xref: /freebsd/sys/vm/vm_pageout.c (revision 10ff414c14eef433d8157f0c17904d740693933b)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72 
73 /*
74  *	The proverbial page-out daemon.
75  */
76 
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79 
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/blockcount.h>
86 #include <sys/eventhandler.h>
87 #include <sys/lock.h>
88 #include <sys/mutex.h>
89 #include <sys/proc.h>
90 #include <sys/kthread.h>
91 #include <sys/ktr.h>
92 #include <sys/mount.h>
93 #include <sys/racct.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sched.h>
96 #include <sys/sdt.h>
97 #include <sys/signalvar.h>
98 #include <sys/smp.h>
99 #include <sys/time.h>
100 #include <sys/vnode.h>
101 #include <sys/vmmeter.h>
102 #include <sys/rwlock.h>
103 #include <sys/sx.h>
104 #include <sys/sysctl.h>
105 
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_pageout.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_phys.h>
114 #include <vm/vm_pagequeue.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118 
119 /*
120  * System initialization
121  */
122 
123 /* the kernel process "vm_pageout"*/
124 static void vm_pageout(void);
125 static void vm_pageout_init(void);
126 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
127 static int vm_pageout_cluster(vm_page_t m);
128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
129     int starting_page_shortage);
130 
131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
132     NULL);
133 
134 struct proc *pageproc;
135 
136 static struct kproc_desc page_kp = {
137 	"pagedaemon",
138 	vm_pageout,
139 	&pageproc
140 };
141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
142     &page_kp);
143 
144 SDT_PROVIDER_DEFINE(vm);
145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
146 
147 /* Pagedaemon activity rates, in subdivisions of one second. */
148 #define	VM_LAUNDER_RATE		10
149 #define	VM_INACT_SCAN_RATE	10
150 
151 static int vm_pageout_oom_seq = 12;
152 
153 static int vm_pageout_update_period;
154 static int disable_swap_pageouts;
155 static int lowmem_period = 10;
156 static int swapdev_enabled;
157 
158 static int vm_panic_on_oom = 0;
159 
160 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
161 	CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
162 	"Panic on the given number of out-of-memory errors instead of killing the largest process");
163 
164 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
165 	CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
166 	"Maximum active LRU update period");
167 
168 static int pageout_cpus_per_thread = 16;
169 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
170     &pageout_cpus_per_thread, 0,
171     "Number of CPUs per pagedaemon worker thread");
172 
173 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
174 	"Low memory callback period");
175 
176 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
177 	CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
178 
179 static int pageout_lock_miss;
180 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
181 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
182 
183 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
184 	CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
185 	"back-to-back calls to oom detector to start OOM");
186 
187 static int act_scan_laundry_weight = 3;
188 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
189     &act_scan_laundry_weight, 0,
190     "weight given to clean vs. dirty pages in active queue scans");
191 
192 static u_int vm_background_launder_rate = 4096;
193 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
194     &vm_background_launder_rate, 0,
195     "background laundering rate, in kilobytes per second");
196 
197 static u_int vm_background_launder_max = 20 * 1024;
198 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
199     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
200 
201 int vm_pageout_page_count = 32;
202 
203 u_long vm_page_max_user_wired;
204 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
205     &vm_page_max_user_wired, 0,
206     "system-wide limit to user-wired page count");
207 
208 static u_int isqrt(u_int num);
209 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
210     bool in_shortfall);
211 static void vm_pageout_laundry_worker(void *arg);
212 
213 struct scan_state {
214 	struct vm_batchqueue bq;
215 	struct vm_pagequeue *pq;
216 	vm_page_t	marker;
217 	int		maxscan;
218 	int		scanned;
219 };
220 
221 static void
222 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
223     vm_page_t marker, vm_page_t after, int maxscan)
224 {
225 
226 	vm_pagequeue_assert_locked(pq);
227 	KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
228 	    ("marker %p already enqueued", marker));
229 
230 	if (after == NULL)
231 		TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
232 	else
233 		TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
234 	vm_page_aflag_set(marker, PGA_ENQUEUED);
235 
236 	vm_batchqueue_init(&ss->bq);
237 	ss->pq = pq;
238 	ss->marker = marker;
239 	ss->maxscan = maxscan;
240 	ss->scanned = 0;
241 	vm_pagequeue_unlock(pq);
242 }
243 
244 static void
245 vm_pageout_end_scan(struct scan_state *ss)
246 {
247 	struct vm_pagequeue *pq;
248 
249 	pq = ss->pq;
250 	vm_pagequeue_assert_locked(pq);
251 	KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
252 	    ("marker %p not enqueued", ss->marker));
253 
254 	TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
255 	vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
256 	pq->pq_pdpages += ss->scanned;
257 }
258 
259 /*
260  * Add a small number of queued pages to a batch queue for later processing
261  * without the corresponding queue lock held.  The caller must have enqueued a
262  * marker page at the desired start point for the scan.  Pages will be
263  * physically dequeued if the caller so requests.  Otherwise, the returned
264  * batch may contain marker pages, and it is up to the caller to handle them.
265  *
266  * When processing the batch queue, vm_pageout_defer() must be used to
267  * determine whether the page has been logically dequeued since the batch was
268  * collected.
269  */
270 static __always_inline void
271 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
272 {
273 	struct vm_pagequeue *pq;
274 	vm_page_t m, marker, n;
275 
276 	marker = ss->marker;
277 	pq = ss->pq;
278 
279 	KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
280 	    ("marker %p not enqueued", ss->marker));
281 
282 	vm_pagequeue_lock(pq);
283 	for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
284 	    ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
285 	    m = n, ss->scanned++) {
286 		n = TAILQ_NEXT(m, plinks.q);
287 		if ((m->flags & PG_MARKER) == 0) {
288 			KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
289 			    ("page %p not enqueued", m));
290 			KASSERT((m->flags & PG_FICTITIOUS) == 0,
291 			    ("Fictitious page %p cannot be in page queue", m));
292 			KASSERT((m->oflags & VPO_UNMANAGED) == 0,
293 			    ("Unmanaged page %p cannot be in page queue", m));
294 		} else if (dequeue)
295 			continue;
296 
297 		(void)vm_batchqueue_insert(&ss->bq, m);
298 		if (dequeue) {
299 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
300 			vm_page_aflag_clear(m, PGA_ENQUEUED);
301 		}
302 	}
303 	TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
304 	if (__predict_true(m != NULL))
305 		TAILQ_INSERT_BEFORE(m, marker, plinks.q);
306 	else
307 		TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
308 	if (dequeue)
309 		vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
310 	vm_pagequeue_unlock(pq);
311 }
312 
313 /*
314  * Return the next page to be scanned, or NULL if the scan is complete.
315  */
316 static __always_inline vm_page_t
317 vm_pageout_next(struct scan_state *ss, const bool dequeue)
318 {
319 
320 	if (ss->bq.bq_cnt == 0)
321 		vm_pageout_collect_batch(ss, dequeue);
322 	return (vm_batchqueue_pop(&ss->bq));
323 }
324 
325 /*
326  * Determine whether processing of a page should be deferred and ensure that any
327  * outstanding queue operations are processed.
328  */
329 static __always_inline bool
330 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
331 {
332 	vm_page_astate_t as;
333 
334 	as = vm_page_astate_load(m);
335 	if (__predict_false(as.queue != queue ||
336 	    ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
337 		return (true);
338 	if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
339 		vm_page_pqbatch_submit(m, queue);
340 		return (true);
341 	}
342 	return (false);
343 }
344 
345 /*
346  * Scan for pages at adjacent offsets within the given page's object that are
347  * eligible for laundering, form a cluster of these pages and the given page,
348  * and launder that cluster.
349  */
350 static int
351 vm_pageout_cluster(vm_page_t m)
352 {
353 	vm_object_t object;
354 	vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
355 	vm_pindex_t pindex;
356 	int ib, is, page_base, pageout_count;
357 
358 	object = m->object;
359 	VM_OBJECT_ASSERT_WLOCKED(object);
360 	pindex = m->pindex;
361 
362 	vm_page_assert_xbusied(m);
363 
364 	mc[vm_pageout_page_count] = pb = ps = m;
365 	pageout_count = 1;
366 	page_base = vm_pageout_page_count;
367 	ib = 1;
368 	is = 1;
369 
370 	/*
371 	 * We can cluster only if the page is not clean, busy, or held, and
372 	 * the page is in the laundry queue.
373 	 *
374 	 * During heavy mmap/modification loads the pageout
375 	 * daemon can really fragment the underlying file
376 	 * due to flushing pages out of order and not trying to
377 	 * align the clusters (which leaves sporadic out-of-order
378 	 * holes).  To solve this problem we do the reverse scan
379 	 * first and attempt to align our cluster, then do a
380 	 * forward scan if room remains.
381 	 */
382 more:
383 	while (ib != 0 && pageout_count < vm_pageout_page_count) {
384 		if (ib > pindex) {
385 			ib = 0;
386 			break;
387 		}
388 		if ((p = vm_page_prev(pb)) == NULL ||
389 		    vm_page_tryxbusy(p) == 0) {
390 			ib = 0;
391 			break;
392 		}
393 		if (vm_page_wired(p)) {
394 			ib = 0;
395 			vm_page_xunbusy(p);
396 			break;
397 		}
398 		vm_page_test_dirty(p);
399 		if (p->dirty == 0) {
400 			ib = 0;
401 			vm_page_xunbusy(p);
402 			break;
403 		}
404 		if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
405 			vm_page_xunbusy(p);
406 			ib = 0;
407 			break;
408 		}
409 		mc[--page_base] = pb = p;
410 		++pageout_count;
411 		++ib;
412 
413 		/*
414 		 * We are at an alignment boundary.  Stop here, and switch
415 		 * directions.  Do not clear ib.
