xref: /freebsd/sys/vm/vm_pageout.c (revision 110f229794b4b31ee0fd6568fda89002b26664c8)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72 
73 /*
74  *	The proverbial page-out daemon.
75  */
76 
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79 
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104 
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117 
118 /*
119  * System initialization
120  */
121 
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129 
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132 
133 struct proc *pageproc;
134 
135 static struct kproc_desc page_kp = {
136 	"pagedaemon",
137 	vm_pageout,
138 	&pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142 
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145 
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define	VM_LAUNDER_RATE		10
148 #define	VM_INACT_SCAN_RATE	10
149 
150 static int vm_pageout_oom_seq = 12;
151 
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156 
157 static int vm_panic_on_oom = 0;
158 
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160 	CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161 	"panic on out of memory instead of killing the largest process");
162 
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164 	CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165 	"Maximum active LRU update period");
166 
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168 	"Low memory callback period");
169 
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171 	CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172 
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176 
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178 	CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179 	"back-to-back calls to oom detector to start OOM");
180 
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185 
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190 
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194 
195 int vm_pageout_page_count = 32;
196 
197 u_long vm_page_max_user_wired;
198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
199     &vm_page_max_user_wired, 0,
200     "system-wide limit to user-wired page count");
201 
202 static u_int isqrt(u_int num);
203 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
204     bool in_shortfall);
205 static void vm_pageout_laundry_worker(void *arg);
206 
207 struct scan_state {
208 	struct vm_batchqueue bq;
209 	struct vm_pagequeue *pq;
210 	vm_page_t	marker;
211 	int		maxscan;
212 	int		scanned;
213 };
214 
215 static void
216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
217     vm_page_t marker, vm_page_t after, int maxscan)
218 {
219 
220 	vm_pagequeue_assert_locked(pq);
221 	KASSERT((marker->aflags & PGA_ENQUEUED) == 0,
222 	    ("marker %p already enqueued", marker));
223 
224 	if (after == NULL)
225 		TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
226 	else
227 		TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
228 	vm_page_aflag_set(marker, PGA_ENQUEUED);
229 
230 	vm_batchqueue_init(&ss->bq);
231 	ss->pq = pq;
232 	ss->marker = marker;
233 	ss->maxscan = maxscan;
234 	ss->scanned = 0;
235 	vm_pagequeue_unlock(pq);
236 }
237 
238 static void
239 vm_pageout_end_scan(struct scan_state *ss)
240 {
241 	struct vm_pagequeue *pq;
242 
243 	pq = ss->pq;
244 	vm_pagequeue_assert_locked(pq);
245 	KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0,
246 	    ("marker %p not enqueued", ss->marker));
247 
248 	TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
249 	vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
250 	pq->pq_pdpages += ss->scanned;
251 }
252 
253 /*
254  * Add a small number of queued pages to a batch queue for later processing
255  * without the corresponding queue lock held.  The caller must have enqueued a
256  * marker page at the desired start point for the scan.  Pages will be
257  * physically dequeued if the caller so requests.  Otherwise, the returned
258  * batch may contain marker pages, and it is up to the caller to handle them.
259  *
260  * When processing the batch queue, vm_page_queue() must be used to
261  * determine whether the page has been logically dequeued by another thread.
262  * Once this check is performed, the page lock guarantees that the page will
263  * not be disassociated from the queue.
264  */
265 static __always_inline void
266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
267 {
268 	struct vm_pagequeue *pq;
269 	vm_page_t m, marker, n;
270 
271 	marker = ss->marker;
272 	pq = ss->pq;
273 
274 	KASSERT((marker->aflags & PGA_ENQUEUED) != 0,
275 	    ("marker %p not enqueued", ss->marker));
276 
277 	vm_pagequeue_lock(pq);
278 	for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
279 	    ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
280 	    m = n, ss->scanned++) {
281 		n = TAILQ_NEXT(m, plinks.q);
282 		if ((m->flags & PG_MARKER) == 0) {
283 			KASSERT((m->aflags & PGA_ENQUEUED) != 0,
284 			    ("page %p not enqueued", m));
285 			KASSERT((m->flags & PG_FICTITIOUS) == 0,
286 			    ("Fictitious page %p cannot be in page queue", m));
287 			KASSERT((m->oflags & VPO_UNMANAGED) == 0,
288 			    ("Unmanaged page %p cannot be in page queue", m));
289 		} else if (dequeue)
290 			continue;
291 
292 		(void)vm_batchqueue_insert(&ss->bq, m);
293 		if (dequeue) {
294 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
295 			vm_page_aflag_clear(m, PGA_ENQUEUED);
296 		}
297 	}
298 	TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
299 	if (__predict_true(m != NULL))
300 		TAILQ_INSERT_BEFORE(m, marker, plinks.q);
301 	else
302 		TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
303 	if (dequeue)
304 		vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
305 	vm_pagequeue_unlock(pq);
306 }
307 
308 /* Return the next page to be scanned, or NULL if the scan is complete. */
309 static __always_inline vm_page_t
310 vm_pageout_next(struct scan_state *ss, const bool dequeue)
311 {
312 
313 	if (ss->bq.bq_cnt == 0)
314 		vm_pageout_collect_batch(ss, dequeue);
315 	return (vm_batchqueue_pop(&ss->bq));
316 }
317 
318 /*
319  * Scan for pages at adjacent offsets within the given page's object that are
320  * eligible for laundering, form a cluster of these pages and the given page,
321  * and launder that cluster.
322  */
323 static int
324 vm_pageout_cluster(vm_page_t m)
325 {
326 	vm_object_t object;
327 	vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
328 	vm_pindex_t pindex;
329 	int ib, is, page_base, pageout_count;
330 
331 	vm_page_assert_locked(m);
332 	object = m->object;
333 	VM_OBJECT_ASSERT_WLOCKED(object);
334 	pindex = m->pindex;
335 
336 	vm_page_assert_unbusied(m);
337 	KASSERT(!vm_page_wired(m), ("page %p is wired", m));
338 
339 	pmap_remove_write(m);
340 	vm_page_unlock(m);
341 
342 	mc[vm_pageout_page_count] = pb = ps = m;
343 	pageout_count = 1;
344 	page_base = vm_pageout_page_count;
345 	ib = 1;
346 	is = 1;
347 
348 	/*
349 	 * We can cluster only if the page is not clean, busy, or held, and
350 	 * the page is in the laundry queue.
351 	 *
352 	 * During heavy mmap/modification loads the pageout
353 	 * daemon can really fragment the underlying file
354 	 * due to flushing pages out of order and not trying to
355 	 * align the clusters (which leaves sporadic out-of-order
356 	 * holes).  To solve this problem we do the reverse scan
357 	 * first and attempt to align our cluster, then do a
358 	 * forward scan if room remains.
359 	 */
360 more:
361 	while (ib != 0 && pageout_count < vm_pageout_page_count) {
362 		if (ib > pindex) {
363 			ib = 0;
364 			break;
365 		}
366 		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
367 			ib = 0;
368 			break;
369 		}
370 		vm_page_test_dirty(p);
371 		if (p->dirty == 0) {
372 			ib = 0;
373 			break;
374 		}
375 		vm_page_lock(p);
376 		if (vm_page_wired(p) || !vm_page_in_laundry(p)) {
377 			vm_page_unlock(p);
378 			ib = 0;
379 			break;
380 		}
381 		pmap_remove_write(p);
382 		vm_page_unlock(p);
383 		mc[--page_base] = pb = p;
384 		++pageout_count;
385 		++ib;
386 
387 		/*
388 		 * We are at an alignment boundary.  Stop here, and switch
389 		 * directions.  Do not clear ib.
390 		 */
391 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
392 			break;
393 	}
394 	while (pageout_count < vm_pageout_page_count &&
395 	    pindex + is < object->size) {
396 		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
397 			break;
398 		vm_page_test_dirty(p);
399 		if (p->dirty == 0)
400 			break;
401 		vm_page_lock(p);
402 		if (vm_page_wired(p) || !vm_page_in_laundry(p)) {
403 			vm_page_unlock(p);
404 			break;
405 		}
406 		pmap_remove_write(p);
407 		vm_page_unlock(p);
408 		mc[page_base + pageout_count] = ps = p;
409 		++pageout_count;
410 		++is;
411 	}
412 
413 	/*
414 	 * If we exhausted our forward scan, continue with the reverse scan
415 	 * when possible, even past an alignment boundary.  This catches
416 	 * boundary conditions.
