xref: /freebsd/sys/vm/vm_pageout.c (revision 29332c0dcee1e80c9fb871e06c3160bd5deb1b44)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72 
73 /*
74  *	The proverbial page-out daemon.
75  */
76 
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79 
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/blockcount.h>
86 #include <sys/eventhandler.h>
87 #include <sys/lock.h>
88 #include <sys/mutex.h>
89 #include <sys/proc.h>
90 #include <sys/kthread.h>
91 #include <sys/ktr.h>
92 #include <sys/mount.h>
93 #include <sys/racct.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sched.h>
96 #include <sys/sdt.h>
97 #include <sys/signalvar.h>
98 #include <sys/smp.h>
99 #include <sys/time.h>
100 #include <sys/vnode.h>
101 #include <sys/vmmeter.h>
102 #include <sys/rwlock.h>
103 #include <sys/sx.h>
104 #include <sys/sysctl.h>
105 
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_pageout.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_phys.h>
114 #include <vm/vm_pagequeue.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118 
119 /*
120  * System initialization
121  */
122 
123 /* the kernel process "vm_pageout"*/
124 static void vm_pageout(void);
125 static void vm_pageout_init(void);
126 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
127 static int vm_pageout_cluster(vm_page_t m);
128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
129     int starting_page_shortage);
130 
131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
132     NULL);
133 
134 struct proc *pageproc;
135 
136 static struct kproc_desc page_kp = {
137 	"pagedaemon",
138 	vm_pageout,
139 	&pageproc
140 };
141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
142     &page_kp);
143 
144 SDT_PROVIDER_DEFINE(vm);
145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
146 
147 /* Pagedaemon activity rates, in subdivisions of one second. */
148 #define	VM_LAUNDER_RATE		10
149 #define	VM_INACT_SCAN_RATE	10
150 
151 static int swapdev_enabled;
152 int vm_pageout_page_count = 32;
153 
154 static int vm_panic_on_oom = 0;
155 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
156     CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
157     "Panic on the given number of out-of-memory errors instead of "
158     "killing the largest process");
159 
160 static int vm_pageout_update_period;
161 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
162     CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
163     "Maximum active LRU update period");
164 
165 static int pageout_cpus_per_thread = 16;
166 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
167     &pageout_cpus_per_thread, 0,
168     "Number of CPUs per pagedaemon worker thread");
169 
170 static int lowmem_period = 10;
171 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
172     "Low memory callback period");
173 
174 static int disable_swap_pageouts;
175 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
176     CTLFLAG_RWTUN, &disable_swap_pageouts, 0,
177     "Disallow swapout of dirty pages");
178 
179 static int pageout_lock_miss;
180 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
181     CTLFLAG_RD, &pageout_lock_miss, 0,
182     "vget() lock misses during pageout");
183 
184 static int vm_pageout_oom_seq = 12;
185 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
186     CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
187     "back-to-back calls to oom detector to start OOM");
188 
189 static int act_scan_laundry_weight = 3;
190 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
191     &act_scan_laundry_weight, 0,
192     "weight given to clean vs. dirty pages in active queue scans");
193 
194 static u_int vm_background_launder_rate = 4096;
195 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
196     &vm_background_launder_rate, 0,
197     "background laundering rate, in kilobytes per second");
198 
199 static u_int vm_background_launder_max = 20 * 1024;
200 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
201     &vm_background_launder_max, 0,
202     "background laundering cap, in kilobytes");
203 
204 u_long vm_page_max_user_wired;
205 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
206     &vm_page_max_user_wired, 0,
207     "system-wide limit to user-wired page count");
208 
209 static u_int isqrt(u_int num);
210 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
211     bool in_shortfall);
212 static void vm_pageout_laundry_worker(void *arg);
213 
214 struct scan_state {
215 	struct vm_batchqueue bq;
216 	struct vm_pagequeue *pq;
217 	vm_page_t	marker;
218 	int		maxscan;
219 	int		scanned;
220 };
221 
222 static void
223 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
224     vm_page_t marker, vm_page_t after, int maxscan)
225 {
226 
227 	vm_pagequeue_assert_locked(pq);
228 	KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
229 	    ("marker %p already enqueued", marker));
230 
231 	if (after == NULL)
232 		TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
233 	else
234 		TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
235 	vm_page_aflag_set(marker, PGA_ENQUEUED);
236 
237 	vm_batchqueue_init(&ss->bq);
238 	ss->pq = pq;
239 	ss->marker = marker;
240 	ss->maxscan = maxscan;
241 	ss->scanned = 0;
242 	vm_pagequeue_unlock(pq);
243 }
244 
245 static void
246 vm_pageout_end_scan(struct scan_state *ss)
247 {
248 	struct vm_pagequeue *pq;
249 
250 	pq = ss->pq;
251 	vm_pagequeue_assert_locked(pq);
252 	KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
253 	    ("marker %p not enqueued", ss->marker));
254 
255 	TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
256 	vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
257 	pq->pq_pdpages += ss->scanned;
258 }
259 
260 /*
261  * Add a small number of queued pages to a batch queue for later processing
262  * without the corresponding queue lock held.  The caller must have enqueued a
263  * marker page at the desired start point for the scan.  Pages will be
264  * physically dequeued if the caller so requests.  Otherwise, the returned
265  * batch may contain marker pages, and it is up to the caller to handle them.
266  *
267  * When processing the batch queue, vm_pageout_defer() must be used to
268  * determine whether the page has been logically dequeued since the batch was
269  * collected.
270  */
271 static __always_inline void
272 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
273 {
274 	struct vm_pagequeue *pq;
275 	vm_page_t m, marker, n;
276 
277 	marker = ss->marker;
278 	pq = ss->pq;
279 
280 	KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
281 	    ("marker %p not enqueued", ss->marker));
282 
283 	vm_pagequeue_lock(pq);
284 	for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
285 	    ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
286 	    m = n, ss->scanned++) {
287 		n = TAILQ_NEXT(m, plinks.q);
288 		if ((m->flags & PG_MARKER) == 0) {
289 			KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
290 			    ("page %p not enqueued", m));
291 			KASSERT((m->flags & PG_FICTITIOUS) == 0,
292 			    ("Fictitious page %p cannot be in page queue", m));
293 			KASSERT((m->oflags & VPO_UNMANAGED) == 0,
294 			    ("Unmanaged page %p cannot be in page queue", m));
295 		} else if (dequeue)
296 			continue;
297 
298 		(void)vm_batchqueue_insert(&ss->bq, m);
299 		if (dequeue) {
300 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
301 			vm_page_aflag_clear(m, PGA_ENQUEUED);
302 		}
303 	}
304 	TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
305 	if (__predict_true(m != NULL))
306 		TAILQ_INSERT_BEFORE(m, marker, plinks.q);
307 	else
308 		TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
309 	if (dequeue)
310 		vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
311 	vm_pagequeue_unlock(pq);
312 }
313 
314 /*
315  * Return the next page to be scanned, or NULL if the scan is complete.
316  */
317 static __always_inline vm_page_t
318 vm_pageout_next(struct scan_state *ss, const bool dequeue)
319 {
320 
321 	if (ss->bq.bq_cnt == 0)
322 		vm_pageout_collect_batch(ss, dequeue);
323 	return (vm_batchqueue_pop(&ss->bq));
324 }
325 
326 /*
327  * Determine whether processing of a page should be deferred and ensure that any
328  * outstanding queue operations are processed.
329  */
330 static __always_inline bool
331 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
332 {
333 	vm_page_astate_t as;
334 
335 	as = vm_page_astate_load(m);
336 	if (__predict_false(as.queue != queue ||
337 	    ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
338 		return (true);
339 	if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
340 		vm_page_pqbatch_submit(m, queue);
341 		return (true);
342 	}
343 	return (false);
344 }
345 
346 /*
347  * Scan for pages at adjacent offsets within the given page's object that are
348  * eligible for laundering, form a cluster of these pages and the given page,
349  * and launder that cluster.
350  */
351 static int
352 vm_pageout_cluster(vm_page_t m)
353 {
354 	vm_object_t object;
355 	vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
356 	vm_pindex_t pindex;
357 	int ib, is, page_base, pageout_count;
358 
359 	object = m->object;
360 	VM_OBJECT_ASSERT_WLOCKED(object);
361 	pindex = m->pindex;
362 
363 	vm_page_assert_xbusied(m);
364 
365 	mc[vm_pageout_page_count] = pb = ps = m;
366 	pageout_count = 1;
367 	page_base = vm_pageout_page_count;
368 	ib = 1;
369 	is = 1;
370 
371 	/*
372 	 * We can cluster only if the page is not clean, busy, or held, and
373 	 * the page is in the laundry queue.
374 	 *
375 	 * During heavy mmap/modification loads the pageout
376 	 * daemon can really fragment the underlying file
377 	 * due to flushing pages out of order and not trying to
378 	 * align the clusters (which leaves sporadic out-of-order
379 	 * holes).  To solve this problem we do the reverse scan
380 	 * first and attempt to align our cluster, then do a
381 	 * forward scan if room remains.
382 	 */
383 more:
384 	while (ib != 0 && pageout_count < vm_pageout_page_count) {
385 		if (ib > pindex) {
386 			ib = 0;
387 			break;
388 		}
389 		if ((p = vm_page_prev(pb)) == NULL ||
390 		    vm_page_tryxbusy(p) == 0) {
391 			ib = 0;
392 			break;
393 		}
394 		if (vm_page_wired(p)) {
395 			ib = 0;
396 			vm_page_xunbusy(p);
397 			break;
398 		}
399 		vm_page_test_dirty(p);
400 		if (p->dirty == 0) {
401 			ib = 0;
402 			vm_page_xunbusy(p);
403 			break;
404 		}
405 		if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
406 			vm_page_xunbusy(p);
407 			ib = 0;
408 			break;
409 		}
410 		mc[--page_base] = pb = p;
411 		++pageout_count;
412 		++ib;
413 
414 		/*
415 		 * We are at an alignment boundary.  Stop here, and switch
416 		 * directions.  Do not clear ib.