416 		 */
417 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
418 			break;
419 	}
420 	while (pageout_count < vm_pageout_page_count &&
421 	    pindex + is < object->size) {
422 		if ((p = vm_page_next(ps)) == NULL ||
423 		    vm_page_tryxbusy(p) == 0)
424 			break;
425 		if (vm_page_wired(p)) {
426 			vm_page_xunbusy(p);
427 			break;
428 		}
429 		vm_page_test_dirty(p);
430 		if (p->dirty == 0) {
431 			vm_page_xunbusy(p);
432 			break;
433 		}
434 		if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
435 			vm_page_xunbusy(p);
436 			break;
437 		}
438 		mc[page_base + pageout_count] = ps = p;
439 		++pageout_count;
440 		++is;
441 	}
442 
443 	/*
444 	 * If we exhausted our forward scan, continue with the reverse scan
445 	 * when possible, even past an alignment boundary.  This catches
446 	 * boundary conditions.
447 	 */
448 	if (ib != 0 && pageout_count < vm_pageout_page_count)
449 		goto more;
450 
451 	return (vm_pageout_flush(&mc[page_base], pageout_count,
452 	    VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
453 }
454 
455 /*
456  * vm_pageout_flush() - launder the given pages
457  *
458  *	The given pages are laundered.  Note that we setup for the start of
459  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
460  *	reference count all in here rather then in the parent.  If we want
461  *	the parent to do more sophisticated things we may have to change
462  *	the ordering.
463  *
464  *	Returned runlen is the count of pages between mreq and first
465  *	page after mreq with status VM_PAGER_AGAIN.
466  *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
467  *	for any page in runlen set.
468  */
469 int
470 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
471     boolean_t *eio)
472 {
473 	vm_object_t object = mc[0]->object;
474 	int pageout_status[count];
475 	int numpagedout = 0;
476 	int i, runlen;
477 
478 	VM_OBJECT_ASSERT_WLOCKED(object);
479 
480 	/*
481 	 * Initiate I/O.  Mark the pages shared busy and verify that they're
482 	 * valid and read-only.
483 	 *
484 	 * We do not have to fixup the clean/dirty bits here... we can
485 	 * allow the pager to do it after the I/O completes.
486 	 *
487 	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
488 	 * edge case with file fragments.
489 	 */
490 	for (i = 0; i < count; i++) {
491 		KASSERT(vm_page_all_valid(mc[i]),
492 		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
493 			mc[i], i, count));
494 		KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
495 		    ("vm_pageout_flush: writeable page %p", mc[i]));
496 		vm_page_busy_downgrade(mc[i]);
497 	}
498 	vm_object_pip_add(object, count);
499 
500 	vm_pager_put_pages(object, mc, count, flags, pageout_status);
501 
502 	runlen = count - mreq;
503 	if (eio != NULL)
504 		*eio = FALSE;
505 	for (i = 0; i < count; i++) {
506 		vm_page_t mt = mc[i];
507 
508 		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
509 		    !pmap_page_is_write_mapped(mt),
510 		    ("vm_pageout_flush: page %p is not write protected", mt));
511 		switch (pageout_status[i]) {
512 		case VM_PAGER_OK:
513 			/*
514 			 * The page may have moved since laundering started, in
515 			 * which case it should be left alone.
516 			 */
517 			if (vm_page_in_laundry(mt))
518 				vm_page_deactivate_noreuse(mt);
519 			/* FALLTHROUGH */
520 		case VM_PAGER_PEND:
521 			numpagedout++;
522 			break;
523 		case VM_PAGER_BAD:
524 			/*
525 			 * The page is outside the object's range.  We pretend
526 			 * that the page out worked and clean the page, so the
527 			 * changes will be lost if the page is reclaimed by
528 			 * the page daemon.
529 			 */
530 			vm_page_undirty(mt);
531 			if (vm_page_in_laundry(mt))
532 				vm_page_deactivate_noreuse(mt);
533 			break;
534 		case VM_PAGER_ERROR:
535 		case VM_PAGER_FAIL:
536 			/*
537 			 * If the page couldn't be paged out to swap because the
538 			 * pager wasn't able to find space, place the page in
539 			 * the PQ_UNSWAPPABLE holding queue.  This is an
540 			 * optimization that prevents the page daemon from
541 			 * wasting CPU cycles on pages that cannot be reclaimed
542 			 * because no swap device is configured.
543 			 *
544 			 * Otherwise, reactivate the page so that it doesn't
545 			 * clog the laundry and inactive queues.  (We will try
546 			 * paging it out again later.)
547 			 */
548 			if ((object->flags & OBJ_SWAP) != 0 &&
549 			    pageout_status[i] == VM_PAGER_FAIL) {
550 				vm_page_unswappable(mt);
551 				numpagedout++;
552 			} else
553 				vm_page_activate(mt);
554 			if (eio != NULL && i >= mreq && i - mreq < runlen)
555 				*eio = TRUE;
556 			break;
557 		case VM_PAGER_AGAIN:
558 			if (i >= mreq && i - mreq < runlen)
559 				runlen = i - mreq;
560 			break;
561 		}
562 
563 		/*
564 		 * If the operation is still going, leave the page busy to
565 		 * block all other accesses. Also, leave the paging in
566 		 * progress indicator set so that we don't attempt an object
567 		 * collapse.
568 		 */
569 		if (pageout_status[i] != VM_PAGER_PEND) {
570 			vm_object_pip_wakeup(object);
571 			vm_page_sunbusy(mt);
572 		}
573 	}
574 	if (prunlen != NULL)
575 		*prunlen = runlen;
576 	return (numpagedout);
577 }
578 
579 static void
580 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
581 {
582 
583 	atomic_store_rel_int(&swapdev_enabled, 1);
584 }
585 
586 static void
587 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
588 {
589 
590 	if (swap_pager_nswapdev() == 1)
591 		atomic_store_rel_int(&swapdev_enabled, 0);
592 }
593 
594 /*
595  * Attempt to acquire all of the necessary locks to launder a page and
596  * then call through the clustering layer to PUTPAGES.  Wait a short
597  * time for a vnode lock.
598  *
599  * Requires the page and object lock on entry, releases both before return.
600  * Returns 0 on success and an errno otherwise.
601  */
602 static int
603 vm_pageout_clean(vm_page_t m, int *numpagedout)
604 {
605 	struct vnode *vp;
606 	struct mount *mp;
607 	vm_object_t object;
608 	vm_pindex_t pindex;
609 	int error;
610 
611 	object = m->object;
612 	VM_OBJECT_ASSERT_WLOCKED(object);
613 	error = 0;
614 	vp = NULL;
615 	mp = NULL;
616 
617 	/*
618 	 * The object is already known NOT to be dead.   It
619 	 * is possible for the vget() to block the whole
620 	 * pageout daemon, but the new low-memory handling
621 	 * code should prevent it.
622 	 *
623 	 * We can't wait forever for the vnode lock, we might
624 	 * deadlock due to a vn_read() getting stuck in
625 	 * vm_wait while holding this vnode.  We skip the
626 	 * vnode if we can't get it in a reasonable amount
627 	 * of time.
628 	 */
629 	if (object->type == OBJT_VNODE) {
630 		vm_page_xunbusy(m);
631 		vp = object->handle;
632 		if (vp->v_type == VREG &&
633 		    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
634 			mp = NULL;
635 			error = EDEADLK;
636 			goto unlock_all;
637 		}
638 		KASSERT(mp != NULL,
639 		    ("vp %p with NULL v_mount", vp));
640 		vm_object_reference_locked(object);
641 		pindex = m->pindex;
642 		VM_OBJECT_WUNLOCK(object);
643 		if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) {
644 			vp = NULL;
645 			error = EDEADLK;
646 			goto unlock_mp;
647 		}
648 		VM_OBJECT_WLOCK(object);
649 
650 		/*
651 		 * Ensure that the object and vnode were not disassociated
652 		 * while locks were dropped.
653 		 */
654 		if (vp->v_object != object) {
655 			error = ENOENT;
656 			goto unlock_all;
657 		}
658 
659 		/*
660 		 * While the object was unlocked, the page may have been:
661 		 * (1) moved to a different queue,
662 		 * (2) reallocated to a different object,
663 		 * (3) reallocated to a different offset, or
664 		 * (4) cleaned.
665 		 */
666 		if (!vm_page_in_laundry(m) || m->object != object ||
667 		    m->pindex != pindex || m->dirty == 0) {
668 			error = ENXIO;
669 			goto unlock_all;
670 		}
671 
672 		/*
673 		 * The page may have been busied while the object lock was
674 		 * released.
675 		 */
676 		if (vm_page_tryxbusy(m) == 0) {
677 			error = EBUSY;
678 			goto unlock_all;
679 		}
680 	}
681 
682 	/*
683 	 * Remove all writeable mappings, failing if the page is wired.
684 	 */
685 	if (!vm_page_try_remove_write(m)) {
686 		vm_page_xunbusy(m);
687 		error = EBUSY;
688 		goto unlock_all;
689 	}
690 
691 	/*
692 	 * If a page is dirty, then it is either being washed
693 	 * (but not yet cleaned) or it is still in the
694 	 * laundry.  If it is still in the laundry, then we
695 	 * start the cleaning operation.
696 	 */
697 	if ((*numpagedout = vm_pageout_cluster(m)) == 0)
698 		error = EIO;
699 
700 unlock_all:
701 	VM_OBJECT_WUNLOCK(object);
702 
703 unlock_mp:
704 	if (mp != NULL) {
705 		if (vp != NULL)
706 			vput(vp);
707 		vm_object_deallocate(object);
708 		vn_finished_write(mp);
709 	}
710 
711 	return (error);
712 }
713 
714 /*
715  * Attempt to launder the specified number of pages.
716  *
717  * Returns the number of pages successfully laundered.
