1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * Copyright (c) 2005 Yahoo! Technologies Norway AS 11 * All rights reserved. 12 * 13 * This code is derived from software contributed to Berkeley by 14 * The Mach Operating System project at Carnegie-Mellon University. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. All advertising materials mentioning features or use of this software 25 * must display the following acknowledgement: 26 * This product includes software developed by the University of 27 * California, Berkeley and its contributors. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 45 * 46 * 47 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 48 * All rights reserved. 49 * 50 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 51 * 52 * Permission to use, copy, modify and distribute this software and 53 * its documentation is hereby granted, provided that both the copyright 54 * notice and this permission notice appear in all copies of the 55 * software, derivative works or modified versions, and any portions 56 * thereof, and that both notices appear in supporting documentation. 57 * 58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 61 * 62 * Carnegie Mellon requests users of this software to return to 63 * 64 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 65 * School of Computer Science 66 * Carnegie Mellon University 67 * Pittsburgh PA 15213-3890 68 * 69 * any improvements or extensions that they make and grant Carnegie the 70 * rights to redistribute these changes. 71 */ 72 73 /* 74 * The proverbial page-out daemon. 75 */ 76 77 #include <sys/cdefs.h> 78 __FBSDID("$FreeBSD$"); 79 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/eventhandler.h> 86 #include <sys/lock.h> 87 #include <sys/mutex.h> 88 #include <sys/proc.h> 89 #include <sys/kthread.h> 90 #include <sys/ktr.h> 91 #include <sys/mount.h> 92 #include <sys/racct.h> 93 #include <sys/resourcevar.h> 94 #include <sys/sched.h> 95 #include <sys/sdt.h> 96 #include <sys/signalvar.h> 97 #include <sys/smp.h> 98 #include <sys/time.h> 99 #include <sys/vnode.h> 100 #include <sys/vmmeter.h> 101 #include <sys/rwlock.h> 102 #include <sys/sx.h> 103 #include <sys/sysctl.h> 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_map.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_phys.h> 113 #include <vm/vm_pagequeue.h> 114 #include <vm/swap_pager.h> 115 #include <vm/vm_extern.h> 116 #include <vm/uma.h> 117 118 /* 119 * System initialization 120 */ 121 122 /* the kernel process "vm_pageout"*/ 123 static void vm_pageout(void); 124 static void vm_pageout_init(void); 125 static int vm_pageout_clean(vm_page_t m, int *numpagedout); 126 static int vm_pageout_cluster(vm_page_t m); 127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 128 int starting_page_shortage); 129 130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init, 131 NULL); 132 133 struct proc *pageproc; 134 135 static struct kproc_desc page_kp = { 136 "pagedaemon", 137 vm_pageout, 138 &pageproc 139 }; 140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, 141 &page_kp); 142 143 SDT_PROVIDER_DEFINE(vm); 144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan); 145 146 /* Pagedaemon activity rates, in subdivisions of one second. */ 147 #define VM_LAUNDER_RATE 10 148 #define VM_INACT_SCAN_RATE 10 149 150 static int vm_pageout_oom_seq = 12; 151 152 static int vm_pageout_update_period; 153 static int disable_swap_pageouts; 154 static int lowmem_period = 10; 155 static int swapdev_enabled; 156 157 static int vm_panic_on_oom = 0; 158 159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom, 160 CTLFLAG_RWTUN, &vm_panic_on_oom, 0, 161 "panic on out of memory instead of killing the largest process"); 162 163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period, 164 CTLFLAG_RWTUN, &vm_pageout_update_period, 0, 165 "Maximum active LRU update period"); 166 167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, 168 "Low memory callback period"); 169 170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts, 171 CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages"); 172 173 static int pageout_lock_miss; 174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss, 175 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout"); 176 177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq, 178 CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0, 179 "back-to-back calls to oom detector to start OOM"); 180 181 static int act_scan_laundry_weight = 3; 182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN, 183 &act_scan_laundry_weight, 0, 184 "weight given to clean vs. dirty pages in active queue scans"); 185 186 static u_int vm_background_launder_rate = 4096; 187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN, 188 &vm_background_launder_rate, 0, 189 "background laundering rate, in kilobytes per second"); 190 191 static u_int vm_background_launder_max = 20 * 1024; 192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN, 193 &vm_background_launder_max, 0, "background laundering cap, in kilobytes"); 194 195 int vm_pageout_page_count = 32; 196 197 u_long vm_page_max_user_wired; 198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW, 199 &vm_page_max_user_wired, 0, 200 "system-wide limit to user-wired page count"); 201 202 static u_int isqrt(u_int num); 203 static int vm_pageout_launder(struct vm_domain *vmd, int launder, 204 bool in_shortfall); 205 static void vm_pageout_laundry_worker(void *arg); 206 207 struct scan_state { 208 struct vm_batchqueue bq; 209 struct vm_pagequeue *pq; 210 vm_page_t marker; 211 int maxscan; 212 int scanned; 213 }; 214 215 static void 216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq, 217 vm_page_t marker, vm_page_t after, int maxscan) 218 { 219 220 vm_pagequeue_assert_locked(pq); 221 KASSERT((marker->aflags & PGA_ENQUEUED) == 0, 222 ("marker %p already enqueued", marker)); 223 224 if (after == NULL) 225 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q); 226 else 227 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q); 228 vm_page_aflag_set(marker, PGA_ENQUEUED); 229 230 vm_batchqueue_init(&ss->bq); 231 ss->pq = pq; 232 ss->marker = marker; 233 ss->maxscan = maxscan; 234 ss->scanned = 0; 235 vm_pagequeue_unlock(pq); 236 } 237 238 static void 239 vm_pageout_end_scan(struct scan_state *ss) 240 { 241 struct vm_pagequeue *pq; 242 243 pq = ss->pq; 244 vm_pagequeue_assert_locked(pq); 245 KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0, 246 ("marker %p not enqueued", ss->marker)); 247 248 TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q); 249 vm_page_aflag_clear(ss->marker, PGA_ENQUEUED); 250 pq->pq_pdpages += ss->scanned; 251 } 252 253 /* 254 * Add a small number of queued pages to a batch queue for later processing 255 * without the corresponding queue lock held. The caller must have enqueued a 256 * marker page at the desired start point for the scan. Pages will be 257 * physically dequeued if the caller so requests. Otherwise, the returned 258 * batch may contain marker pages, and it is up to the caller to handle them. 259 * 260 * When processing the batch queue, vm_page_queue() must be used to 261 * determine whether the page has been logically dequeued by another thread. 262 * Once this check is performed, the page lock guarantees that the page will 263 * not be disassociated from the queue. 264 */ 265 static __always_inline void 266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue) 267 { 268 struct vm_pagequeue *pq; 269 vm_page_t m, marker, n; 270 271 marker = ss->marker; 272 pq = ss->pq; 273 274 KASSERT((marker->aflags & PGA_ENQUEUED) != 0, 275 ("marker %p not enqueued", ss->marker)); 276 277 vm_pagequeue_lock(pq); 278 for (m = TAILQ_NEXT(marker, plinks.q); m != NULL && 279 ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE; 280 m = n, ss->scanned++) { 281 n = TAILQ_NEXT(m, plinks.q); 282 if ((m->flags & PG_MARKER) == 0) { 283 KASSERT((m->aflags & PGA_ENQUEUED) != 0, 284 ("page %p not enqueued", m)); 285 KASSERT((m->flags & PG_FICTITIOUS) == 0, 286 ("Fictitious page %p cannot be in page queue", m)); 287 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 288 ("Unmanaged page %p cannot be in page queue", m)); 289 } else if (dequeue) 290 continue; 291 292 (void)vm_batchqueue_insert(&ss->bq, m); 293 if (dequeue) { 294 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 295 vm_page_aflag_clear(m, PGA_ENQUEUED); 296 } 297 } 298 TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q); 299 if (__predict_true(m != NULL)) 300 TAILQ_INSERT_BEFORE(m, marker, plinks.q); 301 else 302 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q); 303 if (dequeue) 304 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt); 305 vm_pagequeue_unlock(pq); 306 } 307 308 /* 309 * Return the next page to be scanned, or NULL if the scan is complete. 