1747 page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage); 1748 addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage); 1749 1750 /* 1751 * Wake up the laundry thread so that it can perform any needed 1752 * laundering. If we didn't meet our target, we're in shortfall and 1753 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1754 * swap devices are configured, the laundry thread has no work to do, so 1755 * don't bother waking it up. 1756 * 1757 * The laundry thread uses the number of inactive queue scans elapsed 1758 * since the last laundering to determine whether to launder again, so 1759 * keep count. 1760 */ 1761 if (starting_page_shortage > 0) { 1762 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1763 vm_pagequeue_lock(pq); 1764 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1765 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1766 if (page_shortage > 0) { 1767 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1768 VM_CNT_INC(v_pdshortfalls); 1769 } else if (vmd->vmd_laundry_request != 1770 VM_LAUNDRY_SHORTFALL) 1771 vmd->vmd_laundry_request = 1772 VM_LAUNDRY_BACKGROUND; 1773 wakeup(&vmd->vmd_laundry_request); 1774 } 1775 vmd->vmd_clean_pages_freed += 1776 starting_page_shortage - page_shortage; 1777 vm_pagequeue_unlock(pq); 1778 } 1779 1780 /* 1781 * Wakeup the swapout daemon if we didn't free the targeted number of 1782 * pages. 1783 */ 1784 if (page_shortage > 0) 1785 vm_swapout_run(); 1786 1787 /* 1788 * If the inactive queue scan fails repeatedly to meet its 1789 * target, kill the largest process. 1790 */ 1791 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1792 1793 /* 1794 * Reclaim pages by swapping out idle processes, if configured to do so. 1795 */ 1796 vm_swapout_run_idle(); 1797 1798 /* 1799 * See the description of addl_page_shortage above. 1800 */ 1801 *addl_shortage = addl_page_shortage + deficit; 1802 1803 return (page_shortage <= 0); 1804 } 1805 1806 static int vm_pageout_oom_vote; 1807 1808 /* 1809 * The pagedaemon threads randlomly select one to perform the 1810 * OOM. Trying to kill processes before all pagedaemons 1811 * failed to reach free target is premature. 1812 */ 1813 static void 1814 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1815 int starting_page_shortage) 1816 { 1817 int old_vote; 1818 1819 if (starting_page_shortage <= 0 || starting_page_shortage != 1820 page_shortage) 1821 vmd->vmd_oom_seq = 0; 1822 else 1823 vmd->vmd_oom_seq++; 1824 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1825 if (vmd->vmd_oom) { 1826 vmd->vmd_oom = FALSE; 1827 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1828 } 1829 return; 1830 } 1831 1832 /* 1833 * Do not follow the call sequence until OOM condition is 1834 * cleared. 1835 */ 1836 vmd->vmd_oom_seq = 0; 1837 1838 if (vmd->vmd_oom) 1839 return; 1840 1841 vmd->vmd_oom = TRUE; 1842 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1843 if (old_vote != vm_ndomains - 1) 1844 return; 1845 1846 /* 1847 * The current pagedaemon thread is the last in the quorum to 1848 * start OOM. Initiate the selection and signaling of the 1849 * victim. 1850 */ 1851 vm_pageout_oom(VM_OOM_MEM); 1852 1853 /* 1854 * After one round of OOM terror, recall our vote. On the 1855 * next pass, current pagedaemon would vote again if the low 1856 * memory condition is still there, due to vmd_oom being 1857 * false. 1858 */ 1859 vmd->vmd_oom = FALSE; 1860 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1861 } 1862 1863 /* 1864 * The OOM killer is the page daemon's action of last resort when 1865 * memory allocation requests have been stalled for a prolonged period 1866 * of time because it cannot reclaim memory. This function computes 1867 * the approximate number of physical pages that could be reclaimed if 1868 * the specified address space is destroyed. 