1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * 45 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 46 * All rights reserved. 47 * 48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 49 * 50 * Permission to use, copy, modify and distribute this software and 51 * its documentation is hereby granted, provided that both the copyright 52 * notice and this permission notice appear in all copies of the 53 * software, derivative works or modified versions, and any portions 54 * thereof, and that both notices appear in supporting documentation. 55 * 56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 57 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 59 * 60 * Carnegie Mellon requests users of this software to return to 61 * 62 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 63 * School of Computer Science 64 * Carnegie Mellon University 65 * Pittsburgh PA 15213-3890 66 * 67 * any improvements or extensions that they make and grant Carnegie the 68 * rights to redistribute these changes. 69 */ 70 71 /* 72 * The proverbial page-out daemon. 73 */ 74 75 #include <sys/cdefs.h> 76 #include "opt_vm.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/kernel.h> 81 #include <sys/blockcount.h> 82 #include <sys/eventhandler.h> 83 #include <sys/lock.h> 84 #include <sys/mutex.h> 85 #include <sys/proc.h> 86 #include <sys/kthread.h> 87 #include <sys/ktr.h> 88 #include <sys/mount.h> 89 #include <sys/racct.h> 90 #include <sys/resourcevar.h> 91 #include <sys/sched.h> 92 #include <sys/sdt.h> 93 #include <sys/signalvar.h> 94 #include <sys/smp.h> 95 #include <sys/time.h> 96 #include <sys/vnode.h> 97 #include <sys/vmmeter.h> 98 #include <sys/rwlock.h> 99 #include <sys/sx.h> 100 #include <sys/sysctl.h> 101 102 #include <vm/vm.h> 103 #include <vm/vm_param.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_page.h> 106 #include <vm/vm_map.h> 107 #include <vm/vm_pageout.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_phys.h> 110 #include <vm/vm_pagequeue.h> 111 #include <vm/vm_radix.h> 112 #include <vm/swap_pager.h> 113 #include <vm/vm_extern.h> 114 #include <vm/uma.h> 115 116 /* 117 * System initialization 118 */ 119 120 /* the kernel process "vm_pageout"*/ 121 static void vm_pageout(void); 122 static void vm_pageout_init(void); 123 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 124 static int vm_pageout_cluster(vm_page_t m); 125 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 126 int starting_page_shortage); 127 128 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 129 NULL); 130 131 struct proc *pageproc; 132 133 static struct kproc_desc page_kp = { 134 "pagedaemon", 135 vm_pageout, 136 &pageproc 137 }; 138 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 139 &page_kp); 140 141 SDT_PROVIDER_DEFINE(vm); 142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 143 144 /* Pagedaemon activity rates, in subdivisions of one second. */ 145 #define VM_LAUNDER_RATE 10 146 #define VM_INACT_SCAN_RATE 10 147 148 static int swapdev_enabled; 149 int vm_pageout_page_count = 32; 150 151 static int vm_panic_on_oom = 0; 152 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 153 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 154 "Panic on the given number of out-of-memory errors instead of " 155 "killing the largest process"); 156 157 static int vm_pageout_update_period; 158 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 159 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 160 "Maximum active LRU update period"); 161 162 static int pageout_cpus_per_thread = 16; 163 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN, 164 &pageout_cpus_per_thread, 0, 165 "Number of CPUs per pagedaemon worker thread"); 166 167 static int lowmem_period = 10; 168 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 169 "Low memory callback period"); 170 171 static int disable_swap_pageouts; 172 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 173 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, 174 "Disallow swapout of dirty pages"); 175 176 static int pageout_lock_miss; 177 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 178 CTLFLAG_RD, &pageout_lock_miss, 0, 179 "vget() lock misses during pageout"); 180 181 static int vm_pageout_oom_seq = 12; 182 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 183 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 184 "back-to-back calls to oom detector to start OOM"); 185 186 static int act_scan_laundry_weight = 3; 187 188 static int 189 sysctl_act_scan_laundry_weight(SYSCTL_HANDLER_ARGS) 190 { 191 int error, newval; 192 193 newval = act_scan_laundry_weight; 194 error = sysctl_handle_int(oidp, &newval, 0, req); 195 if (error || req->newptr == NULL) 196 return (error); 197 if (newval < 1) 198 return (EINVAL); 199 act_scan_laundry_weight = newval; 200 return (0); 201 } 202 SYSCTL_PROC(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN | CTLTYPE_INT, 203 &act_scan_laundry_weight, 0, sysctl_act_scan_laundry_weight, "I", 204 "weight given to clean vs. dirty pages in active queue scans"); 205 206 static u_int vm_background_launder_rate = 4096; 207 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 208 &vm_background_launder_rate, 0, 209 "background laundering rate, in kilobytes per second"); 210 211 static u_int vm_background_launder_max = 20 * 1024; 212 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 213 &vm_background_launder_max, 0, 214 "background laundering cap, in kilobytes"); 215 216 u_long vm_page_max_user_wired; 217 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW, 218 &vm_page_max_user_wired, 0, 219 "system-wide limit to user-wired page count"); 220 221 static u_int isqrt(u_int num); 222 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 223 bool in_shortfall); 224 static void vm_pageout_laundry_worker(void *arg); 225 226 struct scan_state { 227 struct vm_batchqueue bq; 228 struct vm_pagequeue *pq; 229 vm_page_t marker; 230 int maxscan; 231 int scanned; 232 }; 233 234 static void 235 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 236 vm_page_t marker, vm_page_t after, int maxscan) 237 { 238 239 vm_pagequeue_assert_locked(pq); 240 KASSERT((marker->a.flags & PGA_ENQUEUED) == 0, 241 ("marker %p already enqueued", marker)); 242 243 if (after == NULL) 244 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 245 else 246 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 247 vm_page_aflag_set(marker, PGA_ENQUEUED); 248 249 vm_batchqueue_init(&ss->bq); 250 ss->pq = pq; 251 ss->marker = marker; 252 ss->maxscan = maxscan; 253 ss->scanned = 0; 254 vm_pagequeue_unlock(pq); 255 } 256 257 static void 258 vm_pageout_end_scan(struct scan_state *ss) 259 { 260 struct vm_pagequeue *pq; 261 262 pq = ss->pq; 263 vm_pagequeue_assert_locked(pq); 264 KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0, 265 ("marker %p not enqueued", ss->marker)); 266 267 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 268 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 269 pq->pq_pdpages += ss->scanned; 270 } 271 272 /* 273 * Add a small number of queued pages to a batch queue for later processing 274 * without the corresponding queue lock held. The caller must have enqueued a 275 * marker page at the desired start point for the scan. Pages will be 276 * physically dequeued if the caller so requests. Otherwise, the returned 277 * batch may contain marker pages, and it is up to the caller to handle them. 278 * 279 * When processing the batch queue, vm_pageout_defer() must be used to 280 * determine whether the page has been logically dequeued since the batch was 281 * collected. 282 */ 283 static __always_inline void 284 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 285 { 286 struct vm_pagequeue *pq; 287 vm_page_t m, marker, n; 288 289 marker = ss->marker; 290 pq = ss->pq; 291 292 KASSERT((marker->a.flags & PGA_ENQUEUED) != 0, 293 ("marker %p not enqueued", ss->marker)); 294 295 vm_pagequeue_lock(pq); 296 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 297 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 298 m = n, ss->scanned++) { 299 n = TAILQ_NEXT(m, plinks.q); 300 if ((m->flags & PG_MARKER) == 0) { 301 KASSERT((m->a.flags & PGA_ENQUEUED) != 0, 302 ("page %p not enqueued", m)); 303 KASSERT((m->flags & PG_FICTITIOUS) == 0, 304 ("Fictitious page %p cannot be in page queue", m)); 305 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 306 ("Unmanaged page %p cannot be in page queue", m)); 307 } else if (dequeue) 308 continue; 309 310 (void)vm_batchqueue_insert(&ss->bq, m); 311 if (dequeue) { 312 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 313 vm_page_aflag_clear(m, PGA_ENQUEUED); 314 } 315 } 316 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 317 if (__predict_true(m != NULL)) 318 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 319 else 320 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 321 if (dequeue) 322 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 323 vm_pagequeue_unlock(pq); 324 } 325 326 /* 327 * Return the next page to be scanned, or NULL if the scan is complete. 