310 */ 311 static __always_inline vm_page_t 312 vm_pageout_next(struct scan_state *ss, const bool dequeue) 313 { 314 315 if (ss->bq.bq_cnt == 0) 316 vm_pageout_collect_batch(ss, dequeue); 317 return (vm_batchqueue_pop(&ss->bq)); 318 } 319 320 /* 321 * Scan for pages at adjacent offsets within the given page's object that are 322 * eligible for laundering, form a cluster of these pages and the given page, 323 * and launder that cluster. 324 */ 325 static int 326 vm_pageout_cluster(vm_page_t m) 327 { 328 vm_object_t object; 329 vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps; 330 vm_pindex_t pindex; 331 int ib, is, page_base, pageout_count; 332 333 object = m->object; 334 VM_OBJECT_ASSERT_WLOCKED(object); 335 pindex = m->pindex; 336 337 vm_page_assert_xbusied(m); 338 339 mc[vm_pageout_page_count] = pb = ps = m; 340 pageout_count = 1; 341 page_base = vm_pageout_page_count; 342 ib = 1; 343 is = 1; 344 345 /* 346 * We can cluster only if the page is not clean, busy, or held, and 347 * the page is in the laundry queue. 348 * 349 * During heavy mmap/modification loads the pageout 350 * daemon can really fragment the underlying file 351 * due to flushing pages out of order and not trying to 352 * align the clusters (which leaves sporadic out-of-order 353 * holes). To solve this problem we do the reverse scan 354 * first and attempt to align our cluster, then do a 355 * forward scan if room remains. 356 */ 357 more: 358 while (ib != 0 && pageout_count < vm_pageout_page_count) { 359 if (ib > pindex) { 360 ib = 0; 361 break; 362 } 363 if ((p = vm_page_prev(pb)) == NULL || 364 vm_page_tryxbusy(p) == 0) { 365 ib = 0; 366 break; 367 } 368 if (vm_page_wired(p)) { 369 ib = 0; 370 vm_page_xunbusy(p); 371 break; 372 } 373 vm_page_test_dirty(p); 374 if (p->dirty == 0) { 375 ib = 0; 376 vm_page_xunbusy(p); 377 break; 378 } 379 vm_page_lock(p); 380 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 381 vm_page_unlock(p); 382 vm_page_xunbusy(p); 383 ib = 0; 384 break; 385 } 386 vm_page_unlock(p); 387 mc[--page_base] = pb = p; 388 ++pageout_count; 389 ++ib; 390 391 /* 392 * We are at an alignment boundary. Stop here, and switch 393 * directions. Do not clear ib. 394 */ 395 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0) 396 break; 397 } 398 while (pageout_count < vm_pageout_page_count && 399 pindex + is < object->size) { 400 if ((p = vm_page_next(ps)) == NULL || 401 vm_page_tryxbusy(p) == 0) 402 break; 403 if (vm_page_wired(p)) { 404 vm_page_xunbusy(p); 405 break; 406 } 407 vm_page_test_dirty(p); 408 if (p->dirty == 0) { 409 vm_page_xunbusy(p); 410 break; 411 } 412 vm_page_lock(p); 413 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) { 414 vm_page_unlock(p); 415 vm_page_xunbusy(p); 416 break; 417 } 418 vm_page_unlock(p); 419 mc[page_base + pageout_count] = ps = p; 420 ++pageout_count; 421 ++is; 422 } 423 424 /* 425 * If we exhausted our forward scan, continue with the reverse scan 426 * when possible, even past an alignment boundary. This catches 427 * boundary conditions. 428 */ 429 if (ib != 0 && pageout_count < vm_pageout_page_count) 430 goto more; 431 432 return (vm_pageout_flush(&mc[page_base], pageout_count, 433 VM_PAGER_PUT_NOREUSE, 0, NULL, NULL)); 434 } 435 436 /* 437 * vm_pageout_flush() - launder the given pages 438 * 439 * The given pages are laundered. Note that we setup for the start of 440 * I/O ( i.e. busy the page ), mark it read-only, and bump the object 441 * reference count all in here rather then in the parent. If we want 442 * the parent to do more sophisticated things we may have to change 443 * the ordering. 444 * 445 * Returned runlen is the count of pages between mreq and first 446 * page after mreq with status VM_PAGER_AGAIN. 447 * *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL 448 * for any page in runlen set. 449 */ 450 int 451 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen, 452 boolean_t *eio) 453 { 454 vm_object_t object = mc[0]->object; 455 int pageout_status[count]; 456 int numpagedout = 0; 457 int i, runlen; 458 459 VM_OBJECT_ASSERT_WLOCKED(object); 460 461 /* 462 * Initiate I/O. Mark the pages shared busy and verify that they're 463 * valid and read-only. 464 * 465 * We do not have to fixup the clean/dirty bits here... we can 466 * allow the pager to do it after the I/O completes. 467 * 468 * NOTE! mc[i]->dirty may be partial or fragmented due to an 469 * edge case with file fragments. 470 */ 471 for (i = 0; i < count; i++) { 472 KASSERT(vm_page_all_valid(mc[i]), 473 ("vm_pageout_flush: partially invalid page %p index %d/%d", 474 mc[i], i, count)); 475 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0, 476 ("vm_pageout_flush: writeable page %p", mc[i])); 477 vm_page_busy_downgrade(mc[i]); 478 } 479 vm_object_pip_add(object, count); 480 481 vm_pager_put_pages(object, mc, count, flags, pageout_status); 482 483 runlen = count - mreq; 484 if (eio != NULL) 485 *eio = FALSE; 486 for (i = 0; i < count; i++) { 487 vm_page_t mt = mc[i]; 488 489 KASSERT(pageout_status[i] == VM_PAGER_PEND || 490 !pmap_page_is_write_mapped(mt), 491 ("vm_pageout_flush: page %p is not write protected", mt)); 492 switch (pageout_status[i]) { 493 case VM_PAGER_OK: 494 vm_page_lock(mt); 495 if (vm_page_in_laundry(mt)) 496 vm_page_deactivate_noreuse(mt); 497 vm_page_unlock(mt); 498 /* FALLTHROUGH */ 499 case VM_PAGER_PEND: 500 numpagedout++; 501 break; 502 case VM_PAGER_BAD: 503 /* 504 * The page is outside the object's range. We pretend 505 * that the page out worked and clean the page, so the 506 * changes will be lost if the page is reclaimed by 507 * the page daemon. 508 */ 509 vm_page_undirty(mt); 510 vm_page_lock(mt); 511 if (vm_page_in_laundry(mt)) 512 vm_page_deactivate_noreuse(mt); 513 vm_page_unlock(mt); 514 break; 515 case VM_PAGER_ERROR: 516 case VM_PAGER_FAIL: 517 /* 518 * If the page couldn't be paged out to swap because the 519 * pager wasn't able to find space, place the page in 520 * the PQ_UNSWAPPABLE holding queue. This is an 521 * optimization that prevents the page daemon from 522 * wasting CPU cycles on pages that cannot be reclaimed 523 * becase no swap device is configured. 524 * 525 * Otherwise, reactivate the page so that it doesn't 526 * clog the laundry and inactive queues. (We will try 527 * paging it out again later.) 528 */ 529 vm_page_lock(mt); 530 if (object->type == OBJT_SWAP && 531 pageout_status[i] == VM_PAGER_FAIL) { 532 vm_page_unswappable(mt); 533 numpagedout++; 534 } else 535 vm_page_activate(mt); 536 vm_page_unlock(mt); 537 if (eio != NULL && i >= mreq && i - mreq < runlen) 538 *eio = TRUE; 539 break; 540 case VM_PAGER_AGAIN: 541 if (i >= mreq && i - mreq < runlen) 542 runlen = i - mreq; 543 break; 544 } 545 546 /* 547 * If the operation is still going, leave the page busy to 548 * block all other accesses. Also, leave the paging in 549 * progress indicator set so that we don't attempt an object 550 * collapse. 551 */ 552 if (pageout_status[i] != VM_PAGER_PEND) { 553 vm_object_pip_wakeup(object); 554 vm_page_sunbusy(mt); 555 } 556 } 557 if (prunlen != NULL) 558 *prunlen = runlen; 559 return (numpagedout); 560 } 561 562 static void 563 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused) 564 { 565 566 atomic_store_rel_int(&swapdev_enabled, 1); 567 } 568 569 static void 570 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused) 571 { 572 573 if (swap_pager_nswapdev() == 1) 574 atomic_store_rel_int(&swapdev_enabled, 0); 575 } 576 577 /* 578 * Attempt to acquire all of the necessary locks to launder a page and 579 * then call through the clustering layer to PUTPAGES. Wait a short 580 * time for a vnode lock. 581 * 582 * Requires the page and object lock on entry, releases both before return. 583 * Returns 0 on success and an errno otherwise. 