417 	 */
418 	if (ib != 0 && pageout_count < vm_pageout_page_count)
419 		goto more;
420 
421 	return (vm_pageout_flush(&mc[page_base], pageout_count,
422 	    VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
423 }
424 
425 /*
426  * vm_pageout_flush() - launder the given pages
427  *
428  *	The given pages are laundered.  Note that we setup for the start of
429  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
430  *	reference count all in here rather then in the parent.  If we want
431  *	the parent to do more sophisticated things we may have to change
432  *	the ordering.
433  *
434  *	Returned runlen is the count of pages between mreq and first
435  *	page after mreq with status VM_PAGER_AGAIN.
436  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
437  *	for any page in runlen set.
438  */
439 int
440 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
441     boolean_t *eio)
442 {
443 	vm_object_t object = mc[0]->object;
444 	int pageout_status[count];
445 	int numpagedout = 0;
446 	int i, runlen;
447 
448 	VM_OBJECT_ASSERT_WLOCKED(object);
449 
450 	/*
451 	 * Initiate I/O.  Mark the pages busy and verify that they're valid
452 	 * and read-only.
453 	 *
454 	 * We do not have to fixup the clean/dirty bits here... we can
455 	 * allow the pager to do it after the I/O completes.
456 	 *
457 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
458 	 * edge case with file fragments.
459 	 */
460 	for (i = 0; i < count; i++) {
461 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
462 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
463 			mc[i], i, count));
464 		KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0,
465 		    ("vm_pageout_flush: writeable page %p", mc[i]));
466 		vm_page_sbusy(mc[i]);
467 	}
468 	vm_object_pip_add(object, count);
469 
470 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
471 
472 	runlen = count - mreq;
473 	if (eio != NULL)
474 		*eio = FALSE;
475 	for (i = 0; i < count; i++) {
476 		vm_page_t mt = mc[i];
477 
478 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
479 		    !pmap_page_is_write_mapped(mt),
480 		    ("vm_pageout_flush: page %p is not write protected", mt));
481 		switch (pageout_status[i]) {
482 		case VM_PAGER_OK:
483 			vm_page_lock(mt);
484 			if (vm_page_in_laundry(mt))
485 				vm_page_deactivate_noreuse(mt);
486 			vm_page_unlock(mt);
487 			/* FALLTHROUGH */
488 		case VM_PAGER_PEND:
489 			numpagedout++;
490 			break;
491 		case VM_PAGER_BAD:
492 			/*
493 			 * The page is outside the object's range.  We pretend
494 			 * that the page out worked and clean the page, so the
495 			 * changes will be lost if the page is reclaimed by
496 			 * the page daemon.
497 			 */
498 			vm_page_undirty(mt);
499 			vm_page_lock(mt);
500 			if (vm_page_in_laundry(mt))
501 				vm_page_deactivate_noreuse(mt);
502 			vm_page_unlock(mt);
503 			break;
504 		case VM_PAGER_ERROR:
505 		case VM_PAGER_FAIL:
506 			/*
507 			 * If the page couldn't be paged out to swap because the
508 			 * pager wasn't able to find space, place the page in
509 			 * the PQ_UNSWAPPABLE holding queue.  This is an
510 			 * optimization that prevents the page daemon from
511 			 * wasting CPU cycles on pages that cannot be reclaimed
512 			 * becase no swap device is configured.
513 			 *
514 			 * Otherwise, reactivate the page so that it doesn't
515 			 * clog the laundry and inactive queues.  (We will try
516 			 * paging it out again later.)
517 			 */
518 			vm_page_lock(mt);
519 			if (object->type == OBJT_SWAP &&
520 			    pageout_status[i] == VM_PAGER_FAIL) {
521 				vm_page_unswappable(mt);
522 				numpagedout++;
523 			} else
524 				vm_page_activate(mt);
525 			vm_page_unlock(mt);
526 			if (eio != NULL && i >= mreq && i - mreq < runlen)
527 				*eio = TRUE;
528 			break;
529 		case VM_PAGER_AGAIN:
530 			if (i >= mreq && i - mreq < runlen)
531 				runlen = i - mreq;
532 			break;
533 		}
534 
535 		/*
536 		 * If the operation is still going, leave the page busy to
537 		 * block all other accesses. Also, leave the paging in
538 		 * progress indicator set so that we don't attempt an object
539 		 * collapse.
540 		 */
541 		if (pageout_status[i] != VM_PAGER_PEND) {
542 			vm_object_pip_wakeup(object);
543 			vm_page_sunbusy(mt);
544 		}
545 	}
546 	if (prunlen != NULL)
547 		*prunlen = runlen;
548 	return (numpagedout);
549 }
550 
551 static void
552 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
553 {
554 
555 	atomic_store_rel_int(&swapdev_enabled, 1);
556 }
557 
558 static void
559 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
560 {
561 
562 	if (swap_pager_nswapdev() == 1)
563 		atomic_store_rel_int(&swapdev_enabled, 0);
564 }
565 
566 /*
567  * Attempt to acquire all of the necessary locks to launder a page and
568  * then call through the clustering layer to PUTPAGES.  Wait a short
569  * time for a vnode lock.
570  *
571  * Requires the page and object lock on entry, releases both before return.
572  * Returns 0 on success and an errno otherwise.
573  */
574 static int
575 vm_pageout_clean(vm_page_t m, int *numpagedout)
576 {
577 	struct vnode *vp;
578 	struct mount *mp;
579 	vm_object_t object;
580 	vm_pindex_t pindex;
581 	int error, lockmode;
582 
583 	vm_page_assert_locked(m);
584 	object = m->object;
585 	VM_OBJECT_ASSERT_WLOCKED(object);
586 	error = 0;
587 	vp = NULL;
588 	mp = NULL;
589 
590 	/*
591 	 * The object is already known NOT to be dead.   It
592 	 * is possible for the vget() to block the whole
593 	 * pageout daemon, but the new low-memory handling
594 	 * code should prevent it.
595 	 *
596 	 * We can't wait forever for the vnode lock, we might
597 	 * deadlock due to a vn_read() getting stuck in
598 	 * vm_wait while holding this vnode.  We skip the
599 	 * vnode if we can't get it in a reasonable amount
600 	 * of time.
601 	 */
602 	if (object->type == OBJT_VNODE) {
603 		vm_page_unlock(m);
604 		vp = object->handle;
605 		if (vp->v_type == VREG &&
606 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
607 			mp = NULL;
608 			error = EDEADLK;
609 			goto unlock_all;
610 		}
611 		KASSERT(mp != NULL,
612 		    ("vp %p with NULL v_mount", vp));
613 		vm_object_reference_locked(object);
614 		pindex = m->pindex;
615 		VM_OBJECT_WUNLOCK(object);
616 		lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
617 		    LK_SHARED : LK_EXCLUSIVE;
618 		if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
619 			vp = NULL;
620 			error = EDEADLK;
621 			goto unlock_mp;
622 		}
623 		VM_OBJECT_WLOCK(object);
624 
625 		/*
626 		 * Ensure that the object and vnode were not disassociated
627 		 * while locks were dropped.
628 		 */
629 		if (vp->v_object != object) {
630 			error = ENOENT;
631 			goto unlock_all;
632 		}
633 		vm_page_lock(m);
634 
635 		/*
636 		 * While the object and page were unlocked, the page
637 		 * may have been:
638 		 * (1) moved to a different queue,
639 		 * (2) reallocated to a different object,
640 		 * (3) reallocated to a different offset, or
641 		 * (4) cleaned.
642 		 */
643 		if (!vm_page_in_laundry(m) || m->object != object ||
644 		    m->pindex != pindex || m->dirty == 0) {
645 			vm_page_unlock(m);
646 			error = ENXIO;
647 			goto unlock_all;
648 		}
649 
650 		/*
651 		 * The page may have been busied or referenced while the object
652 		 * and page locks were released.
653 		 */
654 		if (vm_page_busied(m) || vm_page_wired(m)) {
655 			vm_page_unlock(m);
656 			error = EBUSY;
657 			goto unlock_all;
658 		}
659 	}
660 
661 	/*
662 	 * If a page is dirty, then it is either being washed
663 	 * (but not yet cleaned) or it is still in the
664 	 * laundry.  If it is still in the laundry, then we
665 	 * start the cleaning operation.