718  */
719 static int
720 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
721 {
722 	struct scan_state ss;
723 	struct vm_pagequeue *pq;
724 	vm_object_t object;
725 	vm_page_t m, marker;
726 	vm_page_astate_t new, old;
727 	int act_delta, error, numpagedout, queue, refs, starting_target;
728 	int vnodes_skipped;
729 	bool pageout_ok;
730 
731 	object = NULL;
732 	starting_target = launder;
733 	vnodes_skipped = 0;
734 
735 	/*
736 	 * Scan the laundry queues for pages eligible to be laundered.  We stop
737 	 * once the target number of dirty pages have been laundered, or once
738 	 * we've reached the end of the queue.  A single iteration of this loop
739 	 * may cause more than one page to be laundered because of clustering.
740 	 *
741 	 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
742 	 * swap devices are configured.
743 	 */
744 	if (atomic_load_acq_int(&swapdev_enabled))
745 		queue = PQ_UNSWAPPABLE;
746 	else
747 		queue = PQ_LAUNDRY;
748 
749 scan:
750 	marker = &vmd->vmd_markers[queue];
751 	pq = &vmd->vmd_pagequeues[queue];
752 	vm_pagequeue_lock(pq);
753 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
754 	while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
755 		if (__predict_false((m->flags & PG_MARKER) != 0))
756 			continue;
757 
758 		/*
759 		 * Don't touch a page that was removed from the queue after the
760 		 * page queue lock was released.  Otherwise, ensure that any
761 		 * pending queue operations, such as dequeues for wired pages,
762 		 * are handled.
763 		 */
764 		if (vm_pageout_defer(m, queue, true))
765 			continue;
766 
767 		/*
768 		 * Lock the page's object.
769 		 */
770 		if (object == NULL || object != m->object) {
771 			if (object != NULL)
772 				VM_OBJECT_WUNLOCK(object);
773 			object = atomic_load_ptr(&m->object);
774 			if (__predict_false(object == NULL))
775 				/* The page is being freed by another thread. */
776 				continue;
777 
778 			/* Depends on type-stability. */
779 			VM_OBJECT_WLOCK(object);
780 			if (__predict_false(m->object != object)) {
781 				VM_OBJECT_WUNLOCK(object);
782 				object = NULL;
783 				continue;
784 			}
785 		}
786 
787 		if (vm_page_tryxbusy(m) == 0)
788 			continue;
789 
790 		/*
791 		 * Check for wirings now that we hold the object lock and have
792 		 * exclusively busied the page.  If the page is mapped, it may
793 		 * still be wired by pmap lookups.  The call to
794 		 * vm_page_try_remove_all() below atomically checks for such
795 		 * wirings and removes mappings.  If the page is unmapped, the
796 		 * wire count is guaranteed not to increase after this check.
797 		 */
798 		if (__predict_false(vm_page_wired(m)))
799 			goto skip_page;
800 
801 		/*
802 		 * Invalid pages can be easily freed.  They cannot be
803 		 * mapped; vm_page_free() asserts this.
804 		 */
805 		if (vm_page_none_valid(m))
806 			goto free_page;
807 
808 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
809 
810 		for (old = vm_page_astate_load(m);;) {
811 			/*
812 			 * Check to see if the page has been removed from the
813 			 * queue since the first such check.  Leave it alone if
814 			 * so, discarding any references collected by
815 			 * pmap_ts_referenced().
816 			 */
817 			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
818 				goto skip_page;
819 
820 			new = old;
821 			act_delta = refs;
822 			if ((old.flags & PGA_REFERENCED) != 0) {
823 				new.flags &= ~PGA_REFERENCED;
824 				act_delta++;
825 			}
826 			if (act_delta == 0) {
827 				;
828 			} else if (object->ref_count != 0) {
829 				/*
830 				 * Increase the activation count if the page was
831 				 * referenced while in the laundry queue.  This
832 				 * makes it less likely that the page will be
833 				 * returned prematurely to the laundry queue.
834 				 */
835 				new.act_count += ACT_ADVANCE +
836 				    act_delta;
837 				if (new.act_count > ACT_MAX)
838 					new.act_count = ACT_MAX;
839 
840 				new.flags &= ~PGA_QUEUE_OP_MASK;
841 				new.flags |= PGA_REQUEUE;
842 				new.queue = PQ_ACTIVE;
843 				if (!vm_page_pqstate_commit(m, &old, new))
844 					continue;
845 
846 				/*
847 				 * If this was a background laundering, count
848 				 * activated pages towards our target.  The
849 				 * purpose of background laundering is to ensure
850 				 * that pages are eventually cycled through the
851 				 * laundry queue, and an activation is a valid
852 				 * way out.
853 				 */
854 				if (!in_shortfall)
855 					launder--;
856 				VM_CNT_INC(v_reactivated);
857 				goto skip_page;
858 			} else if ((object->flags & OBJ_DEAD) == 0) {
859 				new.flags |= PGA_REQUEUE;
860 				if (!vm_page_pqstate_commit(m, &old, new))
861 					continue;
862 				goto skip_page;
863 			}
864 			break;
865 		}
866 
867 		/*
868 		 * If the page appears to be clean at the machine-independent
869 		 * layer, then remove all of its mappings from the pmap in
870 		 * anticipation of freeing it.  If, however, any of the page's
871 		 * mappings allow write access, then the page may still be
872 		 * modified until the last of those mappings are removed.
873 		 */
874 		if (object->ref_count != 0) {
875 			vm_page_test_dirty(m);
876 			if (m->dirty == 0 && !vm_page_try_remove_all(m))
877 				goto skip_page;
878 		}
879 
880 		/*
881 		 * Clean pages are freed, and dirty pages are paged out unless
882 		 * they belong to a dead object.  Requeueing dirty pages from
883 		 * dead objects is pointless, as they are being paged out and
884 		 * freed by the thread that destroyed the object.
885 		 */
886 		if (m->dirty == 0) {
887 free_page:
888 			/*
889 			 * Now we are guaranteed that no other threads are
890 			 * manipulating the page, check for a last-second
891 			 * reference.
892 			 */
893 			if (vm_pageout_defer(m, queue, true))
894 				goto skip_page;
895 			vm_page_free(m);
896 			VM_CNT_INC(v_dfree);
897 		} else if ((object->flags & OBJ_DEAD) == 0) {
898 			if ((object->flags & OBJ_SWAP) == 0 &&
899 			    object->type != OBJT_DEFAULT)
900 				pageout_ok = true;
901 			else if (disable_swap_pageouts)
902 				pageout_ok = false;
903 			else
904 				pageout_ok = true;
905 			if (!pageout_ok) {
906 				vm_page_launder(m);
907 				goto skip_page;
908 			}
909 
910 			/*
911 			 * Form a cluster with adjacent, dirty pages from the
912 			 * same object, and page out that entire cluster.
913 			 *
914 			 * The adjacent, dirty pages must also be in the
915 			 * laundry.  However, their mappings are not checked
916 			 * for new references.  Consequently, a recently
917 			 * referenced page may be paged out.  However, that
918 			 * page will not be prematurely reclaimed.  After page
919 			 * out, the page will be placed in the inactive queue,
920 			 * where any new references will be detected and the
921 			 * page reactivated.
922 			 */
923 			error = vm_pageout_clean(m, &numpagedout);
924 			if (error == 0) {
925 				launder -= numpagedout;
926 				ss.scanned += numpagedout;
927 			} else if (error == EDEADLK) {
928 				pageout_lock_miss++;
929 				vnodes_skipped++;
930 			}
931 			object = NULL;
932 		} else {
933 skip_page:
934 			vm_page_xunbusy(m);
935 		}
936 	}
937 	if (object != NULL) {
938 		VM_OBJECT_WUNLOCK(object);
939 		object = NULL;
940 	}
941 	vm_pagequeue_lock(pq);
942 	vm_pageout_end_scan(&ss);
943 	vm_pagequeue_unlock(pq);
944 
945 	if (launder > 0 && queue == PQ_UNSWAPPABLE) {
946 		queue = PQ_LAUNDRY;
947 		goto scan;
948 	}
949 
950 	/*
951 	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
952 	 * and we didn't launder enough pages.
953 	 */
954 	if (vnodes_skipped > 0 && launder > 0)
955 		(void)speedup_syncer();
956 
957 	return (starting_target - launder);
958 }
959 
960 /*
961  * Compute the integer square root.
962  */
963 static u_int
964 isqrt(u_int num)
965 {
966 	u_int bit, root, tmp;
967 
968 	bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
969 	root = 0;
970 	while (bit != 0) {
971 		tmp = root + bit;
972 		root >>= 1;
973 		if (num >= tmp) {
974 			num -= tmp;
975 			root += bit;
976 		}
977 		bit >>= 2;
978 	}
979 	return (root);
980 }
981 
982 /*
983  * Perform the work of the laundry thread: periodically wake up and determine
984  * whether any pages need to be laundered.  If so, determine the number of pages
985  * that need to be laundered, and launder them.
986  */
987 static void
988 vm_pageout_laundry_worker(void *arg)
989 {
990 	struct vm_domain *vmd;
991 	struct vm_pagequeue *pq;
992 	uint64_t nclean, ndirty, nfreed;
993 	int domain, last_target, launder, shortfall, shortfall_cycle, target;
994 	bool in_shortfall;
995 
996 	domain = (uintptr_t)arg;
997 	vmd = VM_DOMAIN(domain);
998 	pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
999 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1000 
1001 	shortfall = 0;
1002 	in_shortfall = false;
1003 	shortfall_cycle = 0;
1004 	last_target = target = 0;
1005 	nfreed = 0;
1006 
1007 	/*
1008 	 * Calls to these handlers are serialized by the swap syscall lock.
1009 	 */
1010 	(void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1011 	    EVENTHANDLER_PRI_ANY);
1012 	(void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1013 	    EVENTHANDLER_PRI_ANY);
1014 
1015 	/*
1016 	 * The pageout laundry worker is never done, so loop forever.
1017 	 */
1018 	for (;;) {
1019 		KASSERT(target >= 0, ("negative target %d", target));
1020 		KASSERT(shortfall_cycle >= 0,
1021 		    ("negative cycle %d", shortfall_cycle));
1022 		launder = 0;
1023 
1024 		/*
1025 		 * First determine whether we need to launder pages to meet a
1026 		 * shortage of free pages.