584 */ 585 static int 586 vm_pageout_clean(vm_page_t m, int *numpagedout) 587 { 588 struct vnode *vp; 589 struct mount *mp; 590 vm_object_t object; 591 vm_pindex_t pindex; 592 int error, lockmode; 593 594 vm_page_assert_locked(m); 595 object = m->object; 596 VM_OBJECT_ASSERT_WLOCKED(object); 597 error = 0; 598 vp = NULL; 599 mp = NULL; 600 601 /* 602 * The object is already known NOT to be dead. It 603 * is possible for the vget() to block the whole 604 * pageout daemon, but the new low-memory handling 605 * code should prevent it. 606 * 607 * We can't wait forever for the vnode lock, we might 608 * deadlock due to a vn_read() getting stuck in 609 * vm_wait while holding this vnode. We skip the 610 * vnode if we can't get it in a reasonable amount 611 * of time. 612 */ 613 if (object->type == OBJT_VNODE) { 614 vm_page_unlock(m); 615 vm_page_xunbusy(m); 616 vp = object->handle; 617 if (vp->v_type == VREG && 618 vn_start_write(vp, &mp, V_NOWAIT) != 0) { 619 mp = NULL; 620 error = EDEADLK; 621 goto unlock_all; 622 } 623 KASSERT(mp != NULL, 624 ("vp %p with NULL v_mount", vp)); 625 vm_object_reference_locked(object); 626 pindex = m->pindex; 627 VM_OBJECT_WUNLOCK(object); 628 lockmode = MNT_SHARED_WRITES(vp->v_mount) ? 629 LK_SHARED : LK_EXCLUSIVE; 630 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) { 631 vp = NULL; 632 error = EDEADLK; 633 goto unlock_mp; 634 } 635 VM_OBJECT_WLOCK(object); 636 637 /* 638 * Ensure that the object and vnode were not disassociated 639 * while locks were dropped. 640 */ 641 if (vp->v_object != object) { 642 error = ENOENT; 643 goto unlock_all; 644 } 645 vm_page_lock(m); 646 647 /* 648 * While the object and page were unlocked, the page 649 * may have been: 650 * (1) moved to a different queue, 651 * (2) reallocated to a different object, 652 * (3) reallocated to a different offset, or 653 * (4) cleaned. 654 */ 655 if (!vm_page_in_laundry(m) || m->object != object || 656 m->pindex != pindex || m->dirty == 0) { 657 vm_page_unlock(m); 658 error = ENXIO; 659 goto unlock_all; 660 } 661 662 /* 663 * The page may have been busied while the object and page 664 * locks were released. 665 */ 666 if (vm_page_tryxbusy(m) == 0) { 667 vm_page_unlock(m); 668 error = EBUSY; 669 goto unlock_all; 670 } 671 } 672 673 /* 674 * Remove all writeable mappings, failing if the page is wired. 675 */ 676 if (!vm_page_try_remove_write(m)) { 677 vm_page_xunbusy(m); 678 vm_page_unlock(m); 679 error = EBUSY; 680 goto unlock_all; 681 } 682 vm_page_unlock(m); 683 684 /* 685 * If a page is dirty, then it is either being washed 686 * (but not yet cleaned) or it is still in the 687 * laundry. If it is still in the laundry, then we 688 * start the cleaning operation. 689 */ 690 if ((*numpagedout = vm_pageout_cluster(m)) == 0) 691 error = EIO; 692 693 unlock_all: 694 VM_OBJECT_WUNLOCK(object); 695 696 unlock_mp: 697 vm_page_lock_assert(m, MA_NOTOWNED); 698 if (mp != NULL) { 699 if (vp != NULL) 700 vput(vp); 701 vm_object_deallocate(object); 702 vn_finished_write(mp); 703 } 704 705 return (error); 706 } 707 708 /* 709 * Attempt to launder the specified number of pages. 710 * 711 * Returns the number of pages successfully laundered. 712 */ 713 static int 714 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall) 715 { 716 struct scan_state ss; 717 struct vm_pagequeue *pq; 718 struct mtx *mtx; 719 vm_object_t object; 720 vm_page_t m, marker; 721 int act_delta, error, numpagedout, queue, starting_target; 722 int vnodes_skipped; 723 bool pageout_ok; 724 725 mtx = NULL; 726 object = NULL; 727 starting_target = launder; 728 vnodes_skipped = 0; 729 730 /* 731 * Scan the laundry queues for pages eligible to be laundered. We stop 732 * once the target number of dirty pages have been laundered, or once 733 * we've reached the end of the queue. A single iteration of this loop 734 * may cause more than one page to be laundered because of clustering. 735 * 736 * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no 737 * swap devices are configured. 738 */ 739 if (atomic_load_acq_int(&swapdev_enabled)) 740 queue = PQ_UNSWAPPABLE; 741 else 742 queue = PQ_LAUNDRY; 743 744 scan: 745 marker = &vmd->vmd_markers[queue]; 746 pq = &vmd->vmd_pagequeues[queue]; 747 vm_pagequeue_lock(pq); 748 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 749 while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) { 750 if (__predict_false((m->flags & PG_MARKER) != 0)) 751 continue; 752 753 vm_page_change_lock(m, &mtx); 754 755 recheck: 756 /* 757 * The page may have been disassociated from the queue 758 * or even freed while locks were dropped. We thus must be 759 * careful whenever modifying page state. Once the object lock 760 * has been acquired, we have a stable reference to the page. 761 */ 762 if (vm_page_queue(m) != queue) 763 continue; 764 765 /* 766 * A requeue was requested, so this page gets a second 767 * chance. 768 */ 769 if ((m->aflags & PGA_REQUEUE) != 0) { 770 vm_page_pqbatch_submit(m, queue); 771 continue; 772 } 773 774 /* 775 * Wired pages may not be freed. Complete their removal 776 * from the queue now to avoid needless revisits during 777 * future scans. This check is racy and must be reverified once 778 * we hold the object lock and have verified that the page 779 * is not busy. 780 */ 781 if (vm_page_wired(m)) { 782 vm_page_dequeue_deferred(m); 783 continue; 784 } 785 786 if (object != m->object) { 787 if (object != NULL) 788 VM_OBJECT_WUNLOCK(object); 789 790 /* 791 * A page's object pointer may be set to NULL before 792 * the object lock is acquired. 793 */ 794 object = (vm_object_t)atomic_load_ptr(&m->object); 795 if (object != NULL && !VM_OBJECT_TRYWLOCK(object)) { 796 mtx_unlock(mtx); 797 /* Depends on type-stability. */ 798 VM_OBJECT_WLOCK(object); 799 mtx_lock(mtx); 800 goto recheck; 801 } 802 } 803 if (__predict_false(m->object == NULL)) 804 /* 805 * The page has been removed from its object. 806 */ 807 continue; 808 KASSERT(m->object == object, ("page %p does not belong to %p", 809 m, object)); 810 811 if (vm_page_tryxbusy(m) == 0) 812 continue; 813 814 /* 815 * Re-check for wirings now that we hold the object lock and 816 * have verified that the page is unbusied. If the page is 817 * mapped, it may still be wired by pmap lookups. The call to 818 * vm_page_try_remove_all() below atomically checks for such 819 * wirings and removes mappings. If the page is unmapped, the 820 * wire count is guaranteed not to increase. 821 */ 822 if (__predict_false(vm_page_wired(m))) { 823 vm_page_xunbusy(m); 824 vm_page_dequeue_deferred(m); 825 continue; 826 } 827 828 /* 829 * Invalid pages can be easily freed. They cannot be 830 * mapped; vm_page_free() asserts this. 831 */ 832 if (vm_page_none_valid(m)) 833 goto free_page; 834 835 /* 836 * If the page has been referenced and the object is not dead, 837 * reactivate or requeue the page depending on whether the 838 * object is mapped. 839 * 840 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 841 * that a reference from a concurrently destroyed mapping is 842 * observed here and now. 843 */ 844 if (object->ref_count != 0) 845 act_delta = pmap_ts_referenced(m); 846 else { 847 KASSERT(!pmap_page_is_mapped(m), 848 ("page %p is mapped", m)); 849 act_delta = 0; 850 } 851 if ((m->aflags & PGA_REFERENCED) != 0) { 852 vm_page_aflag_clear(m, PGA_REFERENCED); 853 act_delta++; 854 } 855 if (act_delta != 0) { 856 if (object->ref_count != 0) { 857 vm_page_xunbusy(m); 858 VM_CNT_INC(v_reactivated); 859 vm_page_activate(m); 860 861 /* 862 * Increase the activation count if the page 863 * was referenced while in the laundry queue. 864 * This makes it less likely that the page will 865 * be returned prematurely to the inactive 866 * queue. 867 */ 868 m->act_count += act_delta + ACT_ADVANCE; 869 870 /* 871 * If this was a background laundering, count 872 * activated pages towards our target. The 873 * purpose of background laundering is to ensure 874 * that pages are eventually cycled through the 875 * laundry queue, and an activation is a valid 876 * way out. 877 */ 878 if (!in_shortfall) 879 launder--; 880 continue; 881 } else if ((object->flags & OBJ_DEAD) == 0) { 882 vm_page_xunbusy(m); 883 vm_page_requeue(m); 884 continue; 885 } 886 } 887 888 /* 889 * If the page appears to be clean at the machine-independent 890 * layer, then remove all of its mappings from the pmap in 891 * anticipation of freeing it. If, however, any of the page's 892 * mappings allow write access, then the page may still be 893 * modified until the last of those mappings are removed. 894 */ 895 if (object->ref_count != 0) { 896 vm_page_test_dirty(m); 897 if (m->dirty == 0 && !vm_page_try_remove_all(m)) { 898 vm_page_xunbusy(m); 899 vm_page_dequeue_deferred(m); 900 continue; 901 } 902 } 903 904 /* 905 * Clean pages are freed, and dirty pages are paged out unless 906 * they belong to a dead object. Requeueing dirty pages from 907 * dead objects is pointless, as they are being paged out and 908 * freed by the thread that destroyed the object. 