666 	 */
667 	if ((*numpagedout = vm_pageout_cluster(m)) == 0)
668 		error = EIO;
669 
670 unlock_all:
671 	VM_OBJECT_WUNLOCK(object);
672 
673 unlock_mp:
674 	vm_page_lock_assert(m, MA_NOTOWNED);
675 	if (mp != NULL) {
676 		if (vp != NULL)
677 			vput(vp);
678 		vm_object_deallocate(object);
679 		vn_finished_write(mp);
680 	}
681 
682 	return (error);
683 }
684 
685 /*
686  * Attempt to launder the specified number of pages.
687  *
688  * Returns the number of pages successfully laundered.
689  */
690 static int
691 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
692 {
693 	struct scan_state ss;
694 	struct vm_pagequeue *pq;
695 	struct mtx *mtx;
696 	vm_object_t object;
697 	vm_page_t m, marker;
698 	int act_delta, error, numpagedout, queue, starting_target;
699 	int vnodes_skipped;
700 	bool pageout_ok;
701 
702 	mtx = NULL;
703 	object = NULL;
704 	starting_target = launder;
705 	vnodes_skipped = 0;
706 
707 	/*
708 	 * Scan the laundry queues for pages eligible to be laundered.  We stop
709 	 * once the target number of dirty pages have been laundered, or once
710 	 * we've reached the end of the queue.  A single iteration of this loop
711 	 * may cause more than one page to be laundered because of clustering.
712 	 *
713 	 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
714 	 * swap devices are configured.
715 	 */
716 	if (atomic_load_acq_int(&swapdev_enabled))
717 		queue = PQ_UNSWAPPABLE;
718 	else
719 		queue = PQ_LAUNDRY;
720 
721 scan:
722 	marker = &vmd->vmd_markers[queue];
723 	pq = &vmd->vmd_pagequeues[queue];
724 	vm_pagequeue_lock(pq);
725 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
726 	while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
727 		if (__predict_false((m->flags & PG_MARKER) != 0))
728 			continue;
729 
730 		vm_page_change_lock(m, &mtx);
731 
732 recheck:
733 		/*
734 		 * The page may have been disassociated from the queue
735 		 * while locks were dropped.
736 		 */
737 		if (vm_page_queue(m) != queue)
738 			continue;
739 
740 		/*
741 		 * A requeue was requested, so this page gets a second
742 		 * chance.
743 		 */
744 		if ((m->aflags & PGA_REQUEUE) != 0) {
745 			vm_page_requeue(m);
746 			continue;
747 		}
748 
749 		/*
750 		 * Wired pages may not be freed.  Complete their removal
751 		 * from the queue now to avoid needless revisits during
752 		 * future scans.
753 		 */
754 		if (vm_page_wired(m)) {
755 			vm_page_dequeue_deferred(m);
756 			continue;
757 		}
758 
759 		if (object != m->object) {
760 			if (object != NULL)
761 				VM_OBJECT_WUNLOCK(object);
762 			object = m->object;
763 			if (!VM_OBJECT_TRYWLOCK(object)) {
764 				mtx_unlock(mtx);
765 				/* Depends on type-stability. */
766 				VM_OBJECT_WLOCK(object);
767 				mtx_lock(mtx);
768 				goto recheck;
769 			}
770 		}
771 
772 		if (vm_page_busied(m))
773 			continue;
774 
775 		/*
776 		 * Invalid pages can be easily freed.  They cannot be
777 		 * mapped; vm_page_free() asserts this.
778 		 */
779 		if (m->valid == 0)
780 			goto free_page;
781 
782 		/*
783 		 * If the page has been referenced and the object is not dead,
784 		 * reactivate or requeue the page depending on whether the
785 		 * object is mapped.
786 		 *
787 		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
788 		 * that a reference from a concurrently destroyed mapping is
789 		 * observed here and now.
790 		 */
791 		if (object->ref_count != 0)
792 			act_delta = pmap_ts_referenced(m);
793 		else {
794 			KASSERT(!pmap_page_is_mapped(m),
795 			    ("page %p is mapped", m));
796 			act_delta = 0;
797 		}
798 		if ((m->aflags & PGA_REFERENCED) != 0) {
799 			vm_page_aflag_clear(m, PGA_REFERENCED);
800 			act_delta++;
801 		}
802 		if (act_delta != 0) {
803 			if (object->ref_count != 0) {
804 				VM_CNT_INC(v_reactivated);
805 				vm_page_activate(m);
806 
807 				/*
808 				 * Increase the activation count if the page
809 				 * was referenced while in the laundry queue.
810 				 * This makes it less likely that the page will
811 				 * be returned prematurely to the inactive
812 				 * queue.
813  				 */
814 				m->act_count += act_delta + ACT_ADVANCE;
815 
816 				/*
817 				 * If this was a background laundering, count
818 				 * activated pages towards our target.  The
819 				 * purpose of background laundering is to ensure
820 				 * that pages are eventually cycled through the
821 				 * laundry queue, and an activation is a valid
822 				 * way out.
823 				 */
824 				if (!in_shortfall)
825 					launder--;
826 				continue;
827 			} else if ((object->flags & OBJ_DEAD) == 0) {
828 				vm_page_requeue(m);
829 				continue;
830 			}
831 		}
832 
833 		/*
834 		 * If the page appears to be clean at the machine-independent
835 		 * layer, then remove all of its mappings from the pmap in
836 		 * anticipation of freeing it.  If, however, any of the page's
837 		 * mappings allow write access, then the page may still be
838 		 * modified until the last of those mappings are removed.
839 		 */
840 		if (object->ref_count != 0) {
841 			vm_page_test_dirty(m);
842 			if (m->dirty == 0)
843 				pmap_remove_all(m);
844 		}
845 
846 		/*
847 		 * Clean pages are freed, and dirty pages are paged out unless
848 		 * they belong to a dead object.  Requeueing dirty pages from
849 		 * dead objects is pointless, as they are being paged out and
850 		 * freed by the thread that destroyed the object.
851 		 */
852 		if (m->dirty == 0) {
853 free_page:
854 			vm_page_free(m);
855 			VM_CNT_INC(v_dfree);
856 		} else if ((object->flags & OBJ_DEAD) == 0) {
857 			if (object->type != OBJT_SWAP &&
858 			    object->type != OBJT_DEFAULT)
859 				pageout_ok = true;
860 			else if (disable_swap_pageouts)
861 				pageout_ok = false;
862 			else
863 				pageout_ok = true;
864 			if (!pageout_ok) {
865 				vm_page_requeue(m);
866 				continue;
867 			}
868 
869 			/*
870 			 * Form a cluster with adjacent, dirty pages from the
871 			 * same object, and page out that entire cluster.
872 			 *
873 			 * The adjacent, dirty pages must also be in the
874 			 * laundry.  However, their mappings are not checked
875 			 * for new references.  Consequently, a recently
876 			 * referenced page may be paged out.  However, that
877 			 * page will not be prematurely reclaimed.  After page
878 			 * out, the page will be placed in the inactive queue,
879 			 * where any new references will be detected and the
880 			 * page reactivated.
881 			 */
882 			error = vm_pageout_clean(m, &numpagedout);
883 			if (error == 0) {
884 				launder -= numpagedout;
885 				ss.scanned += numpagedout;
886 			} else if (error == EDEADLK) {
887 				pageout_lock_miss++;
888 				vnodes_skipped++;
889 			}
890 			mtx = NULL;
891 			object = NULL;
892 		}
893 	}
894 	if (mtx != NULL) {
895 		mtx_unlock(mtx);
896 		mtx = NULL;
897 	}
898 	if (object != NULL) {
899 		VM_OBJECT_WUNLOCK(object);
900 		object = NULL;
901 	}
902 	vm_pagequeue_lock(pq);
903 	vm_pageout_end_scan(&ss);
904 	vm_pagequeue_unlock(pq);
905 
906 	if (launder > 0 && queue == PQ_UNSWAPPABLE) {
907 		queue = PQ_LAUNDRY;
908 		goto scan;
909 	}
910 
911 	/*
912 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
913 	 * and we didn't launder enough pages.
914 	 */
915 	if (vnodes_skipped > 0 && launder > 0)
916 		(void)speedup_syncer();
917 
918 	return (starting_target - launder);
919 }
920 
921 /*
922  * Compute the integer square root.
923  */
924 static u_int
925 isqrt(u_int num)
926 {
927 	u_int bit, root, tmp;
928 
929 	bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
930 	root = 0;
931 	while (bit != 0) {
932 		tmp = root + bit;
933 		root >>= 1;
934 		if (num >= tmp) {
935 			num -= tmp;
936 			root += bit;
937 		}
938 		bit >>= 2;
939 	}
940 	return (root);
941 }
942 
943 /*
944  * Perform the work of the laundry thread: periodically wake up and determine
945  * whether any pages need to be laundered.  If so, determine the number of pages
946  * that need to be laundered, and launder them.