417 		 */
418 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
419 			break;
420 	}
421 	while (pageout_count < vm_pageout_page_count &&
422 	    pindex + is < object->size) {
423 		if ((p = vm_page_next(ps)) == NULL ||
424 		    vm_page_tryxbusy(p) == 0)
425 			break;
426 		if (vm_page_wired(p)) {
427 			vm_page_xunbusy(p);
428 			break;
429 		}
430 		vm_page_test_dirty(p);
431 		if (p->dirty == 0) {
432 			vm_page_xunbusy(p);
433 			break;
434 		}
435 		if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
436 			vm_page_xunbusy(p);
437 			break;
438 		}
439 		mc[page_base + pageout_count] = ps = p;
440 		++pageout_count;
441 		++is;
442 	}
443 
444 	/*
445 	 * If we exhausted our forward scan, continue with the reverse scan
446 	 * when possible, even past an alignment boundary.  This catches
447 	 * boundary conditions.
448 	 */
449 	if (ib != 0 && pageout_count < vm_pageout_page_count)
450 		goto more;
451 
452 	return (vm_pageout_flush(&mc[page_base], pageout_count,
453 	    VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
454 }
455 
456 /*
457  * vm_pageout_flush() - launder the given pages
458  *
459  *	The given pages are laundered.  Note that we setup for the start of
460  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
461  *	reference count all in here rather then in the parent.  If we want
462  *	the parent to do more sophisticated things we may have to change
463  *	the ordering.
464  *
465  *	Returned runlen is the count of pages between mreq and first
466  *	page after mreq with status VM_PAGER_AGAIN.
467  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
468  *	for any page in runlen set.
469  */
470 int
471 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
472     boolean_t *eio)
473 {
474 	vm_object_t object = mc[0]->object;
475 	int pageout_status[count];
476 	int numpagedout = 0;
477 	int i, runlen;
478 
479 	VM_OBJECT_ASSERT_WLOCKED(object);
480 
481 	/*
482 	 * Initiate I/O.  Mark the pages shared busy and verify that they're
483 	 * valid and read-only.
484 	 *
485 	 * We do not have to fixup the clean/dirty bits here... we can
486 	 * allow the pager to do it after the I/O completes.
487 	 *
488 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
489 	 * edge case with file fragments.
490 	 */
491 	for (i = 0; i < count; i++) {
492 		KASSERT(vm_page_all_valid(mc[i]),
493 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
494 			mc[i], i, count));
495 		KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
496 		    ("vm_pageout_flush: writeable page %p", mc[i]));
497 		vm_page_busy_downgrade(mc[i]);
498 	}
499 	vm_object_pip_add(object, count);
500 
501 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
502 
503 	runlen = count - mreq;
504 	if (eio != NULL)
505 		*eio = FALSE;
506 	for (i = 0; i < count; i++) {
507 		vm_page_t mt = mc[i];
508 
509 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
510 		    !pmap_page_is_write_mapped(mt),
511 		    ("vm_pageout_flush: page %p is not write protected", mt));
512 		switch (pageout_status[i]) {
513 		case VM_PAGER_OK:
514 			/*
515 			 * The page may have moved since laundering started, in
516 			 * which case it should be left alone.
517 			 */
518 			if (vm_page_in_laundry(mt))
519 				vm_page_deactivate_noreuse(mt);
520 			/* FALLTHROUGH */
521 		case VM_PAGER_PEND:
522 			numpagedout++;
523 			break;
524 		case VM_PAGER_BAD:
525 			/*
526 			 * The page is outside the object's range.  We pretend
527 			 * that the page out worked and clean the page, so the
528 			 * changes will be lost if the page is reclaimed by
529 			 * the page daemon.
530 			 */
531 			vm_page_undirty(mt);
532 			if (vm_page_in_laundry(mt))
533 				vm_page_deactivate_noreuse(mt);
534 			break;
535 		case VM_PAGER_ERROR:
536 		case VM_PAGER_FAIL:
537 			/*
538 			 * If the page couldn't be paged out to swap because the
539 			 * pager wasn't able to find space, place the page in
540 			 * the PQ_UNSWAPPABLE holding queue.  This is an
541 			 * optimization that prevents the page daemon from
542 			 * wasting CPU cycles on pages that cannot be reclaimed
543 			 * because no swap device is configured.
544 			 *
545 			 * Otherwise, reactivate the page so that it doesn't
546 			 * clog the laundry and inactive queues.  (We will try
547 			 * paging it out again later.)
548 			 */
549 			if ((object->flags & OBJ_SWAP) != 0 &&
550 			    pageout_status[i] == VM_PAGER_FAIL) {
551 				vm_page_unswappable(mt);
552 				numpagedout++;
553 			} else
554 				vm_page_activate(mt);
555 			if (eio != NULL && i >= mreq && i - mreq < runlen)
556 				*eio = TRUE;
557 			break;
558 		case VM_PAGER_AGAIN:
559 			if (i >= mreq && i - mreq < runlen)
560 				runlen = i - mreq;
561 			break;
562 		}
563 
564 		/*
565 		 * If the operation is still going, leave the page busy to
566 		 * block all other accesses. Also, leave the paging in
567 		 * progress indicator set so that we don't attempt an object
568 		 * collapse.
569 		 */
570 		if (pageout_status[i] != VM_PAGER_PEND) {
571 			vm_object_pip_wakeup(object);
572 			vm_page_sunbusy(mt);
573 		}
574 	}
575 	if (prunlen != NULL)
576 		*prunlen = runlen;
577 	return (numpagedout);
578 }
579 
580 static void
581 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
582 {
583 
584 	atomic_store_rel_int(&swapdev_enabled, 1);
585 }
586 
587 static void
588 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
589 {
590 
591 	if (swap_pager_nswapdev() == 1)
592 		atomic_store_rel_int(&swapdev_enabled, 0);
593 }
594 
595 /*
596  * Attempt to acquire all of the necessary locks to launder a page and
597  * then call through the clustering layer to PUTPAGES.  Wait a short
598  * time for a vnode lock.
599  *
600  * Requires the page and object lock on entry, releases both before return.
601  * Returns 0 on success and an errno otherwise.
602  */
603 static int
604 vm_pageout_clean(vm_page_t m, int *numpagedout)
605 {
606 	struct vnode *vp;
607 	struct mount *mp;
608 	vm_object_t object;
609 	vm_pindex_t pindex;
610 	int error;
611 
612 	object = m->object;
613 	VM_OBJECT_ASSERT_WLOCKED(object);
614 	error = 0;
615 	vp = NULL;
616 	mp = NULL;
617 
618 	/*
619 	 * The object is already known NOT to be dead.   It
620 	 * is possible for the vget() to block the whole
621 	 * pageout daemon, but the new low-memory handling
622 	 * code should prevent it.
623 	 *
624 	 * We can't wait forever for the vnode lock, we might
625 	 * deadlock due to a vn_read() getting stuck in
626 	 * vm_wait while holding this vnode.  We skip the
627 	 * vnode if we can't get it in a reasonable amount
628 	 * of time.
629 	 */
630 	if (object->type == OBJT_VNODE) {
631 		vm_page_xunbusy(m);
632 		vp = object->handle;
633 		if (vp->v_type == VREG &&
634 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
635 			mp = NULL;
636 			error = EDEADLK;
637 			goto unlock_all;
638 		}
639 		KASSERT(mp != NULL,
640 		    ("vp %p with NULL v_mount", vp));
641 		vm_object_reference_locked(object);
642 		pindex = m->pindex;
643 		VM_OBJECT_WUNLOCK(object);
644 		if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) {
645 			vp = NULL;
646 			error = EDEADLK;
647 			goto unlock_mp;
648 		}
649 		VM_OBJECT_WLOCK(object);
650 
651 		/*
652 		 * Ensure that the object and vnode were not disassociated
653 		 * while locks were dropped.
654 		 */
655 		if (vp->v_object != object) {
656 			error = ENOENT;
657 			goto unlock_all;
658 		}
659 
660 		/*
661 		 * While the object was unlocked, the page may have been:
662 		 * (1) moved to a different queue,
663 		 * (2) reallocated to a different object,
664 		 * (3) reallocated to a different offset, or
665 		 * (4) cleaned.
666 		 */
667 		if (!vm_page_in_laundry(m) || m->object != object ||
668 		    m->pindex != pindex || m->dirty == 0) {
669 			error = ENXIO;
670 			goto unlock_all;
671 		}
672 
673 		/*
674 		 * The page may have been busied while the object lock was
675 		 * released.
676 		 */
677 		if (vm_page_tryxbusy(m) == 0) {
678 			error = EBUSY;
679 			goto unlock_all;
680 		}
681 	}
682 
683 	/*
684 	 * Remove all writeable mappings, failing if the page is wired.
685 	 */
686 	if (!vm_page_try_remove_write(m)) {
687 		vm_page_xunbusy(m);
688 		error = EBUSY;
689 		goto unlock_all;
690 	}
691 
692 	/*
693 	 * If a page is dirty, then it is either being washed
694 	 * (but not yet cleaned) or it is still in the
695 	 * laundry.  If it is still in the laundry, then we
696 	 * start the cleaning operation.
697 	 */
698 	if ((*numpagedout = vm_pageout_cluster(m)) == 0)
699 		error = EIO;
700 
701 unlock_all:
702 	VM_OBJECT_WUNLOCK(object);
703 
704 unlock_mp:
705 	if (mp != NULL) {
706 		if (vp != NULL)
707 			vput(vp);
708 		vm_object_deallocate(object);
709 		vn_finished_write(mp);
710 	}
711 
712 	return (error);
713 }
714 
715 /*
716  * Check if the object is active.  Non-anonymous swap objects are
717  * always referenced by the owner, for them require ref_count > 1 in
718  * order to ignore the ownership ref.
719  *
720  * Perform an unsynchronized object ref count check.  While
721  * the page lock ensures that the page is not reallocated to
722  * another object, in particular, one with unmanaged mappings
723  * that cannot support pmap_ts_referenced(), two races are,
724  * nonetheless, possible:
725  * 1) The count was transitioning to zero, but we saw a non-
726  *    zero value.  pmap_ts_referenced() will return zero
727  *    because the page is not mapped.