328 */ 329 static __always_inline vm_page_t 330 vm_pageout_next(struct scan_state *ss, const bool dequeue) 331 { 332 333 if (ss->bq.bq_cnt == 0) 334 vm_pageout_collect_batch(ss, dequeue); 335 return (vm_batchqueue_pop(&ss->bq)); 336 } 337 338 /* 339 * Determine whether processing of a page should be deferred and ensure that any 340 * outstanding queue operations are processed. 341 */ 342 static __always_inline bool 343 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued) 344 { 345 vm_page_astate_t as; 346 347 as = vm_page_astate_load(m); 348 if (__predict_false(as.queue != queue || 349 ((as.flags & PGA_ENQUEUED) != 0) != enqueued)) 350 return (true); 351 if ((as.flags & PGA_QUEUE_OP_MASK) != 0) { 352 vm_page_pqbatch_submit(m, queue); 353 return (true); 354 } 355 return (false); 356 } 357 358 /* 359 * We can cluster only if the page is not clean, busy, or held, and the page is 360 * in the laundry queue. 361 */ 362 static bool 363 vm_pageout_flushable(vm_page_t m) 364 { 365 if (vm_page_tryxbusy(m) == 0) 366 return (false); 367 if (!vm_page_wired(m)) { 368 vm_page_test_dirty(m); 369 if (m->dirty != 0 && vm_page_in_laundry(m) && 370 vm_page_try_remove_write(m)) 371 return (true); 372 } 373 vm_page_xunbusy(m); 374 return (false); 375 } 376 377 /* 378 * Scan for pages at adjacent offsets within the given page's object that are 379 * eligible for laundering, form a cluster of these pages and the given page, 380 * and launder that cluster. 381 */ 382 static int 383 vm_pageout_cluster(vm_page_t m) 384 { 385 struct pctrie_iter pages; 386 vm_page_t mc[2 * vm_pageout_page_count - 1]; 387 int alignment, page_base, pageout_count; 388 389 VM_OBJECT_ASSERT_WLOCKED(m->object); 390 391 vm_page_assert_xbusied(m); 392 393 vm_page_iter_init(&pages, m->object); 394 alignment = m->pindex % vm_pageout_page_count; 395 page_base = nitems(mc) / 2; 396 pageout_count = 1; 397 mc[page_base] = m; 398 399 /* 400 * During heavy mmap/modification loads the pageout 401 * daemon can really fragment the underlying file 402 * due to flushing pages out of order and not trying to 403 * align the clusters (which leaves sporadic out-of-order 404 * holes). To solve this problem we do the reverse scan 405 * first and attempt to align our cluster, then do a 406 * forward scan if room remains. 407 * 408 * If we are at an alignment boundary, stop here, and switch directions. 409 */ 410 if (alignment > 0) { 411 pages.index = mc[page_base]->pindex; 412 do { 413 m = vm_radix_iter_prev(&pages); 414 if (m == NULL || !vm_pageout_flushable(m)) 415 break; 416 mc[--page_base] = m; 417 } while (pageout_count++ < alignment); 418 } 419 if (pageout_count < vm_pageout_page_count) { 420 pages.index = mc[page_base + pageout_count - 1]->pindex; 421 do { 422 m = vm_radix_iter_next(&pages); 423 if (m == NULL || !vm_pageout_flushable(m)) 424 break; 425 mc[page_base + pageout_count] = m; 426 } while (++pageout_count < vm_pageout_page_count); 427 } 428 if (pageout_count < vm_pageout_page_count && 429 alignment == nitems(mc) / 2 - page_base) { 430 /* Resume the reverse scan. */ 431 pages.index = mc[page_base]->pindex; 432 do { 433 m = vm_radix_iter_prev(&pages); 434 if (m == NULL || !vm_pageout_flushable(m)) 435 break; 436 mc[--page_base] = m; 437 } while (++pageout_count < vm_pageout_page_count); 438 } 439 440 return (vm_pageout_flush(&mc[page_base], pageout_count, 441 VM_PAGER_PUT_NOREUSE, NULL)); 442 } 443 444 /* 445 * vm_pageout_flush() - launder the given pages 446 * 447 * The given pages are laundered. Note that we setup for the start of 448 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 449 * reference count all in here rather then in the parent. If we want 450 * the parent to do more sophisticated things we may have to change 451 * the ordering. 452 * 453 * If eio is not NULL, returns the count of pages between 0 and first page 454 * with status VM_PAGER_AGAIN. *eio is set to true if pager returned 455 * VM_PAGER_ERROR or VM_PAGER_FAIL for any page in that set. 456 * 457 * Otherwise, returns the number of paged-out pages. 458 */ 459 int 460 vm_pageout_flush(vm_page_t *mc, int count, int flags, bool *eio) 461 { 462 vm_object_t object = mc[0]->object; 463 int pageout_status[count]; 464 int numpagedout = 0; 465 int i; 466 467 VM_OBJECT_ASSERT_WLOCKED(object); 468 469 /* 470 * Initiate I/O. Mark the pages shared busy and verify that they're 471 * valid and read-only. 472 * 473 * We do not have to fixup the clean/dirty bits here... we can 474 * allow the pager to do it after the I/O completes. 475 * 476 * NOTE! mc[i]->dirty may be partial or fragmented due to an 477 * edge case with file fragments. 478 */ 479 for (i = 0; i < count; i++) { 480 KASSERT(vm_page_all_valid(mc[i]), 481 ("vm_pageout_flush: partially invalid page %p index %d/%d", 482 mc[i], i, count)); 483 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0, 484 ("vm_pageout_flush: writeable page %p", mc[i])); 485 vm_page_busy_downgrade(mc[i]); 486 } 487 vm_object_pip_add(object, count); 488 489 vm_pager_put_pages(object, mc, count, flags, pageout_status); 490 491 if (eio != NULL) 492 *eio = false; 493 for (i = 0; i < count; i++) { 494 vm_page_t mt = mc[i]; 495 496 KASSERT(pageout_status[i] == VM_PAGER_PEND || 497 !pmap_page_is_write_mapped(mt), 498 ("vm_pageout_flush: page %p is not write protected", mt)); 499 switch (pageout_status[i]) { 500 case VM_PAGER_OK: 501 /* 502 * The page may have moved since laundering started, in 503 * which case it should be left alone. 504 */ 505 if (vm_page_in_laundry(mt)) 506 vm_page_deactivate_noreuse(mt); 507 /* FALLTHROUGH */ 508 case VM_PAGER_PEND: 509 numpagedout++; 510 break; 511 case VM_PAGER_BAD: 512 /* 513 * The page is outside the object's range. We pretend 514 * that the page out worked and clean the page, so the 515 * changes will be lost if the page is reclaimed by 516 * the page daemon. 517 */ 518 vm_page_undirty(mt); 519 if (vm_page_in_laundry(mt)) 520 vm_page_deactivate_noreuse(mt); 521 break; 522 case VM_PAGER_ERROR: 523 case VM_PAGER_FAIL: 524 /* 525 * If the page couldn't be paged out to swap because the 526 * pager wasn't able to find space, place the page in 527 * the PQ_UNSWAPPABLE holding queue. This is an 528 * optimization that prevents the page daemon from 529 * wasting CPU cycles on pages that cannot be reclaimed 530 * because no swap device is configured. 531 * 532 * Otherwise, reactivate the page so that it doesn't 533 * clog the laundry and inactive queues. (We will try 534 * paging it out again later.) 535 */ 536 if ((object->flags & OBJ_SWAP) != 0 && 537 pageout_status[i] == VM_PAGER_FAIL) { 538 vm_page_unswappable(mt); 539 numpagedout++; 540 } else 541 vm_page_activate(mt); 542 if (eio != NULL) 543 *eio = true; 544 break; 545 case VM_PAGER_AGAIN: 546 count = i; 547 break; 548 } 549 550 /* 551 * If the operation is still going, leave the page busy to 552 * block all other accesses. Also, leave the paging in 553 * progress indicator set so that we don't attempt an object 554 * collapse. 555 */ 556 if (pageout_status[i] != VM_PAGER_PEND) { 557 vm_object_pip_wakeup(object); 558 vm_page_sunbusy(mt); 559 } 560 } 561 if (eio != NULL) 562 return (count); 563 return (numpagedout); 564 } 565 566 static void 567 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 568 { 569 570 atomic_store_rel_int(&swapdev_enabled, 1); 571 } 572 573 static void 574 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 575 { 576 577 if (swap_pager_nswapdev() == 1) 578 atomic_store_rel_int(&swapdev_enabled, 0); 579 } 580 581 /* 582 * Attempt to acquire all of the necessary locks to launder a page and 583 * then call through the clustering layer to PUTPAGES. Wait a short 584 * time for a vnode lock. 585 * 586 * Requires the page and object lock on entry, releases both before return. 587 * Returns 0 on success and an errno otherwise. 588 */ 589 static int 590 vm_pageout_clean(vm_page_t m, int *numpagedout) 591 { 592 struct vnode *vp; 593 struct mount *mp; 594 vm_object_t object; 595 vm_pindex_t pindex; 596 int error; 597 598 object = m->object; 599 VM_OBJECT_ASSERT_WLOCKED(object); 600 error = 0; 601 vp = NULL; 602 mp = NULL; 603 604 /* 605 * The object is already known NOT to be dead. It 606 * is possible for the vget() to block the whole 607 * pageout daemon, but the new low-memory handling 608 * code should prevent it. 609 * 610 * We can't wait forever for the vnode lock, we might 611 * deadlock due to a vn_read() getting stuck in 612 * vm_wait while holding this vnode. We skip the 613 * vnode if we can't get it in a reasonable amount 614 * of time. 615 */ 616 if (object->type == OBJT_VNODE) { 617 vm_page_xunbusy(m); 618 vp = object->handle; 619 if (vp->v_type == VREG && 620 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 621 mp = NULL; 622 error = EDEADLK; 623 goto unlock_all; 624 } 625 KASSERT(mp != NULL, 626 ("vp %p with NULL v_mount", vp)); 627 vm_object_reference_locked(object); 628 pindex = m->pindex; 629 VM_OBJECT_WUNLOCK(object); 630 if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) { 631 vp = NULL; 632 error = EDEADLK; 633 goto unlock_mp; 634 } 635 VM_OBJECT_WLOCK(object); 636 637 /* 638 * Ensure that the object and vnode were not disassociated 639 * while locks were dropped. 640 */ 641 if (vp->v_object != object) { 642 error = ENOENT; 643 goto unlock_all; 644 } 645 646 /* 647 * While the object was unlocked, the page may have been: 648 * (1) moved to a different queue, 649 * (2) reallocated to a different object, 650 * (3) reallocated to a different offset, or 651 * (4) cleaned. 