947  */
948 static void
949 vm_pageout_laundry_worker(void *arg)
950 {
951 	struct vm_domain *vmd;
952 	struct vm_pagequeue *pq;
953 	uint64_t nclean, ndirty, nfreed;
954 	int domain, last_target, launder, shortfall, shortfall_cycle, target;
955 	bool in_shortfall;
956 
957 	domain = (uintptr_t)arg;
958 	vmd = VM_DOMAIN(domain);
959 	pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
960 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
961 
962 	shortfall = 0;
963 	in_shortfall = false;
964 	shortfall_cycle = 0;
965 	last_target = target = 0;
966 	nfreed = 0;
967 
968 	/*
969 	 * Calls to these handlers are serialized by the swap syscall lock.
970 	 */
971 	(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
972 	    EVENTHANDLER_PRI_ANY);
973 	(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
974 	    EVENTHANDLER_PRI_ANY);
975 
976 	/*
977 	 * The pageout laundry worker is never done, so loop forever.
978 	 */
979 	for (;;) {
980 		KASSERT(target >= 0, ("negative target %d", target));
981 		KASSERT(shortfall_cycle >= 0,
982 		    ("negative cycle %d", shortfall_cycle));
983 		launder = 0;
984 
985 		/*
986 		 * First determine whether we need to launder pages to meet a
987 		 * shortage of free pages.
988 		 */
989 		if (shortfall > 0) {
990 			in_shortfall = true;
991 			shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
992 			target = shortfall;
993 		} else if (!in_shortfall)
994 			goto trybackground;
995 		else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
996 			/*
997 			 * We recently entered shortfall and began laundering
998 			 * pages.  If we have completed that laundering run
999 			 * (and we are no longer in shortfall) or we have met
1000 			 * our laundry target through other activity, then we
1001 			 * can stop laundering pages.
1002 			 */
1003 			in_shortfall = false;
1004 			target = 0;
1005 			goto trybackground;
1006 		}
1007 		launder = target / shortfall_cycle--;
1008 		goto dolaundry;
1009 
1010 		/*
1011 		 * There's no immediate need to launder any pages; see if we
1012 		 * meet the conditions to perform background laundering:
1013 		 *
1014 		 * 1. The ratio of dirty to clean inactive pages exceeds the
1015 		 *    background laundering threshold, or
1016 		 * 2. we haven't yet reached the target of the current
1017 		 *    background laundering run.
1018 		 *
1019 		 * The background laundering threshold is not a constant.
1020 		 * Instead, it is a slowly growing function of the number of
1021 		 * clean pages freed by the page daemon since the last
1022 		 * background laundering.  Thus, as the ratio of dirty to
1023 		 * clean inactive pages grows, the amount of memory pressure
1024 		 * required to trigger laundering decreases.  We ensure
1025 		 * that the threshold is non-zero after an inactive queue
1026 		 * scan, even if that scan failed to free a single clean page.
1027 		 */
1028 trybackground:
1029 		nclean = vmd->vmd_free_count +
1030 		    vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1031 		ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1032 		if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1033 		    vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1034 			target = vmd->vmd_background_launder_target;
1035 		}
1036 
1037 		/*
1038 		 * We have a non-zero background laundering target.  If we've
1039 		 * laundered up to our maximum without observing a page daemon
1040 		 * request, just stop.  This is a safety belt that ensures we
1041 		 * don't launder an excessive amount if memory pressure is low
1042 		 * and the ratio of dirty to clean pages is large.  Otherwise,
1043 		 * proceed at the background laundering rate.
1044 		 */
1045 		if (target > 0) {
1046 			if (nfreed > 0) {
1047 				nfreed = 0;
1048 				last_target = target;
1049 			} else if (last_target - target >=
1050 			    vm_background_launder_max * PAGE_SIZE / 1024) {
1051 				target = 0;
1052 			}
1053 			launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1054 			launder /= VM_LAUNDER_RATE;
1055 			if (launder > target)
1056 				launder = target;
1057 		}
1058 
1059 dolaundry:
1060 		if (launder > 0) {
1061 			/*
1062 			 * Because of I/O clustering, the number of laundered
1063 			 * pages could exceed "target" by the maximum size of
1064 			 * a cluster minus one.
1065 			 */
1066 			target -= min(vm_pageout_launder(vmd, launder,
1067 			    in_shortfall), target);
1068 			pause("laundp", hz / VM_LAUNDER_RATE);
1069 		}
1070 
1071 		/*
1072 		 * If we're not currently laundering pages and the page daemon
1073 		 * hasn't posted a new request, sleep until the page daemon
1074 		 * kicks us.
1075 		 */
1076 		vm_pagequeue_lock(pq);
1077 		if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1078 			(void)mtx_sleep(&vmd->vmd_laundry_request,
1079 			    vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1080 
1081 		/*
1082 		 * If the pagedaemon has indicated that it's in shortfall, start
1083 		 * a shortfall laundering unless we're already in the middle of
1084 		 * one.  This may preempt a background laundering.
1085 		 */
1086 		if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1087 		    (!in_shortfall || shortfall_cycle == 0)) {
1088 			shortfall = vm_laundry_target(vmd) +
1089 			    vmd->vmd_pageout_deficit;
1090 			target = 0;
1091 		} else
1092 			shortfall = 0;
1093 
1094 		if (target == 0)
1095 			vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1096 		nfreed += vmd->vmd_clean_pages_freed;
1097 		vmd->vmd_clean_pages_freed = 0;
1098 		vm_pagequeue_unlock(pq);
1099 	}
1100 }
1101 
1102 /*
1103  * Compute the number of pages we want to try to move from the
1104  * active queue to either the inactive or laundry queue.
1105  *
1106  * When scanning active pages during a shortage, we make clean pages
1107  * count more heavily towards the page shortage than dirty pages.
1108  * This is because dirty pages must be laundered before they can be
1109  * reused and thus have less utility when attempting to quickly
1110  * alleviate a free page shortage.  However, this weighting also
1111  * causes the scan to deactivate dirty pages more aggressively,
1112  * improving the effectiveness of clustering.
1113  */
1114 static int
1115 vm_pageout_active_target(struct vm_domain *vmd)
1116 {
1117 	int shortage;
1118 
1119 	shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1120 	    (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1121 	    vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1122 	shortage *= act_scan_laundry_weight;
1123 	return (shortage);
1124 }
1125 
1126 /*
1127  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1128  * small portion of the queue in order to maintain quasi-LRU.
1129  */
1130 static void
1131 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1132 {
1133 	struct scan_state ss;
1134 	struct mtx *mtx;
1135 	vm_page_t m, marker;
1136 	struct vm_pagequeue *pq;
1137 	long min_scan;
1138 	int act_delta, max_scan, scan_tick;
1139 
1140 	marker = &vmd->vmd_markers[PQ_ACTIVE];
1141 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1142 	vm_pagequeue_lock(pq);
1143 
1144 	/*
1145 	 * If we're just idle polling attempt to visit every
1146 	 * active page within 'update_period' seconds.
1147 	 */
1148 	scan_tick = ticks;
1149 	if (vm_pageout_update_period != 0) {
1150 		min_scan = pq->pq_cnt;
1151 		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1152 		min_scan /= hz * vm_pageout_update_period;
1153 	} else
1154 		min_scan = 0;
1155 	if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1156 		vmd->vmd_last_active_scan = scan_tick;
1157 
1158 	/*
1159 	 * Scan the active queue for pages that can be deactivated.  Update
1160 	 * the per-page activity counter and use it to identify deactivation
1161 	 * candidates.  Held pages may be deactivated.
1162 	 *
1163 	 * To avoid requeuing each page that remains in the active queue, we
1164 	 * implement the CLOCK algorithm.  To keep the implementation of the
1165 	 * enqueue operation consistent for all page queues, we use two hands,
1166 	 * represented by marker pages. Scans begin at the first hand, which
1167 	 * precedes the second hand in the queue.  When the two hands meet,
1168 	 * they are moved back to the head and tail of the queue, respectively,
1169 	 * and scanning resumes.