1027 		 */
1028 		if (shortfall > 0) {
1029 			in_shortfall = true;
1030 			shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1031 			target = shortfall;
1032 		} else if (!in_shortfall)
1033 			goto trybackground;
1034 		else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1035 			/*
1036 			 * We recently entered shortfall and began laundering
1037 			 * pages.  If we have completed that laundering run
1038 			 * (and we are no longer in shortfall) or we have met
1039 			 * our laundry target through other activity, then we
1040 			 * can stop laundering pages.
1041 			 */
1042 			in_shortfall = false;
1043 			target = 0;
1044 			goto trybackground;
1045 		}
1046 		launder = target / shortfall_cycle--;
1047 		goto dolaundry;
1048 
1049 		/*
1050 		 * There's no immediate need to launder any pages; see if we
1051 		 * meet the conditions to perform background laundering:
1052 		 *
1053 		 * 1. The ratio of dirty to clean inactive pages exceeds the
1054 		 *    background laundering threshold, or
1055 		 * 2. we haven't yet reached the target of the current
1056 		 *    background laundering run.
1057 		 *
1058 		 * The background laundering threshold is not a constant.
1059 		 * Instead, it is a slowly growing function of the number of
1060 		 * clean pages freed by the page daemon since the last
1061 		 * background laundering.  Thus, as the ratio of dirty to
1062 		 * clean inactive pages grows, the amount of memory pressure
1063 		 * required to trigger laundering decreases.  We ensure
1064 		 * that the threshold is non-zero after an inactive queue
1065 		 * scan, even if that scan failed to free a single clean page.
1066 		 */
1067 trybackground:
1068 		nclean = vmd->vmd_free_count +
1069 		    vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1070 		ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1071 		if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1072 		    vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1073 			target = vmd->vmd_background_launder_target;
1074 		}
1075 
1076 		/*
1077 		 * We have a non-zero background laundering target.  If we've
1078 		 * laundered up to our maximum without observing a page daemon
1079 		 * request, just stop.  This is a safety belt that ensures we
1080 		 * don't launder an excessive amount if memory pressure is low
1081 		 * and the ratio of dirty to clean pages is large.  Otherwise,
1082 		 * proceed at the background laundering rate.
1083 		 */
1084 		if (target > 0) {
1085 			if (nfreed > 0) {
1086 				nfreed = 0;
1087 				last_target = target;
1088 			} else if (last_target - target >=
1089 			    vm_background_launder_max * PAGE_SIZE / 1024) {
1090 				target = 0;
1091 			}
1092 			launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1093 			launder /= VM_LAUNDER_RATE;
1094 			if (launder > target)
1095 				launder = target;
1096 		}
1097 
1098 dolaundry:
1099 		if (launder > 0) {
1100 			/*
1101 			 * Because of I/O clustering, the number of laundered
1102 			 * pages could exceed "target" by the maximum size of
1103 			 * a cluster minus one.
1104 			 */
1105 			target -= min(vm_pageout_launder(vmd, launder,
1106 			    in_shortfall), target);
1107 			pause("laundp", hz / VM_LAUNDER_RATE);
1108 		}
1109 
1110 		/*
1111 		 * If we're not currently laundering pages and the page daemon
1112 		 * hasn't posted a new request, sleep until the page daemon
1113 		 * kicks us.
1114 		 */
1115 		vm_pagequeue_lock(pq);
1116 		if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1117 			(void)mtx_sleep(&vmd->vmd_laundry_request,
1118 			    vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1119 
1120 		/*
1121 		 * If the pagedaemon has indicated that it's in shortfall, start
1122 		 * a shortfall laundering unless we're already in the middle of
1123 		 * one.  This may preempt a background laundering.
1124 		 */
1125 		if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1126 		    (!in_shortfall || shortfall_cycle == 0)) {
1127 			shortfall = vm_laundry_target(vmd) +
1128 			    vmd->vmd_pageout_deficit;
1129 			target = 0;
1130 		} else
1131 			shortfall = 0;
1132 
1133 		if (target == 0)
1134 			vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1135 		nfreed += vmd->vmd_clean_pages_freed;
1136 		vmd->vmd_clean_pages_freed = 0;
1137 		vm_pagequeue_unlock(pq);
1138 	}
1139 }
1140 
1141 /*
1142  * Compute the number of pages we want to try to move from the
1143  * active queue to either the inactive or laundry queue.
1144  *
1145  * When scanning active pages during a shortage, we make clean pages
1146  * count more heavily towards the page shortage than dirty pages.
1147  * This is because dirty pages must be laundered before they can be
1148  * reused and thus have less utility when attempting to quickly
1149  * alleviate a free page shortage.  However, this weighting also
1150  * causes the scan to deactivate dirty pages more aggressively,
1151  * improving the effectiveness of clustering.
1152  */
1153 static int
1154 vm_pageout_active_target(struct vm_domain *vmd)
1155 {
1156 	int shortage;
1157 
1158 	shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1159 	    (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1160 	    vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1161 	shortage *= act_scan_laundry_weight;
1162 	return (shortage);
1163 }
1164 
1165 /*
1166  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1167  * small portion of the queue in order to maintain quasi-LRU.
1168  */
1169 static void
1170 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1171 {
1172 	struct scan_state ss;
1173 	vm_object_t object;
1174 	vm_page_t m, marker;
1175 	struct vm_pagequeue *pq;
1176 	vm_page_astate_t old, new;
1177 	long min_scan;
1178 	int act_delta, max_scan, ps_delta, refs, scan_tick;
1179 	uint8_t nqueue;
1180 
1181 	marker = &vmd->vmd_markers[PQ_ACTIVE];
1182 	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1183 	vm_pagequeue_lock(pq);
1184 
1185 	/*
1186 	 * If we're just idle polling attempt to visit every
1187 	 * active page within 'update_period' seconds.
1188 	 */
1189 	scan_tick = ticks;
1190 	if (vm_pageout_update_period != 0) {
1191 		min_scan = pq->pq_cnt;
1192 		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1193 		min_scan /= hz * vm_pageout_update_period;
1194 	} else
1195 		min_scan = 0;
1196 	if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1197 		vmd->vmd_last_active_scan = scan_tick;
1198 
1199 	/*
1200 	 * Scan the active queue for pages that can be deactivated.  Update
1201 	 * the per-page activity counter and use it to identify deactivation
1202 	 * candidates.  Held pages may be deactivated.
1203 	 *
1204 	 * To avoid requeuing each page that remains in the active queue, we
1205 	 * implement the CLOCK algorithm.  To keep the implementation of the
1206 	 * enqueue operation consistent for all page queues, we use two hands,
1207 	 * represented by marker pages. Scans begin at the first hand, which
1208 	 * precedes the second hand in the queue.  When the two hands meet,
1209 	 * they are moved back to the head and tail of the queue, respectively,
1210 	 * and scanning resumes.
1211 	 */
1212 	max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1213 act_scan:
1214 	vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1215 	while ((m = vm_pageout_next(&ss, false)) != NULL) {
1216 		if (__predict_false(m == &vmd->vmd_clock[1])) {
1217 			vm_pagequeue_lock(pq);
1218 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1219 			TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1220 			TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1221 			    plinks.q);
1222 			TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1223 			    plinks.q);
1224 			max_scan -= ss.scanned;
1225 			vm_pageout_end_scan(&ss);
1226 			goto act_scan;
1227 		}
1228 		if (__predict_false((m->flags & PG_MARKER) != 0))
1229 			continue;
1230 
1231 		/*
1232 		 * Don't touch a page that was removed from the queue after the
1233 		 * page queue lock was released.  Otherwise, ensure that any
1234 		 * pending queue operations, such as dequeues for wired pages,
1235 		 * are handled.
1236 		 */
1237 		if (vm_pageout_defer(m, PQ_ACTIVE, true))
1238 			continue;
1239 
1240 		/*
1241 		 * A page's object pointer may be set to NULL before
1242 		 * the object lock is acquired.
1243 		 */
1244 		object = atomic_load_ptr(&m->object);
1245 		if (__predict_false(object == NULL))
1246 			/*
1247 			 * The page has been removed from its object.
1248 			 */
1249 			continue;
1250 
1251 		/* Deferred free of swap space. */
1252 		if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1253 		    VM_OBJECT_TRYWLOCK(object)) {
1254 			if (m->object == object)
1255 				vm_pager_page_unswapped(m);
1256 			VM_OBJECT_WUNLOCK(object);
1257 		}
1258 
1259 		/*
1260 		 * Check to see "how much" the page has been used.
1261 		 *
1262 		 * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1263 		 * that a reference from a concurrently destroyed mapping is
1264 		 * observed here and now.
1265 		 *
1266 		 * Perform an unsynchronized object ref count check.  While
1267 		 * the page lock ensures that the page is not reallocated to
1268 		 * another object, in particular, one with unmanaged mappings
1269 		 * that cannot support pmap_ts_referenced(), two races are,
1270 		 * nonetheless, possible:
1271 		 * 1) The count was transitioning to zero, but we saw a non-
1272 		 *    zero value.  pmap_ts_referenced() will return zero
1273 		 *    because the page is not mapped.
1274 		 * 2) The count was transitioning to one, but we saw zero.
1275 		 *    This race delays the detection of a new reference.  At
1276 		 *    worst, we will deactivate and reactivate the page.
1277 		 */
1278 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1279 
1280 		old = vm_page_astate_load(m);
1281 		do {
1282 			/*
1283 			 * Check to see if the page has been removed from the
1284 			 * queue since the first such check.  Leave it alone if
1285 			 * so, discarding any references collected by
1286 			 * pmap_ts_referenced().
1287 			 */
1288 			if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
1289 				ps_delta = 0;
1290 				break;
1291 			}
1292 
1293 			/*
1294 			 * Advance or decay the act_count based on recent usage.