728  * 2) The count was transitioning to one, but we saw zero.
729  *    This race delays the detection of a new reference.  At
730  *    worst, we will deactivate and reactivate the page.
731  */
732 static bool
733 vm_pageout_object_act(vm_object_t object)
734 {
735 	return (object->ref_count >
736 	    ((object->flags & (OBJ_SWAP | OBJ_ANON)) == OBJ_SWAP ? 1 : 0));
737 }
738 
739 static int
740 vm_pageout_page_ts_referenced(vm_object_t object, vm_page_t m)
741 {
742 	if (!vm_pageout_object_act(object))
743 		return (0);
744 	return (pmap_ts_referenced(m));
745 }
746 
747 /*
748  * Attempt to launder the specified number of pages.
749  *
750  * Returns the number of pages successfully laundered.
751  */
752 static int
753 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
754 {
755 	struct scan_state ss;
756 	struct vm_pagequeue *pq;
757 	vm_object_t object;
758 	vm_page_t m, marker;
759 	vm_page_astate_t new, old;
760 	int act_delta, error, numpagedout, queue, refs, starting_target;
761 	int vnodes_skipped;
762 	bool pageout_ok;
763 
764 	object = NULL;
765 	starting_target = launder;
766 	vnodes_skipped = 0;
767 
768 	/*
769 	 * Scan the laundry queues for pages eligible to be laundered.  We stop
770 	 * once the target number of dirty pages have been laundered, or once
771 	 * we've reached the end of the queue.  A single iteration of this loop
772 	 * may cause more than one page to be laundered because of clustering.
773 	 *
774 	 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
775 	 * swap devices are configured.
776 	 */
777 	if (atomic_load_acq_int(&swapdev_enabled))
778 		queue = PQ_UNSWAPPABLE;
779 	else
780 		queue = PQ_LAUNDRY;
781 
782 scan:
783 	marker = &vmd->vmd_markers[queue];
784 	pq = &vmd->vmd_pagequeues[queue];
785 	vm_pagequeue_lock(pq);
786 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
787 	while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
788 		if (__predict_false((m->flags & PG_MARKER) != 0))
789 			continue;
790 
791 		/*
792 		 * Don't touch a page that was removed from the queue after the
793 		 * page queue lock was released.  Otherwise, ensure that any
794 		 * pending queue operations, such as dequeues for wired pages,
795 		 * are handled.
796 		 */
797 		if (vm_pageout_defer(m, queue, true))
798 			continue;
799 
800 		/*
801 		 * Lock the page's object.
802 		 */
803 		if (object == NULL || object != m->object) {
804 			if (object != NULL)
805 				VM_OBJECT_WUNLOCK(object);
806 			object = atomic_load_ptr(&m->object);
807 			if (__predict_false(object == NULL))
808 				/* The page is being freed by another thread. */
809 				continue;
810 
811 			/* Depends on type-stability. */
812 			VM_OBJECT_WLOCK(object);
813 			if (__predict_false(m->object != object)) {
814 				VM_OBJECT_WUNLOCK(object);
815 				object = NULL;
816 				continue;
817 			}
818 		}
819 
820 		if (vm_page_tryxbusy(m) == 0)
821 			continue;
822 
823 		/*
824 		 * Check for wirings now that we hold the object lock and have
825 		 * exclusively busied the page.  If the page is mapped, it may
826 		 * still be wired by pmap lookups.  The call to
827 		 * vm_page_try_remove_all() below atomically checks for such
828 		 * wirings and removes mappings.  If the page is unmapped, the
829 		 * wire count is guaranteed not to increase after this check.
830 		 */
831 		if (__predict_false(vm_page_wired(m)))
832 			goto skip_page;
833 
834 		/*
835 		 * Invalid pages can be easily freed.  They cannot be
836 		 * mapped; vm_page_free() asserts this.
837 		 */
838 		if (vm_page_none_valid(m))
839 			goto free_page;
840 
841 		refs = vm_pageout_page_ts_referenced(object, m);
842 
843 		for (old = vm_page_astate_load(m);;) {
844 			/*
845 			 * Check to see if the page has been removed from the
846 			 * queue since the first such check.  Leave it alone if
847 			 * so, discarding any references collected by
848 			 * pmap_ts_referenced().
849 			 */
850 			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
851 				goto skip_page;
852 
853 			new = old;
854 			act_delta = refs;
855 			if ((old.flags & PGA_REFERENCED) != 0) {
856 				new.flags &= ~PGA_REFERENCED;
857 				act_delta++;
858 			}
859 			if (act_delta == 0) {
860 				;
861 			} else if (vm_pageout_object_act(object)) {
862 				/*
863 				 * Increase the activation count if the page was
864 				 * referenced while in the laundry queue.  This
865 				 * makes it less likely that the page will be
866 				 * returned prematurely to the laundry queue.
867 				 */
868 				new.act_count += ACT_ADVANCE +
869 				    act_delta;
870 				if (new.act_count > ACT_MAX)
871 					new.act_count = ACT_MAX;
872 
873 				new.flags &= ~PGA_QUEUE_OP_MASK;
874 				new.flags |= PGA_REQUEUE;
875 				new.queue = PQ_ACTIVE;
876 				if (!vm_page_pqstate_commit(m, &old, new))
877 					continue;
878 
879 				/*
880 				 * If this was a background laundering, count
881 				 * activated pages towards our target.  The
882 				 * purpose of background laundering is to ensure
883 				 * that pages are eventually cycled through the
884 				 * laundry queue, and an activation is a valid
885 				 * way out.
886 				 */
887 				if (!in_shortfall)
888 					launder--;
889 				VM_CNT_INC(v_reactivated);
890 				goto skip_page;
891 			} else if ((object->flags & OBJ_DEAD) == 0) {
892 				new.flags |= PGA_REQUEUE;
893 				if (!vm_page_pqstate_commit(m, &old, new))
894 					continue;
895 				goto skip_page;
896 			}
897 			break;
898 		}
899 
900 		/*
901 		 * If the page appears to be clean at the machine-independent
902 		 * layer, then remove all of its mappings from the pmap in
903 		 * anticipation of freeing it.  If, however, any of the page's
904 		 * mappings allow write access, then the page may still be
905 		 * modified until the last of those mappings are removed.
906 		 */
907 		if (object->ref_count != 0) {
908 			vm_page_test_dirty(m);
909 			if (m->dirty == 0 && !vm_page_try_remove_all(m))
910 				goto skip_page;
911 		}
912 
913 		/*
914 		 * Clean pages are freed, and dirty pages are paged out unless
915 		 * they belong to a dead object.  Requeueing dirty pages from
916 		 * dead objects is pointless, as they are being paged out and
917 		 * freed by the thread that destroyed the object.
918 		 */
919 		if (m->dirty == 0) {
920 free_page:
921 			/*
922 			 * Now we are guaranteed that no other threads are
923 			 * manipulating the page, check for a last-second
924 			 * reference.
925 			 */
926 			if (vm_pageout_defer(m, queue, true))
927 				goto skip_page;
928 			vm_page_free(m);
929 			VM_CNT_INC(v_dfree);
930 		} else if ((object->flags & OBJ_DEAD) == 0) {
931 			if ((object->flags & OBJ_SWAP) == 0 &&
932 			    object->type != OBJT_DEFAULT)
933 				pageout_ok = true;
934 			else if (disable_swap_pageouts)
935 				pageout_ok = false;
936 			else
937 				pageout_ok = true;
938 			if (!pageout_ok) {
939 				vm_page_launder(m);
940 				goto skip_page;
941 			}
942 
943 			/*
944 			 * Form a cluster with adjacent, dirty pages from the
945 			 * same object, and page out that entire cluster.
946 			 *
947 			 * The adjacent, dirty pages must also be in the
948 			 * laundry.  However, their mappings are not checked
949 			 * for new references.  Consequently, a recently
950 			 * referenced page may be paged out.  However, that
951 			 * page will not be prematurely reclaimed.  After page
952 			 * out, the page will be placed in the inactive queue,
953 			 * where any new references will be detected and the
954 			 * page reactivated.
955 			 */
956 			error = vm_pageout_clean(m, &numpagedout);
957 			if (error == 0) {
958 				launder -= numpagedout;
959 				ss.scanned += numpagedout;
960 			} else if (error == EDEADLK) {
961 				pageout_lock_miss++;
962 				vnodes_skipped++;
963 			}
964 			object = NULL;
965 		} else {
966 skip_page:
967 			vm_page_xunbusy(m);
968 		}
969 	}
970 	if (object != NULL) {
971 		VM_OBJECT_WUNLOCK(object);
972 		object = NULL;
973 	}
974 	vm_pagequeue_lock(pq);
975 	vm_pageout_end_scan(&ss);
976 	vm_pagequeue_unlock(pq);
977 
978 	if (launder > 0 && queue == PQ_UNSWAPPABLE) {
979 		queue = PQ_LAUNDRY;
980 		goto scan;
981 	}
982 
983 	/*
984 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
985 	 * and we didn't launder enough pages.
986 	 */
987 	if (vnodes_skipped > 0 && launder > 0)
988 		(void)speedup_syncer();
989 
990 	return (starting_target - launder);
991 }
992 
993 /*
994  * Compute the integer square root.
995  */
996 static u_int
997 isqrt(u_int num)
998 {
999 	u_int bit, root, tmp;
1000 
1001 	bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
1002 	root = 0;
1003 	while (bit != 0) {
1004 		tmp = root + bit;
1005 		root >>= 1;
1006 		if (num >= tmp) {
1007 			num -= tmp;
1008 			root += bit;
1009 		}
1010 		bit >>= 2;
1011 	}
1012 	return (root);
1013 }
1014 
1015 /*
1016  * Perform the work of the laundry thread: periodically wake up and determine
1017  * whether any pages need to be laundered.  If so, determine the number of pages
1018  * that need to be laundered, and launder them.