652 */ 653 if (!vm_page_in_laundry(m) || m->object != object || 654 m->pindex != pindex || m->dirty == 0) { 655 error = ENXIO; 656 goto unlock_all; 657 } 658 659 /* 660 * The page may have been busied while the object lock was 661 * released. 662 */ 663 if (vm_page_tryxbusy(m) == 0) { 664 error = EBUSY; 665 goto unlock_all; 666 } 667 } 668 669 /* 670 * Remove all writeable mappings, failing if the page is wired. 671 */ 672 if (!vm_page_try_remove_write(m)) { 673 vm_page_xunbusy(m); 674 error = EBUSY; 675 goto unlock_all; 676 } 677 678 /* 679 * If a page is dirty, then it is either being washed 680 * (but not yet cleaned) or it is still in the 681 * laundry. If it is still in the laundry, then we 682 * start the cleaning operation. 683 */ 684 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 685 error = EIO; 686 687 unlock_all: 688 VM_OBJECT_WUNLOCK(object); 689 690 unlock_mp: 691 if (mp != NULL) { 692 if (vp != NULL) 693 vput(vp); 694 vm_object_deallocate(object); 695 vn_finished_write(mp); 696 } 697 698 return (error); 699 } 700 701 /* 702 * Attempt to launder the specified number of pages. 703 * 704 * Returns the number of pages successfully laundered. 705 */ 706 static int 707 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 708 { 709 struct scan_state ss; 710 struct vm_pagequeue *pq; 711 vm_object_t object; 712 vm_page_t m, marker; 713 vm_page_astate_t new, old; 714 int act_delta, error, numpagedout, queue, refs, starting_target; 715 int vnodes_skipped; 716 bool pageout_ok; 717 718 object = NULL; 719 starting_target = launder; 720 vnodes_skipped = 0; 721 722 /* 723 * Scan the laundry queues for pages eligible to be laundered. We stop 724 * once the target number of dirty pages have been laundered, or once 725 * we've reached the end of the queue. A single iteration of this loop 726 * may cause more than one page to be laundered because of clustering. 727 * 728 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 729 * swap devices are configured. 730 */ 731 if (atomic_load_acq_int(&swapdev_enabled)) 732 queue = PQ_UNSWAPPABLE; 733 else 734 queue = PQ_LAUNDRY; 735 736 scan: 737 marker = &vmd->vmd_markers[queue]; 738 pq = &vmd->vmd_pagequeues[queue]; 739 vm_pagequeue_lock(pq); 740 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 741 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 742 if (__predict_false((m->flags & PG_MARKER) != 0)) 743 continue; 744 745 /* 746 * Don't touch a page that was removed from the queue after the 747 * page queue lock was released. Otherwise, ensure that any 748 * pending queue operations, such as dequeues for wired pages, 749 * are handled. 750 */ 751 if (vm_pageout_defer(m, queue, true)) 752 continue; 753 754 /* 755 * Lock the page's object. 756 */ 757 if (object == NULL || object != m->object) { 758 if (object != NULL) 759 VM_OBJECT_WUNLOCK(object); 760 object = atomic_load_ptr(&m->object); 761 if (__predict_false(object == NULL)) 762 /* The page is being freed by another thread. */ 763 continue; 764 765 /* Depends on type-stability. */ 766 VM_OBJECT_WLOCK(object); 767 if (__predict_false(m->object != object)) { 768 VM_OBJECT_WUNLOCK(object); 769 object = NULL; 770 continue; 771 } 772 } 773 774 if (vm_page_tryxbusy(m) == 0) 775 continue; 776 777 /* 778 * Check for wirings now that we hold the object lock and have 779 * exclusively busied the page. If the page is mapped, it may 780 * still be wired by pmap lookups. The call to 781 * vm_page_try_remove_all() below atomically checks for such 782 * wirings and removes mappings. If the page is unmapped, the 783 * wire count is guaranteed not to increase after this check. 784 */ 785 if (__predict_false(vm_page_wired(m))) 786 goto skip_page; 787 788 /* 789 * Invalid pages can be easily freed. They cannot be 790 * mapped; vm_page_free() asserts this. 791 */ 792 if (vm_page_none_valid(m)) 793 goto free_page; 794 795 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 796 797 for (old = vm_page_astate_load(m);;) { 798 /* 799 * Check to see if the page has been removed from the 800 * queue since the first such check. Leave it alone if 801 * so, discarding any references collected by 802 * pmap_ts_referenced(). 803 */ 804 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 805 goto skip_page; 806 807 new = old; 808 act_delta = refs; 809 if ((old.flags & PGA_REFERENCED) != 0) { 810 new.flags &= ~PGA_REFERENCED; 811 act_delta++; 812 } 813 if (act_delta == 0) { 814 ; 815 } else if (object->ref_count != 0) { 816 /* 817 * Increase the activation count if the page was 818 * referenced while in the laundry queue. This 819 * makes it less likely that the page will be 820 * returned prematurely to the laundry queue. 821 */ 822 new.act_count += ACT_ADVANCE + 823 act_delta; 824 if (new.act_count > ACT_MAX) 825 new.act_count = ACT_MAX; 826 827 new.flags &= ~PGA_QUEUE_OP_MASK; 828 new.flags |= PGA_REQUEUE; 829 new.queue = PQ_ACTIVE; 830 if (!vm_page_pqstate_commit(m, &old, new)) 831 continue; 832 833 /* 834 * If this was a background laundering, count 835 * activated pages towards our target. The 836 * purpose of background laundering is to ensure 837 * that pages are eventually cycled through the 838 * laundry queue, and an activation is a valid 839 * way out. 840 */ 841 if (!in_shortfall) 842 launder--; 843 VM_CNT_INC(v_reactivated); 844 goto skip_page; 845 } else if ((object->flags & OBJ_DEAD) == 0) { 846 new.flags |= PGA_REQUEUE; 847 if (!vm_page_pqstate_commit(m, &old, new)) 848 continue; 849 goto skip_page; 850 } 851 break; 852 } 853 854 /* 855 * If the page appears to be clean at the machine-independent 856 * layer, then remove all of its mappings from the pmap in 857 * anticipation of freeing it. If, however, any of the page's 858 * mappings allow write access, then the page may still be 859 * modified until the last of those mappings are removed. 860 */ 861 if (object->ref_count != 0) { 862 vm_page_test_dirty(m); 863 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 864 goto skip_page; 865 } 866 867 /* 868 * Clean pages are freed, and dirty pages are paged out unless 869 * they belong to a dead object. Requeueing dirty pages from 870 * dead objects is pointless, as they are being paged out and 871 * freed by the thread that destroyed the object. 872 */ 873 if (m->dirty == 0) { 874 free_page: 875 /* 876 * Now we are guaranteed that no other threads are 877 * manipulating the page, check for a last-second 878 * reference. 879 */ 880 if (vm_pageout_defer(m, queue, true)) 881 goto skip_page; 882 vm_page_free(m); 883 VM_CNT_INC(v_dfree); 884 } else if ((object->flags & OBJ_DEAD) == 0) { 885 if ((object->flags & OBJ_SWAP) != 0) 886 pageout_ok = disable_swap_pageouts == 0; 887 else 888 pageout_ok = true; 889 if (!pageout_ok) { 890 vm_page_launder(m); 891 goto skip_page; 892 } 893 894 /* 895 * Form a cluster with adjacent, dirty pages from the 896 * same object, and page out that entire cluster. 897 * 898 * The adjacent, dirty pages must also be in the 899 * laundry. However, their mappings are not checked 900 * for new references. Consequently, a recently 901 * referenced page may be paged out. However, that 902 * page will not be prematurely reclaimed. After page 903 * out, the page will be placed in the inactive queue, 904 * where any new references will be detected and the 905 * page reactivated. 906 */ 907 error = vm_pageout_clean(m, &numpagedout); 908 if (error == 0) { 909 launder -= numpagedout; 910 ss.scanned += numpagedout; 911 } else if (error == EDEADLK) { 912 pageout_lock_miss++; 913 vnodes_skipped++; 914 } 915 object = NULL; 916 } else { 917 skip_page: 918 vm_page_xunbusy(m); 919 } 920 } 921 if (object != NULL) { 922 VM_OBJECT_WUNLOCK(object); 923 object = NULL; 924 } 925 vm_pagequeue_lock(pq); 926 vm_pageout_end_scan(&ss); 927 vm_pagequeue_unlock(pq); 928 929 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 930 queue = PQ_LAUNDRY; 931 goto scan; 932 } 933 934 /* 935 * Wakeup the sync daemon if we skipped a vnode in a writeable object 936 * and we didn't launder enough pages. 937 */ 938 if (vnodes_skipped > 0 && launder > 0) 939 (void)speedup_syncer(); 940 941 return (starting_target - launder); 942 } 943 944 /* 945 * Compute the integer square root. 946 */ 947 static u_int 948 isqrt(u_int num) 949 { 950 u_int bit, root, tmp; 951 952 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0; 953 root = 0; 954 while (bit != 0) { 955 tmp = root + bit; 956 root >>= 1; 957 if (num >= tmp) { 958 num -= tmp; 959 root += bit; 960 } 961 bit >>= 2; 962 } 963 return (root); 964 } 965 966 /* 967 * Perform the work of the laundry thread: periodically wake up and determine 968 * whether any pages need to be laundered. If so, determine the number of pages 969 * that need to be laundered, and launder them. 970 */ 971 static void 972 vm_pageout_laundry_worker(void *arg) 973 { 974 struct vm_domain *vmd; 975 struct vm_pagequeue *pq; 976 uint64_t nclean, ndirty, nfreed; 977 int domain, last_target, launder, shortfall, shortfall_cycle, target; 978 bool in_shortfall; 979 980 domain = (uintptr_t)arg; 981 vmd = VM_DOMAIN(domain); 982 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 983 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 984 985 shortfall = 0; 986 in_shortfall = false; 987 shortfall_cycle = 0; 988 last_target = target = 0; 989 nfreed = 0; 990 991 /* 992 * Calls to these handlers are serialized by the swap syscall lock. 993 */ 994 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 995 EVENTHANDLER_PRI_ANY); 996 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 997 EVENTHANDLER_PRI_ANY); 998 999 /* 1000 * The pageout laundry worker is never done, so loop forever. 