1295 			 */
1296 			new = old;
1297 			act_delta = refs;
1298 			if ((old.flags & PGA_REFERENCED) != 0) {
1299 				new.flags &= ~PGA_REFERENCED;
1300 				act_delta++;
1301 			}
1302 			if (act_delta != 0) {
1303 				new.act_count += ACT_ADVANCE + act_delta;
1304 				if (new.act_count > ACT_MAX)
1305 					new.act_count = ACT_MAX;
1306 			} else {
1307 				new.act_count -= min(new.act_count,
1308 				    ACT_DECLINE);
1309 			}
1310 
1311 			if (new.act_count > 0) {
1312 				/*
1313 				 * Adjust the activation count and keep the page
1314 				 * in the active queue.  The count might be left
1315 				 * unchanged if it is saturated.  The page may
1316 				 * have been moved to a different queue since we
1317 				 * started the scan, in which case we move it
1318 				 * back.
1319 				 */
1320 				ps_delta = 0;
1321 				if (old.queue != PQ_ACTIVE) {
1322 					new.flags &= ~PGA_QUEUE_OP_MASK;
1323 					new.flags |= PGA_REQUEUE;
1324 					new.queue = PQ_ACTIVE;
1325 				}
1326 			} else {
1327 				/*
1328 				 * When not short for inactive pages, let dirty
1329 				 * pages go through the inactive queue before
1330 				 * moving to the laundry queue.  This gives them
1331 				 * some extra time to be reactivated,
1332 				 * potentially avoiding an expensive pageout.
1333 				 * However, during a page shortage, the inactive
1334 				 * queue is necessarily small, and so dirty
1335 				 * pages would only spend a trivial amount of
1336 				 * time in the inactive queue.  Therefore, we
1337 				 * might as well place them directly in the
1338 				 * laundry queue to reduce queuing overhead.
1339 				 *
1340 				 * Calling vm_page_test_dirty() here would
1341 				 * require acquisition of the object's write
1342 				 * lock.  However, during a page shortage,
1343 				 * directing dirty pages into the laundry queue
1344 				 * is only an optimization and not a
1345 				 * requirement.  Therefore, we simply rely on
1346 				 * the opportunistic updates to the page's dirty
1347 				 * field by the pmap.
1348 				 */
1349 				if (page_shortage <= 0) {
1350 					nqueue = PQ_INACTIVE;
1351 					ps_delta = 0;
1352 				} else if (m->dirty == 0) {
1353 					nqueue = PQ_INACTIVE;
1354 					ps_delta = act_scan_laundry_weight;
1355 				} else {
1356 					nqueue = PQ_LAUNDRY;
1357 					ps_delta = 1;
1358 				}
1359 
1360 				new.flags &= ~PGA_QUEUE_OP_MASK;
1361 				new.flags |= PGA_REQUEUE;
1362 				new.queue = nqueue;
1363 			}
1364 		} while (!vm_page_pqstate_commit(m, &old, new));
1365 
1366 		page_shortage -= ps_delta;
1367 	}
1368 	vm_pagequeue_lock(pq);
1369 	TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1370 	TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1371 	vm_pageout_end_scan(&ss);
1372 	vm_pagequeue_unlock(pq);
1373 }
1374 
1375 static int
1376 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1377     vm_page_t m)
1378 {
1379 	vm_page_astate_t as;
1380 
1381 	vm_pagequeue_assert_locked(pq);
1382 
1383 	as = vm_page_astate_load(m);
1384 	if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1385 		return (0);
1386 	vm_page_aflag_set(m, PGA_ENQUEUED);
1387 	TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1388 	return (1);
1389 }
1390 
1391 /*
1392  * Re-add stuck pages to the inactive queue.  We will examine them again
1393  * during the next scan.  If the queue state of a page has changed since
1394  * it was physically removed from the page queue in
1395  * vm_pageout_collect_batch(), don't do anything with that page.
1396  */
1397 static void
1398 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1399     vm_page_t m)
1400 {
1401 	struct vm_pagequeue *pq;
1402 	vm_page_t marker;
1403 	int delta;
1404 
1405 	delta = 0;
1406 	marker = ss->marker;
1407 	pq = ss->pq;
1408 
1409 	if (m != NULL) {
1410 		if (vm_batchqueue_insert(bq, m))
1411 			return;
1412 		vm_pagequeue_lock(pq);
1413 		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1414 	} else
1415 		vm_pagequeue_lock(pq);
1416 	while ((m = vm_batchqueue_pop(bq)) != NULL)
1417 		delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1418 	vm_pagequeue_cnt_add(pq, delta);
1419 	vm_pagequeue_unlock(pq);
1420 	vm_batchqueue_init(bq);
1421 }
1422 
1423 static void
1424 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1425 {
1426 	struct timeval start, end;
1427 	struct scan_state ss;
1428 	struct vm_batchqueue rq;
1429 	struct vm_page marker_page;
1430 	vm_page_t m, marker;
1431 	struct vm_pagequeue *pq;
1432 	vm_object_t object;
1433 	vm_page_astate_t old, new;
1434 	int act_delta, addl_page_shortage, starting_page_shortage, refs;
1435 
1436 	object = NULL;
1437 	vm_batchqueue_init(&rq);
1438 	getmicrouptime(&start);
1439 
1440 	/*
1441 	 * The addl_page_shortage is an estimate of the number of temporarily
1442 	 * stuck pages in the inactive queue.  In other words, the
1443 	 * number of pages from the inactive count that should be
1444 	 * discounted in setting the target for the active queue scan.
1445 	 */
1446 	addl_page_shortage = 0;
1447 
1448 	/*
1449 	 * Start scanning the inactive queue for pages that we can free.  The
1450 	 * scan will stop when we reach the target or we have scanned the
1451 	 * entire queue.  (Note that m->a.act_count is not used to make
1452 	 * decisions for the inactive queue, only for the active queue.)
1453 	 */
1454 	starting_page_shortage = page_shortage;
1455 	marker = &marker_page;
1456 	vm_page_init_marker(marker, PQ_INACTIVE, 0);
1457 	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1458 	vm_pagequeue_lock(pq);
1459 	vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1460 	while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1461 		KASSERT((m->flags & PG_MARKER) == 0,
1462 		    ("marker page %p was dequeued", m));
1463 
1464 		/*
1465 		 * Don't touch a page that was removed from the queue after the
1466 		 * page queue lock was released.  Otherwise, ensure that any
1467 		 * pending queue operations, such as dequeues for wired pages,
1468 		 * are handled.
1469 		 */
1470 		if (vm_pageout_defer(m, PQ_INACTIVE, false))
1471 			continue;
1472 
1473 		/*
1474 		 * Lock the page's object.
1475 		 */
1476 		if (object == NULL || object != m->object) {
1477 			if (object != NULL)
1478 				VM_OBJECT_WUNLOCK(object);
1479 			object = atomic_load_ptr(&m->object);
1480 			if (__predict_false(object == NULL))
1481 				/* The page is being freed by another thread. */
1482 				continue;
1483 
1484 			/* Depends on type-stability. */
1485 			VM_OBJECT_WLOCK(object);
1486 			if (__predict_false(m->object != object)) {
1487 				VM_OBJECT_WUNLOCK(object);
1488 				object = NULL;
1489 				goto reinsert;
1490 			}
1491 		}
1492 
1493 		if (vm_page_tryxbusy(m) == 0) {
1494 			/*
1495 			 * Don't mess with busy pages.  Leave them at
1496 			 * the front of the queue.  Most likely, they
1497 			 * are being paged out and will leave the
1498 			 * queue shortly after the scan finishes.  So,
1499 			 * they ought to be discounted from the
1500 			 * inactive count.
1501 			 */
1502 			addl_page_shortage++;
1503 			goto reinsert;
1504 		}
1505 
1506 		/* Deferred free of swap space. */
1507 		if ((m->a.flags & PGA_SWAP_FREE) != 0)
1508 			vm_pager_page_unswapped(m);
1509 
1510 		/*
1511 		 * Check for wirings now that we hold the object lock and have
1512 		 * exclusively busied the page.  If the page is mapped, it may
1513 		 * still be wired by pmap lookups.  The call to
1514 		 * vm_page_try_remove_all() below atomically checks for such
1515 		 * wirings and removes mappings.  If the page is unmapped, the
1516 		 * wire count is guaranteed not to increase after this check.
1517 		 */
1518 		if (__predict_false(vm_page_wired(m)))
1519 			goto skip_page;
1520 
1521 		/*
1522 		 * Invalid pages can be easily freed. They cannot be
1523 		 * mapped, vm_page_free() asserts this.
1524 		 */
1525 		if (vm_page_none_valid(m))
1526 			goto free_page;
1527 
1528 		refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1529 
1530 		for (old = vm_page_astate_load(m);;) {
1531 			/*
1532 			 * Check to see if the page has been removed from the
1533 			 * queue since the first such check.  Leave it alone if
1534 			 * so, discarding any references collected by
1535 			 * pmap_ts_referenced().
1536 			 */
1537 			if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1538 				goto skip_page;
1539 
1540 			new = old;
1541 			act_delta = refs;
1542 			if ((old.flags & PGA_REFERENCED) != 0) {
1543 				new.flags &= ~PGA_REFERENCED;
1544 				act_delta++;
1545 			}
1546 			if (act_delta == 0) {
1547 				;
1548 			} else if (object->ref_count != 0) {
1549 				/*
1550 				 * Increase the activation count if the
1551 				 * page was referenced while in the
1552 				 * inactive queue.  This makes it less
1553 				 * likely that the page will be returned
1554 				 * prematurely to the inactive queue.