1019  */
1020 static void
1021 vm_pageout_laundry_worker(void *arg)
1022 {
1023 	struct vm_domain *vmd;
1024 	struct vm_pagequeue *pq;
1025 	uint64_t nclean, ndirty, nfreed;
1026 	int domain, last_target, launder, shortfall, shortfall_cycle, target;
1027 	bool in_shortfall;
1028 
1029 	domain = (uintptr_t)arg;
1030 	vmd = VM_DOMAIN(domain);
1031 	pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1032 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1033 
1034 	shortfall = 0;
1035 	in_shortfall = false;
1036 	shortfall_cycle = 0;
1037 	last_target = target = 0;
1038 	nfreed = 0;
1039 
1040 	/*
1041 	 * Calls to these handlers are serialized by the swap syscall lock.
1042 	 */
1043 	(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1044 	    EVENTHANDLER_PRI_ANY);
1045 	(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1046 	    EVENTHANDLER_PRI_ANY);
1047 
1048 	/*
1049 	 * The pageout laundry worker is never done, so loop forever.
1050 	 */
1051 	for (;;) {
1052 		KASSERT(target >= 0, ("negative target %d", target));
1053 		KASSERT(shortfall_cycle >= 0,
1054 		    ("negative cycle %d", shortfall_cycle));
1055 		launder = 0;
1056 
1057 		/*
1058 		 * First determine whether we need to launder pages to meet a
1059 		 * shortage of free pages.
1060 		 */
1061 		if (shortfall > 0) {
1062 			in_shortfall = true;
1063 			shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1064 			target = shortfall;
1065 		} else if (!in_shortfall)
1066 			goto trybackground;
1067 		else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1068 			/*
1069 			 * We recently entered shortfall and began laundering
1070 			 * pages.  If we have completed that laundering run
1071 			 * (and we are no longer in shortfall) or we have met
1072 			 * our laundry target through other activity, then we
1073 			 * can stop laundering pages.
1074 			 */
1075 			in_shortfall = false;
1076 			target = 0;
1077 			goto trybackground;
1078 		}
1079 		launder = target / shortfall_cycle--;
1080 		goto dolaundry;
1081 
1082 		/*
1083 		 * There's no immediate need to launder any pages; see if we
1084 		 * meet the conditions to perform background laundering:
1085 		 *
1086 		 * 1. The ratio of dirty to clean inactive pages exceeds the
1087 		 *    background laundering threshold, or
1088 		 * 2. we haven't yet reached the target of the current
1089 		 *    background laundering run.
1090 		 *
1091 		 * The background laundering threshold is not a constant.
1092 		 * Instead, it is a slowly growing function of the number of
1093 		 * clean pages freed by the page daemon since the last
1094 		 * background laundering.  Thus, as the ratio of dirty to
1095 		 * clean inactive pages grows, the amount of memory pressure
1096 		 * required to trigger laundering decreases.  We ensure
1097 		 * that the threshold is non-zero after an inactive queue
1098 		 * scan, even if that scan failed to free a single clean page.
1099 		 */
1100 trybackground:
1101 		nclean = vmd->vmd_free_count +
1102 		    vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1103 		ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1104 		if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1105 		    vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1106 			target = vmd->vmd_background_launder_target;
1107 		}
1108 
1109 		/*
1110 		 * We have a non-zero background laundering target.  If we've
1111 		 * laundered up to our maximum without observing a page daemon
1112 		 * request, just stop.  This is a safety belt that ensures we
1113 		 * don't launder an excessive amount if memory pressure is low
1114 		 * and the ratio of dirty to clean pages is large.  Otherwise,
1115 		 * proceed at the background laundering rate.
1116 		 */
1117 		if (target > 0) {
1118 			if (nfreed > 0) {
1119 				nfreed = 0;
1120 				last_target = target;
1121 			} else if (last_target - target >=
1122 			    vm_background_launder_max * PAGE_SIZE / 1024) {
1123 				target = 0;
1124 			}
1125 			launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1126 			launder /= VM_LAUNDER_RATE;
1127 			if (launder > target)
1128 				launder = target;
1129 		}
1130 
1131 dolaundry:
1132 		if (launder > 0) {
1133 			/*
1134 			 * Because of I/O clustering, the number of laundered
1135 			 * pages could exceed "target" by the maximum size of
1136 			 * a cluster minus one.
1137 			 */
1138 			target -= min(vm_pageout_launder(vmd, launder,
1139 			    in_shortfall), target);
1140 			pause("laundp", hz / VM_LAUNDER_RATE);
1141 		}
1142 
1143 		/*
1144 		 * If we're not currently laundering pages and the page daemon
1145 		 * hasn't posted a new request, sleep until the page daemon
1146 		 * kicks us.
1147 		 */
1148 		vm_pagequeue_lock(pq);
1149 		if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1150 			(void)mtx_sleep(&vmd->vmd_laundry_request,
1151 			    vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1152 
1153 		/*
1154 		 * If the pagedaemon has indicated that it's in shortfall, start
1155 		 * a shortfall laundering unless we're already in the middle of
1156 		 * one.  This may preempt a background laundering.
1157 		 */
1158 		if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1159 		    (!in_shortfall || shortfall_cycle == 0)) {
1160 			shortfall = vm_laundry_target(vmd) +
1161 			    vmd->vmd_pageout_deficit;
1162 			target = 0;
1163 		} else
1164 			shortfall = 0;
1165 
1166 		if (target == 0)
1167 			vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1168 		nfreed += vmd->vmd_clean_pages_freed;
1169 		vmd->vmd_clean_pages_freed = 0;
1170 		vm_pagequeue_unlock(pq);
1171 	}
1172 }
1173 
1174 /*
1175  * Compute the number of pages we want to try to move from the
1176  * active queue to either the inactive or laundry queue.
1177  *
1178  * When scanning active pages during a shortage, we make clean pages
1179  * count more heavily towards the page shortage than dirty pages.
1180  * This is because dirty pages must be laundered before they can be
1181  * reused and thus have less utility when attempting to quickly
1182  * alleviate a free page shortage.  However, this weighting also
1183  * causes the scan to deactivate dirty pages more aggressively,
1184  * improving the effectiveness of clustering.
1185  */
1186 static int
1187 vm_pageout_active_target(struct vm_domain *vmd)
1188 {
1189 	int shortage;
1190 
1191 	shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1192 	    (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1193 	    vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1194 	shortage *= act_scan_laundry_weight;
1195 	return (shortage);
1196 }
1197 
1198 /*
1199  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1200  * small portion of the queue in order to maintain quasi-LRU.
1201  */
1202 static void
1203 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1204 {
1205 	struct scan_state ss;
1206 	vm_object_t object;
1207 	vm_page_t m, marker;
1208 	struct vm_pagequeue *pq;
1209 	vm_page_astate_t old, new;
1210 	long min_scan;
1211 	int act_delta, max_scan, ps_delta, refs, scan_tick;
1212 	uint8_t nqueue;
1213 
1214 	marker = &vmd->vmd_markers[PQ_ACTIVE];
1215 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1216 	vm_pagequeue_lock(pq);
1217 
1218 	/*
1219 	 * If we're just idle polling attempt to visit every
1220 	 * active page within 'update_period' seconds.
1221 	 */
1222 	scan_tick = ticks;
1223 	if (vm_pageout_update_period != 0) {
1224 		min_scan = pq->pq_cnt;
1225 		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1226 		min_scan /= hz * vm_pageout_update_period;
1227 	} else
1228 		min_scan = 0;
1229 	if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1230 		vmd->vmd_last_active_scan = scan_tick;
1231 
1232 	/*
1233 	 * Scan the active queue for pages that can be deactivated.  Update
1234 	 * the per-page activity counter and use it to identify deactivation
1235 	 * candidates.  Held pages may be deactivated.
1236 	 *
1237 	 * To avoid requeuing each page that remains in the active queue, we
1238 	 * implement the CLOCK algorithm.  To keep the implementation of the
1239 	 * enqueue operation consistent for all page queues, we use two hands,
1240 	 * represented by marker pages. Scans begin at the first hand, which
1241 	 * precedes the second hand in the queue.  When the two hands meet,
1242 	 * they are moved back to the head and tail of the queue, respectively,
1243 	 * and scanning resumes.
1244 	 */
1245 	max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1246 act_scan:
1247 	vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1248 	while ((m = vm_pageout_next(&ss, false)) != NULL) {
1249 		if (__predict_false(m == &vmd->vmd_clock[1])) {
1250 			vm_pagequeue_lock(pq);
1251 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1252 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1253 			TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1254 			    plinks.q);
1255 			TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1256 			    plinks.q);
1257 			max_scan -= ss.scanned;
1258 			vm_pageout_end_scan(&ss);
1259 			goto act_scan;
1260 		}
1261 		if (__predict_false((m->flags & PG_MARKER) != 0))
1262 			continue;
1263 
1264 		/*
1265 		 * Don't touch a page that was removed from the queue after the
1266 		 * page queue lock was released.  Otherwise, ensure that any
1267 		 * pending queue operations, such as dequeues for wired pages,
1268 		 * are handled.
1269 		 */
1270 		if (vm_pageout_defer(m, PQ_ACTIVE, true))
1271 			continue;
1272 
1273 		/*
1274 		 * A page's object pointer may be set to NULL before
1275 		 * the object lock is acquired.
1276 		 */
1277 		object = atomic_load_ptr(&m->object);
1278 		if (__predict_false(object == NULL))
1279 			/*
1280 			 * The page has been removed from its object.
1281 			 */
1282 			continue;
1283 
1284 		/* Deferred free of swap space. */
1285 		if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1286 		    VM_OBJECT_TRYWLOCK(object)) {
1287 			if (m->object == object)
1288 				vm_pager_page_unswapped(m);
1289 			VM_OBJECT_WUNLOCK(object);
1290 		}
1291 
1292 		/*
1293 		 * Check to see "how much" the page has been used.
1294 		 *
1295 		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1296 		 * that a reference from a concurrently destroyed mapping is
1297 		 * observed here and now.
1298 		 */
1299 		refs = vm_pageout_page_ts_referenced(object, m);
1300 
1301 		old = vm_page_astate_load(m);
1302 		do {
1303 			/*
1304 			 * Check to see if the page has been removed from the
1305 			 * queue since the first such check.  Leave it alone if
1306 			 * so, discarding any references collected by
1307 			 * pmap_ts_referenced().