1001 */ 1002 for (;;) { 1003 KASSERT(target >= 0, ("negative target %d", target)); 1004 KASSERT(shortfall_cycle >= 0, 1005 ("negative cycle %d", shortfall_cycle)); 1006 launder = 0; 1007 1008 /* 1009 * First determine whether we need to launder pages to meet a 1010 * shortage of free pages. 1011 */ 1012 if (shortfall > 0) { 1013 in_shortfall = true; 1014 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 1015 target = shortfall; 1016 } else if (!in_shortfall) 1017 goto trybackground; 1018 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 1019 /* 1020 * We recently entered shortfall and began laundering 1021 * pages. If we have completed that laundering run 1022 * (and we are no longer in shortfall) or we have met 1023 * our laundry target through other activity, then we 1024 * can stop laundering pages. 1025 */ 1026 in_shortfall = false; 1027 target = 0; 1028 goto trybackground; 1029 } 1030 launder = target / shortfall_cycle--; 1031 goto dolaundry; 1032 1033 /* 1034 * There's no immediate need to launder any pages; see if we 1035 * meet the conditions to perform background laundering: 1036 * 1037 * 1. The ratio of dirty to clean inactive pages exceeds the 1038 * background laundering threshold, or 1039 * 2. we haven't yet reached the target of the current 1040 * background laundering run. 1041 * 1042 * The background laundering threshold is not a constant. 1043 * Instead, it is a slowly growing function of the number of 1044 * clean pages freed by the page daemon since the last 1045 * background laundering. Thus, as the ratio of dirty to 1046 * clean inactive pages grows, the amount of memory pressure 1047 * required to trigger laundering decreases. We ensure 1048 * that the threshold is non-zero after an inactive queue 1049 * scan, even if that scan failed to free a single clean page. 1050 */ 1051 trybackground: 1052 nclean = vmd->vmd_free_count + 1053 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1054 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1055 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1056 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1057 target = vmd->vmd_background_launder_target; 1058 } 1059 1060 /* 1061 * We have a non-zero background laundering target. If we've 1062 * laundered up to our maximum without observing a page daemon 1063 * request, just stop. This is a safety belt that ensures we 1064 * don't launder an excessive amount if memory pressure is low 1065 * and the ratio of dirty to clean pages is large. Otherwise, 1066 * proceed at the background laundering rate. 1067 */ 1068 if (target > 0) { 1069 if (nfreed > 0) { 1070 nfreed = 0; 1071 last_target = target; 1072 } else if (last_target - target >= 1073 vm_background_launder_max * PAGE_SIZE / 1024) { 1074 target = 0; 1075 } 1076 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1077 launder /= VM_LAUNDER_RATE; 1078 if (launder > target) 1079 launder = target; 1080 } 1081 1082 dolaundry: 1083 if (launder > 0) { 1084 /* 1085 * Because of I/O clustering, the number of laundered 1086 * pages could exceed "target" by the maximum size of 1087 * a cluster minus one. 1088 */ 1089 target -= min(vm_pageout_launder(vmd, launder, 1090 in_shortfall), target); 1091 pause("laundp", hz / VM_LAUNDER_RATE); 1092 } 1093 1094 /* 1095 * If we're not currently laundering pages and the page daemon 1096 * hasn't posted a new request, sleep until the page daemon 1097 * kicks us. 1098 */ 1099 vm_pagequeue_lock(pq); 1100 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1101 (void)mtx_sleep(&vmd->vmd_laundry_request, 1102 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1103 1104 /* 1105 * If the pagedaemon has indicated that it's in shortfall, start 1106 * a shortfall laundering unless we're already in the middle of 1107 * one. This may preempt a background laundering. 1108 */ 1109 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1110 (!in_shortfall || shortfall_cycle == 0)) { 1111 shortfall = vm_laundry_target(vmd) + 1112 vmd->vmd_pageout_deficit; 1113 target = 0; 1114 } else 1115 shortfall = 0; 1116 1117 if (target == 0) 1118 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1119 nfreed += vmd->vmd_clean_pages_freed; 1120 vmd->vmd_clean_pages_freed = 0; 1121 vm_pagequeue_unlock(pq); 1122 } 1123 } 1124 1125 /* 1126 * Compute the number of pages we want to try to move from the 1127 * active queue to either the inactive or laundry queue. 1128 * 1129 * When scanning active pages during a shortage, we make clean pages 1130 * count more heavily towards the page shortage than dirty pages. 1131 * This is because dirty pages must be laundered before they can be 1132 * reused and thus have less utility when attempting to quickly 1133 * alleviate a free page shortage. However, this weighting also 1134 * causes the scan to deactivate dirty pages more aggressively, 1135 * improving the effectiveness of clustering. 1136 */ 1137 static int 1138 vm_pageout_active_target(struct vm_domain *vmd) 1139 { 1140 int shortage; 1141 1142 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) - 1143 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt + 1144 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight); 1145 shortage *= act_scan_laundry_weight; 1146 return (shortage); 1147 } 1148 1149 /* 1150 * Scan the active queue. If there is no shortage of inactive pages, scan a 1151 * small portion of the queue in order to maintain quasi-LRU. 1152 */ 1153 static void 1154 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage) 1155 { 1156 struct scan_state ss; 1157 vm_object_t object; 1158 vm_page_t m, marker; 1159 struct vm_pagequeue *pq; 1160 vm_page_astate_t old, new; 1161 long min_scan; 1162 int act_delta, max_scan, ps_delta, refs, scan_tick; 1163 uint8_t nqueue; 1164 1165 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1166 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1167 vm_pagequeue_lock(pq); 1168 1169 /* 1170 * If we're just idle polling attempt to visit every 1171 * active page within 'update_period' seconds. 1172 */ 1173 scan_tick = ticks; 1174 if (vm_pageout_update_period != 0) { 1175 min_scan = pq->pq_cnt; 1176 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1177 min_scan /= hz * vm_pageout_update_period; 1178 } else 1179 min_scan = 0; 1180 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0)) 1181 vmd->vmd_last_active_scan = scan_tick; 1182 1183 /* 1184 * Scan the active queue for pages that can be deactivated. Update 1185 * the per-page activity counter and use it to identify deactivation 1186 * candidates. Held pages may be deactivated. 1187 * 1188 * To avoid requeuing each page that remains in the active queue, we 1189 * implement the CLOCK algorithm. To keep the implementation of the 1190 * enqueue operation consistent for all page queues, we use two hands, 1191 * represented by marker pages. Scans begin at the first hand, which 1192 * precedes the second hand in the queue. When the two hands meet, 1193 * they are moved back to the head and tail of the queue, respectively, 1194 * and scanning resumes. 1195 */ 1196 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan; 1197 act_scan: 1198 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1199 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1200 if (__predict_false(m == &vmd->vmd_clock[1])) { 1201 vm_pagequeue_lock(pq); 1202 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1203 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1204 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1205 plinks.q); 1206 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1207 plinks.q); 1208 max_scan -= ss.scanned; 1209 vm_pageout_end_scan(&ss); 1210 goto act_scan; 1211 } 1212 if (__predict_false((m->flags & PG_MARKER) != 0)) 1213 continue; 1214 1215 /* 1216 * Don't touch a page that was removed from the queue after the 1217 * page queue lock was released. Otherwise, ensure that any 1218 * pending queue operations, such as dequeues for wired pages, 1219 * are handled. 1220 */ 1221 if (vm_pageout_defer(m, PQ_ACTIVE, true)) 1222 continue; 1223 1224 /* 1225 * A page's object pointer may be set to NULL before 1226 * the object lock is acquired. 1227 */ 1228 object = atomic_load_ptr(&m->object); 1229 if (__predict_false(object == NULL)) 1230 /* 1231 * The page has been removed from its object. 