1170 	 */
1171 	max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1172 	mtx = NULL;
1173 act_scan:
1174 	vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1175 	while ((m = vm_pageout_next(&ss, false)) != NULL) {
1176 		if (__predict_false(m == &vmd->vmd_clock[1])) {
1177 			vm_pagequeue_lock(pq);
1178 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1179 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1180 			TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1181 			    plinks.q);
1182 			TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1183 			    plinks.q);
1184 			max_scan -= ss.scanned;
1185 			vm_pageout_end_scan(&ss);
1186 			goto act_scan;
1187 		}
1188 		if (__predict_false((m->flags & PG_MARKER) != 0))
1189 			continue;
1190 
1191 		vm_page_change_lock(m, &mtx);
1192 
1193 		/*
1194 		 * The page may have been disassociated from the queue
1195 		 * while locks were dropped.
1196 		 */
1197 		if (vm_page_queue(m) != PQ_ACTIVE)
1198 			continue;
1199 
1200 		/*
1201 		 * Wired pages are dequeued lazily.
1202 		 */
1203 		if (vm_page_wired(m)) {
1204 			vm_page_dequeue_deferred(m);
1205 			continue;
1206 		}
1207 
1208 		/*
1209 		 * Check to see "how much" the page has been used.
1210 		 *
1211 		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1212 		 * that a reference from a concurrently destroyed mapping is
1213 		 * observed here and now.
1214 		 *
1215 		 * Perform an unsynchronized object ref count check.  While
1216 		 * the page lock ensures that the page is not reallocated to
1217 		 * another object, in particular, one with unmanaged mappings
1218 		 * that cannot support pmap_ts_referenced(), two races are,
1219 		 * nonetheless, possible:
1220 		 * 1) The count was transitioning to zero, but we saw a non-
1221 		 *    zero value.  pmap_ts_referenced() will return zero
1222 		 *    because the page is not mapped.
1223 		 * 2) The count was transitioning to one, but we saw zero.
1224 		 *    This race delays the detection of a new reference.  At
1225 		 *    worst, we will deactivate and reactivate the page.
1226 		 */
1227 		if (m->object->ref_count != 0)
1228 			act_delta = pmap_ts_referenced(m);
1229 		else
1230 			act_delta = 0;
1231 		if ((m->aflags & PGA_REFERENCED) != 0) {
1232 			vm_page_aflag_clear(m, PGA_REFERENCED);
1233 			act_delta++;
1234 		}
1235 
1236 		/*
1237 		 * Advance or decay the act_count based on recent usage.
1238 		 */
1239 		if (act_delta != 0) {
1240 			m->act_count += ACT_ADVANCE + act_delta;
1241 			if (m->act_count > ACT_MAX)
1242 				m->act_count = ACT_MAX;
1243 		} else
1244 			m->act_count -= min(m->act_count, ACT_DECLINE);
1245 
1246 		if (m->act_count == 0) {
1247 			/*
1248 			 * When not short for inactive pages, let dirty pages go
1249 			 * through the inactive queue before moving to the
1250 			 * laundry queues.  This gives them some extra time to
1251 			 * be reactivated, potentially avoiding an expensive
1252 			 * pageout.  However, during a page shortage, the
1253 			 * inactive queue is necessarily small, and so dirty
1254 			 * pages would only spend a trivial amount of time in
1255 			 * the inactive queue.  Therefore, we might as well
1256 			 * place them directly in the laundry queue to reduce
1257 			 * queuing overhead.
1258 			 */
1259 			if (page_shortage <= 0)
1260 				vm_page_deactivate(m);
1261 			else {
1262 				/*
1263 				 * Calling vm_page_test_dirty() here would
1264 				 * require acquisition of the object's write
1265 				 * lock.  However, during a page shortage,
1266 				 * directing dirty pages into the laundry
1267 				 * queue is only an optimization and not a
1268 				 * requirement.  Therefore, we simply rely on
1269 				 * the opportunistic updates to the page's
1270 				 * dirty field by the pmap.
1271 				 */
1272 				if (m->dirty == 0) {
1273 					vm_page_deactivate(m);
1274 					page_shortage -=
1275 					    act_scan_laundry_weight;
1276 				} else {
1277 					vm_page_launder(m);
1278 					page_shortage--;
1279 				}
1280 			}
1281 		}
1282 	}
1283 	if (mtx != NULL) {
1284 		mtx_unlock(mtx);
1285 		mtx = NULL;
1286 	}
1287 	vm_pagequeue_lock(pq);
1288 	TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1289 	TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1290 	vm_pageout_end_scan(&ss);
1291 	vm_pagequeue_unlock(pq);
1292 }
1293 
1294 static int
1295 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m)
1296 {
1297 	struct vm_domain *vmd;
1298 
1299 	if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0)
1300 		return (0);
1301 	vm_page_aflag_set(m, PGA_ENQUEUED);
1302 	if ((m->aflags & PGA_REQUEUE_HEAD) != 0) {
1303 		vmd = vm_pagequeue_domain(m);
1304 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
1305 		vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1306 	} else if ((m->aflags & PGA_REQUEUE) != 0) {
1307 		TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q);
1308 		vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1309 	} else
1310 		TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q);
1311 	return (1);
1312 }
1313 
1314 /*
1315  * Re-add stuck pages to the inactive queue.  We will examine them again
1316  * during the next scan.  If the queue state of a page has changed since
1317  * it was physically removed from the page queue in
1318  * vm_pageout_collect_batch(), don't do anything with that page.
1319  */
1320 static void
1321 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1322     vm_page_t m)
1323 {
1324 	struct vm_pagequeue *pq;
1325 	int delta;
1326 
1327 	delta = 0;
1328 	pq = ss->pq;
1329 
1330 	if (m != NULL) {
1331 		if (vm_batchqueue_insert(bq, m))
1332 			return;
1333 		vm_pagequeue_lock(pq);
1334 		delta += vm_pageout_reinsert_inactive_page(ss, m);
1335 	} else
1336 		vm_pagequeue_lock(pq);
1337 	while ((m = vm_batchqueue_pop(bq)) != NULL)
1338 		delta += vm_pageout_reinsert_inactive_page(ss, m);
1339 	vm_pagequeue_cnt_add(pq, delta);
1340 	vm_pagequeue_unlock(pq);
1341 	vm_batchqueue_init(bq);
1342 }
1343 
1344 /*
1345  * Attempt to reclaim the requested number of pages from the inactive queue.
1346  * Returns true if the shortage was addressed.
1347  */
1348 static int
1349 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1350     int *addl_shortage)
1351 {
1352 	struct scan_state ss;
1353 	struct vm_batchqueue rq;
1354 	struct mtx *mtx;
1355 	vm_page_t m, marker;
1356 	struct vm_pagequeue *pq;
1357 	vm_object_t object;
1358 	int act_delta, addl_page_shortage, deficit, page_shortage;
1359 	int starting_page_shortage;
1360 
1361 	/*
1362 	 * The addl_page_shortage is an estimate of the number of temporarily
1363 	 * stuck pages in the inactive queue.  In other words, the
1364 	 * number of pages from the inactive count that should be
1365 	 * discounted in setting the target for the active queue scan.
1366 	 */
1367 	addl_page_shortage = 0;
1368 
1369 	/*
1370 	 * vmd_pageout_deficit counts the number of pages requested in
1371 	 * allocations that failed because of a free page shortage.  We assume
1372 	 * that the allocations will be reattempted and thus include the deficit
1373 	 * in our scan target.
1374 	 */
1375 	deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1376 	starting_page_shortage = page_shortage = shortage + deficit;
1377 
1378 	mtx = NULL;
1379 	object = NULL;
1380 	vm_batchqueue_init(&rq);
1381 
1382 	/*
1383 	 * Start scanning the inactive queue for pages that we can free.  The
1384 	 * scan will stop when we reach the target or we have scanned the
1385 	 * entire queue.  (Note that m->act_count is not used to make
1386 	 * decisions for the inactive queue, only for the active queue.)
1387 	 */
1388 	marker = &vmd->vmd_markers[PQ_INACTIVE];
1389 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1390 	vm_pagequeue_lock(pq);
1391 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1392 	while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1393 		KASSERT((m->flags & PG_MARKER) == 0,
1394 		    ("marker page %p was dequeued", m));
1395 
1396 		vm_page_change_lock(m, &mtx);
1397 
1398 recheck:
1399 		/*
1400 		 * The page may have been disassociated from the queue
1401 		 * while locks were dropped.
