1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 45 * 46 * 47 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 48 * All rights reserved. 49 * 50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 51 * 52 * Permission to use, copy, modify and distribute this software and 53 * its documentation is hereby granted, provided that both the copyright 54 * notice and this permission notice appear in all copies of the 55 * software, derivative works or modified versions, and any portions 56 * thereof, and that both notices appear in supporting documentation. 57 * 58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 61 * 62 * Carnegie Mellon requests users of this software to return to 63 * 64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 65 * School of Computer Science 66 * Carnegie Mellon University 67 * Pittsburgh PA 15213-3890 68 * 69 * any improvements or extensions that they make and grant Carnegie the 70 * rights to redistribute these changes. 71 */ 72 73 /* 74 * The proverbial page-out daemon. 75 */ 76 77 #include <sys/cdefs.h> 78 __FBSDID("$FreeBSD$"); 79 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/blockcount.h> 86 #include <sys/eventhandler.h> 87 #include <sys/lock.h> 88 #include <sys/mutex.h> 89 #include <sys/proc.h> 90 #include <sys/kthread.h> 91 #include <sys/ktr.h> 92 #include <sys/mount.h> 93 #include <sys/racct.h> 94 #include <sys/resourcevar.h> 95 #include <sys/sched.h> 96 #include <sys/sdt.h> 97 #include <sys/signalvar.h> 98 #include <sys/smp.h> 99 #include <sys/time.h> 100 #include <sys/vnode.h> 101 #include <sys/vmmeter.h> 102 #include <sys/rwlock.h> 103 #include <sys/sx.h> 104 #include <sys/sysctl.h> 105 106 #include <vm/vm.h> 107 #include <vm/vm_param.h> 108 #include <vm/vm_object.h> 109 #include <vm/vm_page.h> 110 #include <vm/vm_map.h> 111 #include <vm/vm_pageout.h> 112 #include <vm/vm_pager.h> 113 #include <vm/vm_phys.h> 114 #include <vm/vm_pagequeue.h> 115 #include <vm/swap_pager.h> 116 #include <vm/vm_extern.h> 117 #include <vm/uma.h> 118 119 /* 120 * System initialization 121 */ 122 123 /* the kernel process "vm_pageout"*/ 124 static void vm_pageout(void); 125 static void vm_pageout_init(void); 126 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 127 static int vm_pageout_cluster(vm_page_t m); 128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 129 int starting_page_shortage); 130 131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 132 NULL); 133 134 struct proc *pageproc; 135 136 static struct kproc_desc page_kp = { 137 "pagedaemon", 138 vm_pageout, 139 &pageproc 140 }; 141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 142 &page_kp); 143 144 SDT_PROVIDER_DEFINE(vm); 145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 146 147 /* Pagedaemon activity rates, in subdivisions of one second. */ 148 #define VM_LAUNDER_RATE 10 149 #define VM_INACT_SCAN_RATE 10 150 151 static int swapdev_enabled; 152 int vm_pageout_page_count = 32; 153 154 static int vm_panic_on_oom = 0; 155 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 156 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 157 "Panic on the given number of out-of-memory errors instead of " 158 "killing the largest process"); 159 160 static int vm_pageout_update_period; 161 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 162 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 163 "Maximum active LRU update period"); 164 165 static int pageout_cpus_per_thread = 16; 166 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN, 167 &pageout_cpus_per_thread, 0, 168 "Number of CPUs per pagedaemon worker thread"); 169 170 static int lowmem_period = 10; 171 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 172 "Low memory callback period"); 173 174 static int disable_swap_pageouts; 175 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 176 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, 177 "Disallow swapout of dirty pages"); 178 179 static int pageout_lock_miss; 180 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 181 CTLFLAG_RD, &pageout_lock_miss, 0, 182 "vget() lock misses during pageout"); 183 184 static int vm_pageout_oom_seq = 12; 185 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 186 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 187 "back-to-back calls to oom detector to start OOM"); 188 189 static int act_scan_laundry_weight = 3; 190 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 191 &act_scan_laundry_weight, 0, 192 "weight given to clean vs. dirty pages in active queue scans"); 193 194 static u_int vm_background_launder_rate = 4096; 195 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 196 &vm_background_launder_rate, 0, 197 "background laundering rate, in kilobytes per second"); 198 199 static u_int vm_background_launder_max = 20 * 1024; 200 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 201 &vm_background_launder_max, 0, 202 "background laundering cap, in kilobytes"); 203 204 u_long vm_page_max_user_wired; 205 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW, 206 &vm_page_max_user_wired, 0, 207 "system-wide limit to user-wired page count"); 208 209 static u_int isqrt(u_int num); 210 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 211 bool in_shortfall); 212 static void vm_pageout_laundry_worker(void *arg); 213 214 struct scan_state { 215 struct vm_batchqueue bq; 216 struct vm_pagequeue *pq; 217 vm_page_t marker; 218 int maxscan; 219 int scanned; 220 }; 221 222 static void 223 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 224 vm_page_t marker, vm_page_t after, int maxscan) 225 { 226 227 vm_pagequeue_assert_locked(pq); 228 KASSERT((marker->a.flags & PGA_ENQUEUED) == 0, 229 ("marker %p already enqueued", marker)); 230 231 if (after == NULL) 232 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 233 else 234 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 235 vm_page_aflag_set(marker, PGA_ENQUEUED); 236 237 vm_batchqueue_init(&ss->bq); 238 ss->pq = pq; 239 ss->marker = marker; 240 ss->maxscan = maxscan; 241 ss->scanned = 0; 242 vm_pagequeue_unlock(pq); 243 } 244 245 static void 246 vm_pageout_end_scan(struct scan_state *ss) 247 { 248 struct vm_pagequeue *pq; 249 250 pq = ss->pq; 251 vm_pagequeue_assert_locked(pq); 252 KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0, 253 ("marker %p not enqueued", ss->marker)); 254 255 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 256 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 257 pq->pq_pdpages += ss->scanned; 258 } 259 260 /* 261 * Add a small number of queued pages to a batch queue for later processing 262 * without the corresponding queue lock held. The caller must have enqueued a 263 * marker page at the desired start point for the scan. Pages will be 264 * physically dequeued if the caller so requests. Otherwise, the returned 265 * batch may contain marker pages, and it is up to the caller to handle them. 266 * 267 * When processing the batch queue, vm_pageout_defer() must be used to 268 * determine whether the page has been logically dequeued since the batch was 269 * collected. 270 */ 271 static __always_inline void 272 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 273 { 274 struct vm_pagequeue *pq; 275 vm_page_t m, marker, n; 276 277 marker = ss->marker; 278 pq = ss->pq; 279 280 KASSERT((marker->a.flags & PGA_ENQUEUED) != 0, 281 ("marker %p not enqueued", ss->marker)); 282 283 vm_pagequeue_lock(pq); 284 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 285 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 286 m = n, ss->scanned++) { 287 n = TAILQ_NEXT(m, plinks.q); 288 if ((m->flags & PG_MARKER) == 0) { 289 KASSERT((m->a.flags & PGA_ENQUEUED) != 0, 290 ("page %p not enqueued", m)); 291 KASSERT((m->flags & PG_FICTITIOUS) == 0, 292 ("Fictitious page %p cannot be in page queue", m)); 293 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 294 ("Unmanaged page %p cannot be in page queue", m)); 295 } else if (dequeue) 296 continue; 297 298 (void)vm_batchqueue_insert(&ss->bq, m); 299 if (dequeue) { 300 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 301 vm_page_aflag_clear(m, PGA_ENQUEUED); 302 } 303 } 304 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 305 if (__predict_true(m != NULL)) 306 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 307 else 308 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 309 if (dequeue) 310 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 311 vm_pagequeue_unlock(pq); 312 } 313 314 /* 315 * Return the next page to be scanned, or NULL if the scan is complete. 316 */ 317 static __always_inline vm_page_t 318 vm_pageout_next(struct scan_state *ss, const bool dequeue) 319 { 320 321 if (ss->bq.bq_cnt == 0) 322 vm_pageout_collect_batch(ss, dequeue); 323 return (vm_batchqueue_pop(&ss->bq)); 324 } 325 326 /* 327 * Determine whether processing of a page should be deferred and ensure that any 328 * outstanding queue operations are processed. 