1555 				 */
1556 				new.act_count += ACT_ADVANCE +
1557 				    act_delta;
1558 				if (new.act_count > ACT_MAX)
1559 					new.act_count = ACT_MAX;
1560 
1561 				new.flags &= ~PGA_QUEUE_OP_MASK;
1562 				new.flags |= PGA_REQUEUE;
1563 				new.queue = PQ_ACTIVE;
1564 				if (!vm_page_pqstate_commit(m, &old, new))
1565 					continue;
1566 
1567 				VM_CNT_INC(v_reactivated);
1568 				goto skip_page;
1569 			} else if ((object->flags & OBJ_DEAD) == 0) {
1570 				new.queue = PQ_INACTIVE;
1571 				new.flags |= PGA_REQUEUE;
1572 				if (!vm_page_pqstate_commit(m, &old, new))
1573 					continue;
1574 				goto skip_page;
1575 			}
1576 			break;
1577 		}
1578 
1579 		/*
1580 		 * If the page appears to be clean at the machine-independent
1581 		 * layer, then remove all of its mappings from the pmap in
1582 		 * anticipation of freeing it.  If, however, any of the page's
1583 		 * mappings allow write access, then the page may still be
1584 		 * modified until the last of those mappings are removed.
1585 		 */
1586 		if (object->ref_count != 0) {
1587 			vm_page_test_dirty(m);
1588 			if (m->dirty == 0 && !vm_page_try_remove_all(m))
1589 				goto skip_page;
1590 		}
1591 
1592 		/*
1593 		 * Clean pages can be freed, but dirty pages must be sent back
1594 		 * to the laundry, unless they belong to a dead object.
1595 		 * Requeueing dirty pages from dead objects is pointless, as
1596 		 * they are being paged out and freed by the thread that
1597 		 * destroyed the object.
1598 		 */
1599 		if (m->dirty == 0) {
1600 free_page:
1601 			/*
1602 			 * Now we are guaranteed that no other threads are
1603 			 * manipulating the page, check for a last-second
1604 			 * reference that would save it from doom.
1605 			 */
1606 			if (vm_pageout_defer(m, PQ_INACTIVE, false))
1607 				goto skip_page;
1608 
1609 			/*
1610 			 * Because we dequeued the page and have already checked
1611 			 * for pending dequeue and enqueue requests, we can
1612 			 * safely disassociate the page from the inactive queue
1613 			 * without holding the queue lock.
1614 			 */
1615 			m->a.queue = PQ_NONE;
1616 			vm_page_free(m);
1617 			page_shortage--;
1618 			continue;
1619 		}
1620 		if ((object->flags & OBJ_DEAD) == 0)
1621 			vm_page_launder(m);
1622 skip_page:
1623 		vm_page_xunbusy(m);
1624 		continue;
1625 reinsert:
1626 		vm_pageout_reinsert_inactive(&ss, &rq, m);
1627 	}
1628 	if (object != NULL)
1629 		VM_OBJECT_WUNLOCK(object);
1630 	vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1631 	vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1632 	vm_pagequeue_lock(pq);
1633 	vm_pageout_end_scan(&ss);
1634 	vm_pagequeue_unlock(pq);
1635 
1636 	/*
1637 	 * Record the remaining shortage and the progress and rate it was made.
1638 	 */
1639 	atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1640 	getmicrouptime(&end);
1641 	timevalsub(&end, &start);
1642 	atomic_add_int(&vmd->vmd_inactive_us,
1643 	    end.tv_sec * 1000000 + end.tv_usec);
1644 	atomic_add_int(&vmd->vmd_inactive_freed,
1645 	    starting_page_shortage - page_shortage);
1646 }
1647 
1648 /*
1649  * Dispatch a number of inactive threads according to load and collect the
1650  * results to present a coherent view of paging activity on this domain.
1651  */
1652 static int
1653 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1654 {
1655 	u_int freed, pps, slop, threads, us;
1656 
1657 	vmd->vmd_inactive_shortage = shortage;
1658 	slop = 0;
1659 
1660 	/*
1661 	 * If we have more work than we can do in a quarter of our interval, we
1662 	 * fire off multiple threads to process it.
1663 	 */
1664 	threads = vmd->vmd_inactive_threads;
1665 	if (threads > 1 && vmd->vmd_inactive_pps != 0 &&
1666 	    shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1667 		vmd->vmd_inactive_shortage /= threads;
1668 		slop = shortage % threads;
1669 		vm_domain_pageout_lock(vmd);
1670 		blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1671 		blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1672 		wakeup(&vmd->vmd_inactive_shortage);
1673 		vm_domain_pageout_unlock(vmd);
1674 	}
1675 
1676 	/* Run the local thread scan. */
1677 	vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
1678 
1679 	/*
1680 	 * Block until helper threads report results and then accumulate
1681 	 * totals.
1682 	 */
1683 	blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1684 	freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1685 	VM_CNT_ADD(v_dfree, freed);
1686 
1687 	/*
1688 	 * Calculate the per-thread paging rate with an exponential decay of
1689 	 * prior results.  Careful to avoid integer rounding errors with large
1690 	 * us values.
1691 	 */
1692 	us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1693 	if (us > 1000000)
1694 		/* Keep rounding to tenths */
1695 		pps = (freed * 10) / ((us * 10) / 1000000);
1696 	else
1697 		pps = (1000000 / us) * freed;
1698 	vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1699 
1700 	return (shortage - freed);
1701 }
1702 
1703 /*
1704  * Attempt to reclaim the requested number of pages from the inactive queue.
1705  * Returns true if the shortage was addressed.
1706  */
1707 static int
1708 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1709 {
1710 	struct vm_pagequeue *pq;
1711 	u_int addl_page_shortage, deficit, page_shortage;
1712 	u_int starting_page_shortage;
1713 
1714 	/*
1715 	 * vmd_pageout_deficit counts the number of pages requested in
1716 	 * allocations that failed because of a free page shortage.  We assume
1717 	 * that the allocations will be reattempted and thus include the deficit
1718 	 * in our scan target.
1719 	 */
1720 	deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1721 	starting_page_shortage = shortage + deficit;
1722 
1723 	/*
1724 	 * Run the inactive scan on as many threads as is necessary.
1725 	 */
1726 	page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1727 	addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1728 
1729 	/*
1730 	 * Wake up the laundry thread so that it can perform any needed
1731 	 * laundering.  If we didn't meet our target, we're in shortfall and
1732 	 * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1733 	 * swap devices are configured, the laundry thread has no work to do, so
1734 	 * don't bother waking it up.
1735 	 *
1736 	 * The laundry thread uses the number of inactive queue scans elapsed
1737 	 * since the last laundering to determine whether to launder again, so
1738 	 * keep count.
1739 	 */
1740 	if (starting_page_shortage > 0) {
1741 		pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1742 		vm_pagequeue_lock(pq);
1743 		if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1744 		    (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1745 			if (page_shortage > 0) {
1746 				vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1747 				VM_CNT_INC(v_pdshortfalls);
1748 			} else if (vmd->vmd_laundry_request !=
1749 			    VM_LAUNDRY_SHORTFALL)
1750 				vmd->vmd_laundry_request =
1751 				    VM_LAUNDRY_BACKGROUND;
1752 			wakeup(&vmd->vmd_laundry_request);
1753 		}
1754 		vmd->vmd_clean_pages_freed +=
1755 		    starting_page_shortage - page_shortage;
1756 		vm_pagequeue_unlock(pq);
1757 	}
1758 
1759 	/*
1760 	 * Wakeup the swapout daemon if we didn't free the targeted number of
1761 	 * pages.
1762 	 */
1763 	if (page_shortage > 0)
1764 		vm_swapout_run();
1765 
1766 	/*
1767 	 * If the inactive queue scan fails repeatedly to meet its
1768 	 * target, kill the largest process.
1769 	 */
1770 	vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1771 
1772 	/*
1773 	 * Reclaim pages by swapping out idle processes, if configured to do so.
1774 	 */
1775 	vm_swapout_run_idle();
1776 
1777 	/*
1778 	 * See the description of addl_page_shortage above.
1779 	 */
1780 	*addl_shortage = addl_page_shortage + deficit;
1781 
1782 	return (page_shortage <= 0);
1783 }
1784 
1785 static int vm_pageout_oom_vote;
1786 
1787 /*
1788  * The pagedaemon threads randlomly select one to perform the
1789  * OOM.  Trying to kill processes before all pagedaemons
1790  * failed to reach free target is premature.
1791  */
1792 static void
1793 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1794     int starting_page_shortage)
1795 {
1796 	int old_vote;
1797 
1798 	if (starting_page_shortage <= 0 || starting_page_shortage !=
1799 	    page_shortage)
1800 		vmd->vmd_oom_seq = 0;
1801 	else
1802 		vmd->vmd_oom_seq++;
1803 	if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1804 		if (vmd->vmd_oom) {
1805 			vmd->vmd_oom = FALSE;
1806 			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1807 		}
1808 		return;
1809 	}
1810 
1811 	/*
1812 	 * Do not follow the call sequence until OOM condition is
1813 	 * cleared.
1814 	 */
1815 	vmd->vmd_oom_seq = 0;
1816 
1817 	if (vmd->vmd_oom)
1818 		return;
1819 
1820 	vmd->vmd_oom = TRUE;
1821 	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1822 	if (old_vote != vm_ndomains - 1)
1823 		return;
1824 
1825 	/*
1826 	 * The current pagedaemon thread is the last in the quorum to
1827 	 * start OOM.  Initiate the selection and signaling of the
1828 	 * victim.
1829 	 */
1830 	vm_pageout_oom(VM_OOM_MEM);
1831 
1832 	/*
1833 	 * After one round of OOM terror, recall our vote.  On the
1834 	 * next pass, current pagedaemon would vote again if the low
1835 	 * memory condition is still there, due to vmd_oom being
1836 	 * false.
1837 	 */
1838 	vmd->vmd_oom = FALSE;
1839 	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1840 }
1841 
1842 /*
1843  * The OOM killer is the page daemon's action of last resort when
1844  * memory allocation requests have been stalled for a prolonged period
1845  * of time because it cannot reclaim memory.  This function computes
1846  * the approximate number of physical pages that could be reclaimed if
1847  * the specified address space is destroyed.
