1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 * 60 * $FreeBSD$ 61 */ 62 63 /* 64 * Resident memory system definitions. 65 */ 66 67 #ifndef _VM_PAGE_ 68 #define _VM_PAGE_ 69 70 #include <vm/pmap.h> 71 72 /* 73 * Management of resident (logical) pages. 74 * 75 * A small structure is kept for each resident 76 * page, indexed by page number. Each structure 77 * is an element of several collections: 78 * 79 * A radix tree used to quickly 80 * perform object/offset lookups 81 * 82 * A list of all pages for a given object, 83 * so they can be quickly deactivated at 84 * time of deallocation. 85 * 86 * An ordered list of pages due for pageout. 87 * 88 * In addition, the structure contains the object 89 * and offset to which this page belongs (for pageout), 90 * and sundry status bits. 91 * 92 * In general, operations on this structure's mutable fields are 93 * synchronized using either one of or a combination of the lock on the 94 * object that the page belongs to (O), the pool lock for the page (P), 95 * or the lock for either the free or paging queue (Q). If a field is 96 * annotated below with two of these locks, then holding either lock is 97 * sufficient for read access, but both locks are required for write 98 * access. 99 * 100 * In contrast, the synchronization of accesses to the page's 101 * dirty field is machine dependent (M). In the 102 * machine-independent layer, the lock on the object that the 103 * page belongs to must be held in order to operate on the field. 104 * However, the pmap layer is permitted to set all bits within 105 * the field without holding that lock. If the underlying 106 * architecture does not support atomic read-modify-write 107 * operations on the field's type, then the machine-independent 108 * layer uses a 32-bit atomic on the aligned 32-bit word that 109 * contains the dirty field. In the machine-independent layer, 110 * the implementation of read-modify-write operations on the 111 * field is encapsulated in vm_page_clear_dirty_mask(). 112 */ 113 114 #if PAGE_SIZE == 4096 115 #define VM_PAGE_BITS_ALL 0xffu 116 typedef uint8_t vm_page_bits_t; 117 #elif PAGE_SIZE == 8192 118 #define VM_PAGE_BITS_ALL 0xffffu 119 typedef uint16_t vm_page_bits_t; 120 #elif PAGE_SIZE == 16384 121 #define VM_PAGE_BITS_ALL 0xffffffffu 122 typedef uint32_t vm_page_bits_t; 123 #elif PAGE_SIZE == 32768 124 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu 125 typedef uint64_t vm_page_bits_t; 126 #endif 127 128 struct vm_page { 129 union { 130 TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */ 131 struct { 132 SLIST_ENTRY(vm_page) ss; /* private slists */ 133 void *pv; 134 } s; 135 struct { 136 u_long p; 137 u_long v; 138 } memguard; 139 } plinks; 140 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ 141 vm_object_t object; /* which object am I in (O,P) */ 142 vm_pindex_t pindex; /* offset into object (O,P) */ 143 vm_paddr_t phys_addr; /* physical address of page */ 144 struct md_page md; /* machine dependant stuff */ 145 u_int wire_count; /* wired down maps refs (P) */ 146 volatile u_int busy_lock; /* busy owners lock */ 147 uint16_t hold_count; /* page hold count (P) */ 148 uint16_t flags; /* page PG_* flags (P) */ 149 uint8_t aflags; /* access is atomic */ 150 uint8_t oflags; /* page VPO_* flags (O) */ 151 uint8_t queue; /* page queue index (P,Q) */ 152 int8_t segind; 153 uint8_t order; /* index of the buddy queue */ 154 uint8_t pool; 155 u_char act_count; /* page usage count (P) */ 156 /* NOTE that these must support one bit per DEV_BSIZE in a page */ 157 /* so, on normal X86 kernels, they must be at least 8 bits wide */ 158 vm_page_bits_t valid; /* map of valid DEV_BSIZE chunks (O) */ 159 vm_page_bits_t dirty; /* map of dirty DEV_BSIZE chunks (M) */ 160 }; 161 162 /* 163 * Page flags stored in oflags: 164 * 165 * Access to these page flags is synchronized by the lock on the object 166 * containing the page (O). 