909 */ 910 if (m->dirty == 0) { 911 free_page: 912 vm_page_free(m); 913 VM_CNT_INC(v_dfree); 914 } else if ((object->flags & OBJ_DEAD) == 0) { 915 if (object->type != OBJT_SWAP && 916 object->type != OBJT_DEFAULT) 917 pageout_ok = true; 918 else if (disable_swap_pageouts) 919 pageout_ok = false; 920 else 921 pageout_ok = true; 922 if (!pageout_ok) { 923 vm_page_xunbusy(m); 924 vm_page_requeue(m); 925 continue; 926 } 927 928 /* 929 * Form a cluster with adjacent, dirty pages from the 930 * same object, and page out that entire cluster. 931 * 932 * The adjacent, dirty pages must also be in the 933 * laundry. However, their mappings are not checked 934 * for new references. Consequently, a recently 935 * referenced page may be paged out. However, that 936 * page will not be prematurely reclaimed. After page 937 * out, the page will be placed in the inactive queue, 938 * where any new references will be detected and the 939 * page reactivated. 940 */ 941 error = vm_pageout_clean(m, &numpagedout); 942 if (error == 0) { 943 launder -= numpagedout; 944 ss.scanned += numpagedout; 945 } else if (error == EDEADLK) { 946 pageout_lock_miss++; 947 vnodes_skipped++; 948 } 949 mtx = NULL; 950 object = NULL; 951 } else 952 vm_page_xunbusy(m); 953 } 954 if (mtx != NULL) { 955 mtx_unlock(mtx); 956 mtx = NULL; 957 } 958 if (object != NULL) { 959 VM_OBJECT_WUNLOCK(object); 960 object = NULL; 961 } 962 vm_pagequeue_lock(pq); 963 vm_pageout_end_scan(&ss); 964 vm_pagequeue_unlock(pq); 965 966 if (launder > 0 && queue == PQ_UNSWAPPABLE) { 967 queue = PQ_LAUNDRY; 968 goto scan; 969 } 970 971 /* 972 * Wakeup the sync daemon if we skipped a vnode in a writeable object 973 * and we didn't launder enough pages. 974 */ 975 if (vnodes_skipped > 0 && launder > 0) 976 (void)speedup_syncer(); 977 978 return (starting_target - launder); 979 } 980 981 /* 982 * Compute the integer square root. 983 */ 984 static u_int 985 isqrt(u_int num) 986 { 987 u_int bit, root, tmp; 988 989 bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0; 990 root = 0; 991 while (bit != 0) { 992 tmp = root + bit; 993 root >>= 1; 994 if (num >= tmp) { 995 num -= tmp; 996 root += bit; 997 } 998 bit >>= 2; 999 } 1000 return (root); 1001 } 1002 1003 /* 1004 * Perform the work of the laundry thread: periodically wake up and determine 1005 * whether any pages need to be laundered. If so, determine the number of pages 1006 * that need to be laundered, and launder them. 1007 */ 1008 static void 1009 vm_pageout_laundry_worker(void *arg) 1010 { 1011 struct vm_domain *vmd; 1012 struct vm_pagequeue *pq; 1013 uint64_t nclean, ndirty, nfreed; 1014 int domain, last_target, launder, shortfall, shortfall_cycle, target; 1015 bool in_shortfall; 1016 1017 domain = (uintptr_t)arg; 1018 vmd = VM_DOMAIN(domain); 1019 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1020 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 1021 1022 shortfall = 0; 1023 in_shortfall = false; 1024 shortfall_cycle = 0; 1025 last_target = target = 0; 1026 nfreed = 0; 1027 1028 /* 1029 * Calls to these handlers are serialized by the swap syscall lock. 1030 */ 1031 (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd, 1032 EVENTHANDLER_PRI_ANY); 1033 (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd, 1034 EVENTHANDLER_PRI_ANY); 1035 1036 /* 1037 * The pageout laundry worker is never done, so loop forever. 1038 */ 1039 for (;;) { 1040 KASSERT(target >= 0, ("negative target %d", target)); 1041 KASSERT(shortfall_cycle >= 0, 1042 ("negative cycle %d", shortfall_cycle)); 1043 launder = 0; 1044 1045 /* 1046 * First determine whether we need to launder pages to meet a 1047 * shortage of free pages. 1048 */ 1049 if (shortfall > 0) { 1050 in_shortfall = true; 1051 shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE; 1052 target = shortfall; 1053 } else if (!in_shortfall) 1054 goto trybackground; 1055 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) { 1056 /* 1057 * We recently entered shortfall and began laundering 1058 * pages. If we have completed that laundering run 1059 * (and we are no longer in shortfall) or we have met 1060 * our laundry target through other activity, then we 1061 * can stop laundering pages. 1062 */ 1063 in_shortfall = false; 1064 target = 0; 1065 goto trybackground; 1066 } 1067 launder = target / shortfall_cycle--; 1068 goto dolaundry; 1069 1070 /* 1071 * There's no immediate need to launder any pages; see if we 1072 * meet the conditions to perform background laundering: 1073 * 1074 * 1. The ratio of dirty to clean inactive pages exceeds the 1075 * background laundering threshold, or 1076 * 2. we haven't yet reached the target of the current 1077 * background laundering run. 1078 * 1079 * The background laundering threshold is not a constant. 1080 * Instead, it is a slowly growing function of the number of 1081 * clean pages freed by the page daemon since the last 1082 * background laundering. Thus, as the ratio of dirty to 1083 * clean inactive pages grows, the amount of memory pressure 1084 * required to trigger laundering decreases. We ensure 1085 * that the threshold is non-zero after an inactive queue 1086 * scan, even if that scan failed to free a single clean page. 1087 */ 1088 trybackground: 1089 nclean = vmd->vmd_free_count + 1090 vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt; 1091 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt; 1092 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1, 1093 vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) { 1094 target = vmd->vmd_background_launder_target; 1095 } 1096 1097 /* 1098 * We have a non-zero background laundering target. If we've 1099 * laundered up to our maximum without observing a page daemon 1100 * request, just stop. This is a safety belt that ensures we 1101 * don't launder an excessive amount if memory pressure is low 1102 * and the ratio of dirty to clean pages is large. Otherwise, 1103 * proceed at the background laundering rate. 1104 */ 1105 if (target > 0) { 1106 if (nfreed > 0) { 1107 nfreed = 0; 1108 last_target = target; 1109 } else if (last_target - target >= 1110 vm_background_launder_max * PAGE_SIZE / 1024) { 1111 target = 0; 1112 } 1113 launder = vm_background_launder_rate * PAGE_SIZE / 1024; 1114 launder /= VM_LAUNDER_RATE; 1115 if (launder > target) 1116 launder = target; 1117 } 1118 1119 dolaundry: 1120 if (launder > 0) { 1121 /* 1122 * Because of I/O clustering, the number of laundered 1123 * pages could exceed "target" by the maximum size of 1124 * a cluster minus one. 1125 */ 1126 target -= min(vm_pageout_launder(vmd, launder, 1127 in_shortfall), target); 1128 pause("laundp", hz / VM_LAUNDER_RATE); 1129 } 1130 1131 /* 1132 * If we're not currently laundering pages and the page daemon 1133 * hasn't posted a new request, sleep until the page daemon 1134 * kicks us. 1135 */ 1136 vm_pagequeue_lock(pq); 1137 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE) 1138 (void)mtx_sleep(&vmd->vmd_laundry_request, 1139 vm_pagequeue_lockptr(pq), PVM, "launds", 0); 1140 1141 /* 1142 * If the pagedaemon has indicated that it's in shortfall, start 1143 * a shortfall laundering unless we're already in the middle of 1144 * one. This may preempt a background laundering. 1145 */ 1146 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL && 1147 (!in_shortfall || shortfall_cycle == 0)) { 1148 shortfall = vm_laundry_target(vmd) + 1149 vmd->vmd_pageout_deficit; 1150 target = 0; 1151 } else 1152 shortfall = 0; 1153 1154 if (target == 0) 1155 vmd->vmd_laundry_request = VM_LAUNDRY_IDLE; 1156 nfreed += vmd->vmd_clean_pages_freed; 1157 vmd->vmd_clean_pages_freed = 0; 1158 vm_pagequeue_unlock(pq); 1159 } 1160 } 1161 1162 /* 1163 * Compute the number of pages we want to try to move from the 1164 * active queue to either the inactive or laundry queue. 1165 * 1166 * When scanning active pages during a shortage, we make clean pages 1167 * count more heavily towards the page shortage than dirty pages. 1168 * This is because dirty pages must be laundered before they can be 1169 * reused and thus have less utility when attempting to quickly 1170 * alleviate a free page shortage. However, this weighting also 1171 * causes the scan to deactivate dirty pages more aggressively, 1172 * improving the effectiveness of clustering. 