1308 			 */
1309 			if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
1310 				ps_delta = 0;
1311 				break;
1312 			}
1313 
1314 			/*
1315 			 * Advance or decay the act_count based on recent usage.
1316 			 */
1317 			new = old;
1318 			act_delta = refs;
1319 			if ((old.flags & PGA_REFERENCED) != 0) {
1320 				new.flags &= ~PGA_REFERENCED;
1321 				act_delta++;
1322 			}
1323 			if (act_delta != 0) {
1324 				new.act_count += ACT_ADVANCE + act_delta;
1325 				if (new.act_count > ACT_MAX)
1326 					new.act_count = ACT_MAX;
1327 			} else {
1328 				new.act_count -= min(new.act_count,
1329 				    ACT_DECLINE);
1330 			}
1331 
1332 			if (new.act_count > 0) {
1333 				/*
1334 				 * Adjust the activation count and keep the page
1335 				 * in the active queue.  The count might be left
1336 				 * unchanged if it is saturated.  The page may
1337 				 * have been moved to a different queue since we
1338 				 * started the scan, in which case we move it
1339 				 * back.
1340 				 */
1341 				ps_delta = 0;
1342 				if (old.queue != PQ_ACTIVE) {
1343 					new.flags &= ~PGA_QUEUE_OP_MASK;
1344 					new.flags |= PGA_REQUEUE;
1345 					new.queue = PQ_ACTIVE;
1346 				}
1347 			} else {
1348 				/*
1349 				 * When not short for inactive pages, let dirty
1350 				 * pages go through the inactive queue before
1351 				 * moving to the laundry queue.  This gives them
1352 				 * some extra time to be reactivated,
1353 				 * potentially avoiding an expensive pageout.
1354 				 * However, during a page shortage, the inactive
1355 				 * queue is necessarily small, and so dirty
1356 				 * pages would only spend a trivial amount of
1357 				 * time in the inactive queue.  Therefore, we
1358 				 * might as well place them directly in the
1359 				 * laundry queue to reduce queuing overhead.
1360 				 *
1361 				 * Calling vm_page_test_dirty() here would
1362 				 * require acquisition of the object's write
1363 				 * lock.  However, during a page shortage,
1364 				 * directing dirty pages into the laundry queue
1365 				 * is only an optimization and not a
1366 				 * requirement.  Therefore, we simply rely on
1367 				 * the opportunistic updates to the page's dirty
1368 				 * field by the pmap.
1369 				 */
1370 				if (page_shortage <= 0) {
1371 					nqueue = PQ_INACTIVE;
1372 					ps_delta = 0;
1373 				} else if (m->dirty == 0) {
1374 					nqueue = PQ_INACTIVE;
1375 					ps_delta = act_scan_laundry_weight;
1376 				} else {
1377 					nqueue = PQ_LAUNDRY;
1378 					ps_delta = 1;
1379 				}
1380 
1381 				new.flags &= ~PGA_QUEUE_OP_MASK;
1382 				new.flags |= PGA_REQUEUE;
1383 				new.queue = nqueue;
1384 			}
1385 		} while (!vm_page_pqstate_commit(m, &old, new));
1386 
1387 		page_shortage -= ps_delta;
1388 	}
1389 	vm_pagequeue_lock(pq);
1390 	TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1391 	TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1392 	vm_pageout_end_scan(&ss);
1393 	vm_pagequeue_unlock(pq);
1394 }
1395 
1396 static int
1397 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1398     vm_page_t m)
1399 {
1400 	vm_page_astate_t as;
1401 
1402 	vm_pagequeue_assert_locked(pq);
1403 
1404 	as = vm_page_astate_load(m);
1405 	if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1406 		return (0);
1407 	vm_page_aflag_set(m, PGA_ENQUEUED);
1408 	TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1409 	return (1);
1410 }
1411 
1412 /*
1413  * Re-add stuck pages to the inactive queue.  We will examine them again
1414  * during the next scan.  If the queue state of a page has changed since
1415  * it was physically removed from the page queue in
1416  * vm_pageout_collect_batch(), don't do anything with that page.
1417  */
1418 static void
1419 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1420     vm_page_t m)
1421 {
1422 	struct vm_pagequeue *pq;
1423 	vm_page_t marker;
1424 	int delta;
1425 
1426 	delta = 0;
1427 	marker = ss->marker;
1428 	pq = ss->pq;
1429 
1430 	if (m != NULL) {
1431 		if (vm_batchqueue_insert(bq, m))
1432 			return;
1433 		vm_pagequeue_lock(pq);
1434 		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1435 	} else
1436 		vm_pagequeue_lock(pq);
1437 	while ((m = vm_batchqueue_pop(bq)) != NULL)
1438 		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1439 	vm_pagequeue_cnt_add(pq, delta);
1440 	vm_pagequeue_unlock(pq);
1441 	vm_batchqueue_init(bq);
1442 }
1443 
1444 static void
1445 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1446 {
1447 	struct timeval start, end;
1448 	struct scan_state ss;
1449 	struct vm_batchqueue rq;
1450 	struct vm_page marker_page;
1451 	vm_page_t m, marker;
1452 	struct vm_pagequeue *pq;
1453 	vm_object_t object;
1454 	vm_page_astate_t old, new;
1455 	int act_delta, addl_page_shortage, starting_page_shortage, refs;
1456 
1457 	object = NULL;
1458 	vm_batchqueue_init(&rq);
1459 	getmicrouptime(&start);
1460 
1461 	/*
1462 	 * The addl_page_shortage is an estimate of the number of temporarily
1463 	 * stuck pages in the inactive queue.  In other words, the
1464 	 * number of pages from the inactive count that should be
1465 	 * discounted in setting the target for the active queue scan.
1466 	 */
1467 	addl_page_shortage = 0;
1468 
1469 	/*
1470 	 * Start scanning the inactive queue for pages that we can free.  The
1471 	 * scan will stop when we reach the target or we have scanned the
1472 	 * entire queue.  (Note that m->a.act_count is not used to make
1473 	 * decisions for the inactive queue, only for the active queue.)
1474 	 */
1475 	starting_page_shortage = page_shortage;
1476 	marker = &marker_page;
1477 	vm_page_init_marker(marker, PQ_INACTIVE, 0);
1478 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1479 	vm_pagequeue_lock(pq);
1480 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1481 	while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1482 		KASSERT((m->flags & PG_MARKER) == 0,
1483 		    ("marker page %p was dequeued", m));
1484 
1485 		/*
1486 		 * Don't touch a page that was removed from the queue after the
1487 		 * page queue lock was released.  Otherwise, ensure that any
1488 		 * pending queue operations, such as dequeues for wired pages,
1489 		 * are handled.
1490 		 */
1491 		if (vm_pageout_defer(m, PQ_INACTIVE, false))
1492 			continue;
1493 
1494 		/*
1495 		 * Lock the page's object.
1496 		 */
1497 		if (object == NULL || object != m->object) {
1498 			if (object != NULL)
1499 				VM_OBJECT_WUNLOCK(object);
1500 			object = atomic_load_ptr(&m->object);
1501 			if (__predict_false(object == NULL))
1502 				/* The page is being freed by another thread. */
1503 				continue;
1504 
1505 			/* Depends on type-stability. */
1506 			VM_OBJECT_WLOCK(object);
1507 			if (__predict_false(m->object != object)) {
1508 				VM_OBJECT_WUNLOCK(object);
1509 				object = NULL;
1510 				goto reinsert;
1511 			}
1512 		}
1513 
1514 		if (vm_page_tryxbusy(m) == 0) {
1515 			/*
1516 			 * Don't mess with busy pages.  Leave them at
1517 			 * the front of the queue.  Most likely, they
1518 			 * are being paged out and will leave the
1519 			 * queue shortly after the scan finishes.  So,
1520 			 * they ought to be discounted from the
1521 			 * inactive count.
1522 			 */
1523 			addl_page_shortage++;
1524 			goto reinsert;
1525 		}
1526 
1527 		/* Deferred free of swap space. */
1528 		if ((m->a.flags & PGA_SWAP_FREE) != 0)
1529 			vm_pager_page_unswapped(m);
1530 
1531 		/*
1532 		 * Check for wirings now that we hold the object lock and have
1533 		 * exclusively busied the page.  If the page is mapped, it may
1534 		 * still be wired by pmap lookups.  The call to
1535 		 * vm_page_try_remove_all() below atomically checks for such
1536 		 * wirings and removes mappings.  If the page is unmapped, the
1537 		 * wire count is guaranteed not to increase after this check.
1538 		 */
1539 		if (__predict_false(vm_page_wired(m)))
1540 			goto skip_page;
1541 
1542 		/*
1543 		 * Invalid pages can be easily freed. They cannot be
1544 		 * mapped, vm_page_free() asserts this.
1545 		 */
1546 		if (vm_page_none_valid(m))
1547 			goto free_page;
1548 
1549 		refs = vm_pageout_page_ts_referenced(object, m);
1550 
1551 		for (old = vm_page_astate_load(m);;) {
1552 			/*
1553 			 * Check to see if the page has been removed from the
1554 			 * queue since the first such check.  Leave it alone if
1555 			 * so, discarding any references collected by
1556 			 * pmap_ts_referenced().
1557 			 */
1558 			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1559 				goto skip_page;
1560 
1561 			new = old;
1562 			act_delta = refs;
1563 			if ((old.flags & PGA_REFERENCED) != 0) {
1564 				new.flags &= ~PGA_REFERENCED;
1565 				act_delta++;
1566 			}
1567 			if (act_delta == 0) {
1568 				;
1569 			} else if (vm_pageout_object_act(object)) {
1570 				/*
1571 				 * Increase the activation count if the
1572 				 * page was referenced while in the
1573 				 * inactive queue.  This makes it less
1574 				 * likely that the page will be returned
1575 				 * prematurely to the inactive queue.