167 * 168 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG) 169 * indicates that the page is not under PV management but 170 * otherwise should be treated as a normal page. Pages not 171 * under PV management cannot be paged out via the 172 * object/vm_page_t because there is no knowledge of their pte 173 * mappings, and such pages are also not on any PQ queue. 174 * 175 */ 176 #define VPO_UNUSED01 0x01 /* --available-- */ 177 #define VPO_SWAPSLEEP 0x02 /* waiting for swap to finish */ 178 #define VPO_UNMANAGED 0x04 /* no PV management for page */ 179 #define VPO_SWAPINPROG 0x08 /* swap I/O in progress on page */ 180 #define VPO_NOSYNC 0x10 /* do not collect for syncer */ 181 182 /* 183 * Busy page implementation details. 184 * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation, 185 * even if the support for owner identity is removed because of size 186 * constraints. Checks on lock recursion are then not possible, while the 187 * lock assertions effectiveness is someway reduced. 188 */ 189 #define VPB_BIT_SHARED 0x01 190 #define VPB_BIT_EXCLUSIVE 0x02 191 #define VPB_BIT_WAITERS 0x04 192 #define VPB_BIT_FLAGMASK \ 193 (VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS) 194 195 #define VPB_SHARERS_SHIFT 3 196 #define VPB_SHARERS(x) \ 197 (((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT) 198 #define VPB_SHARERS_WORD(x) ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED) 199 #define VPB_ONE_SHARER (1 << VPB_SHARERS_SHIFT) 200 201 #define VPB_SINGLE_EXCLUSIVER VPB_BIT_EXCLUSIVE 202 203 #define VPB_UNBUSIED VPB_SHARERS_WORD(0) 204 205 #define PQ_NONE 255 206 #define PQ_INACTIVE 0 207 #define PQ_ACTIVE 1 208 #define PQ_COUNT 2 209 210 TAILQ_HEAD(pglist, vm_page); 211 SLIST_HEAD(spglist, vm_page); 212 213 struct vm_pagequeue { 214 struct mtx pq_mutex; 215 struct pglist pq_pl; 216 int pq_cnt; 217 int * const pq_vcnt; 218 const char * const pq_name; 219 } __aligned(CACHE_LINE_SIZE); 220 221 222 struct vm_domain { 223 struct vm_pagequeue vmd_pagequeues[PQ_COUNT]; 224 u_int vmd_page_count; 225 u_int vmd_free_count; 226 long vmd_segs; /* bitmask of the segments */ 227 boolean_t vmd_oom; 228 int vmd_pass; /* local pagedaemon pass */ 229 struct vm_page vmd_marker; /* marker for pagedaemon private use */ 230 }; 231 232 extern struct vm_domain vm_dom[MAXMEMDOM]; 233 234 #define vm_pagequeue_assert_locked(pq) mtx_assert(&(pq)->pq_mutex, MA_OWNED) 235 #define vm_pagequeue_lock(pq) mtx_lock(&(pq)->pq_mutex) 236 #define vm_pagequeue_unlock(pq) mtx_unlock(&(pq)->pq_mutex) 237 238 #ifdef _KERNEL 239 static __inline void 240 vm_pagequeue_cnt_add(struct vm_pagequeue *pq, int addend) 241 { 242 243 #ifdef notyet 244 vm_pagequeue_assert_locked(pq); 245 #endif 246 pq->pq_cnt += addend; 247 atomic_add_int(pq->pq_vcnt, addend); 248 } 249 #define vm_pagequeue_cnt_inc(pq) vm_pagequeue_cnt_add((pq), 1) 250 #define vm_pagequeue_cnt_dec(pq) vm_pagequeue_cnt_add((pq), -1) 251 #endif /* _KERNEL */ 252 253 extern struct mtx_padalign vm_page_queue_free_mtx; 254 extern struct mtx_padalign pa_lock[]; 255 256 #if defined(__arm__) 257 #define PDRSHIFT PDR_SHIFT 258 #elif !defined(PDRSHIFT) 259 #define PDRSHIFT 21 260 #endif 261 262 #define pa_index(pa) ((pa) >> PDRSHIFT) 263 #define