329 */ 330 static __always_inline bool 331 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued) 332 { 333 vm_page_astate_t as; 334 335 as = vm_page_astate_load(m); 336 if (__predict_false(as.queue != queue || 337 ((as.flags & PGA_ENQUEUED) != 0) != enqueued)) 338 return (true); 339 if ((as.flags & PGA_QUEUE_OP_MASK) != 0) { 340 vm_page_pqbatch_submit(m, queue); 341 return (true); 342 } 343 return (false); 344 } 345 346 /* 347 * Scan for pages at adjacent offsets within the given page's object that are 348 * eligible for laundering, form a cluster of these pages and the given page, 349 * and launder that cluster. 350 */ 351 static int 352 vm_pageout_cluster(vm_page_t m) 353 { 354 vm_object_t object; 355 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 356 vm_pindex_t pindex; 357 int ib, is, page_base, pageout_count; 358 359 object = m->object; 360 VM_OBJECT_ASSERT_WLOCKED(object); 361 pindex = m->pindex; 362 363 vm_page_assert_xbusied(m); 364 365 mc[vm_pageout_page_count] = pb = ps = m; 366 pageout_count = 1; 367 page_base = vm_pageout_page_count; 368 ib = 1; 369 is = 1; 370 371 /* 372 * We can cluster only if the page is not clean, busy, or held, and 373 * the page is in the laundry queue. 374 * 375 * During heavy mmap/modification loads the pageout 376 * daemon can really fragment the underlying file 377 * due to flushing pages out of order and not trying to 378 * align the clusters (which leaves sporadic out-of-order 379 * holes). To solve this problem we do the reverse scan 380 * first and attempt to align our cluster, then do a 381 * forward scan if room remains. 382 */ 383 more: 384 while (ib != 0 && pageout_count < vm_pageout_page_count) { 385 if (ib > pindex) { 386 ib = 0; 387 break; 388 } 389 if ((p = vm_page_prev(pb)) == NULL || 390 vm_page_tryxbusy(p) == 0) { 391 ib = 0; 392 break; 393 } 394 if (vm_page_wired(p)) { 395 ib = 0; 396 vm_page_xunbusy(p); 397 break; 398 } 399 vm_page_test_dirty(p); 400 if (p->dirty == 0) { 401 ib = 0; 402 vm_page_xunbusy(p); 403 break; 404 } 405 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 406 vm_page_xunbusy(p); 407 ib = 0; 408 break; 409 } 410 mc[--page_base] = pb = p; 411 ++pageout_count; 412 ++ib; 413 414 /* 415 * We are at an alignment boundary. Stop here, and switch 416 * directions. Do not clear ib. 417 */ 418 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 419 break; 420 } 421 while (pageout_count < vm_pageout_page_count && 422 pindex + is < object->size) { 423 if ((p = vm_page_next(ps)) == NULL || 424 vm_page_tryxbusy(p) == 0) 425 break; 426 if (vm_page_wired(p)) { 427 vm_page_xunbusy(p); 428 break; 429 } 430 vm_page_test_dirty(p); 431 if (p->dirty == 0) { 432 vm_page_xunbusy(p); 433 break; 434 } 435 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 436 vm_page_xunbusy(p); 437 break; 438 } 439 mc[page_base + pageout_count] = ps = p; 440 ++pageout_count; 441 ++is; 442 } 443 444 /* 445 * If we exhausted our forward scan, continue with the reverse scan 446 * when possible, even past an alignment boundary. This catches 447 * boundary conditions. 448 */ 449 if (ib != 0 && pageout_count < vm_pageout_page_count) 450 goto more; 451 452 return (vm_pageout_flush(&mc[page_base], pageout_count, 453 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 454 } 455 456 /* 457 * vm_pageout_flush() - launder the given pages 458 * 459 * The given pages are laundered. Note that we setup for the start of 460 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 461 * reference count all in here rather then in the parent. If we want 462 * the parent to do more sophisticated things we may have to change 463 * the ordering. 464 * 465 * Returned runlen is the count of pages between mreq and first 466 * page after mreq with status VM_PAGER_AGAIN. 467 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 468 * for any page in runlen set. 469 */ 470 int 471 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 472 boolean_t *eio) 473 { 474 vm_object_t object = mc[0]->object; 475 int pageout_status[count]; 476 int numpagedout = 0; 477 int i, runlen; 478 479 VM_OBJECT_ASSERT_WLOCKED(object); 480 481 /* 482 * Initiate I/O. Mark the pages shared busy and verify that they're 483 * valid and read-only. 484 * 485 * We do not have to fixup the clean/dirty bits here... we can 486 * allow the pager to do it after the I/O completes. 487 * 488 * NOTE! mc[i]->dirty may be partial or fragmented due to an 489 * edge case with file fragments. 490 */ 491 for (i = 0; i < count; i++) { 492 KASSERT(vm_page_all_valid(mc[i]), 493 ("vm_pageout_flush: partially invalid page %p index %d/%d", 494 mc[i], i, count)); 495 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0, 496 ("vm_pageout_flush: writeable page %p", mc[i])); 497 vm_page_busy_downgrade(mc[i]); 498 } 499 vm_object_pip_add(object, count); 500 501 vm_pager_put_pages(object, mc, count, flags, pageout_status); 502 503 runlen = count - mreq; 504 if (eio != NULL) 505 *eio = FALSE; 506 for (i = 0; i < count; i++) { 507 vm_page_t mt = mc[i]; 508 509 KASSERT(pageout_status[i] == VM_PAGER_PEND || 510 !pmap_page_is_write_mapped(mt), 511 ("vm_pageout_flush: page %p is not write protected", mt)); 512 switch (pageout_status[i]) { 513 case VM_PAGER_OK: 514 /* 515 * The page may have moved since laundering started, in 516 * which case it should be left alone. 517 */ 518 if (vm_page_in_laundry(mt)) 519 vm_page_deactivate_noreuse(mt); 520 /* FALLTHROUGH */ 521 case VM_PAGER_PEND: 522 numpagedout++; 523 break; 524 case VM_PAGER_BAD: 525 /* 526 * The page is outside the object's range. We pretend 527 * that the page out worked and clean the page, so the 528 * changes will be lost if the page is reclaimed by 529 * the page daemon. 530 */ 531 vm_page_undirty(mt); 532 if (vm_page_in_laundry(mt)) 533 vm_page_deactivate_noreuse(mt); 534 break; 535 case VM_PAGER_ERROR: 536 case VM_PAGER_FAIL: 537 /* 538 * If the page couldn't be paged out to swap because the 539 * pager wasn't able to find space, place the page in 540 * the PQ_UNSWAPPABLE holding queue. This is an 541 * optimization that prevents the page daemon from 542 * wasting CPU cycles on pages that cannot be reclaimed 543 * because no swap device is configured. 544 * 545 * Otherwise, reactivate the page so that it doesn't 546 * clog the laundry and inactive queues. (We will try 547 * paging it out again later.) 548 */ 549 if ((object->flags & OBJ_SWAP) != 0 && 550 pageout_status[i] == VM_PAGER_FAIL) { 551 vm_page_unswappable(mt); 552 numpagedout++; 553 } else 554 vm_page_activate(mt); 555 if (eio != NULL && i >= mreq && i - mreq < runlen) 556 *eio = TRUE; 557 break; 558 case VM_PAGER_AGAIN: 559 if (i >= mreq && i - mreq < runlen) 560 runlen = i - mreq; 561 break; 562 } 563 564 /* 565 * If the operation is still going, leave the page busy to 566 * block all other accesses. Also, leave the paging in 567 * progress indicator set so that we don't attempt an object 568 * collapse. 569 */ 570 if (pageout_status[i] != VM_PAGER_PEND) { 571 vm_object_pip_wakeup(object); 572 vm_page_sunbusy(mt); 573 } 574 } 575 if (prunlen != NULL) 576 *prunlen = runlen; 577 return (numpagedout); 578 } 579 580 static void 581 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 582 { 583 584 atomic_store_rel_int(&swapdev_enabled, 1); 585 } 586 587 static void 588 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 589 { 590 591 if (swap_pager_nswapdev() == 1) 592 atomic_store_rel_int(&swapdev_enabled, 0); 593 } 594 595 /* 596 * Attempt to acquire all of the necessary locks to launder a page and 597 * then call through the clustering layer to PUTPAGES. Wait a short 598 * time for a vnode lock. 599 * 600 * Requires the page and object lock on entry, releases both before return. 601 * Returns 0 on success and an errno otherwise. 602 */ 603 static int 604 vm_pageout_clean(vm_page_t m, int *numpagedout) 605 { 606 struct vnode *vp; 607 struct mount *mp; 608 vm_object_t object; 609 vm_pindex_t pindex; 610 int error; 611 612 object = m->object; 613 VM_OBJECT_ASSERT_WLOCKED(object); 614 error = 0; 615 vp = NULL; 616 mp = NULL; 617 618 /* 619 * The object is already known NOT to be dead. It 620 * is possible for the vget() to block the whole 621 * pageout daemon, but the new low-memory handling 622 * code should prevent it. 623 * 624 * We can't wait forever for the vnode lock, we might 625 * deadlock due to a vn_read() getting stuck in 626 * vm_wait while holding this vnode. We skip the 627 * vnode if we can't get it in a reasonable amount 628 * of time. 629 */ 630 if (object->type == OBJT_VNODE) { 631 vm_page_xunbusy(m); 632 vp = object->handle; 633 if (vp->v_type == VREG && 634 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 635 mp = NULL; 636 error = EDEADLK; 637 goto unlock_all; 638 } 639 KASSERT(mp != NULL, 640 ("vp %p with NULL v_mount", vp)); 641 vm_object_reference_locked(object); 642 pindex = m->pindex; 643 VM_OBJECT_WUNLOCK(object); 644 if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) { 645 vp = NULL; 646 error = EDEADLK; 647 goto unlock_mp; 648 } 649 VM_OBJECT_WLOCK(object); 650 651 /* 652 * Ensure that the object and vnode were not disassociated 653 * while locks were dropped. 654 */ 655 if (vp->v_object != object) { 656 error = ENOENT; 657 goto unlock_all; 658 } 659 660 /* 661 * While the object was unlocked, the page may have been: 662 * (1) moved to a different queue, 663 * (2) reallocated to a different object, 664 * (3) reallocated to a different offset, or 665 * (4) cleaned. 