1173 */ 1174 static int 1175 vm_pageout_active_target(struct vm_domain *vmd) 1176 { 1177 int shortage; 1178 1179 shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) - 1180 (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt + 1181 vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight); 1182 shortage *= act_scan_laundry_weight; 1183 return (shortage); 1184 } 1185 1186 /* 1187 * Scan the active queue. If there is no shortage of inactive pages, scan a 1188 * small portion of the queue in order to maintain quasi-LRU. 1189 */ 1190 static void 1191 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage) 1192 { 1193 struct scan_state ss; 1194 struct mtx *mtx; 1195 vm_object_t object; 1196 vm_page_t m, marker; 1197 struct vm_pagequeue *pq; 1198 long min_scan; 1199 int act_delta, max_scan, scan_tick; 1200 1201 marker = &vmd->vmd_markers[PQ_ACTIVE]; 1202 pq = &vmd->vmd_pagequeues[PQ_ACTIVE]; 1203 vm_pagequeue_lock(pq); 1204 1205 /* 1206 * If we're just idle polling attempt to visit every 1207 * active page within 'update_period' seconds. 1208 */ 1209 scan_tick = ticks; 1210 if (vm_pageout_update_period != 0) { 1211 min_scan = pq->pq_cnt; 1212 min_scan *= scan_tick - vmd->vmd_last_active_scan; 1213 min_scan /= hz * vm_pageout_update_period; 1214 } else 1215 min_scan = 0; 1216 if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0)) 1217 vmd->vmd_last_active_scan = scan_tick; 1218 1219 /* 1220 * Scan the active queue for pages that can be deactivated. Update 1221 * the per-page activity counter and use it to identify deactivation 1222 * candidates. Held pages may be deactivated. 1223 * 1224 * To avoid requeuing each page that remains in the active queue, we 1225 * implement the CLOCK algorithm. To keep the implementation of the 1226 * enqueue operation consistent for all page queues, we use two hands, 1227 * represented by marker pages. Scans begin at the first hand, which 1228 * precedes the second hand in the queue. When the two hands meet, 1229 * they are moved back to the head and tail of the queue, respectively, 1230 * and scanning resumes. 1231 */ 1232 max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan; 1233 mtx = NULL; 1234 act_scan: 1235 vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan); 1236 while ((m = vm_pageout_next(&ss, false)) != NULL) { 1237 if (__predict_false(m == &vmd->vmd_clock[1])) { 1238 vm_pagequeue_lock(pq); 1239 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1240 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q); 1241 TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0], 1242 plinks.q); 1243 TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1], 1244 plinks.q); 1245 max_scan -= ss.scanned; 1246 vm_pageout_end_scan(&ss); 1247 goto act_scan; 1248 } 1249 if (__predict_false((m->flags & PG_MARKER) != 0)) 1250 continue; 1251 1252 vm_page_change_lock(m, &mtx); 1253 1254 /* 1255 * The page may have been disassociated from the queue 1256 * or even freed while locks were dropped. We thus must be 1257 * careful whenever modifying page state. Once the object lock 1258 * has been acquired, we have a stable reference to the page. 1259 */ 1260 if (vm_page_queue(m) != PQ_ACTIVE) 1261 continue; 1262 1263 /* 1264 * Wired pages are dequeued lazily. 1265 */ 1266 if (vm_page_wired(m)) { 1267 vm_page_dequeue_deferred(m); 1268 continue; 1269 } 1270 1271 /* 1272 * A page's object pointer may be set to NULL before 1273 * the object lock is acquired. 1274 */ 1275 object = (vm_object_t)atomic_load_ptr(&m->object); 1276 if (__predict_false(object == NULL)) 1277 /* 1278 * The page has been removed from its object. 1279 */ 1280 continue; 1281 1282 /* 1283 * Check to see "how much" the page has been used. 1284 * 1285 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1286 * that a reference from a concurrently destroyed mapping is 1287 * observed here and now. 1288 * 1289 * Perform an unsynchronized object ref count check. While 1290 * the page lock ensures that the page is not reallocated to 1291 * another object, in particular, one with unmanaged mappings 1292 * that cannot support pmap_ts_referenced(), two races are, 1293 * nonetheless, possible: 1294 * 1) The count was transitioning to zero, but we saw a non- 1295 * zero value. pmap_ts_referenced() will return zero 1296 * because the page is not mapped. 1297 * 2) The count was transitioning to one, but we saw zero. 1298 * This race delays the detection of a new reference. At 1299 * worst, we will deactivate and reactivate the page. 1300 */ 1301 if (object->ref_count != 0) 1302 act_delta = pmap_ts_referenced(m); 1303 else 1304 act_delta = 0; 1305 if ((m->aflags & PGA_REFERENCED) != 0) { 1306 vm_page_aflag_clear(m, PGA_REFERENCED); 1307 act_delta++; 1308 } 1309 1310 /* 1311 * Advance or decay the act_count based on recent usage. 1312 */ 1313 if (act_delta != 0) { 1314 m->act_count += ACT_ADVANCE + act_delta; 1315 if (m->act_count > ACT_MAX) 1316 m->act_count = ACT_MAX; 1317 } else 1318 m->act_count -= min(m->act_count, ACT_DECLINE); 1319 1320 if (m->act_count == 0) { 1321 /* 1322 * When not short for inactive pages, let dirty pages go 1323 * through the inactive queue before moving to the 1324 * laundry queues. This gives them some extra time to 1325 * be reactivated, potentially avoiding an expensive 1326 * pageout. However, during a page shortage, the 1327 * inactive queue is necessarily small, and so dirty 1328 * pages would only spend a trivial amount of time in 1329 * the inactive queue. Therefore, we might as well 1330 * place them directly in the laundry queue to reduce 1331 * queuing overhead. 1332 */ 1333 if (page_shortage <= 0) { 1334 vm_page_swapqueue(m, PQ_ACTIVE, PQ_INACTIVE); 1335 } else { 1336 /* 1337 * Calling vm_page_test_dirty() here would 1338 * require acquisition of the object's write 1339 * lock. However, during a page shortage, 1340 * directing dirty pages into the laundry 1341 * queue is only an optimization and not a 1342 * requirement. Therefore, we simply rely on 1343 * the opportunistic updates to the page's 1344 * dirty field by the pmap. 1345 */ 1346 if (m->dirty == 0) { 1347 vm_page_swapqueue(m, PQ_ACTIVE, 1348 PQ_INACTIVE); 1349 page_shortage -= 1350 act_scan_laundry_weight; 1351 } else { 1352 vm_page_swapqueue(m, PQ_ACTIVE, 1353 PQ_LAUNDRY); 1354 page_shortage--; 1355 } 1356 } 1357 } 1358 } 1359 if (mtx != NULL) { 1360 mtx_unlock(mtx); 1361 mtx = NULL; 1362 } 1363 vm_pagequeue_lock(pq); 1364 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q); 1365 TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q); 1366 vm_pageout_end_scan(&ss); 1367 vm_pagequeue_unlock(pq); 1368 } 1369 1370 static int 1371 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m) 1372 { 1373 struct vm_domain *vmd; 1374 1375 if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0) 1376 return (0); 1377 vm_page_aflag_set(m, PGA_ENQUEUED); 1378 if ((m->aflags & PGA_REQUEUE_HEAD) != 0) { 1379 vmd = vm_pagequeue_domain(m); 1380 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 1381 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1382 } else if ((m->aflags & PGA_REQUEUE) != 0) { 1383 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q); 1384 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 1385 } else 1386 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q); 1387 return (1); 1388 } 1389 1390 /* 1391 * Re-add stuck pages to the inactive queue. We will examine them again 1392 * during the next scan. If the queue state of a page has changed since 1393 * it was physically removed from the page queue in 1394 * vm_pageout_collect_batch(), don't do anything with that page. 1395 */ 1396 static void 1397 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq, 1398 vm_page_t m) 1399 { 1400 struct vm_pagequeue *pq; 1401 int delta; 1402 1403 delta = 0; 1404 pq = ss->pq; 1405 1406 if (m != NULL) { 1407 if (vm_batchqueue_insert(bq, m)) 1408 return; 1409 vm_pagequeue_lock(pq); 1410 delta += vm_pageout_reinsert_inactive_page(ss, m); 1411 } else 1412 vm_pagequeue_lock(pq); 1413 while ((m = vm_batchqueue_pop(bq)) != NULL) 1414 delta += vm_pageout_reinsert_inactive_page(ss, m); 1415 vm_pagequeue_cnt_add(pq, delta); 1416 vm_pagequeue_unlock(pq); 1417 vm_batchqueue_init(bq); 1418 } 1419 1420 /* 1421 * Attempt to reclaim the requested number of pages from the inactive queue. 1422 * Returns true if the shortage was addressed. 