1402 		 */
1403 		if (vm_page_queue(m) != PQ_INACTIVE) {
1404 			addl_page_shortage++;
1405 			continue;
1406 		}
1407 
1408 		/*
1409 		 * The page was re-enqueued after the page queue lock was
1410 		 * dropped, or a requeue was requested.  This page gets a second
1411 		 * chance.
1412 		 */
1413 		if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE |
1414 		    PGA_REQUEUE_HEAD)) != 0)
1415 			goto reinsert;
1416 
1417 		/*
1418 		 * Wired pages may not be freed.  Complete their removal
1419 		 * from the queue now to avoid needless revisits during
1420 		 * future scans.
1421 		 */
1422 		if (vm_page_wired(m)) {
1423 			vm_page_dequeue_deferred(m);
1424 			continue;
1425 		}
1426 
1427 		if (object != m->object) {
1428 			if (object != NULL)
1429 				VM_OBJECT_WUNLOCK(object);
1430 			object = m->object;
1431 			if (!VM_OBJECT_TRYWLOCK(object)) {
1432 				mtx_unlock(mtx);
1433 				/* Depends on type-stability. */
1434 				VM_OBJECT_WLOCK(object);
1435 				mtx_lock(mtx);
1436 				goto recheck;
1437 			}
1438 		}
1439 
1440 		if (vm_page_busied(m)) {
1441 			/*
1442 			 * Don't mess with busy pages.  Leave them at
1443 			 * the front of the queue.  Most likely, they
1444 			 * are being paged out and will leave the
1445 			 * queue shortly after the scan finishes.  So,
1446 			 * they ought to be discounted from the
1447 			 * inactive count.
1448 			 */
1449 			addl_page_shortage++;
1450 			goto reinsert;
1451 		}
1452 
1453 		/*
1454 		 * Invalid pages can be easily freed. They cannot be
1455 		 * mapped, vm_page_free() asserts this.
1456 		 */
1457 		if (m->valid == 0)
1458 			goto free_page;
1459 
1460 		/*
1461 		 * If the page has been referenced and the object is not dead,
1462 		 * reactivate or requeue the page depending on whether the
1463 		 * object is mapped.
1464 		 *
1465 		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1466 		 * that a reference from a concurrently destroyed mapping is
1467 		 * observed here and now.
1468 		 */
1469 		if (object->ref_count != 0)
1470 			act_delta = pmap_ts_referenced(m);
1471 		else {
1472 			KASSERT(!pmap_page_is_mapped(m),
1473 			    ("page %p is mapped", m));
1474 			act_delta = 0;
1475 		}
1476 		if ((m->aflags & PGA_REFERENCED) != 0) {
1477 			vm_page_aflag_clear(m, PGA_REFERENCED);
1478 			act_delta++;
1479 		}
1480 		if (act_delta != 0) {
1481 			if (object->ref_count != 0) {
1482 				VM_CNT_INC(v_reactivated);
1483 				vm_page_activate(m);
1484 
1485 				/*
1486 				 * Increase the activation count if the page
1487 				 * was referenced while in the inactive queue.
1488 				 * This makes it less likely that the page will
1489 				 * be returned prematurely to the inactive
1490 				 * queue.
1491  				 */
1492 				m->act_count += act_delta + ACT_ADVANCE;
1493 				continue;
1494 			} else if ((object->flags & OBJ_DEAD) == 0) {
1495 				vm_page_aflag_set(m, PGA_REQUEUE);
1496 				goto reinsert;
1497 			}
1498 		}
1499 
1500 		/*
1501 		 * If the page appears to be clean at the machine-independent
1502 		 * layer, then remove all of its mappings from the pmap in
1503 		 * anticipation of freeing it.  If, however, any of the page's
1504 		 * mappings allow write access, then the page may still be
1505 		 * modified until the last of those mappings are removed.
1506 		 */
1507 		if (object->ref_count != 0) {
1508 			vm_page_test_dirty(m);
1509 			if (m->dirty == 0)
1510 				pmap_remove_all(m);
1511 		}
1512 
1513 		/*
1514 		 * Clean pages can be freed, but dirty pages must be sent back
1515 		 * to the laundry, unless they belong to a dead object.
1516 		 * Requeueing dirty pages from dead objects is pointless, as
1517 		 * they are being paged out and freed by the thread that
1518 		 * destroyed the object.
1519 		 */
1520 		if (m->dirty == 0) {
1521 free_page:
1522 			/*
1523 			 * Because we dequeued the page and have already
1524 			 * checked for concurrent dequeue and enqueue
1525 			 * requests, we can safely disassociate the page
1526 			 * from the inactive queue.
1527 			 */
1528 			KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0,
1529 			    ("page %p has queue state", m));
1530 			m->queue = PQ_NONE;
1531 			vm_page_free(m);
1532 			page_shortage--;
1533 		} else if ((object->flags & OBJ_DEAD) == 0)
1534 			vm_page_launder(m);
1535 		continue;
1536 reinsert:
1537 		vm_pageout_reinsert_inactive(&ss, &rq, m);
1538 	}
1539 	if (mtx != NULL)
1540 		mtx_unlock(mtx);
1541 	if (object != NULL)
1542 		VM_OBJECT_WUNLOCK(object);
1543 	vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1544 	vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1545 	vm_pagequeue_lock(pq);
1546 	vm_pageout_end_scan(&ss);
1547 	vm_pagequeue_unlock(pq);
1548 
1549 	VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1550 
1551 	/*
1552 	 * Wake up the laundry thread so that it can perform any needed
1553 	 * laundering.  If we didn't meet our target, we're in shortfall and
1554 	 * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1555 	 * swap devices are configured, the laundry thread has no work to do, so
1556 	 * don't bother waking it up.
1557 	 *
1558 	 * The laundry thread uses the number of inactive queue scans elapsed
1559 	 * since the last laundering to determine whether to launder again, so
1560 	 * keep count.
1561 	 */
1562 	if (starting_page_shortage > 0) {
1563 		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1564 		vm_pagequeue_lock(pq);
1565 		if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1566 		    (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1567 			if (page_shortage > 0) {
1568 				vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1569 				VM_CNT_INC(v_pdshortfalls);
1570 			} else if (vmd->vmd_laundry_request !=
1571 			    VM_LAUNDRY_SHORTFALL)
1572 				vmd->vmd_laundry_request =
1573 				    VM_LAUNDRY_BACKGROUND;
1574 			wakeup(&vmd->vmd_laundry_request);
1575 		}
1576 		vmd->vmd_clean_pages_freed +=
1577 		    starting_page_shortage - page_shortage;
1578 		vm_pagequeue_unlock(pq);
1579 	}
1580 
1581 	/*
1582 	 * Wakeup the swapout daemon if we didn't free the targeted number of
1583 	 * pages.
1584 	 */
1585 	if (page_shortage > 0)
1586 		vm_swapout_run();
1587 
1588 	/*
1589 	 * If the inactive queue scan fails repeatedly to meet its
1590 	 * target, kill the largest process.
1591 	 */
1592 	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1593 
1594 	/*
1595 	 * Reclaim pages by swapping out idle processes, if configured to do so.
1596 	 */
1597 	vm_swapout_run_idle();
1598 
1599 	/*
1600 	 * See the description of addl_page_shortage above.
1601 	 */
1602 	*addl_shortage = addl_page_shortage + deficit;
1603 
1604 	return (page_shortage <= 0);
1605 }
1606 
1607 static int vm_pageout_oom_vote;
1608 
1609 /*
1610  * The pagedaemon threads randlomly select one to perform the
1611  * OOM.  Trying to kill processes before all pagedaemons
1612  * failed to reach free target is premature.
1613  */
1614 static void
1615 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1616     int starting_page_shortage)
1617 {
1618 	int old_vote;
1619 
1620 	if (starting_page_shortage <= 0 || starting_page_shortage !=
1621 	    page_shortage)
1622 		vmd->vmd_oom_seq = 0;
1623 	else
1624 		vmd->vmd_oom_seq++;
1625 	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1626 		if (vmd->vmd_oom) {
1627 			vmd->vmd_oom = FALSE;
1628 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1629 		}
1630 		return;
1631 	}
1632 
1633 	/*
1634 	 * Do not follow the call sequence until OOM condition is
1635 	 * cleared.
1636 	 */
1637 	vmd->vmd_oom_seq = 0;
1638 
1639 	if (vmd->vmd_oom)
1640 		return;
1641 
1642 	vmd->vmd_oom = TRUE;
1643 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1644 	if (old_vote != vm_ndomains - 1)
1645 		return;
1646 
1647 	/*
1648 	 * The current pagedaemon thread is the last in the quorum to
1649 	 * start OOM.  Initiate the selection and signaling of the
1650 	 * victim.