666 */ 667 if (!vm_page_in_laundry(m) || m->object != object || 668 m->pindex != pindex || m->dirty == 0) { 669 error = ENXIO; 670 goto unlock_all; 671 } 672 673 /* 674 * The page may have been busied while the object lock was 675 * released. 676 */ 677 if (vm_page_tryxbusy(m) == 0) { 678 error = EBUSY; 679 goto unlock_all; 680 } 681 } 682 683 /* 684 * Remove all writeable mappings, failing if the page is wired. 685 */ 686 if (!vm_page_try_remove_write(m)) { 687 vm_page_xunbusy(m); 688 error = EBUSY; 689 goto unlock_all; 690 } 691 692 /* 693 * If a page is dirty, then it is either being washed 694 * (but not yet cleaned) or it is still in the 695 * laundry. If it is still in the laundry, then we 696 * start the cleaning operation. 697 */ 698 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 699 error = EIO; 700 701 unlock_all: 702 VM_OBJECT_WUNLOCK(object); 703 704 unlock_mp: 705 if (mp != NULL) { 706 if (vp != NULL) 707 vput(vp); 708 vm_object_deallocate(object); 709 vn_finished_write(mp); 710 } 711 712 return (error); 713 } 714 715 /* 716 * Attempt to launder the specified number of pages. 717 * 718 * Returns the number of pages successfully laundered. 719 */ 720 static int 721 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 722 { 723 struct scan_state ss; 724 struct vm_pagequeue *pq; 725 vm_object_t object; 726 vm_page_t m, marker; 727 vm_page_astate_t new, old; 728 int act_delta, error, numpagedout, queue, refs, starting_target; 729 int vnodes_skipped; 730 bool pageout_ok; 731 732 object = NULL; 733 starting_target = launder; 734 vnodes_skipped = 0; 735 736 /* 737 * Scan the laundry queues for pages eligible to be laundered. We stop 738 * once the target number of dirty pages have been laundered, or once 739 * we've reached the end of the queue. A single iteration of this loop 740 * may cause more than one page to be laundered because of clustering. 741 * 742 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 743 * swap devices are configured. 744 */ 745 if (atomic_load_acq_int(&swapdev_enabled)) 746 queue = PQ_UNSWAPPABLE; 747 else 748 queue = PQ_LAUNDRY; 749 750 scan: 751 marker = &vmd->vmd_markers[queue]; 752 pq = &vmd->vmd_pagequeues[queue]; 753 vm_pagequeue_lock(pq); 754 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 755 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 756 if (__predict_false((m->flags & PG_MARKER) != 0)) 757 continue; 758 759 /* 760 * Don't touch a page that was removed from the queue after the 761 * page queue lock was released. Otherwise, ensure that any 762 * pending queue operations, such as dequeues for wired pages, 763 * are handled. 764 */ 765 if (vm_pageout_defer(m, queue, true)) 766 continue; 767 768 /* 769 * Lock the page's object. 770 */ 771 if (object == NULL || object != m->object) { 772 if (object != NULL) 773 VM_OBJECT_WUNLOCK(object); 774 object = atomic_load_ptr(&m->object); 775 if (__predict_false(object == NULL)) 776 /* The page is being freed by another thread. */ 777 continue; 778 779 /* Depends on type-stability. */ 780 VM_OBJECT_WLOCK(object); 781 if (__predict_false(m->object != object)) { 782 VM_OBJECT_WUNLOCK(object); 783 object = NULL; 784 continue; 785 } 786 } 787 788 if (vm_page_tryxbusy(m) == 0) 789 continue; 790 791 /* 792 * Check for wirings now that we hold the object lock and have 793 * exclusively busied the page. If the page is mapped, it may 794 * still be wired by pmap lookups. The call to 795 * vm_page_try_remove_all() below atomically checks for such 796 * wirings and removes mappings. If the page is unmapped, the 797 * wire count is guaranteed not to increase after this check. 798 */ 799 if (__predict_false(vm_page_wired(m))) 800 goto skip_page; 801 802 /* 803 * Invalid pages can be easily freed. They cannot be 804 * mapped; vm_page_free() asserts this. 805 */ 806 if (vm_page_none_valid(m)) 807 goto free_page; 808 809 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 810 811 for (old = vm_page_astate_load(m);;) { 812 /* 813 * Check to see if the page has been removed from the 814 * queue since the first such check. Leave it alone if 815 * so, discarding any references collected by 816 * pmap_ts_referenced(). 817 */ 818 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 819 goto skip_page; 820 821 new = old; 822 act_delta = refs; 823 if ((old.flags & PGA_REFERENCED) != 0) { 824 new.flags &= ~PGA_REFERENCED; 825 act_delta++; 826 } 827 if (act_delta == 0) { 828 ; 829 } else if (object->ref_count != 0) { 830 /* 831 * Increase the activation count if the page was 832 * referenced while in the laundry queue. This 833 * makes it less likely that the page will be 834 * returned prematurely to the laundry queue. 835 */ 836 new.act_count += ACT_ADVANCE + 837 act_delta; 838 if (new.act_count > ACT_MAX) 839 new.act_count = ACT_MAX; 840 841 new.flags &= ~PGA_QUEUE_OP_MASK; 842 new.flags |= PGA_REQUEUE; 843 new.queue = PQ_ACTIVE; 844 if (!vm_page_pqstate_commit(m, &old, new)) 845 continue; 846 847 /* 848 * If this was a background laundering, count 849 * activated pages towards our target. The 850 * purpose of background laundering is to ensure 851 * that pages are eventually cycled through the 852 * laundry queue, and an activation is a valid 853 * way out. 854 */ 855 if (!in_shortfall) 856 launder--; 857 VM_CNT_INC(v_reactivated); 858 goto skip_page; 859 } else if ((object->flags & OBJ_DEAD) == 0) { 860 new.flags |= PGA_REQUEUE; 861 if (!vm_page_pqstate_commit(m, &old, new)) 862 continue; 863 goto skip_page; 864 } 865 break; 866 } 867 868 /* 869 * If the page appears to be clean at the machine-independent 870 * layer, then remove all of its mappings from the pmap in 871 * anticipation of freeing it. If, however, any of the page's 872 * mappings allow write access, then the page may still be 873 * modified until the last of those mappings are removed. 874 */ 875 if (object->ref_count != 0) { 876 vm_page_test_dirty(m); 877 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 878 goto skip_page; 879 } 880 881 /* 882 * Clean pages are freed, and dirty pages are paged out unless 883 * they belong to a dead object. Requeueing dirty pages from 884 * dead objects is pointless, as they are being paged out and 885 * freed by the thread that destroyed the object. 886 */ 887 if (m->dirty == 0) { 888 free_page: 889 /* 890 * Now we are guaranteed that no other threads are 891 * manipulating the page, check for a last-second 892 * reference. 893 */ 894 if (vm_pageout_defer(m, queue, true)) 895 goto skip_page; 896 vm_page_free(m); 897 VM_CNT_INC(v_dfree); 898 } else if ((object->flags & OBJ_DEAD) == 0) { 899 if ((object->flags & OBJ_SWAP) == 0 && 900 object->type != OBJT_DEFAULT) 901 pageout_ok = true; 902 else if (disable_swap_pageouts) 903 pageout_ok = false; 904 else 905 pageout_ok = true; 906 if (!pageout_ok) { 907 vm_page_launder(m); 908 goto skip_page; 909 } 910 911 /* 912 * Form a cluster with adjacent, dirty pages from the 913 * same object, and page out that entire cluster. 914 * 915 * The adjacent, dirty pages must also be in the 916 * laundry. However, their mappings are not checked 917 * for new references. Consequently, a recently 918 * referenced page may be paged out. However, that 919 * page will not be prematurely reclaimed. After page 920 * out, the page will be placed in the inactive queue, 921 * where any new references will be detected and the 922 * page reactivated. 923 */ 924 error = vm_pageout_clean(m, &numpagedout); 925 if (error == 0) { 926 launder -= numpagedout; 927 ss.scanned += numpagedout; 928 } else if (error == EDEADLK) { 929 pageout_lock_miss++; 930 vnodes_skipped++; 931 } 932 object = NULL; 933 } else { 934 skip_page: 935 vm_page_xunbusy(m); 936 } 937 } 938 if (object != NULL) { 939 VM_OBJECT_WUNLOCK(object); 940 object = NULL; 941 } 942 vm_pagequeue_lock(pq); 943 vm_pageout_end_scan(&ss); 944 vm_pagequeue_unlock(pq); 945 946 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 947 queue = PQ_LAUNDRY; 948 goto scan; 949 } 950 951 /* 952 * Wakeup the sync daemon if we skipped a vnode in a writeable object 953 * and we didn't launder enough pages. 954 */ 955 if (vnodes_skipped > 0 && launder > 0) 956 (void)speedup_syncer(); 957 958 return (starting_target - launder); 959 } 960 961 /* 962 * Compute the integer square root. 963 */ 964 static u_int 965 isqrt(u_int num) 966 { 967 u_int bit, root, tmp; 968 969 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0; 970 root = 0; 971 while (bit != 0) { 972 tmp = root + bit; 973 root >>= 1; 974 if (num >= tmp) { 975 num -= tmp; 976 root += bit; 977 } 978 bit >>= 2; 979 } 980 return (root); 981 } 982 983 /* 984 * Perform the work of the laundry thread: periodically wake up and determine 985 * whether any pages need to be laundered. If so, determine the number of pages 986 * that need to be laundered, and launder them. 987 */ 988 static void 989 vm_pageout_laundry_worker(void *arg) 990 { 991 struct vm_domain *vmd; 992 struct vm_pagequeue *pq; 993 uint64_t nclean, ndirty, nfreed; 994 int domain, last_target, launder, shortfall, shortfall_cycle, target; 995 bool in_shortfall; 996 997 domain = (uintptr_t)arg; 998 vmd = VM_DOMAIN(domain); 999 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1000 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 1001 1002 shortfall = 0; 1003 in_shortfall = false; 1004 shortfall_cycle = 0; 1005 last_target = target = 0; 1006 nfreed = 0; 1007 1008 /* 1009 * Calls to these handlers are serialized by the swap syscall lock. 1010 */ 1011 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 1012 EVENTHANDLER_PRI_ANY); 1013 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 1014 EVENTHANDLER_PRI_ANY); 1015 1016 /* 1017 * The pageout laundry worker is never done, so loop forever. 