1232 */ 1233 continue; 1234 1235 /* Deferred free of swap space. */ 1236 if ((m->a.flags & PGA_SWAP_FREE) != 0 && 1237 VM_OBJECT_TRYWLOCK(object)) { 1238 if (m->object == object) 1239 vm_pager_page_unswapped(m); 1240 VM_OBJECT_WUNLOCK(object); 1241 } 1242 1243 /* 1244 * Check to see "how much" the page has been used. 1245 * 1246 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1247 * that a reference from a concurrently destroyed mapping is 1248 * observed here and now. 1249 * 1250 * Perform an unsynchronized object ref count check. While 1251 * the page lock ensures that the page is not reallocated to 1252 * another object, in particular, one with unmanaged mappings 1253 * that cannot support pmap_ts_referenced(), two races are, 1254 * nonetheless, possible: 1255 * 1) The count was transitioning to zero, but we saw a non- 1256 * zero value. pmap_ts_referenced() will return zero 1257 * because the page is not mapped. 1258 * 2) The count was transitioning to one, but we saw zero. 1259 * This race delays the detection of a new reference. At 1260 * worst, we will deactivate and reactivate the page. 1261 */ 1262 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 1263 1264 old = vm_page_astate_load(m); 1265 do { 1266 /* 1267 * Check to see if the page has been removed from the 1268 * queue since the first such check. Leave it alone if 1269 * so, discarding any references collected by 1270 * pmap_ts_referenced(). 1271 */ 1272 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) { 1273 ps_delta = 0; 1274 break; 1275 } 1276 1277 /* 1278 * Advance or decay the act_count based on recent usage. 1279 */ 1280 new = old; 1281 act_delta = refs; 1282 if ((old.flags & PGA_REFERENCED) != 0) { 1283 new.flags &= ~PGA_REFERENCED; 1284 act_delta++; 1285 } 1286 if (act_delta != 0) { 1287 new.act_count += ACT_ADVANCE + act_delta; 1288 if (new.act_count > ACT_MAX) 1289 new.act_count = ACT_MAX; 1290 } else { 1291 new.act_count -= min(new.act_count, 1292 ACT_DECLINE); 1293 } 1294 1295 if (new.act_count > 0) { 1296 /* 1297 * Adjust the activation count and keep the page 1298 * in the active queue. The count might be left 1299 * unchanged if it is saturated. The page may 1300 * have been moved to a different queue since we 1301 * started the scan, in which case we move it 1302 * back. 1303 */ 1304 ps_delta = 0; 1305 if (old.queue != PQ_ACTIVE) { 1306 new.flags &= ~PGA_QUEUE_OP_MASK; 1307 new.flags |= PGA_REQUEUE; 1308 new.queue = PQ_ACTIVE; 1309 } 1310 } else { 1311 /* 1312 * When not short for inactive pages, let dirty 1313 * pages go through the inactive queue before 1314 * moving to the laundry queue. This gives them 1315 * some extra time to be reactivated, 1316 * potentially avoiding an expensive pageout. 1317 * However, during a page shortage, the inactive 1318 * queue is necessarily small, and so dirty 1319 * pages would only spend a trivial amount of 1320 * time in the inactive queue. Therefore, we 1321 * might as well place them directly in the 1322 * laundry queue to reduce queuing overhead. 1323 * 1324 * Calling vm_page_test_dirty() here would 1325 * require acquisition of the object's write 1326 * lock. However, during a page shortage, 1327 * directing dirty pages into the laundry queue 1328 * is only an optimization and not a 1329 * requirement. Therefore, we simply rely on 1330 * the opportunistic updates to the page's dirty 1331 * field by the pmap. 1332 */ 1333 if (page_shortage <= 0) { 1334 nqueue = PQ_INACTIVE; 1335 ps_delta = 0; 1336 } else if (m->dirty == 0) { 1337 nqueue = PQ_INACTIVE; 1338 ps_delta = act_scan_laundry_weight; 1339 } else { 1340 nqueue = PQ_LAUNDRY; 1341 ps_delta = 1; 1342 } 1343 1344 new.flags &= ~PGA_QUEUE_OP_MASK; 1345 new.flags |= PGA_REQUEUE; 1346 new.queue = nqueue; 1347 } 1348 } while (!vm_page_pqstate_commit(m, &old, new)); 1349 1350 page_shortage -= ps_delta; 1351 } 1352 vm_pagequeue_lock(pq); 1353 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1354 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1355 vm_pageout_end_scan(&ss); 1356 vm_pagequeue_unlock(pq); 1357 } 1358 1359 static int 1360 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker, 1361 vm_page_t m) 1362 { 1363 vm_page_astate_t as; 1364 1365 vm_pagequeue_assert_locked(pq); 1366 1367 as = vm_page_astate_load(m); 1368 if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0) 1369 return (0); 1370 vm_page_aflag_set(m, PGA_ENQUEUED); 1371 TAILQ_INSERT_BEFORE(marker, m, plinks.q); 1372 return (1); 1373 } 1374 1375 /* 1376 * Re-add stuck pages to the inactive queue. We will examine them again 1377 * during the next scan. If the queue state of a page has changed since 1378 * it was physically removed from the page queue in 1379 * vm_pageout_collect_batch(), don't do anything with that page. 1380 */ 1381 static void 1382 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1383 vm_page_t m) 1384 { 1385 struct vm_pagequeue *pq; 1386 vm_page_t marker; 1387 int delta; 1388 1389 delta = 0; 1390 marker = ss->marker; 1391 pq = ss->pq; 1392 1393 if (m != NULL) { 1394 if (vm_batchqueue_insert(bq, m) != 0) 1395 return; 1396 vm_pagequeue_lock(pq); 1397 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1398 } else 1399 vm_pagequeue_lock(pq); 1400 while ((m = vm_batchqueue_pop(bq)) != NULL) 1401 delta += vm_pageout_reinsert_inactive_page(pq, marker, m); 1402 vm_pagequeue_cnt_add(pq, delta); 1403 vm_pagequeue_unlock(pq); 1404 vm_batchqueue_init(bq); 1405 } 1406 1407 static void 1408 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage) 1409 { 1410 struct timeval start, end; 1411 struct scan_state ss; 1412 struct vm_batchqueue rq; 1413 struct vm_page marker_page; 1414 vm_page_t m, marker; 1415 struct vm_pagequeue *pq; 1416 vm_object_t object; 1417 vm_page_astate_t old, new; 1418 int act_delta, addl_page_shortage, starting_page_shortage, refs; 1419 1420 object = NULL; 1421 vm_batchqueue_init(&rq); 1422 getmicrouptime(&start); 1423 1424 /* 1425 * The addl_page_shortage is an estimate of the number of temporarily 1426 * stuck pages in the inactive queue. In other words, the 1427 * number of pages from the inactive count that should be 1428 * discounted in setting the target for the active queue scan. 1429 */ 1430 addl_page_shortage = 0; 1431 1432 /* 1433 * Start scanning the inactive queue for pages that we can free. The 1434 * scan will stop when we reach the target or we have scanned the 1435 * entire queue. (Note that m->a.act_count is not used to make 1436 * decisions for the inactive queue, only for the active queue.) 1437 */ 1438 starting_page_shortage = page_shortage; 1439 marker = &marker_page; 1440 vm_page_init_marker(marker, PQ_INACTIVE, 0); 1441 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1442 vm_pagequeue_lock(pq); 1443 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1444 while (page_shortage > 0) { 1445 /* 1446 * If we need to refill the scan batch queue, release any 1447 * optimistically held object lock. This gives someone else a 1448 * chance to grab the lock, and also avoids holding it while we 1449 * do unrelated work. 1450 */ 1451 if (object != NULL && vm_batchqueue_empty(&ss.bq)) { 1452 VM_OBJECT_WUNLOCK(object); 1453 object = NULL; 1454 } 1455 1456 m = vm_pageout_next(&ss, true); 1457 if (m == NULL) 1458 break; 1459 KASSERT((m->flags & PG_MARKER) == 0, 1460 ("marker page %p was dequeued", m)); 1461 1462 /* 1463 * Don't touch a page that was removed from the queue after the 1464 * page queue lock was released. Otherwise, ensure that any 1465 * pending queue operations, such as dequeues for wired pages, 1466 * are handled. 1467 */ 1468 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1469 continue; 1470 1471 /* 1472 * Lock the page's object. 1473 */ 1474 if (object == NULL || object != m->object) { 1475 if (object != NULL) 1476 VM_OBJECT_WUNLOCK(object); 1477 object = atomic_load_ptr(&m->object); 1478 if (__predict_false(object == NULL)) 1479 /* The page is being freed by another thread. */ 1480 continue; 1481 1482 /* Depends on type-stability. */ 1483 VM_OBJECT_WLOCK(object); 1484 if (__predict_false(m->object != object)) { 1485 VM_OBJECT_WUNLOCK(object); 1486 object = NULL; 1487 goto reinsert; 1488 } 1489 } 1490 1491 if (vm_page_tryxbusy(m) == 0) { 1492 /* 1493 * Don't mess with busy pages. Leave them at 1494 * the front of the queue. Most likely, they 1495 * are being paged out and will leave the 1496 * queue shortly after the scan finishes. So, 1497 * they ought to be discounted from the 1498 * inactive count. 1499 */ 1500 addl_page_shortage++; 1501 goto reinsert; 1502 } 1503 1504 /* Deferred free of swap space. */ 1505 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1506 vm_pager_page_unswapped(m); 1507 1508 /* 1509 * Check for wirings now that we hold the object lock and have 1510 * exclusively busied the page. If the page is mapped, it may 1511 * still be wired by pmap lookups. The call to 1512 * vm_page_try_remove_all() below atomically checks for such 1513 * wirings and removes mappings. If the page is unmapped, the 1514 * wire count is guaranteed not to increase after this check. 1515 */ 1516 if (__predict_false(vm_page_wired(m))) 1517 goto skip_page; 1518 1519 /* 1520 * Invalid pages can be easily freed. They cannot be 1521 * mapped, vm_page_free() asserts this. 1522 */ 1523 if (vm_page_none_valid(m)) 1524 goto free_page; 1525 1526 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0; 1527 1528 for (old = vm_page_astate_load(m);;) { 1529 /* 1530 * Check to see if the page has been removed from the 1531 * queue since the first such check. Leave it alone if 1532 * so, discarding any references collected by 1533 * pmap_ts_referenced(). 