1869 * 1870 * Private, anonymous memory owned by the address space is the 1871 * principal resource that we expect to recover after an OOM kill. 1872 * Since the physical pages mapped by the address space's COW entries 1873 * are typically shared pages, they are unlikely to be released and so 1874 * they are not counted. 1875 * 1876 * To get to the point where the page daemon runs the OOM killer, its 1877 * efforts to write-back vnode-backed pages may have stalled. This 1878 * could be caused by a memory allocation deadlock in the write path 1879 * that might be resolved by an OOM kill. Therefore, physical pages 1880 * belonging to vnode-backed objects are counted, because they might 1881 * be freed without being written out first if the address space holds 1882 * the last reference to an unlinked vnode. 1883 * 1884 * Similarly, physical pages belonging to OBJT_PHYS objects are 1885 * counted because the address space might hold the last reference to 1886 * the object. 1887 */ 1888 static long 1889 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1890 { 1891 vm_map_t map; 1892 vm_map_entry_t entry; 1893 vm_object_t obj; 1894 long res; 1895 1896 map = &vmspace->vm_map; 1897 KASSERT(!map->system_map, ("system map")); 1898 sx_assert(&map->lock, SA_LOCKED); 1899 res = 0; 1900 VM_MAP_ENTRY_FOREACH(entry, map) { 1901 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1902 continue; 1903 obj = entry->object.vm_object; 1904 if (obj == NULL) 1905 continue; 1906 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1907 obj->ref_count != 1) 1908 continue; 1909 if (obj->type == OBJT_DEFAULT || obj->type == OBJT_PHYS || 1910 obj->type == OBJT_VNODE || (obj->flags & OBJ_SWAP) != 0) 1911 res += obj->resident_page_count; 1912 } 1913 return (res); 1914 } 1915 1916 static int vm_oom_ratelim_last; 1917 static int vm_oom_pf_secs = 10; 1918 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0, 1919 ""); 1920 static struct mtx vm_oom_ratelim_mtx; 1921 1922 void 1923 vm_pageout_oom(int shortage) 1924 { 1925 const char *reason; 1926 struct proc *p, *bigproc; 1927 vm_offset_t size, bigsize; 1928 struct thread *td; 1929 struct vmspace *vm; 1930 int now; 1931 bool breakout; 1932 1933 /* 1934 * For OOM requests originating from vm_fault(), there is a high 1935 * chance that a single large process faults simultaneously in 1936 * several threads. Also, on an active system running many 1937 * processes of middle-size, like buildworld, all of them 1938 * could fault almost simultaneously as well. 1939 * 1940 * To avoid killing too many processes, rate-limit OOMs 1941 * initiated by vm_fault() time-outs on the waits for free 1942 * pages. 1943 */ 1944 mtx_lock(&vm_oom_ratelim_mtx); 1945 now = ticks; 1946 if (shortage == VM_OOM_MEM_PF && 1947 (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) { 1948 mtx_unlock(&vm_oom_ratelim_mtx); 1949 return; 1950 } 1951 vm_oom_ratelim_last = now; 1952 mtx_unlock(&vm_oom_ratelim_mtx); 1953 1954 /* 1955 * We keep the process bigproc locked once we find it to keep anyone 1956 * from messing with it; however, there is a possibility of 1957 * deadlock if process B is bigproc and one of its child processes 1958 * attempts to propagate a signal to B while we are waiting for A's 1959 * lock while walking this list. To avoid this, we don't block on 1960 * the process lock but just skip a process if it is already locked. 