1018 */ 1019 for (;;) { 1020 KASSERT(target >= 0, ("negative target %d", target)); 1021 KASSERT(shortfall_cycle >= 0, 1022 ("negative cycle %d", shortfall_cycle)); 1023 launder = 0; 1024 1025 /* 1026 * First determine whether we need to launder pages to meet a 1027 * shortage of free pages. 1028 */ 1029 if (shortfall > 0) { 1030 in_shortfall = true; 1031 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 1032 target = shortfall; 1033 } else if (!in_shortfall) 1034 goto trybackground; 1035 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 1036 /* 1037 * We recently entered shortfall and began laundering 1038 * pages. If we have completed that laundering run 1039 * (and we are no longer in shortfall) or we have met 1040 * our laundry target through other activity, then we 1041 * can stop laundering pages. 1042 */ 1043 in_shortfall = false; 1044 target = 0; 1045 goto trybackground; 1046 } 1047 launder = target / shortfall_cycle--; 1048 goto dolaundry; 1049 1050 /* 1051 * There's no immediate need to launder any pages; see if we 1052 * meet the conditions to perform background laundering: 1053 * 1054 * 1. The ratio of dirty to clean inactive pages exceeds the 1055 * background laundering threshold, or 1056 * 2. we haven't yet reached the target of the current 1057 * background laundering run. 1058 * 1059 * The background laundering threshold is not a constant. 1060 * Instead, it is a slowly growing function of the number of 1061 * clean pages freed by the page daemon since the last 1062 * background laundering. Thus, as the ratio of dirty to 1063 * clean inactive pages grows, the amount of memory pressure 1064 * required to trigger laundering decreases. We ensure 1065 * that the threshold is non-zero after an inactive queue 1066 * scan, even if that scan failed to free a single clean page. 1067 */ 1068 trybackground: 1069 nclean = vmd->vmd_free_count + 1070 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1071 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1072 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1073 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1074 target = vmd->vmd_background_launder_target; 1075 } 1076 1077 /* 1078 * We have a non-zero background laundering target. If we've 1079 * laundered up to our maximum without observing a page daemon 1080 * request, just stop. This is a safety belt that ensures we 1081 * don't launder an excessive amount if memory pressure is low 1082 * and the ratio of dirty to clean pages is large. Otherwise, 1083 * proceed at the background laundering rate. 1084 */ 1085 if (target > 0) { 1086 if (nfreed > 0) { 1087 nfreed = 0; 1088 last_target = target; 1089 } else if (last_target - target >= 1090 vm_background_launder_max * PAGE_SIZE / 1024) { 1091 target = 0; 1092 } 1093 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1094 launder /= VM_LAUNDER_RATE; 1095 if (launder > target) 1096 launder = target; 1097 } 1098 1099 dolaundry: 1100 if (launder > 0) { 1101 /* 1102 * Because of I/O clustering, the number of laundered 1103 * pages could exceed "target" by the maximum size of 1104 * a cluster minus one. 1105 */ 1106 target -= min(vm_pageout_launder(vmd, launder, 1107 in_shortfall), target); 1108 pause("laundp", hz / VM_LAUNDER_RATE); 1109 } 1110 1111 /* 1112 * If we're not currently laundering pages and the page daemon 1113 * hasn't posted a new request, sleep until the page daemon 1114 * kicks us. 1115 */ 1116 vm_pagequeue_lock(pq); 1117 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1118 (void)mtx_sleep(&vmd->vmd_laundry_request, 1119 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1120 1121 /* 1122 * If the pagedaemon has indicated that it's in shortfall, start 1123 * a shortfall laundering unless we're already in the middle of 1124 * one. This may preempt a background laundering. 1125 */ 1126 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1127 (!in_shortfall || shortfall_cycle == 0)) { 1128 shortfall = vm_laundry_target(vmd) + 1129 vmd->vmd_pageout_deficit; 1130 target = 0; 1131 } else 1132 shortfall = 0; 1133 1134 if (target == 0) 1135 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1136 nfreed += vmd->vmd_clean_pages_freed; 1137 vmd->vmd_clean_pages_freed = 0; 1138 vm_pagequeue_unlock(pq); 1139 } 1140 } 1141 1142 /* 1143 * Compute the number of pages we want to try to move from the 1144 * active queue to either the inactive or laundry queue. 1145 * 1146 * When scanning active pages during a shortage, we make clean pages 1147 * count more heavily towards the page shortage than dirty pages. 1148 * This is because dirty pages must be laundered before they can be 1149 * reused and thus have less utility when attempting to quickly 1150 * alleviate a free page shortage. However, this weighting also 1151 * causes the scan to deactivate dirty pages more aggressively, 1152 * improving the effectiveness of clustering. 1153 */ 1154 static int 1155 vm_pageout_active_target(struct vm_domain *vmd) 1156 { 1157 int shortage; 1158 1159 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) - 1160 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt + 1161 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight); 1162 shortage *= act_scan_laundry_weight; 1163 return (shortage); 1164 } 1165 1166 /* 1167 * Scan the active queue. If there is no shortage of inactive pages, scan a 1168 * small portion of the queue in order to maintain quasi-LRU. 1169 */ 1170 static void 1171 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage) 1172 { 1173 struct scan_state ss; 1174 vm_object_t object; 1175 vm_page_t m, marker; 1176 struct vm_pagequeue *pq; 1177 vm_page_astate_t old, new; 1178 long min_scan; 1179 int act_delta, max_scan, ps_delta, refs, scan_tick; 1180 uint8_t nqueue; 1181 1182 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1183 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1184 vm_pagequeue_lock(pq); 1185 1186 /* 1187 * If we're just idle polling attempt to visit every 1188 * active page within 'update_period' seconds. 1189 */ 1190 scan_tick = ticks; 1191 if (vm_pageout_update_period != 0) { 1192 min_scan = pq->pq_cnt; 1193 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1194 min_scan /= hz * vm_pageout_update_period; 1195 } else 1196 min_scan = 0; 1197 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0)) 1198 vmd->vmd_last_active_scan = scan_tick; 1199 1200 /* 1201 * Scan the active queue for pages that can be deactivated. Update 1202 * the per-page activity counter and use it to identify deactivation 1203 * candidates. Held pages may be deactivated. 1204 * 1205 * To avoid requeuing each page that remains in the active queue, we 1206 * implement the CLOCK algorithm. To keep the implementation of the 1207 * enqueue operation consistent for all page queues, we use two hands, 1208 * represented by marker pages. Scans begin at the first hand, which 1209 * precedes the second hand in the queue. When the two hands meet, 1210 * they are moved back to the head and tail of the queue, respectively, 1211 * and scanning resumes. 1212 */ 1213 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan; 1214 act_scan: 1215 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1216 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1217 if (__predict_false(m == &vmd->vmd_clock[1])) { 1218 vm_pagequeue_lock(pq); 1219 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1220 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1221 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1222 plinks.q); 1223 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1224 plinks.q); 1225 max_scan -= ss.scanned; 1226 vm_pageout_end_scan(&ss); 1227 goto act_scan; 1228 } 1229 if (__predict_false((m->flags & PG_MARKER) != 0)) 1230 continue; 1231 1232 /* 1233 * Don't touch a page that was removed from the queue after the 1234 * page queue lock was released. Otherwise, ensure that any 1235 * pending queue operations, such as dequeues for wired pages, 1236 * are handled. 1237 */ 1238 if (vm_pageout_defer(m, PQ_ACTIVE, true)) 1239 continue; 1240 1241 /* 1242 * A page's object pointer may be set to NULL before 1243 * the object lock is acquired. 1244 */ 1245 object = atomic_load_ptr(&m->object); 1246 if (__predict_false(object == NULL)) 1247 /* 1248 * The page has been removed from its object. 