1651 	 */
1652 	vm_pageout_oom(VM_OOM_MEM);
1653 
1654 	/*
1655 	 * After one round of OOM terror, recall our vote.  On the
1656 	 * next pass, current pagedaemon would vote again if the low
1657 	 * memory condition is still there, due to vmd_oom being
1658 	 * false.
1659 	 */
1660 	vmd->vmd_oom = FALSE;
1661 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1662 }
1663 
1664 /*
1665  * The OOM killer is the page daemon's action of last resort when
1666  * memory allocation requests have been stalled for a prolonged period
1667  * of time because it cannot reclaim memory.  This function computes
1668  * the approximate number of physical pages that could be reclaimed if
1669  * the specified address space is destroyed.
1670  *
1671  * Private, anonymous memory owned by the address space is the
1672  * principal resource that we expect to recover after an OOM kill.
1673  * Since the physical pages mapped by the address space's COW entries
1674  * are typically shared pages, they are unlikely to be released and so
1675  * they are not counted.
1676  *
1677  * To get to the point where the page daemon runs the OOM killer, its
1678  * efforts to write-back vnode-backed pages may have stalled.  This
1679  * could be caused by a memory allocation deadlock in the write path
1680  * that might be resolved by an OOM kill.  Therefore, physical pages
1681  * belonging to vnode-backed objects are counted, because they might
1682  * be freed without being written out first if the address space holds
1683  * the last reference to an unlinked vnode.
1684  *
1685  * Similarly, physical pages belonging to OBJT_PHYS objects are
1686  * counted because the address space might hold the last reference to
1687  * the object.
1688  */
1689 static long
1690 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1691 {
1692 	vm_map_t map;
1693 	vm_map_entry_t entry;
1694 	vm_object_t obj;
1695 	long res;
1696 
1697 	map = &vmspace->vm_map;
1698 	KASSERT(!map->system_map, ("system map"));
1699 	sx_assert(&map->lock, SA_LOCKED);
1700 	res = 0;
1701 	for (entry = map->header.next; entry != &map->header;
1702 	    entry = entry->next) {
1703 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1704 			continue;
1705 		obj = entry->object.vm_object;
1706 		if (obj == NULL)
1707 			continue;
1708 		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1709 		    obj->ref_count != 1)
1710 			continue;
1711 		switch (obj->type) {
1712 		case OBJT_DEFAULT:
1713 		case OBJT_SWAP:
1714 		case OBJT_PHYS:
1715 		case OBJT_VNODE:
1716 			res += obj->resident_page_count;
1717 			break;
1718 		}
1719 	}
1720 	return (res);
1721 }
1722 
1723 static int vm_oom_ratelim_last;
1724 static int vm_oom_pf_secs = 10;
1725 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1726     "");
1727 static struct mtx vm_oom_ratelim_mtx;
1728 
1729 void
1730 vm_pageout_oom(int shortage)
1731 {
1732 	struct proc *p, *bigproc;
1733 	vm_offset_t size, bigsize;
1734 	struct thread *td;
1735 	struct vmspace *vm;
1736 	int now;
1737 	bool breakout;
1738 
1739 	/*
1740 	 * For OOM requests originating from vm_fault(), there is a high
1741 	 * chance that a single large process faults simultaneously in
1742 	 * several threads.  Also, on an active system running many
1743 	 * processes of middle-size, like buildworld, all of them
1744 	 * could fault almost simultaneously as well.
1745 	 *
1746 	 * To avoid killing too many processes, rate-limit OOMs
1747 	 * initiated by vm_fault() time-outs on the waits for free
1748 	 * pages.
1749 	 */
1750 	mtx_lock(&vm_oom_ratelim_mtx);
1751 	now = ticks;
1752 	if (shortage == VM_OOM_MEM_PF &&
1753 	    (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1754 		mtx_unlock(&vm_oom_ratelim_mtx);
1755 		return;
1756 	}
1757 	vm_oom_ratelim_last = now;
1758 	mtx_unlock(&vm_oom_ratelim_mtx);
1759 
1760 	/*
1761 	 * We keep the process bigproc locked once we find it to keep anyone
1762 	 * from messing with it; however, there is a possibility of
1763 	 * deadlock if process B is bigproc and one of its child processes
1764 	 * attempts to propagate a signal to B while we are waiting for A's
1765 	 * lock while walking this list.  To avoid this, we don't block on
1766 	 * the process lock but just skip a process if it is already locked.
1767 	 */
1768 	bigproc = NULL;
1769 	bigsize = 0;
1770 	sx_slock(&allproc_lock);
1771 	FOREACH_PROC_IN_SYSTEM(p) {
1772 		PROC_LOCK(p);
1773 
1774 		/*
1775 		 * If this is a system, protected or killed process, skip it.
1776 		 */
1777 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1778 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1779 		    p->p_pid == 1 || P_KILLED(p) ||
1780 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1781 			PROC_UNLOCK(p);
1782 			continue;
1783 		}
1784 		/*
1785 		 * If the process is in a non-running type state,
1786 		 * don't touch it.  Check all the threads individually.
1787 		 */
1788 		breakout = false;
1789 		FOREACH_THREAD_IN_PROC(p, td) {
1790 			thread_lock(td);
1791 			if (!TD_ON_RUNQ(td) &&
1792 			    !TD_IS_RUNNING(td) &&
1793 			    !TD_IS_SLEEPING(td) &&
1794 			    !TD_IS_SUSPENDED(td) &&
1795 			    !TD_IS_SWAPPED(td)) {
1796 				thread_unlock(td);
1797 				breakout = true;
1798 				break;
1799 			}
1800 			thread_unlock(td);
1801 		}
1802 		if (breakout) {
1803 			PROC_UNLOCK(p);
1804 			continue;
1805 		}
1806 		/*
1807 		 * get the process size
1808 		 */
1809 		vm = vmspace_acquire_ref(p);
1810 		if (vm == NULL) {
1811 			PROC_UNLOCK(p);
1812 			continue;
1813 		}
1814 		_PHOLD_LITE(p);
1815 		PROC_UNLOCK(p);
1816 		sx_sunlock(&allproc_lock);
1817 		if (!vm_map_trylock_read(&vm->vm_map)) {
1818 			vmspace_free(vm);
1819 			sx_slock(&allproc_lock);
1820 			PRELE(p);
1821 			continue;
1822 		}
1823 		size = vmspace_swap_count(vm);
1824 		if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1825 			size += vm_pageout_oom_pagecount(vm);
1826 		vm_map_unlock_read(&vm->vm_map);
1827 		vmspace_free(vm);
1828 		sx_slock(&allproc_lock);
1829 
1830 		/*
1831 		 * If this process is bigger than the biggest one,
1832 		 * remember it.
1833 		 */
1834 		if (size > bigsize) {
1835 			if (bigproc != NULL)
1836 				PRELE(bigproc);
1837 			bigproc = p;
1838 			bigsize = size;
1839 		} else {
1840 			PRELE(p);
1841 		}
1842 	}
1843 	sx_sunlock(&allproc_lock);
1844 	if (bigproc != NULL) {
1845 		if (vm_panic_on_oom != 0)
1846 			panic("out of swap space");
1847 		PROC_LOCK(bigproc);
1848 		killproc(bigproc, "out of swap space");
1849 		sched_nice(bigproc, PRIO_MIN);
1850 		_PRELE(bigproc);
1851 		PROC_UNLOCK(bigproc);
1852 	}
1853 }
1854 
1855 static bool
1856 vm_pageout_lowmem(void)
1857 {
1858 	static int lowmem_ticks = 0;
1859 	int last;
1860 
1861 	last = atomic_load_int(&lowmem_ticks);
1862 	while ((u_int)(ticks - last) / hz >= lowmem_period) {
1863 		if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
1864 			continue;
1865 
1866 		/*
1867 		 * Decrease registered cache sizes.
1868 		 */
1869 		SDT_PROBE0(vm, , , vm__lowmem_scan);
1870 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1871 
1872 		/*
1873 		 * We do this explicitly after the caches have been
1874 		 * drained above.