1961 */ 1962 bigproc = NULL; 1963 bigsize = 0; 1964 sx_slock(&allproc_lock); 1965 FOREACH_PROC_IN_SYSTEM(p) { 1966 PROC_LOCK(p); 1967 1968 /* 1969 * If this is a system, protected or killed process, skip it. 1970 */ 1971 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1972 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1973 p->p_pid == 1 || P_KILLED(p) || 1974 (p->p_pid < 48 && swap_pager_avail != 0)) { 1975 PROC_UNLOCK(p); 1976 continue; 1977 } 1978 /* 1979 * If the process is in a non-running type state, 1980 * don't touch it. Check all the threads individually. 1981 */ 1982 breakout = false; 1983 FOREACH_THREAD_IN_PROC(p, td) { 1984 thread_lock(td); 1985 if (!TD_ON_RUNQ(td) && 1986 !TD_IS_RUNNING(td) && 1987 !TD_IS_SLEEPING(td) && 1988 !TD_IS_SUSPENDED(td) && 1989 !TD_IS_SWAPPED(td)) { 1990 thread_unlock(td); 1991 breakout = true; 1992 break; 1993 } 1994 thread_unlock(td); 1995 } 1996 if (breakout) { 1997 PROC_UNLOCK(p); 1998 continue; 1999 } 2000 /* 2001 * get the process size 2002 */ 2003 vm = vmspace_acquire_ref(p); 2004 if (vm == NULL) { 2005 PROC_UNLOCK(p); 2006 continue; 2007 } 2008 _PHOLD_LITE(p); 2009 PROC_UNLOCK(p); 2010 sx_sunlock(&allproc_lock); 2011 if (!vm_map_trylock_read(&vm->vm_map)) { 2012 vmspace_free(vm); 2013 sx_slock(&allproc_lock); 2014 PRELE(p); 2015 continue; 2016 } 2017 size = vmspace_swap_count(vm); 2018 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF) 2019 size += vm_pageout_oom_pagecount(vm); 2020 vm_map_unlock_read(&vm->vm_map); 2021 vmspace_free(vm); 2022 sx_slock(&allproc_lock); 2023 2024 /* 2025 * If this process is bigger than the biggest one, 2026 * remember it. 2027 */ 2028 if (size > bigsize) { 2029 if (bigproc != NULL) 2030 PRELE(bigproc); 2031 bigproc = p; 2032 bigsize = size; 2033 } else { 2034 PRELE(p); 2035 } 2036 } 2037 sx_sunlock(&allproc_lock); 2038 2039 if (bigproc != NULL) { 2040 switch (shortage) { 2041 case VM_OOM_MEM: 2042 reason = "failed to reclaim memory"; 2043 break; 2044 case VM_OOM_MEM_PF: 2045 reason = "a thread waited too long to allocate a page"; 2046 break; 2047 case VM_OOM_SWAPZ: 2048 reason = "out of swap space"; 2049 break; 2050 default: 2051 panic("unknown OOM reason %d", shortage); 2052 } 2053 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0) 2054 panic("%s", reason); 2055 PROC_LOCK(bigproc); 2056 killproc(bigproc, reason); 2057 sched_nice(bigproc, PRIO_MIN); 2058 _PRELE(bigproc); 2059 PROC_UNLOCK(bigproc); 2060 } 2061 } 2062 2063 /* 2064 * Signal a free page shortage to subsystems that have registered an event 2065 * handler. Reclaim memory from UMA in the event of a severe shortage. 2066 * Return true if the free page count should be re-evaluated. 2067 */ 2068 static bool 2069 vm_pageout_lowmem(void) 2070 { 2071 static int lowmem_ticks = 0; 2072 int last; 2073 bool ret; 2074 2075 ret = false; 2076 2077 last = atomic_load_int(&lowmem_ticks); 2078 while ((u_int)(ticks - last) / hz >= lowmem_period) { 2079 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0) 2080 continue; 2081 2082 /* 2083 * Decrease registered cache sizes. 2084 */ 2085 SDT_PROBE0(vm, , , vm__lowmem_scan); 2086 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 2087 2088 /* 2089 * We do this explicitly after the caches have been 2090 * drained above. 2091 */ 2092 uma_reclaim(UMA_RECLAIM_TRIM); 2093 ret = true; 2094 break; 2095 } 2096 2097 /* 2098 * Kick off an asynchronous reclaim of cached memory if one of the 2099 * page daemons is failing to keep up with demand. Use the "severe" 2100 * threshold instead of "min" to ensure that we do not blow away the 2101 * caches if a subset of the NUMA domains are depleted by kernel memory 2102 * allocations; the domainset iterators automatically skip domains 2103 * below the "min" threshold on the first pass. 2104 * 2105 * UMA reclaim worker has its own rate-limiting mechanism, so don't 2106 * worry about kicking it too often. 