1249 */ 1250 continue; 1251 1252 /* Deferred free of swap space. */ 1253 if ((m->a.flags & PGA_SWAP_FREE) != 0 && 1254 VM_OBJECT_TRYWLOCK(object)) { 1255 if (m->object == object) 1256 vm_pager_page_unswapped(m); 1257 VM_OBJECT_WUNLOCK(object); 1258 } 1259 1260 /* 1261 * Check to see "how much" the page has been used. 1262 * 1263 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1264 * that a reference from a concurrently destroyed mapping is 1265 * observed here and now. 1266 * 1267 * Perform an unsynchronized object ref count check. While 1268 * the page lock ensures that the page is not reallocated to 1269 * another object, in particular, one with unmanaged mappings 1270 * that cannot support pmap_ts_referenced(), two races are, 1271 * nonetheless, possible: 1272 * 1) The count was transitioning to zero, but we saw a non- 1273 * zero value. pmap_ts_referenced() will return zero 1274 * because the page is not mapped. 1275 * 2) The count was transitioning to one, but we saw zero. 1276 * This race delays the detection of a new reference. At 1277 * worst, we will deactivate and reactivate the page. 1278 */ 1279 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 1280 1281 old = vm_page_astate_load(m); 1282 do { 1283 /* 1284 * Check to see if the page has been removed from the 1285 * queue since the first such check. Leave it alone if 1286 * so, discarding any references collected by 1287 * pmap_ts_referenced(). 1288 */ 1289 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) { 1290 ps_delta = 0; 1291 break; 1292 } 1293 1294 /* 1295 * Advance or decay the act_count based on recent usage. 1296 */ 1297 new = old; 1298 act_delta = refs; 1299 if ((old.flags & PGA_REFERENCED) != 0) { 1300 new.flags &= ~PGA_REFERENCED; 1301 act_delta++; 1302 } 1303 if (act_delta != 0) { 1304 new.act_count += ACT_ADVANCE + act_delta; 1305 if (new.act_count > ACT_MAX) 1306 new.act_count = ACT_MAX; 1307 } else { 1308 new.act_count -= min(new.act_count, 1309 ACT_DECLINE); 1310 } 1311 1312 if (new.act_count > 0) { 1313 /* 1314 * Adjust the activation count and keep the page 1315 * in the active queue. The count might be left 1316 * unchanged if it is saturated. The page may 1317 * have been moved to a different queue since we 1318 * started the scan, in which case we move it 1319 * back. 1320 */ 1321 ps_delta = 0; 1322 if (old.queue != PQ_ACTIVE) { 1323 new.flags &= ~PGA_QUEUE_OP_MASK; 1324 new.flags |= PGA_REQUEUE; 1325 new.queue = PQ_ACTIVE; 1326 } 1327 } else { 1328 /* 1329 * When not short for inactive pages, let dirty 1330 * pages go through the inactive queue before 1331 * moving to the laundry queue. This gives them 1332 * some extra time to be reactivated, 1333 * potentially avoiding an expensive pageout. 1334 * However, during a page shortage, the inactive 1335 * queue is necessarily small, and so dirty 1336 * pages would only spend a trivial amount of 1337 * time in the inactive queue. Therefore, we 1338 * might as well place them directly in the 1339 * laundry queue to reduce queuing overhead. 1340 * 1341 * Calling vm_page_test_dirty() here would 1342 * require acquisition of the object's write 1343 * lock. However, during a page shortage, 1344 * directing dirty pages into the laundry queue 1345 * is only an optimization and not a 1346 * requirement. Therefore, we simply rely on 1347 * the opportunistic updates to the page's dirty 1348 * field by the pmap. 1349 */ 1350 if (page_shortage <= 0) { 1351 nqueue = PQ_INACTIVE; 1352 ps_delta = 0; 1353 } else if (m->dirty == 0) { 1354 nqueue = PQ_INACTIVE; 1355 ps_delta = act_scan_laundry_weight; 1356 } else { 1357 nqueue = PQ_LAUNDRY; 1358 ps_delta = 1; 1359 } 1360 1361 new.flags &= ~PGA_QUEUE_OP_MASK; 1362 new.flags |= PGA_REQUEUE; 1363 new.queue = nqueue; 1364 } 1365 } while (!vm_page_pqstate_commit(m, &old, new)); 1366 1367 page_shortage -= ps_delta; 1368 } 1369 vm_pagequeue_lock(pq); 1370 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1371 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1372 vm_pageout_end_scan(&ss); 1373 vm_pagequeue_unlock(pq); 1374 } 1375 1376 static int 1377 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker, 1378 vm_page_t m) 1379 { 1380 vm_page_astate_t as; 1381 1382 vm_pagequeue_assert_locked(pq); 1383 1384 as = vm_page_astate_load(m); 1385 if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0) 1386 return (0); 1387 vm_page_aflag_set(m, PGA_ENQUEUED); 1388 TAILQ_INSERT_BEFORE(marker, m, plinks.q); 1389 return (1); 1390 } 1391 1392 /* 1393 * Re-add stuck pages to the inactive queue. We will examine them again 1394 * during the next scan. If the queue state of a page has changed since 1395 * it was physically removed from the page queue in 1396 * vm_pageout_collect_batch(), don't do anything with that page. 1397 */ 1398 static void 1399 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1400 vm_page_t m) 1401 { 1402 struct vm_pagequeue *pq; 1403 vm_page_t marker; 1404 int delta; 1405 1406 delta = 0; 1407 marker = ss->marker; 1408 pq = ss->pq; 1409 1410 if (m != NULL) { 1411 if (vm_batchqueue_insert(bq, m)) 1412 return; 1413 vm_pagequeue_lock(pq); 1414 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1415 } else 1416 vm_pagequeue_lock(pq); 1417 while ((m = vm_batchqueue_pop(bq)) != NULL) 1418 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1419 vm_pagequeue_cnt_add(pq, delta); 1420 vm_pagequeue_unlock(pq); 1421 vm_batchqueue_init(bq); 1422 } 1423 1424 static void 1425 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage) 1426 { 1427 struct timeval start, end; 1428 struct scan_state ss; 1429 struct vm_batchqueue rq; 1430 struct vm_page marker_page; 1431 vm_page_t m, marker; 1432 struct vm_pagequeue *pq; 1433 vm_object_t object; 1434 vm_page_astate_t old, new; 1435 int act_delta, addl_page_shortage, starting_page_shortage, refs; 1436 1437 object = NULL; 1438 vm_batchqueue_init(&rq); 1439 getmicrouptime(&start); 1440 1441 /* 1442 * The addl_page_shortage is an estimate of the number of temporarily 1443 * stuck pages in the inactive queue. In other words, the 1444 * number of pages from the inactive count that should be 1445 * discounted in setting the target for the active queue scan. 1446 */ 1447 addl_page_shortage = 0; 1448 1449 /* 1450 * Start scanning the inactive queue for pages that we can free. The 1451 * scan will stop when we reach the target or we have scanned the 1452 * entire queue. (Note that m->a.act_count is not used to make 1453 * decisions for the inactive queue, only for the active queue.) 1454 */ 1455 starting_page_shortage = page_shortage; 1456 marker = &marker_page; 1457 vm_page_init_marker(marker, PQ_INACTIVE, 0); 1458 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1459 vm_pagequeue_lock(pq); 1460 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1461 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) { 1462 KASSERT((m->flags & PG_MARKER) == 0, 1463 ("marker page %p was dequeued", m)); 1464 1465 /* 1466 * Don't touch a page that was removed from the queue after the 1467 * page queue lock was released. Otherwise, ensure that any 1468 * pending queue operations, such as dequeues for wired pages, 1469 * are handled. 1470 */ 1471 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1472 continue; 1473 1474 /* 1475 * Lock the page's object. 1476 */ 1477 if (object == NULL || object != m->object) { 1478 if (object != NULL) 1479 VM_OBJECT_WUNLOCK(object); 1480 object = atomic_load_ptr(&m->object); 1481 if (__predict_false(object == NULL)) 1482 /* The page is being freed by another thread. */ 1483 continue; 1484 1485 /* Depends on type-stability. */ 1486 VM_OBJECT_WLOCK(object); 1487 if (__predict_false(m->object != object)) { 1488 VM_OBJECT_WUNLOCK(object); 1489 object = NULL; 1490 goto reinsert; 1491 } 1492 } 1493 1494 if (vm_page_tryxbusy(m) == 0) { 1495 /* 1496 * Don't mess with busy pages. Leave them at 1497 * the front of the queue. Most likely, they 1498 * are being paged out and will leave the 1499 * queue shortly after the scan finishes. So, 1500 * they ought to be discounted from the 1501 * inactive count. 1502 */ 1503 addl_page_shortage++; 1504 goto reinsert; 1505 } 1506 1507 /* Deferred free of swap space. */ 1508 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1509 vm_pager_page_unswapped(m); 1510 1511 /* 1512 * Check for wirings now that we hold the object lock and have 1513 * exclusively busied the page. If the page is mapped, it may 1514 * still be wired by pmap lookups. The call to 1515 * vm_page_try_remove_all() below atomically checks for such 1516 * wirings and removes mappings. If the page is unmapped, the 1517 * wire count is guaranteed not to increase after this check. 1518 */ 1519 if (__predict_false(vm_page_wired(m))) 1520 goto skip_page; 1521 1522 /* 1523 * Invalid pages can be easily freed. They cannot be 1524 * mapped, vm_page_free() asserts this. 1525 */ 1526 if (vm_page_none_valid(m)) 1527 goto free_page; 1528 1529 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 1530 1531 for (old = vm_page_astate_load(m);;) { 1532 /* 1533 * Check to see if the page has been removed from the 1534 * queue since the first such check. Leave it alone if 1535 * so, discarding any references collected by 1536 * pmap_ts_referenced(). 1537 */ 1538 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 1539 goto skip_page; 1540 1541 new = old; 1542 act_delta = refs; 1543 if ((old.flags & PGA_REFERENCED) != 0) { 1544 new.flags &= ~PGA_REFERENCED; 1545 act_delta++; 1546 } 1547 if (act_delta == 0) { 1548 ; 1549 } else if (object->ref_count != 0) { 1550 /* 1551 * Increase the activation count if the 1552 * page was referenced while in the 1553 * inactive queue. This makes it less 1554 * likely that the page will be returned 1555 * prematurely to the inactive queue. 