1423 */ 1424 static int 1425 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage, 1426 int *addl_shortage) 1427 { 1428 struct scan_state ss; 1429 struct vm_batchqueue rq; 1430 struct mtx *mtx; 1431 vm_page_t m, marker; 1432 struct vm_pagequeue *pq; 1433 vm_object_t object; 1434 int act_delta, addl_page_shortage, deficit, page_shortage; 1435 int starting_page_shortage; 1436 1437 /* 1438 * The addl_page_shortage is an estimate of the number of temporarily 1439 * stuck pages in the inactive queue. In other words, the 1440 * number of pages from the inactive count that should be 1441 * discounted in setting the target for the active queue scan. 1442 */ 1443 addl_page_shortage = 0; 1444 1445 /* 1446 * vmd_pageout_deficit counts the number of pages requested in 1447 * allocations that failed because of a free page shortage. We assume 1448 * that the allocations will be reattempted and thus include the deficit 1449 * in our scan target. 1450 */ 1451 deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit); 1452 starting_page_shortage = page_shortage = shortage + deficit; 1453 1454 mtx = NULL; 1455 object = NULL; 1456 vm_batchqueue_init(&rq); 1457 1458 /* 1459 * Start scanning the inactive queue for pages that we can free. The 1460 * scan will stop when we reach the target or we have scanned the 1461 * entire queue. (Note that m->act_count is not used to make 1462 * decisions for the inactive queue, only for the active queue.) 1463 */ 1464 marker = &vmd->vmd_markers[PQ_INACTIVE]; 1465 pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; 1466 vm_pagequeue_lock(pq); 1467 vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); 1468 while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) { 1469 KASSERT((m->flags & PG_MARKER) == 0, 1470 ("marker page %p was dequeued", m)); 1471 1472 vm_page_change_lock(m, &mtx); 1473 1474 recheck: 1475 /* 1476 * The page may have been disassociated from the queue 1477 * or even freed while locks were dropped. We thus must be 1478 * careful whenever modifying page state. Once the object lock 1479 * has been acquired, we have a stable reference to the page. 1480 */ 1481 if (vm_page_queue(m) != PQ_INACTIVE) { 1482 addl_page_shortage++; 1483 continue; 1484 } 1485 1486 /* 1487 * The page was re-enqueued after the page queue lock was 1488 * dropped, or a requeue was requested. This page gets a second 1489 * chance. 1490 */ 1491 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE | 1492 PGA_REQUEUE_HEAD)) != 0) 1493 goto reinsert; 1494 1495 /* 1496 * Wired pages may not be freed. Complete their removal 1497 * from the queue now to avoid needless revisits during 1498 * future scans. This check is racy and must be reverified once 1499 * we hold the object lock and have verified that the page 1500 * is not busy. 1501 */ 1502 if (vm_page_wired(m)) { 1503 vm_page_dequeue_deferred(m); 1504 continue; 1505 } 1506 1507 if (object != m->object) { 1508 if (object != NULL) 1509 VM_OBJECT_WUNLOCK(object); 1510 1511 /* 1512 * A page's object pointer may be set to NULL before 1513 * the object lock is acquired. 1514 */ 1515 object = (vm_object_t)atomic_load_ptr(&m->object); 1516 if (object != NULL && !VM_OBJECT_TRYWLOCK(object)) { 1517 mtx_unlock(mtx); 1518 /* Depends on type-stability. */ 1519 VM_OBJECT_WLOCK(object); 1520 mtx_lock(mtx); 1521 goto recheck; 1522 } 1523 } 1524 if (__predict_false(m->object == NULL)) 1525 /* 1526 * The page has been removed from its object. 1527 */ 1528 continue; 1529 KASSERT(m->object == object, ("page %p does not belong to %p", 1530 m, object)); 1531 1532 if (vm_page_tryxbusy(m) == 0) { 1533 /* 1534 * Don't mess with busy pages. Leave them at 1535 * the front of the queue. Most likely, they 1536 * are being paged out and will leave the 1537 * queue shortly after the scan finishes. So, 1538 * they ought to be discounted from the 1539 * inactive count. 1540 */ 1541 addl_page_shortage++; 1542 goto reinsert; 1543 } 1544 1545 /* 1546 * Re-check for wirings now that we hold the object lock and 1547 * have verified that the page is unbusied. If the page is 1548 * mapped, it may still be wired by pmap lookups. The call to 1549 * vm_page_try_remove_all() below atomically checks for such 1550 * wirings and removes mappings. If the page is unmapped, the 1551 * wire count is guaranteed not to increase. 1552 */ 1553 if (__predict_false(vm_page_wired(m))) { 1554 vm_page_xunbusy(m); 1555 vm_page_dequeue_deferred(m); 1556 continue; 1557 } 1558 1559 /* 1560 * Invalid pages can be easily freed. They cannot be 1561 * mapped, vm_page_free() asserts this. 1562 */ 1563 if (vm_page_none_valid(m)) 1564 goto free_page; 1565 1566 /* 1567 * If the page has been referenced and the object is not dead, 1568 * reactivate or requeue the page depending on whether the 1569 * object is mapped. 1570 * 1571 * Test PGA_REFERENCED after calling pmap_ts_referenced() so 1572 * that a reference from a concurrently destroyed mapping is 1573 * observed here and now. 1574 */ 1575 if (object->ref_count != 0) 1576 act_delta = pmap_ts_referenced(m); 1577 else { 1578 KASSERT(!pmap_page_is_mapped(m), 1579 ("page %p is mapped", m)); 1580 act_delta = 0; 1581 } 1582 if ((m->aflags & PGA_REFERENCED) != 0) { 1583 vm_page_aflag_clear(m, PGA_REFERENCED); 1584 act_delta++; 1585 } 1586 if (act_delta != 0) { 1587 if (object->ref_count != 0) { 1588 vm_page_xunbusy(m); 1589 VM_CNT_INC(v_reactivated); 1590 vm_page_activate(m); 1591 1592 /* 1593 * Increase the activation count if the page 1594 * was referenced while in the inactive queue. 1595 * This makes it less likely that the page will 1596 * be returned prematurely to the inactive 1597 * queue. 1598 */ 1599 m->act_count += act_delta + ACT_ADVANCE; 1600 continue; 1601 } else if ((object->flags & OBJ_DEAD) == 0) { 1602 vm_page_xunbusy(m); 1603 vm_page_aflag_set(m, PGA_REQUEUE); 1604 goto reinsert; 1605 } 1606 } 1607 1608 /* 1609 * If the page appears to be clean at the machine-independent 1610 * layer, then remove all of its mappings from the pmap in 1611 * anticipation of freeing it. If, however, any of the page's 1612 * mappings allow write access, then the page may still be 1613 * modified until the last of those mappings are removed. 1614 */ 1615 if (object->ref_count != 0) { 1616 vm_page_test_dirty(m); 1617 if (m->dirty == 0 && !vm_page_try_remove_all(m)) { 1618 vm_page_xunbusy(m); 1619 vm_page_dequeue_deferred(m); 1620 continue; 1621 } 1622 } 1623 1624 /* 1625 * Clean pages can be freed, but dirty pages must be sent back 1626 * to the laundry, unless they belong to a dead object. 1627 * Requeueing dirty pages from dead objects is pointless, as 1628 * they are being paged out and freed by the thread that 1629 * destroyed the object. 1630 */ 1631 if (m->dirty == 0) { 1632 free_page: 1633 /* 1634 * Because we dequeued the page and have already 1635 * checked for concurrent dequeue and enqueue 1636 * requests, we can safely disassociate the page 1637 * from the inactive queue. 1638 */ 1639 KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0, 1640 ("page %p has queue state", m)); 1641 m->queue = PQ_NONE; 1642 vm_page_free(m); 1643 page_shortage--; 1644 continue; 1645 } 1646 vm_page_xunbusy(m); 1647 if ((object->flags & OBJ_DEAD) == 0) 1648 vm_page_launder(m); 1649 continue; 1650 reinsert: 1651 vm_pageout_reinsert_inactive(&ss, &rq, m); 1652 } 1653 if (mtx != NULL) 1654 mtx_unlock(mtx); 1655 if (object != NULL) 1656 VM_OBJECT_WUNLOCK(object); 1657 vm_pageout_reinsert_inactive(&ss, &rq, NULL); 1658 vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL); 1659 vm_pagequeue_lock(pq); 1660 vm_pageout_end_scan(&ss); 1661 vm_pagequeue_unlock(pq); 1662 1663 VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage); 1664 1665 /* 1666 * Wake up the laundry thread so that it can perform any needed 1667 * laundering. If we didn't meet our target, we're in shortfall and 1668 * need to launder more aggressively. If PQ_LAUNDRY is empty and no 1669 * swap devices are configured, the laundry thread has no work to do, so 1670 * don't bother waking it up. 1671 * 1672 * The laundry thread uses the number of inactive queue scans elapsed 1673 * since the last laundering to determine whether to launder again, so 1674 * keep count. 