2107 */ 2108 if (vm_page_count_severe()) 2109 uma_reclaim_wakeup(); 2110 2111 return (ret); 2112 } 2113 2114 static void 2115 vm_pageout_worker(void *arg) 2116 { 2117 struct vm_domain *vmd; 2118 u_int ofree; 2119 int addl_shortage, domain, shortage; 2120 bool target_met; 2121 2122 domain = (uintptr_t)arg; 2123 vmd = VM_DOMAIN(domain); 2124 shortage = 0; 2125 target_met = true; 2126 2127 /* 2128 * XXXKIB It could be useful to bind pageout daemon threads to 2129 * the cores belonging to the domain, from which vm_page_array 2130 * is allocated. 2131 */ 2132 2133 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 2134 vmd->vmd_last_active_scan = ticks; 2135 2136 /* 2137 * The pageout daemon worker is never done, so loop forever. 2138 */ 2139 while (TRUE) { 2140 vm_domain_pageout_lock(vmd); 2141 2142 /* 2143 * We need to clear wanted before we check the limits. This 2144 * prevents races with wakers who will check wanted after they 2145 * reach the limit. 2146 */ 2147 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 2148 2149 /* 2150 * Might the page daemon need to run again? 2151 */ 2152 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 2153 /* 2154 * Yes. If the scan failed to produce enough free 2155 * pages, sleep uninterruptibly for some time in the 2156 * hope that the laundry thread will clean some pages. 2157 */ 2158 vm_domain_pageout_unlock(vmd); 2159 if (!target_met) 2160 pause("pwait", hz / VM_INACT_SCAN_RATE); 2161 } else { 2162 /* 2163 * No, sleep until the next wakeup or until pages 2164 * need to have their reference stats updated. 2165 */ 2166 if (mtx_sleep(&vmd->vmd_pageout_wanted, 2167 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 2168 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 2169 VM_CNT_INC(v_pdwakeups); 2170 } 2171 2172 /* Prevent spurious wakeups by ensuring that wanted is set. */ 2173 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2174 2175 /* 2176 * Use the controller to calculate how many pages to free in 2177 * this interval, and scan the inactive queue. If the lowmem 2178 * handlers appear to have freed up some pages, subtract the 2179 * difference from the inactive queue scan target. 2180 */ 2181 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 2182 if (shortage > 0) { 2183 ofree = vmd->vmd_free_count; 2184 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) 2185 shortage -= min(vmd->vmd_free_count - ofree, 2186 (u_int)shortage); 2187 target_met = vm_pageout_inactive(vmd, shortage, 2188 &addl_shortage); 2189 } else 2190 addl_shortage = 0; 2191 2192 /* 2193 * Scan the active queue. A positive value for shortage 2194 * indicates that we must aggressively deactivate pages to avoid 2195 * a shortfall. 2196 */ 2197 shortage = vm_pageout_active_target(vmd) + addl_shortage; 2198 vm_pageout_scan_active(vmd, shortage); 2199 } 2200 } 2201 2202 /* 2203 * vm_pageout_helper runs additional pageout daemons in times of high paging 2204 * activity. 2205 */ 2206 static void 2207 vm_pageout_helper(void *arg) 2208 { 2209 struct vm_domain *vmd; 2210 int domain; 2211 2212 domain = (uintptr_t)arg; 2213 vmd = VM_DOMAIN(domain); 2214 2215 vm_domain_pageout_lock(vmd); 2216 for (;;) { 2217 msleep(&vmd->vmd_inactive_shortage, 2218 vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0); 2219 blockcount_release(&vmd->vmd_inactive_starting, 1); 2220 2221 vm_domain_pageout_unlock(vmd); 2222 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage); 2223 vm_domain_pageout_lock(vmd); 2224 2225 /* 2226 * Release the running count while the pageout lock is held to 2227 * prevent wakeup races. 