1848  *
1849  * Private, anonymous memory owned by the address space is the
1850  * principal resource that we expect to recover after an OOM kill.
1851  * Since the physical pages mapped by the address space's COW entries
1852  * are typically shared pages, they are unlikely to be released and so
1853  * they are not counted.
1854  *
1855  * To get to the point where the page daemon runs the OOM killer, its
1856  * efforts to write-back vnode-backed pages may have stalled.  This
1857  * could be caused by a memory allocation deadlock in the write path
1858  * that might be resolved by an OOM kill.  Therefore, physical pages
1859  * belonging to vnode-backed objects are counted, because they might
1860  * be freed without being written out first if the address space holds
1861  * the last reference to an unlinked vnode.
1862  *
1863  * Similarly, physical pages belonging to OBJT_PHYS objects are
1864  * counted because the address space might hold the last reference to
1865  * the object.
1866  */
1867 static long
1868 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1869 {
1870 	vm_map_t map;
1871 	vm_map_entry_t entry;
1872 	vm_object_t obj;
1873 	long res;
1874 
1875 	map = &vmspace->vm_map;
1876 	KASSERT(!map->system_map, ("system map"));
1877 	sx_assert(&map->lock, SA_LOCKED);
1878 	res = 0;
1879 	VM_MAP_ENTRY_FOREACH(entry, map) {
1880 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1881 			continue;
1882 		obj = entry->object.vm_object;
1883 		if (obj == NULL)
1884 			continue;
1885 		if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1886 		    obj->ref_count != 1)
1887 			continue;
1888 		if (obj->type == OBJT_DEFAULT || obj->type == OBJT_PHYS ||
1889 		    obj->type == OBJT_VNODE || (obj->flags & OBJ_SWAP) != 0)
1890 			res += obj->resident_page_count;
1891 	}
1892 	return (res);
1893 }
1894 
1895 static int vm_oom_ratelim_last;
1896 static int vm_oom_pf_secs = 10;
1897 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1898     "");
1899 static struct mtx vm_oom_ratelim_mtx;
1900 
1901 void
1902 vm_pageout_oom(int shortage)
1903 {
1904 	struct proc *p, *bigproc;
1905 	vm_offset_t size, bigsize;
1906 	struct thread *td;
1907 	struct vmspace *vm;
1908 	int now;
1909 	bool breakout;
1910 
1911 	/*
1912 	 * For OOM requests originating from vm_fault(), there is a high
1913 	 * chance that a single large process faults simultaneously in
1914 	 * several threads.  Also, on an active system running many
1915 	 * processes of middle-size, like buildworld, all of them
1916 	 * could fault almost simultaneously as well.
1917 	 *
1918 	 * To avoid killing too many processes, rate-limit OOMs
1919 	 * initiated by vm_fault() time-outs on the waits for free
1920 	 * pages.
1921 	 */
1922 	mtx_lock(&vm_oom_ratelim_mtx);
1923 	now = ticks;
1924 	if (shortage == VM_OOM_MEM_PF &&
1925 	    (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1926 		mtx_unlock(&vm_oom_ratelim_mtx);
1927 		return;
1928 	}
1929 	vm_oom_ratelim_last = now;
1930 	mtx_unlock(&vm_oom_ratelim_mtx);
1931 
1932 	/*
1933 	 * We keep the process bigproc locked once we find it to keep anyone
1934 	 * from messing with it; however, there is a possibility of
1935 	 * deadlock if process B is bigproc and one of its child processes
1936 	 * attempts to propagate a signal to B while we are waiting for A's
1937 	 * lock while walking this list.  To avoid this, we don't block on
1938 	 * the process lock but just skip a process if it is already locked.
1939 	 */
1940 	bigproc = NULL;
1941 	bigsize = 0;
1942 	sx_slock(&allproc_lock);
1943 	FOREACH_PROC_IN_SYSTEM(p) {
1944 		PROC_LOCK(p);
1945 
1946 		/*
1947 		 * If this is a system, protected or killed process, skip it.
1948 		 */
1949 		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1950 		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1951 		    p->p_pid == 1 || P_KILLED(p) ||
1952 		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1953 			PROC_UNLOCK(p);
1954 			continue;
1955 		}
1956 		/*
1957 		 * If the process is in a non-running type state,
1958 		 * don't touch it.  Check all the threads individually.
1959 		 */
1960 		breakout = false;
1961 		FOREACH_THREAD_IN_PROC(p, td) {
1962 			thread_lock(td);
1963 			if (!TD_ON_RUNQ(td) &&
1964 			    !TD_IS_RUNNING(td) &&
1965 			    !TD_IS_SLEEPING(td) &&
1966 			    !TD_IS_SUSPENDED(td) &&
1967 			    !TD_IS_SWAPPED(td)) {
1968 				thread_unlock(td);
1969 				breakout = true;
1970 				break;
1971 			}
1972 			thread_unlock(td);
1973 		}
1974 		if (breakout) {
1975 			PROC_UNLOCK(p);
1976 			continue;
1977 		}
1978 		/*
1979 		 * get the process size
1980 		 */
1981 		vm = vmspace_acquire_ref(p);
1982 		if (vm == NULL) {
1983 			PROC_UNLOCK(p);
1984 			continue;
1985 		}
1986 		_PHOLD_LITE(p);
1987 		PROC_UNLOCK(p);
1988 		sx_sunlock(&allproc_lock);
1989 		if (!vm_map_trylock_read(&vm->vm_map)) {
1990 			vmspace_free(vm);
1991 			sx_slock(&allproc_lock);
1992 			PRELE(p);
1993 			continue;
1994 		}
1995 		size = vmspace_swap_count(vm);
1996 		if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1997 			size += vm_pageout_oom_pagecount(vm);
1998 		vm_map_unlock_read(&vm->vm_map);
1999 		vmspace_free(vm);
2000 		sx_slock(&allproc_lock);
2001 
2002 		/*
2003 		 * If this process is bigger than the biggest one,
2004 		 * remember it.
2005 		 */
2006 		if (size > bigsize) {
2007 			if (bigproc != NULL)
2008 				PRELE(bigproc);
2009 			bigproc = p;
2010 			bigsize = size;
2011 		} else {
2012 			PRELE(p);
2013 		}
2014 	}
2015 	sx_sunlock(&allproc_lock);
2016 	if (bigproc != NULL) {
2017 		if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2018 			panic("out of swap space");
2019 		PROC_LOCK(bigproc);
2020 		killproc(bigproc, "out of swap space");
2021 		sched_nice(bigproc, PRIO_MIN);
2022 		_PRELE(bigproc);
2023 		PROC_UNLOCK(bigproc);
2024 	}
2025 }
2026 
2027 /*
2028  * Signal a free page shortage to subsystems that have registered an event
2029  * handler.  Reclaim memory from UMA in the event of a severe shortage.
2030  * Return true if the free page count should be re-evaluated.
2031  */
2032 static bool
2033 vm_pageout_lowmem(void)
2034 {
2035 	static int lowmem_ticks = 0;
2036 	int last;
2037 	bool ret;
2038 
2039 	ret = false;
2040 
2041 	last = atomic_load_int(&lowmem_ticks);
2042 	while ((u_int)(ticks - last) / hz >= lowmem_period) {
2043 		if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2044 			continue;
2045 
2046 		/*
2047 		 * Decrease registered cache sizes.
2048 		 */
2049 		SDT_PROBE0(vm, , , vm__lowmem_scan);
2050 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2051 
2052 		/*
2053 		 * We do this explicitly after the caches have been
2054 		 * drained above.
2055 		 */
2056 		uma_reclaim(UMA_RECLAIM_TRIM);
2057 		ret = true;
2058 		break;
2059 	}
2060 
2061 	/*
2062 	 * Kick off an asynchronous reclaim of cached memory if one of the
2063 	 * page daemons is failing to keep up with demand.  Use the "severe"
2064 	 * threshold instead of "min" to ensure that we do not blow away the
2065 	 * caches if a subset of the NUMA domains are depleted by kernel memory
2066 	 * allocations; the domainset iterators automatically skip domains
2067 	 * below the "min" threshold on the first pass.
2068 	 *
2069 	 * UMA reclaim worker has its own rate-limiting mechanism, so don't
2070 	 * worry about kicking it too often.
2071 	 */
2072 	if (vm_page_count_severe())
2073 		uma_reclaim_wakeup();
2074 
2075 	return (ret);
2076 }
2077 
2078 static void
2079 vm_pageout_worker(void *arg)
2080 {
2081 	struct vm_domain *vmd;
2082 	u_int ofree;
2083 	int addl_shortage, domain, shortage;
2084 	bool target_met;
2085 
2086 	domain = (uintptr_t)arg;
2087 	vmd = VM_DOMAIN(domain);
2088 	shortage = 0;
2089 	target_met = true;
2090 
2091 	/*
2092 	 * XXXKIB It could be useful to bind pageout daemon threads to
2093 	 * the cores belonging to the domain, from which vm_page_array
2094 	 * is allocated.
2095 	 */
2096 
2097 	KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2098 	vmd->vmd_last_active_scan = ticks;
2099 
2100 	/*
2101 	 * The pageout daemon worker is never done, so loop forever.
2102 	 */
2103 	while (TRUE) {
2104 		vm_domain_pageout_lock(vmd);
2105 
2106 		/*
2107 		 * We need to clear wanted before we check the limits.  This
2108 		 * prevents races with wakers who will check wanted after they
2109 		 * reach the limit.
2110 		 */
2111 		atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2112 
2113 		/*
2114 		 * Might the page daemon need to run again?
2115 		 */
2116 		if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2117 			/*
2118 			 * Yes.  If the scan failed to produce enough free
2119 			 * pages, sleep uninterruptibly for some time in the
2120 			 * hope that the laundry thread will clean some pages.