1675 */ 1676 if (starting_page_shortage > 0) { 1677 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY]; 1678 vm_pagequeue_lock(pq); 1679 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE && 1680 (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) { 1681 if (page_shortage > 0) { 1682 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL; 1683 VM_CNT_INC(v_pdshortfalls); 1684 } else if (vmd->vmd_laundry_request != 1685 VM_LAUNDRY_SHORTFALL) 1686 vmd->vmd_laundry_request = 1687 VM_LAUNDRY_BACKGROUND; 1688 wakeup(&vmd->vmd_laundry_request); 1689 } 1690 vmd->vmd_clean_pages_freed += 1691 starting_page_shortage - page_shortage; 1692 vm_pagequeue_unlock(pq); 1693 } 1694 1695 /* 1696 * Wakeup the swapout daemon if we didn't free the targeted number of 1697 * pages. 1698 */ 1699 if (page_shortage > 0) 1700 vm_swapout_run(); 1701 1702 /* 1703 * If the inactive queue scan fails repeatedly to meet its 1704 * target, kill the largest process. 1705 */ 1706 vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage); 1707 1708 /* 1709 * Reclaim pages by swapping out idle processes, if configured to do so. 1710 */ 1711 vm_swapout_run_idle(); 1712 1713 /* 1714 * See the description of addl_page_shortage above. 1715 */ 1716 *addl_shortage = addl_page_shortage + deficit; 1717 1718 return (page_shortage <= 0); 1719 } 1720 1721 static int vm_pageout_oom_vote; 1722 1723 /* 1724 * The pagedaemon threads randlomly select one to perform the 1725 * OOM. Trying to kill processes before all pagedaemons 1726 * failed to reach free target is premature. 1727 */ 1728 static void 1729 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage, 1730 int starting_page_shortage) 1731 { 1732 int old_vote; 1733 1734 if (starting_page_shortage <= 0 || starting_page_shortage != 1735 page_shortage) 1736 vmd->vmd_oom_seq = 0; 1737 else 1738 vmd->vmd_oom_seq++; 1739 if (vmd->vmd_oom_seq < vm_pageout_oom_seq) { 1740 if (vmd->vmd_oom) { 1741 vmd->vmd_oom = FALSE; 1742 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1743 } 1744 return; 1745 } 1746 1747 /* 1748 * Do not follow the call sequence until OOM condition is 1749 * cleared. 1750 */ 1751 vmd->vmd_oom_seq = 0; 1752 1753 if (vmd->vmd_oom) 1754 return; 1755 1756 vmd->vmd_oom = TRUE; 1757 old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1); 1758 if (old_vote != vm_ndomains - 1) 1759 return; 1760 1761 /* 1762 * The current pagedaemon thread is the last in the quorum to 1763 * start OOM. Initiate the selection and signaling of the 1764 * victim. 1765 */ 1766 vm_pageout_oom(VM_OOM_MEM); 1767 1768 /* 1769 * After one round of OOM terror, recall our vote. On the 1770 * next pass, current pagedaemon would vote again if the low 1771 * memory condition is still there, due to vmd_oom being 1772 * false. 1773 */ 1774 vmd->vmd_oom = FALSE; 1775 atomic_subtract_int(&vm_pageout_oom_vote, 1); 1776 } 1777 1778 /* 1779 * The OOM killer is the page daemon's action of last resort when 1780 * memory allocation requests have been stalled for a prolonged period 1781 * of time because it cannot reclaim memory. This function computes 1782 * the approximate number of physical pages that could be reclaimed if 1783 * the specified address space is destroyed. 1784 * 1785 * Private, anonymous memory owned by the address space is the 1786 * principal resource that we expect to recover after an OOM kill. 1787 * Since the physical pages mapped by the address space's COW entries 1788 * are typically shared pages, they are unlikely to be released and so 1789 * they are not counted. 1790 * 1791 * To get to the point where the page daemon runs the OOM killer, its 1792 * efforts to write-back vnode-backed pages may have stalled. This 1793 * could be caused by a memory allocation deadlock in the write path 1794 * that might be resolved by an OOM kill. Therefore, physical pages 1795 * belonging to vnode-backed objects are counted, because they might 1796 * be freed without being written out first if the address space holds 1797 * the last reference to an unlinked vnode. 1798 * 1799 * Similarly, physical pages belonging to OBJT_PHYS objects are 1800 * counted because the address space might hold the last reference to 1801 * the object. 1802 */ 1803 static long 1804 vm_pageout_oom_pagecount(struct vmspace *vmspace) 1805 { 1806 vm_map_t map; 1807 vm_map_entry_t entry; 1808 vm_object_t obj; 1809 long res; 1810 1811 map = &vmspace->vm_map; 1812 KASSERT(!map->system_map, ("system map")); 1813 sx_assert(&map->lock, SA_LOCKED); 1814 res = 0; 1815 VM_MAP_ENTRY_FOREACH(entry, map) { 1816 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1817 continue; 1818 obj = entry->object.vm_object; 1819 if (obj == NULL) 1820 continue; 1821 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 && 1822 obj->ref_count != 1) 1823 continue; 1824 switch (obj->type) { 1825 case OBJT_DEFAULT: 1826 case OBJT_SWAP: 1827 case OBJT_PHYS: 1828 case OBJT_VNODE: 1829 res += obj->resident_page_count; 1830 break; 1831 } 1832 } 1833 return (res); 1834 } 1835 1836 static int vm_oom_ratelim_last; 1837 static int vm_oom_pf_secs = 10; 1838 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0, 1839 ""); 1840 static struct mtx vm_oom_ratelim_mtx; 1841 1842 void 1843 vm_pageout_oom(int shortage) 1844 { 1845 struct proc *p, *bigproc; 1846 vm_offset_t size, bigsize; 1847 struct thread *td; 1848 struct vmspace *vm; 1849 int now; 1850 bool breakout; 1851 1852 /* 1853 * For OOM requests originating from vm_fault(), there is a high 1854 * chance that a single large process faults simultaneously in 1855 * several threads. Also, on an active system running many 1856 * processes of middle-size, like buildworld, all of them 1857 * could fault almost simultaneously as well. 1858 * 1859 * To avoid killing too many processes, rate-limit OOMs 1860 * initiated by vm_fault() time-outs on the waits for free 1861 * pages. 1862 */ 1863 mtx_lock(&vm_oom_ratelim_mtx); 1864 now = ticks; 1865 if (shortage == VM_OOM_MEM_PF && 1866 (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) { 1867 mtx_unlock(&vm_oom_ratelim_mtx); 1868 return; 1869 } 1870 vm_oom_ratelim_last = now; 1871 mtx_unlock(&vm_oom_ratelim_mtx); 1872 1873 /* 1874 * We keep the process bigproc locked once we find it to keep anyone 1875 * from messing with it; however, there is a possibility of 1876 * deadlock if process B is bigproc and one of its child processes 1877 * attempts to propagate a signal to B while we are waiting for A's 1878 * lock while walking this list. To avoid this, we don't block on 1879 * the process lock but just skip a process if it is already locked. 1880 */ 1881 bigproc = NULL; 1882 bigsize = 0; 1883 sx_slock(&allproc_lock); 1884 FOREACH_PROC_IN_SYSTEM(p) { 1885 PROC_LOCK(p); 1886 1887 /* 1888 * If this is a system, protected or killed process, skip it. 1889 */ 1890 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC | 1891 P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 || 1892 p->p_pid == 1 || P_KILLED(p) || 1893 (p->p_pid < 48 && swap_pager_avail != 0)) { 1894 PROC_UNLOCK(p); 1895 continue; 1896 } 1897 /* 1898 * If the process is in a non-running type state, 1899 * don't touch it. Check all the threads individually. 1900 */ 1901 breakout = false; 1902 FOREACH_THREAD_IN_PROC(p, td) { 1903 thread_lock(td); 1904 if (!TD_ON_RUNQ(td) && 1905 !TD_IS_RUNNING(td) && 1906 !TD_IS_SLEEPING(td) && 1907 !TD_IS_SUSPENDED(td) && 1908 !TD_IS_SWAPPED(td)) { 1909 thread_unlock(td); 1910 breakout = true; 1911 break; 1912 } 1913 thread_unlock(td); 1914 } 1915 if (breakout) { 1916 PROC_UNLOCK(p); 1917 continue; 1918 } 1919 /* 1920 * get the process size 1921 */ 1922 vm = vmspace_acquire_ref(p); 1923 if (vm == NULL) { 1924 PROC_UNLOCK(p); 1925 continue; 1926 } 1927 _PHOLD_LITE(p); 1928 PROC_UNLOCK(p); 1929 sx_sunlock(&allproc_lock); 1930 if (!vm_map_trylock_read(&vm->vm_map)) { 1931 vmspace_free(vm); 1932 sx_slock(&allproc_lock); 1933 PRELE(p); 1934 continue; 1935 } 1936 size = vmspace_swap_count(vm); 1937 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF) 1938 size += vm_pageout_oom_pagecount(vm); 1939 vm_map_unlock_read(&vm->vm_map); 1940 vmspace_free(vm); 1941 sx_slock(&allproc_lock); 1942 1943 /* 1944 * If this process is bigger than the biggest one, 1945 * remember it. 1946 */ 1947 if (size > bigsize) { 1948 if (bigproc != NULL) 1949 PRELE(bigproc); 1950 bigproc = p; 1951 bigsize = size; 1952 } else { 1953 PRELE(p); 1954 } 1955 } 1956 sx_sunlock(&allproc_lock); 1957 if (bigproc != NULL) { 1958 if (vm_panic_on_oom != 0) 1959 panic("out of swap space"); 1960 PROC_LOCK(bigproc); 1961 killproc(bigproc, "out of swap space"); 1962 sched_nice(bigproc, PRIO_MIN); 1963 _PRELE(bigproc); 1964 PROC_UNLOCK(bigproc); 1965 } 1966 } 1967 1968 static bool 1969 vm_pageout_lowmem(void) 1970 { 1971 static int lowmem_ticks = 0; 1972 int last; 1973 1974 last = atomic_load_int(&lowmem_ticks); 1975 while ((u_int)(ticks - last) / hz >= lowmem_period) { 1976 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0) 1977 continue; 1978 1979 /* 1980 * Decrease registered cache sizes. 