2228 */ 2229 blockcount_release(&vmd->vmd_inactive_running, 1); 2230 } 2231 } 2232 2233 static int 2234 get_pageout_threads_per_domain(const struct vm_domain *vmd) 2235 { 2236 unsigned total_pageout_threads, eligible_cpus, domain_cpus; 2237 2238 if (VM_DOMAIN_EMPTY(vmd->vmd_domain)) 2239 return (0); 2240 2241 /* 2242 * Semi-arbitrarily constrain pagedaemon threads to less than half the 2243 * total number of CPUs in the system as an upper limit. 2244 */ 2245 if (pageout_cpus_per_thread < 2) 2246 pageout_cpus_per_thread = 2; 2247 else if (pageout_cpus_per_thread > mp_ncpus) 2248 pageout_cpus_per_thread = mp_ncpus; 2249 2250 total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread); 2251 domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]); 2252 2253 /* Pagedaemons are not run in empty domains. */ 2254 eligible_cpus = mp_ncpus; 2255 for (unsigned i = 0; i < vm_ndomains; i++) 2256 if (VM_DOMAIN_EMPTY(i)) 2257 eligible_cpus -= CPU_COUNT(&cpuset_domain[i]); 2258 2259 /* 2260 * Assign a portion of the total pageout threads to this domain 2261 * corresponding to the fraction of pagedaemon-eligible CPUs in the 2262 * domain. In asymmetric NUMA systems, domains with more CPUs may be 2263 * allocated more threads than domains with fewer CPUs. 2264 */ 2265 return (howmany(total_pageout_threads * domain_cpus, eligible_cpus)); 2266 } 2267 2268 /* 2269 * Initialize basic pageout daemon settings. See the comment above the 2270 * definition of vm_domain for some explanation of how these thresholds are 2271 * used. 2272 */ 2273 static void 2274 vm_pageout_init_domain(int domain) 2275 { 2276 struct vm_domain *vmd; 2277 struct sysctl_oid *oid; 2278 2279 vmd = VM_DOMAIN(domain); 2280 vmd->vmd_interrupt_free_min = 2; 2281 2282 /* 2283 * v_free_reserved needs to include enough for the largest 2284 * swap pager structures plus enough for any pv_entry structs 2285 * when paging. 2286 */ 2287 vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE + 2288 vmd->vmd_interrupt_free_min; 2289 vmd->vmd_free_reserved = vm_pageout_page_count + 2290 vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768; 2291 vmd->vmd_free_min = vmd->vmd_page_count / 200; 2292 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 2293 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 2294 vmd->vmd_free_min += vmd->vmd_free_reserved; 2295 vmd->vmd_free_severe += vmd->vmd_free_reserved; 2296 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 2297 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 2298 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 2299 2300 /* 2301 * Set the default wakeup threshold to be 10% below the paging 2302 * target. This keeps the steady state out of shortfall. 2303 */ 2304 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 2305 2306 /* 2307 * Target amount of memory to move out of the laundry queue during a 2308 * background laundering. This is proportional to the amount of system 2309 * memory. 2310 */ 2311 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 2312 vmd->vmd_free_min) / 10; 2313 2314 /* Initialize the pageout daemon pid controller. */ 2315 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 2316 vmd->vmd_free_target, PIDCTRL_BOUND, 2317 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 2318 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2319 "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2320 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 2321 2322 vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd); 2323 } 2324 2325 static void 2326 vm_pageout_init(void) 2327 { 2328 u_long freecount; 2329 int i; 2330 2331 /* 2332 * Initialize some paging parameters. 