2121 			 */
2122 			vm_domain_pageout_unlock(vmd);
2123 			if (!target_met)
2124 				pause("pwait", hz / VM_INACT_SCAN_RATE);
2125 		} else {
2126 			/*
2127 			 * No, sleep until the next wakeup or until pages
2128 			 * need to have their reference stats updated.
2129 			 */
2130 			if (mtx_sleep(&vmd->vmd_pageout_wanted,
2131 			    vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2132 			    "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2133 				VM_CNT_INC(v_pdwakeups);
2134 		}
2135 
2136 		/* Prevent spurious wakeups by ensuring that wanted is set. */
2137 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2138 
2139 		/*
2140 		 * Use the controller to calculate how many pages to free in
2141 		 * this interval, and scan the inactive queue.  If the lowmem
2142 		 * handlers appear to have freed up some pages, subtract the
2143 		 * difference from the inactive queue scan target.
2144 		 */
2145 		shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2146 		if (shortage > 0) {
2147 			ofree = vmd->vmd_free_count;
2148 			if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2149 				shortage -= min(vmd->vmd_free_count - ofree,
2150 				    (u_int)shortage);
2151 			target_met = vm_pageout_inactive(vmd, shortage,
2152 			    &addl_shortage);
2153 		} else
2154 			addl_shortage = 0;
2155 
2156 		/*
2157 		 * Scan the active queue.  A positive value for shortage
2158 		 * indicates that we must aggressively deactivate pages to avoid
2159 		 * a shortfall.
2160 		 */
2161 		shortage = vm_pageout_active_target(vmd) + addl_shortage;
2162 		vm_pageout_scan_active(vmd, shortage);
2163 	}
2164 }
2165 
2166 /*
2167  * vm_pageout_helper runs additional pageout daemons in times of high paging
2168  * activity.
2169  */
2170 static void
2171 vm_pageout_helper(void *arg)
2172 {
2173 	struct vm_domain *vmd;
2174 	int domain;
2175 
2176 	domain = (uintptr_t)arg;
2177 	vmd = VM_DOMAIN(domain);
2178 
2179 	vm_domain_pageout_lock(vmd);
2180 	for (;;) {
2181 		msleep(&vmd->vmd_inactive_shortage,
2182 		    vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2183 		blockcount_release(&vmd->vmd_inactive_starting, 1);
2184 
2185 		vm_domain_pageout_unlock(vmd);
2186 		vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2187 		vm_domain_pageout_lock(vmd);
2188 
2189 		/*
2190 		 * Release the running count while the pageout lock is held to
2191 		 * prevent wakeup races.
2192 		 */
2193 		blockcount_release(&vmd->vmd_inactive_running, 1);
2194 	}
2195 }
2196 
2197 static int
2198 get_pageout_threads_per_domain(const struct vm_domain *vmd)
2199 {
2200 	unsigned total_pageout_threads, eligible_cpus, domain_cpus;
2201 
2202 	if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
2203 		return (0);
2204 
2205 	/*
2206 	 * Semi-arbitrarily constrain pagedaemon threads to less than half the
2207 	 * total number of CPUs in the system as an upper limit.
2208 	 */
2209 	if (pageout_cpus_per_thread < 2)
2210 		pageout_cpus_per_thread = 2;
2211 	else if (pageout_cpus_per_thread > mp_ncpus)
2212 		pageout_cpus_per_thread = mp_ncpus;
2213 
2214 	total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
2215 	domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
2216 
2217 	/* Pagedaemons are not run in empty domains. */
2218 	eligible_cpus = mp_ncpus;
2219 	for (unsigned i = 0; i < vm_ndomains; i++)
2220 		if (VM_DOMAIN_EMPTY(i))
2221 			eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
2222 
2223 	/*
2224 	 * Assign a portion of the total pageout threads to this domain
2225 	 * corresponding to the fraction of pagedaemon-eligible CPUs in the
2226 	 * domain.  In asymmetric NUMA systems, domains with more CPUs may be
2227 	 * allocated more threads than domains with fewer CPUs.
2228 	 */
2229 	return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
2230 }
2231 
2232 /*
2233  * Initialize basic pageout daemon settings.  See the comment above the
2234  * definition of vm_domain for some explanation of how these thresholds are
2235  * used.
2236  */
2237 static void
2238 vm_pageout_init_domain(int domain)
2239 {
2240 	struct vm_domain *vmd;
2241 	struct sysctl_oid *oid;
2242 
2243 	vmd = VM_DOMAIN(domain);
2244 	vmd->vmd_interrupt_free_min = 2;
2245 
2246 	/*
2247 	 * v_free_reserved needs to include enough for the largest
2248 	 * swap pager structures plus enough for any pv_entry structs
2249 	 * when paging.
2250 	 */
2251 	vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2252 	    vmd->vmd_interrupt_free_min;
2253 	vmd->vmd_free_reserved = vm_pageout_page_count +
2254 	    vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2255 	vmd->vmd_free_min = vmd->vmd_page_count / 200;
2256 	vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2257 	vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2258 	vmd->vmd_free_min += vmd->vmd_free_reserved;
2259 	vmd->vmd_free_severe += vmd->vmd_free_reserved;
2260 	vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2261 	if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2262 		vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2263 
2264 	/*
2265 	 * Set the default wakeup threshold to be 10% below the paging
2266 	 * target.  This keeps the steady state out of shortfall.
2267 	 */
2268 	vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2269 
2270 	/*
2271 	 * Target amount of memory to move out of the laundry queue during a
2272 	 * background laundering.  This is proportional to the amount of system
2273 	 * memory.
2274 	 */
2275 	vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2276 	    vmd->vmd_free_min) / 10;
2277 
2278 	/* Initialize the pageout daemon pid controller. */
2279 	pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2280 	    vmd->vmd_free_target, PIDCTRL_BOUND,
2281 	    PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2282 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2283 	    "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2284 	pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2285 
2286 	vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
2287 }
2288 
2289 static void
2290 vm_pageout_init(void)
2291 {
2292 	u_long freecount;
2293 	int i;
2294 
2295 	/*
2296 	 * Initialize some paging parameters.
2297 	 */
2298 	if (vm_cnt.v_page_count < 2000)
2299 		vm_pageout_page_count = 8;
2300 
2301 	freecount = 0;
2302 	for (i = 0; i < vm_ndomains; i++) {
2303 		struct vm_domain *vmd;
2304 
2305 		vm_pageout_init_domain(i);
2306 		vmd = VM_DOMAIN(i);
2307 		vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2308 		vm_cnt.v_free_target += vmd->vmd_free_target;
2309 		vm_cnt.v_free_min += vmd->vmd_free_min;
2310 		vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2311 		vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2312 		vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2313 		vm_cnt.v_free_severe += vmd->vmd_free_severe;
2314 		freecount += vmd->vmd_free_count;
2315 	}
2316 
2317 	/*
2318 	 * Set interval in seconds for active scan.  We want to visit each
2319 	 * page at least once every ten minutes.  This is to prevent worst
2320 	 * case paging behaviors with stale active LRU.
2321 	 */
2322 	if (vm_pageout_update_period == 0)
2323 		vm_pageout_update_period = 600;
2324 
2325 	/*
2326 	 * Set the maximum number of user-wired virtual pages.  Historically the
2327 	 * main source of such pages was mlock(2) and mlockall(2).  Hypervisors
2328 	 * may also request user-wired memory.
2329 	 */
2330 	if (vm_page_max_user_wired == 0)
2331 		vm_page_max_user_wired = 4 * freecount / 5;
2332 }
2333 
2334 /*
2335  *     vm_pageout is the high level pageout daemon.
2336  */
2337 static void
2338 vm_pageout(void)
2339 {
2340 	struct proc *p;
2341 	struct thread *td;
2342 	int error, first, i, j, pageout_threads;
2343 
2344 	p = curproc;
2345 	td = curthread;
2346 
2347 	mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2348 	swap_pager_swap_init();
2349 	for (first = -1, i = 0; i < vm_ndomains; i++) {
2350 		if (VM_DOMAIN_EMPTY(i)) {
2351 			if (bootverbose)
2352 				printf("domain %d empty; skipping pageout\n",
2353 				    i);
2354 			continue;
2355 		}
2356 		if (first == -1)
2357 			first = i;
2358 		else {
2359 			error = kthread_add(vm_pageout_worker,
2360 			    (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2361 			if (error != 0)
2362 				panic("starting pageout for domain %d: %d\n",
2363 				    i, error);
2364 		}
2365 		pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
2366 		for (j = 0; j < pageout_threads - 1; j++) {
2367 			error = kthread_add(vm_pageout_helper,
2368 			    (void *)(uintptr_t)i, p, NULL, 0, 0,
2369 			    "dom%d helper%d", i, j);
2370 			if (error != 0)
2371 				panic("starting pageout helper %d for domain "
2372 				    "%d: %d\n", j, i, error);
2373 		}
2374 		error = kthread_add(vm_pageout_laundry_worker,
2375 		    (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2376 		if (error != 0)
2377 			panic("starting laundry for domain %d: %d", i, error);
2378 	}
2379 	error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2380 	if (error != 0)
2381 		panic("starting uma_reclaim helper, error %d\n", error);
2382 
2383 	snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2384 	vm_pageout_worker((void *)(uintptr_t)first);
2385 }
2386 
2387 /*
2388  * Perform an advisory wakeup of the page daemon.
2389  */
2390 void
2391 pagedaemon_wakeup(int domain)
2392 {
2393 	struct vm_domain *vmd;
2394 
2395 	vmd = VM_DOMAIN(domain);
2396 	vm_domain_pageout_assert_unlocked(vmd);
2397 	if (curproc == pageproc)
2398 		return;
2399 
2400 	if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2401 		vm_domain_pageout_lock(vmd);
2402 		atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2403 		wakeup(&vmd->vmd_pageout_wanted);
2404 		vm_domain_pageout_unlock(vmd);
2405 	}
2406 }
2407