1556 */ 1557 new.act_count += ACT_ADVANCE + 1558 act_delta; 1559 if (new.act_count > ACT_MAX) 1560 new.act_count = ACT_MAX; 1561 1562 new.flags &= ~PGA_QUEUE_OP_MASK; 1563 new.flags |= PGA_REQUEUE; 1564 new.queue = PQ_ACTIVE; 1565 if (!vm_page_pqstate_commit(m, &old, new)) 1566 continue; 1567 1568 VM_CNT_INC(v_reactivated); 1569 goto skip_page; 1570 } else if ((object->flags & OBJ_DEAD) == 0) { 1571 new.queue = PQ_INACTIVE; 1572 new.flags |= PGA_REQUEUE; 1573 if (!vm_page_pqstate_commit(m, &old, new)) 1574 continue; 1575 goto skip_page; 1576 } 1577 break; 1578 } 1579 1580 /* 1581 * If the page appears to be clean at the machine-independent 1582 * layer, then remove all of its mappings from the pmap in 1583 * anticipation of freeing it. If, however, any of the page's 1584 * mappings allow write access, then the page may still be 1585 * modified until the last of those mappings are removed. 1586 */ 1587 if (object->ref_count != 0) { 1588 vm_page_test_dirty(m); 1589 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 1590 goto skip_page; 1591 } 1592 1593 /* 1594 * Clean pages can be freed, but dirty pages must be sent back 1595 * to the laundry, unless they belong to a dead object. 1596 * Requeueing dirty pages from dead objects is pointless, as 1597 * they are being paged out and freed by the thread that 1598 * destroyed the object. 1599 */ 1600 if (m->dirty == 0) { 1601 free_page: 1602 /* 1603 * Now we are guaranteed that no other threads are 1604 * manipulating the page, check for a last-second 1605 * reference that would save it from doom. 1606 */ 1607 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1608 goto skip_page; 1609 1610 /* 1611 * Because we dequeued the page and have already checked 1612 * for pending dequeue and enqueue requests, we can 1613 * safely disassociate the page from the inactive queue 1614 * without holding the queue lock. 1615 */ 1616 m->a.queue = PQ_NONE; 1617 vm_page_free(m); 1618 page_shortage--; 1619 continue; 1620 } 1621 if ((object->flags & OBJ_DEAD) == 0) 1622 vm_page_launder(m); 1623 skip_page: 1624 vm_page_xunbusy(m); 1625 continue; 1626 reinsert: 1627 vm_pageout_reinsert_inactive(&ss, &rq, m); 1628 } 1629 if (object != NULL) 1630 VM_OBJECT_WUNLOCK(object); 1631 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1632 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1633 vm_pagequeue_lock(pq); 1634 vm_pageout_end_scan(&ss); 1635 vm_pagequeue_unlock(pq); 1636 1637 /* 1638 * Record the remaining shortage and the progress and rate it was made. 1639 */ 1640 atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage); 1641 getmicrouptime(&end); 1642 timevalsub(&end, &start); 1643 atomic_add_int(&vmd->vmd_inactive_us, 1644 end.tv_sec * 1000000 + end.tv_usec); 1645 atomic_add_int(&vmd->vmd_inactive_freed, 1646 starting_page_shortage - page_shortage); 1647 } 1648 1649 /* 1650 * Dispatch a number of inactive threads according to load and collect the 1651 * results to present a coherent view of paging activity on this domain. 1652 */ 1653 static int 1654 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage) 1655 { 1656 u_int freed, pps, slop, threads, us; 1657 1658 vmd->vmd_inactive_shortage = shortage; 1659 slop = 0; 1660 1661 /* 1662 * If we have more work than we can do in a quarter of our interval, we 1663 * fire off multiple threads to process it. 1664 */ 1665 threads = vmd->vmd_inactive_threads; 1666 if (threads > 1 && vmd->vmd_inactive_pps != 0 && 1667 shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) { 1668 vmd->vmd_inactive_shortage /= threads; 1669 slop = shortage % threads; 1670 vm_domain_pageout_lock(vmd); 1671 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1); 1672 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1); 1673 wakeup(&vmd->vmd_inactive_shortage); 1674 vm_domain_pageout_unlock(vmd); 1675 } 1676 1677 /* Run the local thread scan. */ 1678 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop); 1679 1680 /* 1681 * Block until helper threads report results and then accumulate 1682 * totals. 1683 */ 1684 blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM); 1685 freed = atomic_readandclear_int(&vmd->vmd_inactive_freed); 1686 VM_CNT_ADD(v_dfree, freed); 1687 1688 /* 1689 * Calculate the per-thread paging rate with an exponential decay of 1690 * prior results. Careful to avoid integer rounding errors with large 1691 * us values. 1692 */ 1693 us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1); 1694 if (us > 1000000) 1695 /* Keep rounding to tenths */ 1696 pps = (freed * 10) / ((us * 10) / 1000000); 1697 else 1698 pps = (1000000 / us) * freed; 1699 vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2); 1700 1701 return (shortage - freed); 1702 } 1703 1704 /* 1705 * Attempt to reclaim the requested number of pages from the inactive queue. 1706 * Returns true if the shortage was addressed. 1707 */ 1708 static int 1709 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage) 1710 { 1711 struct vm_pagequeue *pq; 1712 u_int addl_page_shortage, deficit, page_shortage; 1713 u_int starting_page_shortage; 1714 1715 /* 1716 * vmd_pageout_deficit counts the number of pages requested in 1717 * allocations that failed because of a free page shortage. We assume 1718 * that the allocations will be reattempted and thus include the deficit 1719 * in our scan target. 1720 */ 1721 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1722 starting_page_shortage = shortage + deficit; 1723 1724 /* 1725 * Run the inactive scan on as many threads as is necessary. 1726 */ 1727 page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage); 1728 addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage); 1729 1730 /* 1731 * Wake up the laundry thread so that it can perform any needed 1732 * laundering. If we didn't meet our target, we're in shortfall and 1733 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1734 * swap devices are configured, the laundry thread has no work to do, so 1735 * don't bother waking it up. 1736 * 1737 * The laundry thread uses the number of inactive queue scans elapsed 1738 * since the last laundering to determine whether to launder again, so 1739 * keep count. 1740 */ 1741 if (starting_page_shortage > 0) { 1742 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1743 vm_pagequeue_lock(pq); 1744 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1745 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1746 if (page_shortage > 0) { 1747 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1748 VM_CNT_INC(v_pdshortfalls); 1749 } else if (vmd->vmd_laundry_request != 1750 VM_LAUNDRY_SHORTFALL) 1751 vmd->vmd_laundry_request = 1752 VM_LAUNDRY_BACKGROUND; 1753 wakeup(&vmd->vmd_laundry_request); 1754 } 1755 vmd->vmd_clean_pages_freed += 1756 starting_page_shortage - page_shortage; 1757 vm_pagequeue_unlock(pq); 1758 } 1759 1760 /* 1761 * Wakeup the swapout daemon if we didn't free the targeted number of 1762 * pages. 1763 */ 1764 if (page_shortage > 0) 1765 vm_swapout_run(); 1766 1767 /* 1768 * If the inactive queue scan fails repeatedly to meet its 1769 * target, kill the largest process. 1770 */ 1771 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1772 1773 /* 1774 * Reclaim pages by swapping out idle processes, if configured to do so. 1775 */ 1776 vm_swapout_run_idle(); 1777 1778 /* 1779 * See the description of addl_page_shortage above. 1780 */ 1781 *addl_shortage = addl_page_shortage + deficit; 1782 1783 return (page_shortage <= 0); 1784 } 1785 1786 static int vm_pageout_oom_vote; 1787 1788 /* 1789 * The pagedaemon threads randlomly select one to perform the 1790 * OOM. Trying to kill processes before all pagedaemons 1791 * failed to reach free target is premature. 1792 */ 1793 static void 1794 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1795 int starting_page_shortage) 1796 { 1797 int old_vote; 1798 1799 if (starting_page_shortage <= 0 || starting_page_shortage != 1800 page_shortage) 1801 vmd->vmd_oom_seq = 0; 1802 else 1803 vmd->vmd_oom_seq++; 1804 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1805 if (vmd->vmd_oom) { 1806 vmd->vmd_oom = FALSE; 1807 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1808 } 1809 return; 1810 } 1811 1812 /* 1813 * Do not follow the call sequence until OOM condition is 1814 * cleared. 1815 */ 1816 vmd->vmd_oom_seq = 0; 1817 1818 if (vmd->vmd_oom) 1819 return; 1820 1821 vmd->vmd_oom = TRUE; 1822 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1823 if (old_vote != vm_ndomains - 1) 1824 return; 1825 1826 /* 1827 * The current pagedaemon thread is the last in the quorum to 1828 * start OOM. Initiate the selection and signaling of the 1829 * victim. 1830 */ 1831 vm_pageout_oom(VM_OOM_MEM); 1832 1833 /* 1834 * After one round of OOM terror, recall our vote. On the 1835 * next pass, current pagedaemon would vote again if the low 1836 * memory condition is still there, due to vmd_oom being 1837 * false. 