2333 */ 2334 if (vm_cnt.v_page_count < 2000) 2335 vm_pageout_page_count = 8; 2336 2337 freecount = 0; 2338 for (i = 0; i < vm_ndomains; i++) { 2339 struct vm_domain *vmd; 2340 2341 vm_pageout_init_domain(i); 2342 vmd = VM_DOMAIN(i); 2343 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2344 vm_cnt.v_free_target += vmd->vmd_free_target; 2345 vm_cnt.v_free_min += vmd->vmd_free_min; 2346 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2347 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2348 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2349 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2350 freecount += vmd->vmd_free_count; 2351 } 2352 2353 /* 2354 * Set interval in seconds for active scan. We want to visit each 2355 * page at least once every ten minutes. This is to prevent worst 2356 * case paging behaviors with stale active LRU. 2357 */ 2358 if (vm_pageout_update_period == 0) 2359 vm_pageout_update_period = 600; 2360 2361 /* 2362 * Set the maximum number of user-wired virtual pages. Historically the 2363 * main source of such pages was mlock(2) and mlockall(2). Hypervisors 2364 * may also request user-wired memory. 2365 */ 2366 if (vm_page_max_user_wired == 0) 2367 vm_page_max_user_wired = 4 * freecount / 5; 2368 } 2369 2370 /* 2371 * vm_pageout is the high level pageout daemon. 2372 */ 2373 static void 2374 vm_pageout(void) 2375 { 2376 struct proc *p; 2377 struct thread *td; 2378 int error, first, i, j, pageout_threads; 2379 2380 p = curproc; 2381 td = curthread; 2382 2383 mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF); 2384 swap_pager_swap_init(); 2385 for (first = -1, i = 0; i < vm_ndomains; i++) { 2386 if (VM_DOMAIN_EMPTY(i)) { 2387 if (bootverbose) 2388 printf("domain %d empty; skipping pageout\n", 2389 i); 2390 continue; 2391 } 2392 if (first == -1) 2393 first = i; 2394 else { 2395 error = kthread_add(vm_pageout_worker, 2396 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i); 2397 if (error != 0) 2398 panic("starting pageout for domain %d: %d\n", 2399 i, error); 2400 } 2401 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads; 2402 for (j = 0; j < pageout_threads - 1; j++) { 2403 error = kthread_add(vm_pageout_helper, 2404 (void *)(uintptr_t)i, p, NULL, 0, 0, 2405 "dom%d helper%d", i, j); 2406 if (error != 0) 2407 panic("starting pageout helper %d for domain " 2408 "%d: %d\n", j, i, error); 2409 } 2410 error = kthread_add(vm_pageout_laundry_worker, 2411 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); 2412 if (error != 0) 2413 panic("starting laundry for domain %d: %d", i, error); 2414 } 2415 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma"); 2416 if (error != 0) 2417 panic("starting uma_reclaim helper, error %d\n", error); 2418 2419 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first); 2420 vm_pageout_worker((void *)(uintptr_t)first); 2421 } 2422 2423 /* 2424 * Perform an advisory wakeup of the page daemon. 2425 */ 2426 void 2427 pagedaemon_wakeup(int domain) 2428 { 2429 struct vm_domain *vmd; 2430 2431 vmd = VM_DOMAIN(domain); 2432 vm_domain_pageout_assert_unlocked(vmd); 2433 if (curproc == pageproc) 2434 return; 2435 2436 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2437 vm_domain_pageout_lock(vmd); 2438 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2439 wakeup(&vmd->vmd_pageout_wanted); 2440 vm_domain_pageout_unlock(vmd); 2441 } 2442 } 2443