1981 */ 1982 SDT_PROBE0(vm, , , vm__lowmem_scan); 1983 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES); 1984 1985 /* 1986 * We do this explicitly after the caches have been 1987 * drained above. If we have a severe page shortage on 1988 * our hands, completely drain all UMA zones. Otherwise, 1989 * just prune the caches. 1990 */ 1991 uma_reclaim(vm_page_count_min() ? UMA_RECLAIM_DRAIN_CPU : 1992 UMA_RECLAIM_TRIM); 1993 return (true); 1994 } 1995 return (false); 1996 } 1997 1998 static void 1999 vm_pageout_worker(void *arg) 2000 { 2001 struct vm_domain *vmd; 2002 u_int ofree; 2003 int addl_shortage, domain, shortage; 2004 bool target_met; 2005 2006 domain = (uintptr_t)arg; 2007 vmd = VM_DOMAIN(domain); 2008 shortage = 0; 2009 target_met = true; 2010 2011 /* 2012 * XXXKIB It could be useful to bind pageout daemon threads to 2013 * the cores belonging to the domain, from which vm_page_array 2014 * is allocated. 2015 */ 2016 2017 KASSERT(vmd->vmd_segs != 0, ("domain without segments")); 2018 vmd->vmd_last_active_scan = ticks; 2019 2020 /* 2021 * The pageout daemon worker is never done, so loop forever. 2022 */ 2023 while (TRUE) { 2024 vm_domain_pageout_lock(vmd); 2025 2026 /* 2027 * We need to clear wanted before we check the limits. This 2028 * prevents races with wakers who will check wanted after they 2029 * reach the limit. 2030 */ 2031 atomic_store_int(&vmd->vmd_pageout_wanted, 0); 2032 2033 /* 2034 * Might the page daemon need to run again? 2035 */ 2036 if (vm_paging_needed(vmd, vmd->vmd_free_count)) { 2037 /* 2038 * Yes. If the scan failed to produce enough free 2039 * pages, sleep uninterruptibly for some time in the 2040 * hope that the laundry thread will clean some pages. 2041 */ 2042 vm_domain_pageout_unlock(vmd); 2043 if (!target_met) 2044 pause("pwait", hz / VM_INACT_SCAN_RATE); 2045 } else { 2046 /* 2047 * No, sleep until the next wakeup or until pages 2048 * need to have their reference stats updated. 2049 */ 2050 if (mtx_sleep(&vmd->vmd_pageout_wanted, 2051 vm_domain_pageout_lockptr(vmd), PDROP | PVM, 2052 "psleep", hz / VM_INACT_SCAN_RATE) == 0) 2053 VM_CNT_INC(v_pdwakeups); 2054 } 2055 2056 /* Prevent spurious wakeups by ensuring that wanted is set. */ 2057 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2058 2059 /* 2060 * Use the controller to calculate how many pages to free in 2061 * this interval, and scan the inactive queue. If the lowmem 2062 * handlers appear to have freed up some pages, subtract the 2063 * difference from the inactive queue scan target. 2064 */ 2065 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count); 2066 if (shortage > 0) { 2067 ofree = vmd->vmd_free_count; 2068 if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) 2069 shortage -= min(vmd->vmd_free_count - ofree, 2070 (u_int)shortage); 2071 target_met = vm_pageout_scan_inactive(vmd, shortage, 2072 &addl_shortage); 2073 } else 2074 addl_shortage = 0; 2075 2076 /* 2077 * Scan the active queue. A positive value for shortage 2078 * indicates that we must aggressively deactivate pages to avoid 2079 * a shortfall. 2080 */ 2081 shortage = vm_pageout_active_target(vmd) + addl_shortage; 2082 vm_pageout_scan_active(vmd, shortage); 2083 } 2084 } 2085 2086 /* 2087 * vm_pageout_init initialises basic pageout daemon settings. 2088 */ 2089 static void 2090 vm_pageout_init_domain(int domain) 2091 { 2092 struct vm_domain *vmd; 2093 struct sysctl_oid *oid; 2094 2095 vmd = VM_DOMAIN(domain); 2096 vmd->vmd_interrupt_free_min = 2; 2097 2098 /* 2099 * v_free_reserved needs to include enough for the largest 2100 * swap pager structures plus enough for any pv_entry structs 2101 * when paging. 2102 */ 2103 if (vmd->vmd_page_count > 1024) 2104 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200; 2105 else 2106 vmd->vmd_free_min = 4; 2107 vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE + 2108 vmd->vmd_interrupt_free_min; 2109 vmd->vmd_free_reserved = vm_pageout_page_count + 2110 vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768); 2111 vmd->vmd_free_severe = vmd->vmd_free_min / 2; 2112 vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved; 2113 vmd->vmd_free_min += vmd->vmd_free_reserved; 2114 vmd->vmd_free_severe += vmd->vmd_free_reserved; 2115 vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2; 2116 if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3) 2117 vmd->vmd_inactive_target = vmd->vmd_free_count / 3; 2118 2119 /* 2120 * Set the default wakeup threshold to be 10% below the paging 2121 * target. This keeps the steady state out of shortfall. 2122 */ 2123 vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9; 2124 2125 /* 2126 * Target amount of memory to move out of the laundry queue during a 2127 * background laundering. This is proportional to the amount of system 2128 * memory. 2129 */ 2130 vmd->vmd_background_launder_target = (vmd->vmd_free_target - 2131 vmd->vmd_free_min) / 10; 2132 2133 /* Initialize the pageout daemon pid controller. */ 2134 pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE, 2135 vmd->vmd_free_target, PIDCTRL_BOUND, 2136 PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD); 2137 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, 2138 "pidctrl", CTLFLAG_RD, NULL, ""); 2139 pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); 2140 } 2141 2142 static void 2143 vm_pageout_init(void) 2144 { 2145 u_int freecount; 2146 int i; 2147 2148 /* 2149 * Initialize some paging parameters. 2150 */ 2151 if (vm_cnt.v_page_count < 2000) 2152 vm_pageout_page_count = 8; 2153 2154 freecount = 0; 2155 for (i = 0; i < vm_ndomains; i++) { 2156 struct vm_domain *vmd; 2157 2158 vm_pageout_init_domain(i); 2159 vmd = VM_DOMAIN(i); 2160 vm_cnt.v_free_reserved += vmd->vmd_free_reserved; 2161 vm_cnt.v_free_target += vmd->vmd_free_target; 2162 vm_cnt.v_free_min += vmd->vmd_free_min; 2163 vm_cnt.v_inactive_target += vmd->vmd_inactive_target; 2164 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min; 2165 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min; 2166 vm_cnt.v_free_severe += vmd->vmd_free_severe; 2167 freecount += vmd->vmd_free_count; 2168 } 2169 2170 /* 2171 * Set interval in seconds for active scan. We want to visit each 2172 * page at least once every ten minutes. This is to prevent worst 2173 * case paging behaviors with stale active LRU. 2174 */ 2175 if (vm_pageout_update_period == 0) 2176 vm_pageout_update_period = 600; 2177 2178 if (vm_page_max_user_wired == 0) 2179 vm_page_max_user_wired = freecount / 3; 2180 } 2181 2182 /* 2183 * vm_pageout is the high level pageout daemon. 2184 */ 2185 static void 2186 vm_pageout(void) 2187 { 2188 struct proc *p; 2189 struct thread *td; 2190 int error, first, i; 2191 2192 p = curproc; 2193 td = curthread; 2194 2195 mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF); 2196 swap_pager_swap_init(); 2197 for (first = -1, i = 0; i < vm_ndomains; i++) { 2198 if (VM_DOMAIN_EMPTY(i)) { 2199 if (bootverbose) 2200 printf("domain %d empty; skipping pageout\n", 2201 i); 2202 continue; 2203 } 2204 if (first == -1) 2205 first = i; 2206 else { 2207 error = kthread_add(vm_pageout_worker, 2208 (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i); 2209 if (error != 0) 2210 panic("starting pageout for domain %d: %d\n", 2211 i, error); 2212 } 2213 error = kthread_add(vm_pageout_laundry_worker, 2214 (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); 2215 if (error != 0) 2216 panic("starting laundry for domain %d: %d", i, error); 2217 } 2218 error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma"); 2219 if (error != 0) 2220 panic("starting uma_reclaim helper, error %d\n", error); 2221 2222 snprintf(td->td_name, sizeof(td->td_name), "dom%d", first); 2223 vm_pageout_worker((void *)(uintptr_t)first); 2224 } 2225 2226 /* 2227 * Perform an advisory wakeup of the page daemon. 2228 */ 2229 void 2230 pagedaemon_wakeup(int domain) 2231 { 2232 struct vm_domain *vmd; 2233 2234 vmd = VM_DOMAIN(domain); 2235 vm_domain_pageout_assert_unlocked(vmd); 2236 if (curproc == pageproc) 2237 return; 2238 2239 if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) { 2240 vm_domain_pageout_lock(vmd); 2241 atomic_store_int(&vmd->vmd_pageout_wanted, 1); 2242 wakeup(&vmd->vmd_pageout_wanted); 2243 vm_domain_pageout_unlock(vmd); 2244 } 2245 } 2246