1534 */ 1535 if (__predict_false(_vm_page_queue(old) == PQ_NONE)) 1536 goto skip_page; 1537 1538 new = old; 1539 act_delta = refs; 1540 if ((old.flags & PGA_REFERENCED) != 0) { 1541 new.flags &= ~PGA_REFERENCED; 1542 act_delta++; 1543 } 1544 if (act_delta == 0) { 1545 ; 1546 } else if (object->ref_count != 0) { 1547 /* 1548 * Increase the activation count if the 1549 * page was referenced while in the 1550 * inactive queue. This makes it less 1551 * likely that the page will be returned 1552 * prematurely to the inactive queue. 1553 */ 1554 new.act_count += ACT_ADVANCE + 1555 act_delta; 1556 if (new.act_count > ACT_MAX) 1557 new.act_count = ACT_MAX; 1558 1559 new.flags &= ~PGA_QUEUE_OP_MASK; 1560 new.flags |= PGA_REQUEUE; 1561 new.queue = PQ_ACTIVE; 1562 if (!vm_page_pqstate_commit(m, &old, new)) 1563 continue; 1564 1565 VM_CNT_INC(v_reactivated); 1566 goto skip_page; 1567 } else if ((object->flags & OBJ_DEAD) == 0) { 1568 new.queue = PQ_INACTIVE; 1569 new.flags |= PGA_REQUEUE; 1570 if (!vm_page_pqstate_commit(m, &old, new)) 1571 continue; 1572 goto skip_page; 1573 } 1574 break; 1575 } 1576 1577 /* 1578 * If the page appears to be clean at the machine-independent 1579 * layer, then remove all of its mappings from the pmap in 1580 * anticipation of freeing it. If, however, any of the page's 1581 * mappings allow write access, then the page may still be 1582 * modified until the last of those mappings are removed. 1583 */ 1584 if (object->ref_count != 0) { 1585 vm_page_test_dirty(m); 1586 if (m->dirty == 0 && !vm_page_try_remove_all(m)) 1587 goto skip_page; 1588 } 1589 1590 /* 1591 * Clean pages can be freed, but dirty pages must be sent back 1592 * to the laundry, unless they belong to a dead object. 1593 * Requeueing dirty pages from dead objects is pointless, as 1594 * they are being paged out and freed by the thread that 1595 * destroyed the object. 1596 */ 1597 if (m->dirty == 0) { 1598 free_page: 1599 /* 1600 * Now we are guaranteed that no other threads are 1601 * manipulating the page, check for a last-second 1602 * reference that would save it from doom. 1603 */ 1604 if (vm_pageout_defer(m, PQ_INACTIVE, false)) 1605 goto skip_page; 1606 1607 /* 1608 * Because we dequeued the page and have already checked 1609 * for pending dequeue and enqueue requests, we can 1610 * safely disassociate the page from the inactive queue 1611 * without holding the queue lock. 1612 */ 1613 m->a.queue = PQ_NONE; 1614 vm_page_free(m); 1615 page_shortage--; 1616 continue; 1617 } 1618 if ((object->flags & OBJ_DEAD) == 0) 1619 vm_page_launder(m); 1620 skip_page: 1621 vm_page_xunbusy(m); 1622 continue; 1623 reinsert: 1624 vm_pageout_reinsert_inactive(&ss, &rq, m); 1625 } 1626 if (object != NULL) 1627 VM_OBJECT_WUNLOCK(object); 1628 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1629 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1630 vm_pagequeue_lock(pq); 1631 vm_pageout_end_scan(&ss); 1632 vm_pagequeue_unlock(pq); 1633 1634 /* 1635 * Record the remaining shortage and the progress and rate it was made. 1636 */ 1637 atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage); 1638 getmicrouptime(&end); 1639 timevalsub(&end, &start); 1640 atomic_add_int(&vmd->vmd_inactive_us, 1641 end.tv_sec * 1000000 + end.tv_usec); 1642 atomic_add_int(&vmd->vmd_inactive_freed, 1643 starting_page_shortage - page_shortage); 1644 } 1645 1646 /* 1647 * Dispatch a number of inactive threads according to load and collect the 1648 * results to present a coherent view of paging activity on this domain. 1649 */ 1650 static int 1651 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage) 1652 { 1653 u_int freed, pps, slop, threads, us; 1654 1655 vmd->vmd_inactive_shortage = shortage; 1656 slop = 0; 1657 1658 /* 1659 * If we have more work than we can do in a quarter of our interval, we 1660 * fire off multiple threads to process it. 1661 */ 1662 if ((threads = vmd->vmd_inactive_threads) > 1 && 1663 vmd->vmd_helper_threads_enabled && 1664 vmd->vmd_inactive_pps != 0 && 1665 shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) { 1666 vmd->vmd_inactive_shortage /= threads; 1667 slop = shortage % threads; 1668 vm_domain_pageout_lock(vmd); 1669 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1); 1670 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1); 1671 wakeup(&vmd->vmd_inactive_shortage); 1672 vm_domain_pageout_unlock(vmd); 1673 } 1674 1675 /* Run the local thread scan. */ 1676 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop); 1677 1678 /* 1679 * Block until helper threads report results and then accumulate 1680 * totals. 1681 */ 1682 blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM); 1683 freed = atomic_readandclear_int(&vmd->vmd_inactive_freed); 1684 VM_CNT_ADD(v_dfree, freed); 1685 1686 /* 1687 * Calculate the per-thread paging rate with an exponential decay of 1688 * prior results. Careful to avoid integer rounding errors with large 1689 * us values. 1690 */ 1691 us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1); 1692 if (us > 1000000) 1693 /* Keep rounding to tenths */ 1694 pps = (freed * 10) / ((us * 10) / 1000000); 1695 else 1696 pps = (1000000 / us) * freed; 1697 vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2); 1698 1699 return (shortage - freed); 1700 } 1701 1702 /* 1703 * Attempt to reclaim the requested number of pages from the inactive queue. 1704 * Returns true if the shortage was addressed. 1705 */ 1706 static int 1707 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage) 1708 { 1709 struct vm_pagequeue *pq; 1710 u_int addl_page_shortage, deficit, page_shortage; 1711 u_int starting_page_shortage; 1712 1713 /* 1714 * vmd_pageout_deficit counts the number of pages requested in 1715 * allocations that failed because of a free page shortage. We assume 1716 * that the allocations will be reattempted and thus include the deficit 1717 * in our scan target. 1718 */ 1719 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1720 starting_page_shortage = shortage + deficit; 1721 1722 /* 1723 * Run the inactive scan on as many threads as is necessary. 1724 */ 1725 page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage); 1726 addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage); 1727 1728 /* 1729 * Wake up the laundry thread so that it can perform any needed 1730 * laundering. If we didn't meet our target, we're in shortfall and 1731 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1732 * swap devices are configured, the laundry thread has no work to do, so 1733 * don't bother waking it up. 1734 * 1735 * The laundry thread uses the number of inactive queue scans elapsed 1736 * since the last laundering to determine whether to launder again, so 1737 * keep count. 1738 */ 1739 if (starting_page_shortage > 0) { 1740 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1741 vm_pagequeue_lock(pq); 1742 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1743 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1744 if (page_shortage > 0) { 1745 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1746 VM_CNT_INC(v_pdshortfalls); 1747 } else if (vmd->vmd_laundry_request != 1748 VM_LAUNDRY_SHORTFALL) 1749 vmd->vmd_laundry_request = 1750 VM_LAUNDRY_BACKGROUND; 1751 wakeup(&vmd->vmd_laundry_request); 1752 } 1753 vmd->vmd_clean_pages_freed += 1754 starting_page_shortage - page_shortage; 1755 vm_pagequeue_unlock(pq); 1756 } 1757 1758 /* 1759 * If the inactive queue scan fails repeatedly to meet its 1760 * target, kill the largest process. 1761 */ 1762 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1763 1764 /* 1765 * See the description of addl_page_shortage above. 1766 */ 1767 *addl_shortage = addl_page_shortage + deficit; 1768 1769 return (page_shortage <= 0); 1770 } 1771 1772 static int vm_pageout_oom_vote; 1773 1774 /* 1775 * The pagedaemon threads randlomly select one to perform the 1776 * OOM. Trying to kill processes before all pagedaemons 1777 * failed to reach free target is premature. 1778 */ 1779 static void 1780 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1781 int starting_page_shortage) 1782 { 1783 int old_vote; 1784 1785 if (starting_page_shortage <= 0 || starting_page_shortage != 1786 page_shortage) 1787 vmd->vmd_oom_seq = 0; 1788 else 1789 vmd->vmd_oom_seq++; 1790 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1791 if (vmd->vmd_oom) { 1792 vmd->vmd_oom = false; 1793 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1794 } 1795 return; 1796 } 1797 1798 /* 1799 * Do not follow the call sequence until OOM condition is 1800 * cleared. 1801 */ 1802 vmd->vmd_oom_seq = 0; 1803 1804 if (vmd->vmd_oom) 1805 return; 1806 1807 vmd->vmd_oom = true; 1808 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1809 if (old_vote != vm_ndomains - 1) 1810 return; 1811 1812 /* 1813 * The current pagedaemon thread is the last in the quorum to 1814 * start OOM. Initiate the selection and signaling of the 1815 * victim. 1816 */ 1817 vm_pageout_oom(VM_OOM_MEM); 1818 1819 /* 1820 * After one round of OOM terror, recall our vote. On the 1821 * next pass, current pagedaemon would vote again if the low 1822 * memory condition is still there, due to vmd_oom being 1823 * false. 