1838 */ 1839 vmd->vmd_oom = FALSE; 1840 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1841 } 1842 1843 /* 1844 * The OOM killer is the page daemon's action of last resort when 1845 * memory allocation requests have been stalled for a prolonged period 1846 * of time because it cannot reclaim memory. This function computes 1847 * the approximate number of physical pages that could be reclaimed if 1848 * the specified address space is destroyed. 1849 * 1850 * Private, anonymous memory owned by the address space is the 1851 * principal resource that we expect to recover after an OOM kill. 1852 * Since the physical pages mapped by the address space's COW entries 1853 * are typically shared pages, they are unlikely to be released and so 1854 * they are not counted. 1855 * 1856 * To get to the point where the page daemon runs the OOM killer, its 1857 * efforts to write-back vnode-backed pages may have stalled. This 1858 * could be caused by a memory allocation deadlock in the write path 1859 * that might be resolved by an OOM kill. Therefore, physical pages 1860 * belonging to vnode-backed objects are counted, because they might 1861 * be freed without being written out first if the address space holds 1862 * the last reference to an unlinked vnode. 1863 * 1864 * Similarly, physical pages belonging to OBJT_PHYS objects are 1865 * counted because the address space might hold the last reference to 1866 * the object. 1867 */ 1868 static long 1869 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1870 { 1871 vm_map_t map; 1872 vm_map_entry_t entry; 1873 vm_object_t obj; 1874 long res; 1875 1876 map = &vmspace->vm_map; 1877 KASSERT(!map->system_map, ("system map")); 1878 sx_assert(&map->lock, SA_LOCKED); 1879 res = 0; 1880 VM_MAP_ENTRY_FOREACH(entry, map) { 1881 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1882 continue; 1883 obj = entry->object.vm_object; 1884 if (obj == NULL) 1885 continue; 1886 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1887 obj->ref_count != 1) 1888 continue; 1889 if (obj->type == OBJT_DEFAULT || obj->type == OBJT_SWAP || 1890 obj->type == OBJT_PHYS || obj->type == OBJT_VNODE || 1891 (obj->flags & OBJ_SWAP) != 0) 1892 res += obj->resident_page_count; 1893 } 1894 return (res); 1895 } 1896 1897 static int vm_oom_ratelim_last; 1898 static int vm_oom_pf_secs = 10; 1899 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0, 1900 ""); 1901 static struct mtx vm_oom_ratelim_mtx; 1902 1903 void 1904 vm_pageout_oom(int shortage) 1905 { 1906 const char *reason; 1907 struct proc *p, *bigproc; 1908 vm_offset_t size, bigsize; 1909 struct thread *td; 1910 struct vmspace *vm; 1911 int now; 1912 bool breakout; 1913 1914 /* 1915 * For OOM requests originating from vm_fault(), there is a high 1916 * chance that a single large process faults simultaneously in 1917 * several threads. Also, on an active system running many 1918 * processes of middle-size, like buildworld, all of them 1919 * could fault almost simultaneously as well. 1920 * 1921 * To avoid killing too many processes, rate-limit OOMs 1922 * initiated by vm_fault() time-outs on the waits for free 1923 * pages. 1924 */ 1925 mtx_lock(&vm_oom_ratelim_mtx); 1926 now = ticks; 1927 if (shortage == VM_OOM_MEM_PF && 1928 (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) { 1929 mtx_unlock(&vm_oom_ratelim_mtx); 1930 return; 1931 } 1932 vm_oom_ratelim_last = now; 1933 mtx_unlock(&vm_oom_ratelim_mtx); 1934 1935 /* 1936 * We keep the process bigproc locked once we find it to keep anyone 1937 * from messing with it; however, there is a possibility of 1938 * deadlock if process B is bigproc and one of its child processes 1939 * attempts to propagate a signal to B while we are waiting for A's 1940 * lock while walking this list. To avoid this, we don't block on 1941 * the process lock but just skip a process if it is already locked. 1942 */ 1943 bigproc = NULL; 1944 bigsize = 0; 1945 sx_slock(&allproc_lock); 1946 FOREACH_PROC_IN_SYSTEM(p) { 1947 PROC_LOCK(p); 1948 1949 /* 1950 * If this is a system, protected or killed process, skip it. 1951 */ 1952 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1953 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1954 p->p_pid == 1 || P_KILLED(p) || 1955 (p->p_pid < 48 && swap_pager_avail != 0)) { 1956 PROC_UNLOCK(p); 1957 continue; 1958 } 1959 /* 1960 * If the process is in a non-running type state, 1961 * don't touch it. Check all the threads individually. 1962 */ 1963 breakout = false; 1964 FOREACH_THREAD_IN_PROC(p, td) { 1965 thread_lock(td); 1966 if (!TD_ON_RUNQ(td) && 1967 !TD_IS_RUNNING(td) && 1968 !TD_IS_SLEEPING(td) && 1969 !TD_IS_SUSPENDED(td) && 1970 !TD_IS_SWAPPED(td)) { 1971 thread_unlock(td); 1972 breakout = true; 1973 break; 1974 } 1975 thread_unlock(td); 1976 } 1977 if (breakout) { 1978 PROC_UNLOCK(p); 1979 continue; 1980 } 1981 /* 1982 * get the process size 1983 */ 1984 vm = vmspace_acquire_ref(p); 1985 if (vm == NULL) { 1986 PROC_UNLOCK(p); 1987 continue; 1988 } 1989 _PHOLD_LITE(p); 1990 PROC_UNLOCK(p); 1991 sx_sunlock(&allproc_lock); 1992 if (!vm_map_trylock_read(&vm->vm_map)) { 1993 vmspace_free(vm); 1994 sx_slock(&allproc_lock); 1995 PRELE(p); 1996 continue; 1997 } 1998 size = vmspace_swap_count(vm); 1999 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF) 2000 size += vm_pageout_oom_pagecount(vm); 2001 vm_map_unlock_read(&vm->vm_map); 2002 vmspace_free(vm); 2003 sx_slock(&allproc_lock); 2004 2005 /* 2006 * If this process is bigger than the biggest one, 2007 * remember it. 2008 */ 2009 if (size > bigsize) { 2010 if (bigproc != NULL) 2011 PRELE(bigproc); 2012 bigproc = p; 2013 bigsize = size; 2014 } else { 2015 PRELE(p); 2016 } 2017 } 2018 sx_sunlock(&allproc_lock); 2019 2020 if (bigproc != NULL) { 2021 switch (shortage) { 2022 case VM_OOM_MEM: 2023 reason = "failed to reclaim memory"; 2024 break; 2025 case VM_OOM_MEM_PF: 2026 reason = "a thread waited too long to allocate a page"; 2027 break; 2028 case VM_OOM_SWAPZ: 2029 reason = "out of swap space"; 2030 break; 2031 default: 2032 panic("unknown OOM reason %d", shortage); 2033 } 2034 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0) 2035 panic("%s", reason); 2036 PROC_LOCK(bigproc); 2037 killproc(bigproc, reason); 2038 sched_nice(bigproc, PRIO_MIN); 2039 _PRELE(bigproc); 2040 PROC_UNLOCK(bigproc); 2041 } 2042 } 2043 2044 /* 2045 * Signal a free page shortage to subsystems that have registered an event 2046 * handler. Reclaim memory from UMA in the event of a severe shortage. 2047 * Return true if the free page count should be re-evaluated. 2048 */ 2049 static bool 2050 vm_pageout_lowmem(void) 2051 { 2052 static int lowmem_ticks = 0; 2053 int last; 2054 bool ret; 2055 2056 ret = false; 2057 2058 last = atomic_load_int(&lowmem_ticks); 2059 while ((u_int)(ticks - last) / hz >= lowmem_period) { 2060 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0) 2061 continue; 2062 2063 /* 2064 * Decrease registered cache sizes. 2065 */ 2066 SDT_PROBE0(vm, , , vm__lowmem_scan); 2067 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 2068 2069 /* 2070 * We do this explicitly after the caches have been 2071 * drained above. 2072 */ 2073 uma_reclaim(UMA_RECLAIM_TRIM); 2074 ret = true; 2075 break; 2076 } 2077 2078 /* 2079 * Kick off an asynchronous reclaim of cached memory if one of the 2080 * page daemons is failing to keep up with demand. Use the "severe" 2081 * threshold instead of "min" to ensure that we do not blow away the 2082 * caches if a subset of the NUMA domains are depleted by kernel memory 2083 * allocations; the domainset iterators automatically skip domains 2084 * below the "min" threshold on the first pass. 2085 * 2086 * UMA reclaim worker has its own rate-limiting mechanism, so don't 2087 * worry about kicking it too often. 2088 */ 2089 if (vm_page_count_severe()) 2090 uma_reclaim_wakeup(); 2091 2092 return (ret); 2093 } 2094 2095 static void 2096 vm_pageout_worker(void *arg) 2097 { 2098 struct vm_domain *vmd; 2099 u_int ofree; 2100 int addl_shortage, domain, shortage; 2101 bool target_met; 2102 2103 domain = (uintptr_t)arg; 2104 vmd = VM_DOMAIN(domain); 2105 shortage = 0; 2106 target_met = true; 2107 2108 /* 2109 * XXXKIB It could be useful to bind pageout daemon threads to 2110 * the cores belonging to the domain, from which vm_page_array 2111 * is allocated. 2112 */ 2113 2114 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 2115 vmd->vmd_last_active_scan = ticks; 2116 2117 /* 2118 * The pageout daemon worker is never done, so loop forever. 2119 */ 2120 while (TRUE) { 2121 vm_domain_pageout_lock(vmd); 2122 2123 /* 2124 * We need to clear wanted before we check the limits. This 2125 * prevents races with wakers who will check wanted after they 2126 * reach the limit. 2127 */ 2128 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 2129 2130 /* 2131 * Might the page daemon need to run again? 2132 */ 2133 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 2134 /* 2135 * Yes. If the scan failed to produce enough free 2136 * pages, sleep uninterruptibly for some time in the 2137 * hope that the laundry thread will clean some pages. 