1875 		 */
1876 		uma_reclaim();
1877 		return (true);
1878 	}
1879 	return (false);
1880 }
1881 
1882 static void
1883 vm_pageout_worker(void *arg)
1884 {
1885 	struct vm_domain *vmd;
1886 	u_int ofree;
1887 	int addl_shortage, domain, shortage;
1888 	bool target_met;
1889 
1890 	domain = (uintptr_t)arg;
1891 	vmd = VM_DOMAIN(domain);
1892 	shortage = 0;
1893 	target_met = true;
1894 
1895 	/*
1896 	 * XXXKIB It could be useful to bind pageout daemon threads to
1897 	 * the cores belonging to the domain, from which vm_page_array
1898 	 * is allocated.
1899 	 */
1900 
1901 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1902 	vmd->vmd_last_active_scan = ticks;
1903 
1904 	/*
1905 	 * The pageout daemon worker is never done, so loop forever.
1906 	 */
1907 	while (TRUE) {
1908 		vm_domain_pageout_lock(vmd);
1909 
1910 		/*
1911 		 * We need to clear wanted before we check the limits.  This
1912 		 * prevents races with wakers who will check wanted after they
1913 		 * reach the limit.
1914 		 */
1915 		atomic_store_int(&vmd->vmd_pageout_wanted, 0);
1916 
1917 		/*
1918 		 * Might the page daemon need to run again?
1919 		 */
1920 		if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
1921 			/*
1922 			 * Yes.  If the scan failed to produce enough free
1923 			 * pages, sleep uninterruptibly for some time in the
1924 			 * hope that the laundry thread will clean some pages.
1925 			 */
1926 			vm_domain_pageout_unlock(vmd);
1927 			if (!target_met)
1928 				pause("pwait", hz / VM_INACT_SCAN_RATE);
1929 		} else {
1930 			/*
1931 			 * No, sleep until the next wakeup or until pages
1932 			 * need to have their reference stats updated.
1933 			 */
1934 			if (mtx_sleep(&vmd->vmd_pageout_wanted,
1935 			    vm_domain_pageout_lockptr(vmd), PDROP | PVM,
1936 			    "psleep", hz / VM_INACT_SCAN_RATE) == 0)
1937 				VM_CNT_INC(v_pdwakeups);
1938 		}
1939 
1940 		/* Prevent spurious wakeups by ensuring that wanted is set. */
1941 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
1942 
1943 		/*
1944 		 * Use the controller to calculate how many pages to free in
1945 		 * this interval, and scan the inactive queue.  If the lowmem
1946 		 * handlers appear to have freed up some pages, subtract the
1947 		 * difference from the inactive queue scan target.
1948 		 */
1949 		shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
1950 		if (shortage > 0) {
1951 			ofree = vmd->vmd_free_count;
1952 			if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
1953 				shortage -= min(vmd->vmd_free_count - ofree,
1954 				    (u_int)shortage);
1955 			target_met = vm_pageout_scan_inactive(vmd, shortage,
1956 			    &addl_shortage);
1957 		} else
1958 			addl_shortage = 0;
1959 
1960 		/*
1961 		 * Scan the active queue.  A positive value for shortage
1962 		 * indicates that we must aggressively deactivate pages to avoid
1963 		 * a shortfall.
1964 		 */
1965 		shortage = vm_pageout_active_target(vmd) + addl_shortage;
1966 		vm_pageout_scan_active(vmd, shortage);
1967 	}
1968 }
1969 
1970 /*
1971  *	vm_pageout_init initialises basic pageout daemon settings.
1972  */
1973 static void
1974 vm_pageout_init_domain(int domain)
1975 {
1976 	struct vm_domain *vmd;
1977 	struct sysctl_oid *oid;
1978 
1979 	vmd = VM_DOMAIN(domain);
1980 	vmd->vmd_interrupt_free_min = 2;
1981 
1982 	/*
1983 	 * v_free_reserved needs to include enough for the largest
1984 	 * swap pager structures plus enough for any pv_entry structs
1985 	 * when paging.
1986 	 */
1987 	if (vmd->vmd_page_count > 1024)
1988 		vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200;
1989 	else
1990 		vmd->vmd_free_min = 4;
1991 	vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
1992 	    vmd->vmd_interrupt_free_min;
1993 	vmd->vmd_free_reserved = vm_pageout_page_count +
1994 	    vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768);
1995 	vmd->vmd_free_severe = vmd->vmd_free_min / 2;
1996 	vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
1997 	vmd->vmd_free_min += vmd->vmd_free_reserved;
1998 	vmd->vmd_free_severe += vmd->vmd_free_reserved;
1999 	vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2000 	if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2001 		vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2002 
2003 	/*
2004 	 * Set the default wakeup threshold to be 10% below the paging
2005 	 * target.  This keeps the steady state out of shortfall.
2006 	 */
2007 	vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2008 
2009 	/*
2010 	 * Target amount of memory to move out of the laundry queue during a
2011 	 * background laundering.  This is proportional to the amount of system
2012 	 * memory.
2013 	 */
2014 	vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2015 	    vmd->vmd_free_min) / 10;
2016 
2017 	/* Initialize the pageout daemon pid controller. */
2018 	pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2019 	    vmd->vmd_free_target, PIDCTRL_BOUND,
2020 	    PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2021 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2022 	    "pidctrl", CTLFLAG_RD, NULL, "");
2023 	pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2024 }
2025 
2026 static void
2027 vm_pageout_init(void)
2028 {
2029 	u_int freecount;
2030 	int i;
2031 
2032 	/*
2033 	 * Initialize some paging parameters.
2034 	 */
2035 	if (vm_cnt.v_page_count < 2000)
2036 		vm_pageout_page_count = 8;
2037 
2038 	freecount = 0;
2039 	for (i = 0; i < vm_ndomains; i++) {
2040 		struct vm_domain *vmd;
2041 
2042 		vm_pageout_init_domain(i);
2043 		vmd = VM_DOMAIN(i);
2044 		vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2045 		vm_cnt.v_free_target += vmd->vmd_free_target;
2046 		vm_cnt.v_free_min += vmd->vmd_free_min;
2047 		vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2048 		vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2049 		vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2050 		vm_cnt.v_free_severe += vmd->vmd_free_severe;
2051 		freecount += vmd->vmd_free_count;
2052 	}
2053 
2054 	/*
2055 	 * Set interval in seconds for active scan.  We want to visit each
2056 	 * page at least once every ten minutes.  This is to prevent worst
2057 	 * case paging behaviors with stale active LRU.
2058 	 */
2059 	if (vm_pageout_update_period == 0)
2060 		vm_pageout_update_period = 600;
2061 
2062 	if (vm_page_max_user_wired == 0)
2063 		vm_page_max_user_wired = freecount / 3;
2064 }
2065 
2066 /*
2067  *     vm_pageout is the high level pageout daemon.
2068  */
2069 static void
2070 vm_pageout(void)
2071 {
2072 	struct proc *p;
2073 	struct thread *td;
2074 	int error, first, i;
2075 
2076 	p = curproc;
2077 	td = curthread;
2078 
2079 	mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2080 	swap_pager_swap_init();
2081 	for (first = -1, i = 0; i < vm_ndomains; i++) {
2082 		if (VM_DOMAIN_EMPTY(i)) {
2083 			if (bootverbose)
2084 				printf("domain %d empty; skipping pageout\n",
2085 				    i);
2086 			continue;
2087 		}
2088 		if (first == -1)
2089 			first = i;
2090 		else {
2091 			error = kthread_add(vm_pageout_worker,
2092 			    (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2093 			if (error != 0)
2094 				panic("starting pageout for domain %d: %d\n",
2095 				    i, error);
2096 		}
2097 		error = kthread_add(vm_pageout_laundry_worker,
2098 		    (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2099 		if (error != 0)
2100 			panic("starting laundry for domain %d: %d", i, error);
2101 	}
2102 	error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2103 	if (error != 0)
2104 		panic("starting uma_reclaim helper, error %d\n", error);
2105 
2106 	snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2107 	vm_pageout_worker((void *)(uintptr_t)first);
2108 }
2109 
2110 /*
2111  * Perform an advisory wakeup of the page daemon.
2112  */
2113 void
2114 pagedaemon_wakeup(int domain)
2115 {
2116 	struct vm_domain *vmd;
2117 
2118 	vmd = VM_DOMAIN(domain);
2119 	vm_domain_pageout_assert_unlocked(vmd);
2120 	if (curproc == pageproc)
2121 		return;
2122 
2123 	if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2124 		vm_domain_pageout_lock(vmd);
2125 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2126 		wakeup(&vmd->vmd_pageout_wanted);
2127 		vm_domain_pageout_unlock(vmd);
2128 	}
2129 }
2130