1576 				 */
1577 				new.act_count += ACT_ADVANCE +
1578 				    act_delta;
1579 				if (new.act_count > ACT_MAX)
1580 					new.act_count = ACT_MAX;
1581 
1582 				new.flags &= ~PGA_QUEUE_OP_MASK;
1583 				new.flags |= PGA_REQUEUE;
1584 				new.queue = PQ_ACTIVE;
1585 				if (!vm_page_pqstate_commit(m, &old, new))
1586 					continue;
1587 
1588 				VM_CNT_INC(v_reactivated);
1589 				goto skip_page;
1590 			} else if ((object->flags & OBJ_DEAD) == 0) {
1591 				new.queue = PQ_INACTIVE;
1592 				new.flags |= PGA_REQUEUE;
1593 				if (!vm_page_pqstate_commit(m, &old, new))
1594 					continue;
1595 				goto skip_page;
1596 			}
1597 			break;
1598 		}
1599 
1600 		/*
1601 		 * If the page appears to be clean at the machine-independent
1602 		 * layer, then remove all of its mappings from the pmap in
1603 		 * anticipation of freeing it.  If, however, any of the page's
1604 		 * mappings allow write access, then the page may still be
1605 		 * modified until the last of those mappings are removed.
1606 		 */
1607 		if (vm_pageout_object_act(object)) {
1608 			vm_page_test_dirty(m);
1609 			if (m->dirty == 0 && !vm_page_try_remove_all(m))
1610 				goto skip_page;
1611 		}
1612 
1613 		/*
1614 		 * Clean pages can be freed, but dirty pages must be sent back
1615 		 * to the laundry, unless they belong to a dead object.
1616 		 * Requeueing dirty pages from dead objects is pointless, as
1617 		 * they are being paged out and freed by the thread that
1618 		 * destroyed the object.
1619 		 */
1620 		if (m->dirty == 0) {
1621 free_page:
1622 			/*
1623 			 * Now we are guaranteed that no other threads are
1624 			 * manipulating the page, check for a last-second
1625 			 * reference that would save it from doom.
1626 			 */
1627 			if (vm_pageout_defer(m, PQ_INACTIVE, false))
1628 				goto skip_page;
1629 
1630 			/*
1631 			 * Because we dequeued the page and have already checked
1632 			 * for pending dequeue and enqueue requests, we can
1633 			 * safely disassociate the page from the inactive queue
1634 			 * without holding the queue lock.
1635 			 */
1636 			m->a.queue = PQ_NONE;
1637 			vm_page_free(m);
1638 			page_shortage--;
1639 			continue;
1640 		}
1641 		if ((object->flags & OBJ_DEAD) == 0)
1642 			vm_page_launder(m);
1643 skip_page:
1644 		vm_page_xunbusy(m);
1645 		continue;
1646 reinsert:
1647 		vm_pageout_reinsert_inactive(&ss, &rq, m);
1648 	}
1649 	if (object != NULL)
1650 		VM_OBJECT_WUNLOCK(object);
1651 	vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1652 	vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1653 	vm_pagequeue_lock(pq);
1654 	vm_pageout_end_scan(&ss);
1655 	vm_pagequeue_unlock(pq);
1656 
1657 	/*
1658 	 * Record the remaining shortage and the progress and rate it was made.
1659 	 */
1660 	atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1661 	getmicrouptime(&end);
1662 	timevalsub(&end, &start);
1663 	atomic_add_int(&vmd->vmd_inactive_us,
1664 	    end.tv_sec * 1000000 + end.tv_usec);
1665 	atomic_add_int(&vmd->vmd_inactive_freed,
1666 	    starting_page_shortage - page_shortage);
1667 }
1668 
1669 /*
1670  * Dispatch a number of inactive threads according to load and collect the
1671  * results to present a coherent view of paging activity on this domain.
1672  */
1673 static int
1674 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1675 {
1676 	u_int freed, pps, slop, threads, us;
1677 
1678 	vmd->vmd_inactive_shortage = shortage;
1679 	slop = 0;
1680 
1681 	/*
1682 	 * If we have more work than we can do in a quarter of our interval, we
1683 	 * fire off multiple threads to process it.
1684 	 */
1685 	threads = vmd->vmd_inactive_threads;
1686 	if (threads > 1 && vmd->vmd_inactive_pps != 0 &&
1687 	    shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1688 		vmd->vmd_inactive_shortage /= threads;
1689 		slop = shortage % threads;
1690 		vm_domain_pageout_lock(vmd);
1691 		blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1692 		blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1693 		wakeup(&vmd->vmd_inactive_shortage);
1694 		vm_domain_pageout_unlock(vmd);
1695 	}
1696 
1697 	/* Run the local thread scan. */
1698 	vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
1699 
1700 	/*
1701 	 * Block until helper threads report results and then accumulate
1702 	 * totals.
1703 	 */
1704 	blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1705 	freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1706 	VM_CNT_ADD(v_dfree, freed);
1707 
1708 	/*
1709 	 * Calculate the per-thread paging rate with an exponential decay of
1710 	 * prior results.  Careful to avoid integer rounding errors with large
1711 	 * us values.
1712 	 */
1713 	us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1714 	if (us > 1000000)
1715 		/* Keep rounding to tenths */
1716 		pps = (freed * 10) / ((us * 10) / 1000000);
1717 	else
1718 		pps = (1000000 / us) * freed;
1719 	vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1720 
1721 	return (shortage - freed);
1722 }
1723 
1724 /*
1725  * Attempt to reclaim the requested number of pages from the inactive queue.
1726  * Returns true if the shortage was addressed.
1727  */
1728 static int
1729 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1730 {
1731 	struct vm_pagequeue *pq;
1732 	u_int addl_page_shortage, deficit, page_shortage;
1733 	u_int starting_page_shortage;
1734 
1735 	/*
1736 	 * vmd_pageout_deficit counts the number of pages requested in
1737 	 * allocations that failed because of a free page shortage.  We assume
1738 	 * that the allocations will be reattempted and thus include the deficit
1739 	 * in our scan target.
1740 	 */
1741 	deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1742 	starting_page_shortage = shortage + deficit;
1743 
1744 	/*
1745 	 * Run the inactive scan on as many threads as is necessary.
1746 	 */
1747 	page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1748 	addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1749 
1750 	/*
1751 	 * Wake up the laundry thread so that it can perform any needed
1752 	 * laundering.  If we didn't meet our target, we're in shortfall and
1753 	 * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1754 	 * swap devices are configured, the laundry thread has no work to do, so
1755 	 * don't bother waking it up.
1756 	 *
1757 	 * The laundry thread uses the number of inactive queue scans elapsed
1758 	 * since the last laundering to determine whether to launder again, so
1759 	 * keep count.
1760 	 */
1761 	if (starting_page_shortage > 0) {
1762 		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1763 		vm_pagequeue_lock(pq);
1764 		if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1765 		    (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1766 			if (page_shortage > 0) {
1767 				vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1768 				VM_CNT_INC(v_pdshortfalls);
1769 			} else if (vmd->vmd_laundry_request !=
1770 			    VM_LAUNDRY_SHORTFALL)
1771 				vmd->vmd_laundry_request =
1772 				    VM_LAUNDRY_BACKGROUND;
1773 			wakeup(&vmd->vmd_laundry_request);
1774 		}
1775 		vmd->vmd_clean_pages_freed +=
1776 		    starting_page_shortage - page_shortage;
1777 		vm_pagequeue_unlock(pq);
1778 	}
1779 
1780 	/*
1781 	 * Wakeup the swapout daemon if we didn't free the targeted number of
1782 	 * pages.
1783 	 */
1784 	if (page_shortage > 0)
1785 		vm_swapout_run();
1786 
1787 	/*
1788 	 * If the inactive queue scan fails repeatedly to meet its
1789 	 * target, kill the largest process.
1790 	 */
1791 	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1792 
1793 	/*
1794 	 * Reclaim pages by swapping out idle processes, if configured to do so.
1795 	 */
1796 	vm_swapout_run_idle();
1797 
1798 	/*
1799 	 * See the description of addl_page_shortage above.
1800 	 */
1801 	*addl_shortage = addl_page_shortage + deficit;
1802 
1803 	return (page_shortage <= 0);
1804 }
1805 
1806 static int vm_pageout_oom_vote;
1807 
1808 /*
1809  * The pagedaemon threads randlomly select one to perform the
1810  * OOM.  Trying to kill processes before all pagedaemons
1811  * failed to reach free target is premature.
1812  */
1813 static void
1814 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1815     int starting_page_shortage)
1816 {
1817 	int old_vote;
1818 
1819 	if (starting_page_shortage <= 0 || starting_page_shortage !=
1820 	    page_shortage)
1821 		vmd->vmd_oom_seq = 0;
1822 	else
1823 		vmd->vmd_oom_seq++;
1824 	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1825 		if (vmd->vmd_oom) {
1826 			vmd->vmd_oom = FALSE;
1827 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1828 		}
1829 		return;
1830 	}
1831 
1832 	/*
1833 	 * Do not follow the call sequence until OOM condition is
1834 	 * cleared.
1835 	 */
1836 	vmd->vmd_oom_seq = 0;
1837 
1838 	if (vmd->vmd_oom)
1839 		return;
1840 
1841 	vmd->vmd_oom = TRUE;
1842 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1843 	if (old_vote != vm_ndomains - 1)
1844 		return;
1845 
1846 	/*
1847 	 * The current pagedaemon thread is the last in the quorum to
1848 	 * start OOM.  Initiate the selection and signaling of the
1849 	 * victim.
1850 	 */
1851 	vm_pageout_oom(VM_OOM_MEM);
1852 
1853 	/*
1854 	 * After one round of OOM terror, recall our vote.  On the
1855 	 * next pass, current pagedaemon would vote again if the low
1856 	 * memory condition is still there, due to vmd_oom being
1857 	 * false.
1858 	 */
1859 	vmd->vmd_oom = FALSE;
1860 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1861 }
1862 
1863 /*
1864  * The OOM killer is the page daemon's action of last resort when
1865  * memory allocation requests have been stalled for a prolonged period
1866  * of time because it cannot reclaim memory.  This function computes
1867  * the approximate number of physical pages that could be reclaimed if
1868  * the specified address space is destroyed.