2138 */ 2139 vm_domain_pageout_unlock(vmd); 2140 if (!target_met) 2141 pause("pwait", hz / VM_INACT_SCAN_RATE); 2142 } else { 2143 /* 2144 * No, sleep until the next wakeup or until pages 2145 * need to have their reference stats updated. 2146 */ 2147 if (mtx_sleep(&vmd->vmd_pageout_wanted, 2148 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 2149 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 2150 VM_CNT_INC(v_pdwakeups); 2151 } 2152 2153 /* Prevent spurious wakeups by ensuring that wanted is set. */ 2154 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2155 2156 /* 2157 * Use the controller to calculate how many pages to free in 2158 * this interval, and scan the inactive queue. If the lowmem 2159 * handlers appear to have freed up some pages, subtract the 2160 * difference from the inactive queue scan target. 2161 */ 2162 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 2163 if (shortage > 0) { 2164 ofree = vmd->vmd_free_count; 2165 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) 2166 shortage -= min(vmd->vmd_free_count - ofree, 2167 (u_int)shortage); 2168 target_met = vm_pageout_inactive(vmd, shortage, 2169 &addl_shortage); 2170 } else 2171 addl_shortage = 0; 2172 2173 /* 2174 * Scan the active queue. A positive value for shortage 2175 * indicates that we must aggressively deactivate pages to avoid 2176 * a shortfall. 2177 */ 2178 shortage = vm_pageout_active_target(vmd) + addl_shortage; 2179 vm_pageout_scan_active(vmd, shortage); 2180 } 2181 } 2182 2183 /* 2184 * vm_pageout_helper runs additional pageout daemons in times of high paging 2185 * activity. 2186 */ 2187 static void 2188 vm_pageout_helper(void *arg) 2189 { 2190 struct vm_domain *vmd; 2191 int domain; 2192 2193 domain = (uintptr_t)arg; 2194 vmd = VM_DOMAIN(domain); 2195 2196 vm_domain_pageout_lock(vmd); 2197 for (;;) { 2198 msleep(&vmd->vmd_inactive_shortage, 2199 vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0); 2200 blockcount_release(&vmd->vmd_inactive_starting, 1); 2201 2202 vm_domain_pageout_unlock(vmd); 2203 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage); 2204 vm_domain_pageout_lock(vmd); 2205 2206 /* 2207 * Release the running count while the pageout lock is held to 2208 * prevent wakeup races. 2209 */ 2210 blockcount_release(&vmd->vmd_inactive_running, 1); 2211 } 2212 } 2213 2214 static int 2215 get_pageout_threads_per_domain(const struct vm_domain *vmd) 2216 { 2217 unsigned total_pageout_threads, eligible_cpus, domain_cpus; 2218 2219 if (VM_DOMAIN_EMPTY(vmd->vmd_domain)) 2220 return (0); 2221 2222 /* 2223 * Semi-arbitrarily constrain pagedaemon threads to less than half the 2224 * total number of CPUs in the system as an upper limit. 2225 */ 2226 if (pageout_cpus_per_thread < 2) 2227 pageout_cpus_per_thread = 2; 2228 else if (pageout_cpus_per_thread > mp_ncpus) 2229 pageout_cpus_per_thread = mp_ncpus; 2230 2231 total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread); 2232 domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]); 2233 2234 /* Pagedaemons are not run in empty domains. */ 2235 eligible_cpus = mp_ncpus; 2236 for (unsigned i = 0; i < vm_ndomains; i++) 2237 if (VM_DOMAIN_EMPTY(i)) 2238 eligible_cpus -= CPU_COUNT(&cpuset_domain[i]); 2239 2240 /* 2241 * Assign a portion of the total pageout threads to this domain 2242 * corresponding to the fraction of pagedaemon-eligible CPUs in the 2243 * domain. In asymmetric NUMA systems, domains with more CPUs may be 2244 * allocated more threads than domains with fewer CPUs. 2245 */ 2246 return (howmany(total_pageout_threads * domain_cpus, eligible_cpus)); 2247 } 2248 2249 /* 2250 * Initialize basic pageout daemon settings. See the comment above the 2251 * definition of vm_domain for some explanation of how these thresholds are 2252 * used. 2253 */ 2254 static void 2255 vm_pageout_init_domain(int domain) 2256 { 2257 struct vm_domain *vmd; 2258 struct sysctl_oid *oid; 2259 2260 vmd = VM_DOMAIN(domain); 2261 vmd->vmd_interrupt_free_min = 2; 2262 2263 /* 2264 * v_free_reserved needs to include enough for the largest 2265 * swap pager structures plus enough for any pv_entry structs 2266 * when paging. 2267 */ 2268 vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE + 2269 vmd->vmd_interrupt_free_min; 2270 vmd->vmd_free_reserved = vm_pageout_page_count + 2271 vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768; 2272 vmd->vmd_free_min = vmd->vmd_page_count / 200; 2273 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 2274 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 2275 vmd->vmd_free_min += vmd->vmd_free_reserved; 2276 vmd->vmd_free_severe += vmd->vmd_free_reserved; 2277 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 2278 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 2279 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 2280 2281 /* 2282 * Set the default wakeup threshold to be 10% below the paging 2283 * target. This keeps the steady state out of shortfall. 2284 */ 2285 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 2286 2287 /* 2288 * Target amount of memory to move out of the laundry queue during a 2289 * background laundering. This is proportional to the amount of system 2290 * memory. 2291 */ 2292 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 2293 vmd->vmd_free_min) / 10; 2294 2295 /* Initialize the pageout daemon pid controller. */ 2296 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 2297 vmd->vmd_free_target, PIDCTRL_BOUND, 2298 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 2299 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2300 "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2301 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 2302 2303 vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd); 2304 } 2305 2306 static void 2307 vm_pageout_init(void) 2308 { 2309 u_long freecount; 2310 int i; 2311 2312 /* 2313 * Initialize some paging parameters. 2314 */ 2315 if (vm_cnt.v_page_count < 2000) 2316 vm_pageout_page_count = 8; 2317 2318 freecount = 0; 2319 for (i = 0; i < vm_ndomains; i++) { 2320 struct vm_domain *vmd; 2321 2322 vm_pageout_init_domain(i); 2323 vmd = VM_DOMAIN(i); 2324 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2325 vm_cnt.v_free_target += vmd->vmd_free_target; 2326 vm_cnt.v_free_min += vmd->vmd_free_min; 2327 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2328 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2329 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2330 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2331 freecount += vmd->vmd_free_count; 2332 } 2333 2334 /* 2335 * Set interval in seconds for active scan. We want to visit each 2336 * page at least once every ten minutes. This is to prevent worst 2337 * case paging behaviors with stale active LRU. 2338 */ 2339 if (vm_pageout_update_period == 0) 2340 vm_pageout_update_period = 600; 2341 2342 /* 2343 * Set the maximum number of user-wired virtual pages. Historically the 2344 * main source of such pages was mlock(2) and mlockall(2). Hypervisors 2345 * may also request user-wired memory. 2346 */ 2347 if (vm_page_max_user_wired == 0) 2348 vm_page_max_user_wired = 4 * freecount / 5; 2349 } 2350 2351 /* 2352 * vm_pageout is the high level pageout daemon. 2353 */ 2354 static void 2355 vm_pageout(void) 2356 { 2357 struct proc *p; 2358 struct thread *td; 2359 int error, first, i, j, pageout_threads; 2360 2361 p = curproc; 2362 td = curthread; 2363 2364 mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF); 2365 swap_pager_swap_init(); 2366 for (first = -1, i = 0; i < vm_ndomains; i++) { 2367 if (VM_DOMAIN_EMPTY(i)) { 2368 if (bootverbose) 2369 printf("domain %d empty; skipping pageout\n", 2370 i); 2371 continue; 2372 } 2373 if (first == -1) 2374 first = i; 2375 else { 2376 error = kthread_add(vm_pageout_worker, 2377 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i); 2378 if (error != 0) 2379 panic("starting pageout for domain %d: %d\n", 2380 i, error); 2381 } 2382 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads; 2383 for (j = 0; j < pageout_threads - 1; j++) { 2384 error = kthread_add(vm_pageout_helper, 2385 (void *)(uintptr_t)i, p, NULL, 0, 0, 2386 "dom%d helper%d", i, j); 2387 if (error != 0) 2388 panic("starting pageout helper %d for domain " 2389 "%d: %d\n", j, i, error); 2390 } 2391 error = kthread_add(vm_pageout_laundry_worker, 2392 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); 2393 if (error != 0) 2394 panic("starting laundry for domain %d: %d", i, error); 2395 } 2396 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma"); 2397 if (error != 0) 2398 panic("starting uma_reclaim helper, error %d\n", error); 2399 2400 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first); 2401 vm_pageout_worker((void *)(uintptr_t)first); 2402 } 2403 2404 /* 2405 * Perform an advisory wakeup of the page daemon. 2406 */ 2407 void 2408 pagedaemon_wakeup(int domain) 2409 { 2410 struct vm_domain *vmd; 2411 2412 vmd = VM_DOMAIN(domain); 2413 vm_domain_pageout_assert_unlocked(vmd); 2414 if (curproc == pageproc) 2415 return; 2416 2417 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2418 vm_domain_pageout_lock(vmd); 2419 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2420 wakeup(&vmd->vmd_pageout_wanted); 2421 vm_domain_pageout_unlock(vmd); 2422 } 2423 } 2424