1824 */ 1825 vmd->vmd_oom = false; 1826 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1827 } 1828 1829 /* 1830 * The OOM killer is the page daemon's action of last resort when 1831 * memory allocation requests have been stalled for a prolonged period 1832 * of time because it cannot reclaim memory. This function computes 1833 * the approximate number of physical pages that could be reclaimed if 1834 * the specified address space is destroyed. 1835 * 1836 * Private, anonymous memory owned by the address space is the 1837 * principal resource that we expect to recover after an OOM kill. 1838 * Since the physical pages mapped by the address space's COW entries 1839 * are typically shared pages, they are unlikely to be released and so 1840 * they are not counted. 1841 * 1842 * To get to the point where the page daemon runs the OOM killer, its 1843 * efforts to write-back vnode-backed pages may have stalled. This 1844 * could be caused by a memory allocation deadlock in the write path 1845 * that might be resolved by an OOM kill. Therefore, physical pages 1846 * belonging to vnode-backed objects are counted, because they might 1847 * be freed without being written out first if the address space holds 1848 * the last reference to an unlinked vnode. 1849 * 1850 * Similarly, physical pages belonging to OBJT_PHYS objects are 1851 * counted because the address space might hold the last reference to 1852 * the object. 1853 */ 1854 static long 1855 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1856 { 1857 vm_map_t map; 1858 vm_map_entry_t entry; 1859 vm_object_t obj; 1860 long res; 1861 1862 map = &vmspace->vm_map; 1863 KASSERT(!vm_map_is_system(map), ("system map")); 1864 sx_assert(&map->lock, SA_LOCKED); 1865 res = 0; 1866 VM_MAP_ENTRY_FOREACH(entry, map) { 1867 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1868 continue; 1869 obj = entry->object.vm_object; 1870 if (obj == NULL) 1871 continue; 1872 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1873 obj->ref_count != 1) 1874 continue; 1875 if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE || 1876 (obj->flags & OBJ_SWAP) != 0) 1877 res += obj->resident_page_count; 1878 } 1879 return (res); 1880 } 1881 1882 static int vm_oom_ratelim_last; 1883 static int vm_oom_pf_secs = 10; 1884 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0, 1885 ""); 1886 static struct mtx vm_oom_ratelim_mtx; 1887 1888 void 1889 vm_pageout_oom(int shortage) 1890 { 1891 const char *reason; 1892 struct proc *p, *bigproc; 1893 vm_offset_t size, bigsize; 1894 struct thread *td; 1895 struct vmspace *vm; 1896 int now; 1897 bool breakout; 1898 1899 /* 1900 * For OOM requests originating from vm_fault(), there is a high 1901 * chance that a single large process faults simultaneously in 1902 * several threads. Also, on an active system running many 1903 * processes of middle-size, like buildworld, all of them 1904 * could fault almost simultaneously as well. 1905 * 1906 * To avoid killing too many processes, rate-limit OOMs 1907 * initiated by vm_fault() time-outs on the waits for free 1908 * pages. 1909 */ 1910 mtx_lock(&vm_oom_ratelim_mtx); 1911 now = ticks; 1912 if (shortage == VM_OOM_MEM_PF && 1913 (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) { 1914 mtx_unlock(&vm_oom_ratelim_mtx); 1915 return; 1916 } 1917 vm_oom_ratelim_last = now; 1918 mtx_unlock(&vm_oom_ratelim_mtx); 1919 1920 /* 1921 * We keep the process bigproc locked once we find it to keep anyone 1922 * from messing with it; however, there is a possibility of 1923 * deadlock if process B is bigproc and one of its child processes 1924 * attempts to propagate a signal to B while we are waiting for A's 1925 * lock while walking this list. To avoid this, we don't block on 1926 * the process lock but just skip a process if it is already locked. 1927 */ 1928 bigproc = NULL; 1929 bigsize = 0; 1930 sx_slock(&allproc_lock); 1931 FOREACH_PROC_IN_SYSTEM(p) { 1932 PROC_LOCK(p); 1933 1934 /* 1935 * If this is a system, protected or killed process, skip it. 1936 */ 1937 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1938 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1939 p->p_pid == 1 || P_KILLED(p) || 1940 (p->p_pid < 48 && swap_pager_avail != 0)) { 1941 PROC_UNLOCK(p); 1942 continue; 1943 } 1944 /* 1945 * If the process is in a non-running type state, 1946 * don't touch it. Check all the threads individually. 1947 */ 1948 breakout = false; 1949 FOREACH_THREAD_IN_PROC(p, td) { 1950 thread_lock(td); 1951 if (!TD_ON_RUNQ(td) && 1952 !TD_IS_RUNNING(td) && 1953 !TD_IS_SLEEPING(td) && 1954 !TD_IS_SUSPENDED(td)) { 1955 thread_unlock(td); 1956 breakout = true; 1957 break; 1958 } 1959 thread_unlock(td); 1960 } 1961 if (breakout) { 1962 PROC_UNLOCK(p); 1963 continue; 1964 } 1965 /* 1966 * get the process size 1967 */ 1968 vm = vmspace_acquire_ref(p); 1969 if (vm == NULL) { 1970 PROC_UNLOCK(p); 1971 continue; 1972 } 1973 _PHOLD(p); 1974 PROC_UNLOCK(p); 1975 sx_sunlock(&allproc_lock); 1976 if (!vm_map_trylock_read(&vm->vm_map)) { 1977 vmspace_free(vm); 1978 sx_slock(&allproc_lock); 1979 PRELE(p); 1980 continue; 1981 } 1982 size = vmspace_swap_count(vm); 1983 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF) 1984 size += vm_pageout_oom_pagecount(vm); 1985 vm_map_unlock_read(&vm->vm_map); 1986 vmspace_free(vm); 1987 sx_slock(&allproc_lock); 1988 1989 /* 1990 * If this process is bigger than the biggest one, 1991 * remember it. 1992 */ 1993 if (size > bigsize) { 1994 if (bigproc != NULL) 1995 PRELE(bigproc); 1996 bigproc = p; 1997 bigsize = size; 1998 } else { 1999 PRELE(p); 2000 } 2001 } 2002 sx_sunlock(&allproc_lock); 2003 2004 if (bigproc != NULL) { 2005 switch (shortage) { 2006 case VM_OOM_MEM: 2007 reason = "failed to reclaim memory"; 2008 break; 2009 case VM_OOM_MEM_PF: 2010 reason = "a thread waited too long to allocate a page"; 2011 break; 2012 case VM_OOM_SWAPZ: 2013 reason = "out of swap space"; 2014 break; 2015 default: 2016 panic("unknown OOM reason %d", shortage); 2017 } 2018 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0) 2019 panic("%s", reason); 2020 PROC_LOCK(bigproc); 2021 killproc(bigproc, reason); 2022 sched_nice(bigproc, PRIO_MIN); 2023 _PRELE(bigproc); 2024 PROC_UNLOCK(bigproc); 2025 } 2026 } 2027 2028 /* 2029 * Signal a free page shortage to subsystems that have registered an event 2030 * handler. Reclaim memory from UMA in the event of a severe shortage. 2031 * Return true if the free page count should be re-evaluated. 2032 */ 2033 static bool 2034 vm_pageout_lowmem(void) 2035 { 2036 static int lowmem_ticks = 0; 2037 int last; 2038 bool ret; 2039 2040 ret = false; 2041 2042 last = atomic_load_int(&lowmem_ticks); 2043 while ((u_int)(ticks - last) / hz >= lowmem_period) { 2044 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0) 2045 continue; 2046 2047 /* 2048 * Decrease registered cache sizes. 2049 */ 2050 SDT_PROBE0(vm, , , vm__lowmem_scan); 2051 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 2052 2053 /* 2054 * We do this explicitly after the caches have been 2055 * drained above. 2056 */ 2057 uma_reclaim(UMA_RECLAIM_TRIM); 2058 ret = true; 2059 break; 2060 } 2061 2062 /* 2063 * Kick off an asynchronous reclaim of cached memory if one of the 2064 * page daemons is failing to keep up with demand. Use the "severe" 2065 * threshold instead of "min" to ensure that we do not blow away the 2066 * caches if a subset of the NUMA domains are depleted by kernel memory 2067 * allocations; the domainset iterators automatically skip domains 2068 * below the "min" threshold on the first pass. 2069 * 2070 * UMA reclaim worker has its own rate-limiting mechanism, so don't 2071 * worry about kicking it too often. 2072 */ 2073 if (vm_page_count_severe()) 2074 uma_reclaim_wakeup(); 2075 2076 return (ret); 2077 } 2078 2079 static void 2080 vm_pageout_worker(void *arg) 2081 { 2082 struct vm_domain *vmd; 2083 u_int ofree; 2084 int addl_shortage, domain, shortage; 2085 bool target_met; 2086 2087 domain = (uintptr_t)arg; 2088 vmd = VM_DOMAIN(domain); 2089 shortage = 0; 2090 target_met = true; 2091 2092 /* 2093 * XXXKIB It could be useful to bind pageout daemon threads to 2094 * the cores belonging to the domain, from which vm_page_array 2095 * is allocated. 2096 */ 2097 2098 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 2099 vmd->vmd_last_active_scan = ticks; 2100 2101 /* 2102 * The pageout daemon worker is never done, so loop forever. 2103 */ 2104 while (TRUE) { 2105 vm_domain_pageout_lock(vmd); 2106 2107 /* 2108 * We need to clear wanted before we check the limits. This 2109 * prevents races with wakers who will check wanted after they 2110 * reach the limit. 2111 */ 2112 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 2113 2114 /* 2115 * Might the page daemon need to run again? 2116 */ 2117 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 2118 /* 2119 * Yes. If the scan failed to produce enough free 2120 * pages, sleep uninterruptibly for some time in the 2121 * hope that the laundry thread will clean some pages. 2122 */ 2123 vm_domain_pageout_unlock(vmd); 2124 if (!target_met) 2125 pause("pwait", hz / VM_INACT_SCAN_RATE); 2126 } else { 2127 /* 2128 * No, sleep until the next wakeup or until pages 2129 * need to have their reference stats updated. 