1869  *
1870  * Private, anonymous memory owned by the address space is the
1871  * principal resource that we expect to recover after an OOM kill.
1872  * Since the physical pages mapped by the address space's COW entries
1873  * are typically shared pages, they are unlikely to be released and so
1874  * they are not counted.
1875  *
1876  * To get to the point where the page daemon runs the OOM killer, its
1877  * efforts to write-back vnode-backed pages may have stalled.  This
1878  * could be caused by a memory allocation deadlock in the write path
1879  * that might be resolved by an OOM kill.  Therefore, physical pages
1880  * belonging to vnode-backed objects are counted, because they might
1881  * be freed without being written out first if the address space holds
1882  * the last reference to an unlinked vnode.
1883  *
1884  * Similarly, physical pages belonging to OBJT_PHYS objects are
1885  * counted because the address space might hold the last reference to
1886  * the object.
1887  */
1888 static long
1889 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1890 {
1891 	vm_map_t map;
1892 	vm_map_entry_t entry;
1893 	vm_object_t obj;
1894 	long res;
1895 
1896 	map = &vmspace->vm_map;
1897 	KASSERT(!map->system_map, ("system map"));
1898 	sx_assert(&map->lock, SA_LOCKED);
1899 	res = 0;
1900 	VM_MAP_ENTRY_FOREACH(entry, map) {
1901 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1902 			continue;
1903 		obj = entry->object.vm_object;
1904 		if (obj == NULL)
1905 			continue;
1906 		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1907 		    obj->ref_count != 1)
1908 			continue;
1909 		if (obj->type == OBJT_DEFAULT || obj->type == OBJT_PHYS ||
1910 		    obj->type == OBJT_VNODE || (obj->flags & OBJ_SWAP) != 0)
1911 			res += obj->resident_page_count;
1912 	}
1913 	return (res);
1914 }
1915 
1916 static int vm_oom_ratelim_last;
1917 static int vm_oom_pf_secs = 10;
1918 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1919     "");
1920 static struct mtx vm_oom_ratelim_mtx;
1921 
1922 void
1923 vm_pageout_oom(int shortage)
1924 {
1925 	const char *reason;
1926 	struct proc *p, *bigproc;
1927 	vm_offset_t size, bigsize;
1928 	struct thread *td;
1929 	struct vmspace *vm;
1930 	int now;
1931 	bool breakout;
1932 
1933 	/*
1934 	 * For OOM requests originating from vm_fault(), there is a high
1935 	 * chance that a single large process faults simultaneously in
1936 	 * several threads.  Also, on an active system running many
1937 	 * processes of middle-size, like buildworld, all of them
1938 	 * could fault almost simultaneously as well.
1939 	 *
1940 	 * To avoid killing too many processes, rate-limit OOMs
1941 	 * initiated by vm_fault() time-outs on the waits for free
1942 	 * pages.
1943 	 */
1944 	mtx_lock(&vm_oom_ratelim_mtx);
1945 	now = ticks;
1946 	if (shortage == VM_OOM_MEM_PF &&
1947 	    (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1948 		mtx_unlock(&vm_oom_ratelim_mtx);
1949 		return;
1950 	}
1951 	vm_oom_ratelim_last = now;
1952 	mtx_unlock(&vm_oom_ratelim_mtx);
1953 
1954 	/*
1955 	 * We keep the process bigproc locked once we find it to keep anyone
1956 	 * from messing with it; however, there is a possibility of
1957 	 * deadlock if process B is bigproc and one of its child processes
1958 	 * attempts to propagate a signal to B while we are waiting for A's
1959 	 * lock while walking this list.  To avoid this, we don't block on
1960 	 * the process lock but just skip a process if it is already locked.
1961 	 */
1962 	bigproc = NULL;
1963 	bigsize = 0;
1964 	sx_slock(&allproc_lock);
1965 	FOREACH_PROC_IN_SYSTEM(p) {
1966 		PROC_LOCK(p);
1967 
1968 		/*
1969 		 * If this is a system, protected or killed process, skip it.
1970 		 */
1971 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1972 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1973 		    p->p_pid == 1 || P_KILLED(p) ||
1974 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1975 			PROC_UNLOCK(p);
1976 			continue;
1977 		}
1978 		/*
1979 		 * If the process is in a non-running type state,
1980 		 * don't touch it.  Check all the threads individually.
1981 		 */
1982 		breakout = false;
1983 		FOREACH_THREAD_IN_PROC(p, td) {
1984 			thread_lock(td);
1985 			if (!TD_ON_RUNQ(td) &&
1986 			    !TD_IS_RUNNING(td) &&
1987 			    !TD_IS_SLEEPING(td) &&
1988 			    !TD_IS_SUSPENDED(td) &&
1989 			    !TD_IS_SWAPPED(td)) {
1990 				thread_unlock(td);
1991 				breakout = true;
1992 				break;
1993 			}
1994 			thread_unlock(td);
1995 		}
1996 		if (breakout) {
1997 			PROC_UNLOCK(p);
1998 			continue;
1999 		}
2000 		/*
2001 		 * get the process size
2002 		 */
2003 		vm = vmspace_acquire_ref(p);
2004 		if (vm == NULL) {
2005 			PROC_UNLOCK(p);
2006 			continue;
2007 		}
2008 		_PHOLD_LITE(p);
2009 		PROC_UNLOCK(p);
2010 		sx_sunlock(&allproc_lock);
2011 		if (!vm_map_trylock_read(&vm->vm_map)) {
2012 			vmspace_free(vm);
2013 			sx_slock(&allproc_lock);
2014 			PRELE(p);
2015 			continue;
2016 		}
2017 		size = vmspace_swap_count(vm);
2018 		if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
2019 			size += vm_pageout_oom_pagecount(vm);
2020 		vm_map_unlock_read(&vm->vm_map);
2021 		vmspace_free(vm);
2022 		sx_slock(&allproc_lock);
2023 
2024 		/*
2025 		 * If this process is bigger than the biggest one,
2026 		 * remember it.
2027 		 */
2028 		if (size > bigsize) {
2029 			if (bigproc != NULL)
2030 				PRELE(bigproc);
2031 			bigproc = p;
2032 			bigsize = size;
2033 		} else {
2034 			PRELE(p);
2035 		}
2036 	}
2037 	sx_sunlock(&allproc_lock);
2038 
2039 	if (bigproc != NULL) {
2040 		switch (shortage) {
2041 		case VM_OOM_MEM:
2042 			reason = "failed to reclaim memory";
2043 			break;
2044 		case VM_OOM_MEM_PF:
2045 			reason = "a thread waited too long to allocate a page";
2046 			break;
2047 		case VM_OOM_SWAPZ:
2048 			reason = "out of swap space";
2049 			break;
2050 		default:
2051 			panic("unknown OOM reason %d", shortage);
2052 		}
2053 		if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2054 			panic("%s", reason);
2055 		PROC_LOCK(bigproc);
2056 		killproc(bigproc, reason);
2057 		sched_nice(bigproc, PRIO_MIN);
2058 		_PRELE(bigproc);
2059 		PROC_UNLOCK(bigproc);
2060 	}
2061 }
2062 
2063 /*
2064  * Signal a free page shortage to subsystems that have registered an event
2065  * handler.  Reclaim memory from UMA in the event of a severe shortage.
2066  * Return true if the free page count should be re-evaluated.
2067  */
2068 static bool
2069 vm_pageout_lowmem(void)
2070 {
2071 	static int lowmem_ticks = 0;
2072 	int last;
2073 	bool ret;
2074 
2075 	ret = false;
2076 
2077 	last = atomic_load_int(&lowmem_ticks);
2078 	while ((u_int)(ticks - last) / hz >= lowmem_period) {
2079 		if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2080 			continue;
2081 
2082 		/*
2083 		 * Decrease registered cache sizes.
2084 		 */
2085 		SDT_PROBE0(vm, , , vm__lowmem_scan);
2086 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2087 
2088 		/*
2089 		 * We do this explicitly after the caches have been
2090 		 * drained above.
2091 		 */
2092 		uma_reclaim(UMA_RECLAIM_TRIM);
2093 		ret = true;
2094 		break;
2095 	}
2096 
2097 	/*
2098 	 * Kick off an asynchronous reclaim of cached memory if one of the
2099 	 * page daemons is failing to keep up with demand.  Use the "severe"
2100 	 * threshold instead of "min" to ensure that we do not blow away the
2101 	 * caches if a subset of the NUMA domains are depleted by kernel memory
2102 	 * allocations; the domainset iterators automatically skip domains
2103 	 * below the "min" threshold on the first pass.
2104 	 *
2105 	 * UMA reclaim worker has its own rate-limiting mechanism, so don't
2106 	 * worry about kicking it too often.
2107 	 */
2108 	if (vm_page_count_severe())
2109 		uma_reclaim_wakeup();
2110 
2111 	return (ret);
2112 }
2113 
2114 static void
2115 vm_pageout_worker(void *arg)
2116 {
2117 	struct vm_domain *vmd;
2118 	u_int ofree;
2119 	int addl_shortage, domain, shortage;
2120 	bool target_met;
2121 
2122 	domain = (uintptr_t)arg;
2123 	vmd = VM_DOMAIN(domain);
2124 	shortage = 0;
2125 	target_met = true;
2126 
2127 	/*
2128 	 * XXXKIB It could be useful to bind pageout daemon threads to
2129 	 * the cores belonging to the domain, from which vm_page_array
2130 	 * is allocated.
2131 	 */
2132 
2133 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2134 	vmd->vmd_last_active_scan = ticks;
2135 
2136 	/*
2137 	 * The pageout daemon worker is never done, so loop forever.
2138 	 */
2139 	while (TRUE) {
2140 		vm_domain_pageout_lock(vmd);
2141 
2142 		/*
2143 		 * We need to clear wanted before we check the limits.  This
2144 		 * prevents races with wakers who will check wanted after they
2145 		 * reach the limit.
2146 		 */
2147 		atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2148 
2149 		/*
2150 		 * Might the page daemon need to run again?
2151 		 */
2152 		if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2153 			/*
2154 			 * Yes.  If the scan failed to produce enough free
2155 			 * pages, sleep uninterruptibly for some time in the
2156 			 * hope that the laundry thread will clean some pages.
2157 			 */
2158 			vm_domain_pageout_unlock(vmd);
2159 			if (!target_met)
2160 				pause("pwait", hz / VM_INACT_SCAN_RATE);
2161 		} else {
2162 			/*
2163 			 * No, sleep until the next wakeup or until pages
2164 			 * need to have their reference stats updated.
2165 			 */
2166 			if (mtx_sleep(&vmd->vmd_pageout_wanted,
2167 			    vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2168 			    "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2169 				VM_CNT_INC(v_pdwakeups);
2170 		}
2171 
2172 		/* Prevent spurious wakeups by ensuring that wanted is set. */
2173 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2174 
2175 		/*
2176 		 * Use the controller to calculate how many pages to free in
2177 		 * this interval, and scan the inactive queue.  If the lowmem
2178 		 * handlers appear to have freed up some pages, subtract the
2179 		 * difference from the inactive queue scan target.
2180 		 */
2181 		shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2182 		if (shortage > 0) {
2183 			ofree = vmd->vmd_free_count;
2184 			if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2185 				shortage -= min(vmd->vmd_free_count - ofree,
2186 				    (u_int)shortage);
2187 			target_met = vm_pageout_inactive(vmd, shortage,
2188 			    &addl_shortage);
2189 		} else
2190 			addl_shortage = 0;
2191 
2192 		/*
2193 		 * Scan the active queue.  A positive value for shortage
2194 		 * indicates that we must aggressively deactivate pages to avoid
2195 		 * a shortfall.
2196 		 */
2197 		shortage = vm_pageout_active_target(vmd) + addl_shortage;
2198 		vm_pageout_scan_active(vmd, shortage);
2199 	}
2200 }
2201 
2202 /*
2203  * vm_pageout_helper runs additional pageout daemons in times of high paging
2204  * activity.
2205  */
2206 static void
2207 vm_pageout_helper(void *arg)
2208 {
2209 	struct vm_domain *vmd;
2210 	int domain;
2211 
2212 	domain = (uintptr_t)arg;
2213 	vmd = VM_DOMAIN(domain);
2214 
2215 	vm_domain_pageout_lock(vmd);
2216 	for (;;) {
2217 		msleep(&vmd->vmd_inactive_shortage,
2218 		    vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2219 		blockcount_release(&vmd->vmd_inactive_starting, 1);
2220 
2221 		vm_domain_pageout_unlock(vmd);
2222 		vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2223 		vm_domain_pageout_lock(vmd);
2224 
2225 		/*
2226 		 * Release the running count while the pageout lock is held to
2227 		 * prevent wakeup races.
2228 		 */
2229 		blockcount_release(&vmd->vmd_inactive_running, 1);
2230 	}
2231 }
2232 
2233 static int
2234 get_pageout_threads_per_domain(const struct vm_domain *vmd)
2235 {
2236 	unsigned total_pageout_threads, eligible_cpus, domain_cpus;
2237 
2238 	if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
2239 		return (0);
2240 
2241 	/*
2242 	 * Semi-arbitrarily constrain pagedaemon threads to less than half the
2243 	 * total number of CPUs in the system as an upper limit.
2244 	 */
2245 	if (pageout_cpus_per_thread < 2)
2246 		pageout_cpus_per_thread = 2;
2247 	else if (pageout_cpus_per_thread > mp_ncpus)
2248 		pageout_cpus_per_thread = mp_ncpus;
2249 
2250 	total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
2251 	domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
2252 
2253 	/* Pagedaemons are not run in empty domains. */
2254 	eligible_cpus = mp_ncpus;
2255 	for (unsigned i = 0; i < vm_ndomains; i++)
2256 		if (VM_DOMAIN_EMPTY(i))
2257 			eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
2258 
2259 	/*
2260 	 * Assign a portion of the total pageout threads to this domain
2261 	 * corresponding to the fraction of pagedaemon-eligible CPUs in the
2262 	 * domain.  In asymmetric NUMA systems, domains with more CPUs may be
2263 	 * allocated more threads than domains with fewer CPUs.
2264 	 */
2265 	return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
2266 }
2267 
2268 /*
2269  * Initialize basic pageout daemon settings.  See the comment above the
2270  * definition of vm_domain for some explanation of how these thresholds are
2271  * used.
2272  */
2273 static void
2274 vm_pageout_init_domain(int domain)
2275 {
2276 	struct vm_domain *vmd;
2277 	struct sysctl_oid *oid;
2278 
2279 	vmd = VM_DOMAIN(domain);
2280 	vmd->vmd_interrupt_free_min = 2;
2281 
2282 	/*
2283 	 * v_free_reserved needs to include enough for the largest
2284 	 * swap pager structures plus enough for any pv_entry structs
2285 	 * when paging.
2286 	 */
2287 	vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2288 	    vmd->vmd_interrupt_free_min;
2289 	vmd->vmd_free_reserved = vm_pageout_page_count +
2290 	    vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2291 	vmd->vmd_free_min = vmd->vmd_page_count / 200;
2292 	vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2293 	vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2294 	vmd->vmd_free_min += vmd->vmd_free_reserved;
2295 	vmd->vmd_free_severe += vmd->vmd_free_reserved;
2296 	vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2297 	if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2298 		vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2299 
2300 	/*
2301 	 * Set the default wakeup threshold to be 10% below the paging
2302 	 * target.  This keeps the steady state out of shortfall.
2303 	 */
2304 	vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2305 
2306 	/*
2307 	 * Target amount of memory to move out of the laundry queue during a
2308 	 * background laundering.  This is proportional to the amount of system
2309 	 * memory.
2310 	 */
2311 	vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2312 	    vmd->vmd_free_min) / 10;
2313 
2314 	/* Initialize the pageout daemon pid controller. */
2315 	pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2316 	    vmd->vmd_free_target, PIDCTRL_BOUND,
2317 	    PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2318 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2319 	    "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2320 	pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2321 
2322 	vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
2323 }
2324 
2325 static void
2326 vm_pageout_init(void)
2327 {
2328 	u_long freecount;
2329 	int i;
2330 
2331 	/*
2332 	 * Initialize some paging parameters.
2333 	 */
2334 	if (vm_cnt.v_page_count < 2000)
2335 		vm_pageout_page_count = 8;
2336 
2337 	freecount = 0;
2338 	for (i = 0; i < vm_ndomains; i++) {
2339 		struct vm_domain *vmd;
2340 
2341 		vm_pageout_init_domain(i);
2342 		vmd = VM_DOMAIN(i);
2343 		vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2344 		vm_cnt.v_free_target += vmd->vmd_free_target;
2345 		vm_cnt.v_free_min += vmd->vmd_free_min;
2346 		vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2347 		vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2348 		vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2349 		vm_cnt.v_free_severe += vmd->vmd_free_severe;
2350 		freecount += vmd->vmd_free_count;
2351 	}
2352 
2353 	/*
2354 	 * Set interval in seconds for active scan.  We want to visit each
2355 	 * page at least once every ten minutes.  This is to prevent worst
2356 	 * case paging behaviors with stale active LRU.
2357 	 */
2358 	if (vm_pageout_update_period == 0)
2359 		vm_pageout_update_period = 600;
2360 
2361 	/*
2362 	 * Set the maximum number of user-wired virtual pages.  Historically the
2363 	 * main source of such pages was mlock(2) and mlockall(2).  Hypervisors
2364 	 * may also request user-wired memory.
2365 	 */
2366 	if (vm_page_max_user_wired == 0)
2367 		vm_page_max_user_wired = 4 * freecount / 5;
2368 }
2369 
2370 /*
2371  *     vm_pageout is the high level pageout daemon.
2372  */
2373 static void
2374 vm_pageout(void)
2375 {
2376 	struct proc *p;
2377 	struct thread *td;
2378 	int error, first, i, j, pageout_threads;
2379 
2380 	p = curproc;
2381 	td = curthread;
2382 
2383 	mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2384 	swap_pager_swap_init();
2385 	for (first = -1, i = 0; i < vm_ndomains; i++) {
2386 		if (VM_DOMAIN_EMPTY(i)) {
2387 			if (bootverbose)
2388 				printf("domain %d empty; skipping pageout\n",
2389 				    i);
2390 			continue;
2391 		}
2392 		if (first == -1)
2393 			first = i;
2394 		else {
2395 			error = kthread_add(vm_pageout_worker,
2396 			    (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2397 			if (error != 0)
2398 				panic("starting pageout for domain %d: %d\n",
2399 				    i, error);
2400 		}
2401 		pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
2402 		for (j = 0; j < pageout_threads - 1; j++) {
2403 			error = kthread_add(vm_pageout_helper,
2404 			    (void *)(uintptr_t)i, p, NULL, 0, 0,
2405 			    "dom%d helper%d", i, j);
2406 			if (error != 0)
2407 				panic("starting pageout helper %d for domain "
2408 				    "%d: %d\n", j, i, error);
2409 		}
2410 		error = kthread_add(vm_pageout_laundry_worker,
2411 		    (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2412 		if (error != 0)
2413 			panic("starting laundry for domain %d: %d", i, error);
2414 	}
2415 	error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2416 	if (error != 0)
2417 		panic("starting uma_reclaim helper, error %d\n", error);
2418 
2419 	snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2420 	vm_pageout_worker((void *)(uintptr_t)first);
2421 }
2422 
2423 /*
2424  * Perform an advisory wakeup of the page daemon.
2425  */
2426 void
2427 pagedaemon_wakeup(int domain)
2428 {
2429 	struct vm_domain *vmd;
2430 
2431 	vmd = VM_DOMAIN(domain);
2432 	vm_domain_pageout_assert_unlocked(vmd);
2433 	if (curproc == pageproc)
2434 		return;
2435 
2436 	if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2437 		vm_domain_pageout_lock(vmd);
2438 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2439 		wakeup(&vmd->vmd_pageout_wanted);
2440 		vm_domain_pageout_unlock(vmd);
2441 	}
2442 }
2443