2130 */ 2131 if (mtx_sleep(&vmd->vmd_pageout_wanted, 2132 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 2133 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 2134 VM_CNT_INC(v_pdwakeups); 2135 } 2136 2137 /* Prevent spurious wakeups by ensuring that wanted is set. */ 2138 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2139 2140 /* 2141 * Use the controller to calculate how many pages to free in 2142 * this interval, and scan the inactive queue. If the lowmem 2143 * handlers appear to have freed up some pages, subtract the 2144 * difference from the inactive queue scan target. 2145 */ 2146 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 2147 if (shortage > 0) { 2148 ofree = vmd->vmd_free_count; 2149 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) 2150 shortage -= min(vmd->vmd_free_count - ofree, 2151 (u_int)shortage); 2152 target_met = vm_pageout_inactive(vmd, shortage, 2153 &addl_shortage); 2154 } else 2155 addl_shortage = 0; 2156 2157 /* 2158 * Scan the active queue. A positive value for shortage 2159 * indicates that we must aggressively deactivate pages to avoid 2160 * a shortfall. 2161 */ 2162 shortage = vm_pageout_active_target(vmd) + addl_shortage; 2163 vm_pageout_scan_active(vmd, shortage); 2164 } 2165 } 2166 2167 /* 2168 * vm_pageout_helper runs additional pageout daemons in times of high paging 2169 * activity. 2170 */ 2171 static void 2172 vm_pageout_helper(void *arg) 2173 { 2174 struct vm_domain *vmd; 2175 int domain; 2176 2177 domain = (uintptr_t)arg; 2178 vmd = VM_DOMAIN(domain); 2179 2180 vm_domain_pageout_lock(vmd); 2181 for (;;) { 2182 msleep(&vmd->vmd_inactive_shortage, 2183 vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0); 2184 blockcount_release(&vmd->vmd_inactive_starting, 1); 2185 2186 vm_domain_pageout_unlock(vmd); 2187 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage); 2188 vm_domain_pageout_lock(vmd); 2189 2190 /* 2191 * Release the running count while the pageout lock is held to 2192 * prevent wakeup races. 2193 */ 2194 blockcount_release(&vmd->vmd_inactive_running, 1); 2195 } 2196 } 2197 2198 static int 2199 get_pageout_threads_per_domain(const struct vm_domain *vmd) 2200 { 2201 unsigned total_pageout_threads, eligible_cpus, domain_cpus; 2202 2203 if (VM_DOMAIN_EMPTY(vmd->vmd_domain)) 2204 return (0); 2205 2206 /* 2207 * Semi-arbitrarily constrain pagedaemon threads to less than half the 2208 * total number of CPUs in the system as an upper limit. 2209 */ 2210 if (pageout_cpus_per_thread < 2) 2211 pageout_cpus_per_thread = 2; 2212 else if (pageout_cpus_per_thread > mp_ncpus) 2213 pageout_cpus_per_thread = mp_ncpus; 2214 2215 total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread); 2216 domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]); 2217 2218 /* Pagedaemons are not run in empty domains. */ 2219 eligible_cpus = mp_ncpus; 2220 for (unsigned i = 0; i < vm_ndomains; i++) 2221 if (VM_DOMAIN_EMPTY(i)) 2222 eligible_cpus -= CPU_COUNT(&cpuset_domain[i]); 2223 2224 /* 2225 * Assign a portion of the total pageout threads to this domain 2226 * corresponding to the fraction of pagedaemon-eligible CPUs in the 2227 * domain. In asymmetric NUMA systems, domains with more CPUs may be 2228 * allocated more threads than domains with fewer CPUs. 2229 */ 2230 return (howmany(total_pageout_threads * domain_cpus, eligible_cpus)); 2231 } 2232 2233 /* 2234 * Initialize basic pageout daemon settings. See the comment above the 2235 * definition of vm_domain for some explanation of how these thresholds are 2236 * used. 2237 */ 2238 static void 2239 vm_pageout_init_domain(int domain) 2240 { 2241 struct vm_domain *vmd; 2242 struct sysctl_oid *oid; 2243 2244 vmd = VM_DOMAIN(domain); 2245 vmd->vmd_interrupt_free_min = 2; 2246 2247 /* 2248 * v_free_reserved needs to include enough for the largest 2249 * swap pager structures plus enough for any pv_entry structs 2250 * when paging. 2251 */ 2252 vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE + 2253 vmd->vmd_interrupt_free_min; 2254 vmd->vmd_free_reserved = vm_pageout_page_count + 2255 vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768; 2256 vmd->vmd_free_min = vmd->vmd_page_count / 200; 2257 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 2258 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 2259 vmd->vmd_free_min += vmd->vmd_free_reserved; 2260 vmd->vmd_free_severe += vmd->vmd_free_reserved; 2261 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 2262 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 2263 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 2264 2265 /* 2266 * Set the default wakeup threshold to be 10% below the paging 2267 * target. This keeps the steady state out of shortfall. 2268 */ 2269 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 2270 2271 /* 2272 * Target amount of memory to move out of the laundry queue during a 2273 * background laundering. This is proportional to the amount of system 2274 * memory. 2275 */ 2276 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 2277 vmd->vmd_free_min) / 10; 2278 2279 /* Initialize the pageout daemon pid controller. */ 2280 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 2281 vmd->vmd_free_target, PIDCTRL_BOUND, 2282 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 2283 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2284 "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2285 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 2286 2287 vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd); 2288 SYSCTL_ADD_BOOL(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2289 "pageout_helper_threads_enabled", CTLFLAG_RWTUN, 2290 &vmd->vmd_helper_threads_enabled, 0, 2291 "Enable multi-threaded inactive queue scanning"); 2292 } 2293 2294 static void 2295 vm_pageout_init(void) 2296 { 2297 u_long freecount; 2298 int i; 2299 2300 /* 2301 * Initialize some paging parameters. 2302 */ 2303 freecount = 0; 2304 for (i = 0; i < vm_ndomains; i++) { 2305 struct vm_domain *vmd; 2306 2307 vm_pageout_init_domain(i); 2308 vmd = VM_DOMAIN(i); 2309 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2310 vm_cnt.v_free_target += vmd->vmd_free_target; 2311 vm_cnt.v_free_min += vmd->vmd_free_min; 2312 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2313 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2314 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2315 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2316 freecount += vmd->vmd_free_count; 2317 } 2318 2319 /* 2320 * Set interval in seconds for active scan. We want to visit each 2321 * page at least once every ten minutes. This is to prevent worst 2322 * case paging behaviors with stale active LRU. 2323 */ 2324 if (vm_pageout_update_period == 0) 2325 vm_pageout_update_period = 600; 2326 2327 /* 2328 * Set the maximum number of user-wired virtual pages. Historically the 2329 * main source of such pages was mlock(2) and mlockall(2). Hypervisors 2330 * may also request user-wired memory. 2331 */ 2332 if (vm_page_max_user_wired == 0) 2333 vm_page_max_user_wired = 4 * freecount / 5; 2334 } 2335 2336 /* 2337 * vm_pageout is the high level pageout daemon. 2338 */ 2339 static void 2340 vm_pageout(void) 2341 { 2342 struct proc *p; 2343 struct thread *td; 2344 int error, first, i, j, pageout_threads; 2345 2346 p = curproc; 2347 td = curthread; 2348 2349 mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF); 2350 swap_pager_swap_init(); 2351 for (first = -1, i = 0; i < vm_ndomains; i++) { 2352 if (VM_DOMAIN_EMPTY(i)) { 2353 if (bootverbose) 2354 printf("domain %d empty; skipping pageout\n", 2355 i); 2356 continue; 2357 } 2358 if (first == -1) 2359 first = i; 2360 else { 2361 error = kthread_add(vm_pageout_worker, 2362 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i); 2363 if (error != 0) 2364 panic("starting pageout for domain %d: %d\n", 2365 i, error); 2366 } 2367 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads; 2368 for (j = 0; j < pageout_threads - 1; j++) { 2369 error = kthread_add(vm_pageout_helper, 2370 (void *)(uintptr_t)i, p, NULL, 0, 0, 2371 "dom%d helper%d", i, j); 2372 if (error != 0) 2373 panic("starting pageout helper %d for domain " 2374 "%d: %d\n", j, i, error); 2375 } 2376 error = kthread_add(vm_pageout_laundry_worker, 2377 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); 2378 if (error != 0) 2379 panic("starting laundry for domain %d: %d", i, error); 2380 } 2381 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma"); 2382 if (error != 0) 2383 panic("starting uma_reclaim helper, error %d\n", error); 2384 2385 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first); 2386 vm_pageout_worker((void *)(uintptr_t)first); 2387 } 2388 2389 /* 2390 * Perform an advisory wakeup of the page daemon. 2391 */ 2392 void 2393 pagedaemon_wakeup(int domain) 2394 { 2395 struct vm_domain *vmd; 2396 2397 vmd = VM_DOMAIN(domain); 2398 vm_domain_pageout_assert_unlocked(vmd); 2399 if (curproc == pageproc) 2400 return; 2401 2402 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2403 vm_domain_pageout_lock(vmd); 2404 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2405 wakeup(&vmd->vmd_pageout_wanted); 2406 vm_domain_pageout_unlock(vmd); 2407 } 2408 } 2409