PA_LOCKPTR(pa) ((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT])) 264 #define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa))) 265 #define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa)) 266 #define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa)) 267 #define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa)) 268 #define PA_UNLOCK_COND(pa) \ 269 do { \ 270 if ((pa) != 0) { \ 271 PA_UNLOCK((pa)); \ 272 (pa) = 0; \ 273 } \ 274 } while (0) 275 276 #define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a)) 277 278 #ifdef KLD_MODULE 279 #define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE) 280 #define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE) 281 #define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE) 282 #else /* !KLD_MODULE */ 283 #define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m)))) 284 #define vm_page_lock(m) mtx_lock(vm_page_lockptr((m))) 285 #define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m))) 286 #define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m))) 287 #endif 288 #if defined(INVARIANTS) 289 #define vm_page_assert_locked(m) \ 290 vm_page_assert_locked_KBI((m), __FILE__, __LINE__) 291 #define vm_page_lock_assert(m, a) \ 292 vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__) 293 #else 294 #define vm_page_assert_locked(m) 295 #define vm_page_lock_assert(m, a) 296 #endif 297 298 /* 299 * The vm_page's aflags are updated using atomic operations. To set or clear 300 * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear() 301 * must be used. Neither these flags nor these functions are part of the KBI. 302 * 303 * PGA_REFERENCED may be cleared only if the page is locked. It is set by 304 * both the MI and MD VM layers. However, kernel loadable modules should not 305 * directly set this flag. They should call vm_page_reference() instead. 306 * 307 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter(). When it 308 * does so, the page must be exclusive busied. The MI VM layer must never 309 * access this flag directly. Instead, it should call 310 * pmap_page_is_write_mapped(). 311 * 312 * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has 313 * at least one executable mapping. It is not consumed by the MI VM layer. 314 */ 315 #define PGA_WRITEABLE 0x01 /* page may be mapped writeable */ 316 #define PGA_REFERENCED 0x02 /* page has been referenced */ 317 #define PGA_EXECUTABLE 0x04 /* page may be mapped executable */ 318 319 /* 320 * Page flags. If changed at any other time than page allocation or 321 * freeing, the modification must be protected by the vm_page lock. 322 */ 323 #define PG_CACHED 0x0001 /* page is cached */ 324 #define PG_FREE 0x0002 /* page is free */ 325 #define PG_FICTITIOUS 0x0004 /* physical page doesn't exist */ 326 #define PG_ZERO 0x0008 /* page is zeroed */ 327 #define PG_MARKER 0x0010 /* special queue marker page */ 328 #define PG_WINATCFLS 0x0040 /* flush dirty page on inactive q */ 329 #define PG_NODUMP 0x0080 /* don't include this page in a dump */ 330 #define PG_UNHOLDFREE 0x0100 /* delayed free of a held page */ 331 332 /* 333 * Misc constants. 334 */ 335 #define ACT_DECLINE 1 336 #define ACT_ADVANCE 3 337 #define ACT_INIT 5 338 #define ACT_MAX 64 339 340 #ifdef _KERNEL 341 342 #include <sys/systm.h> 343 344 #include <machine/atomic.h> 345 346 /* 347 * Each pageable resident page falls into one of four lists: 348 * 349 * free 350 * Available for allocation now. 351 * 352 * cache 353 * Almost available for allocation. Still associated with 354 * an object, but clean and immediately freeable. 355 * 356 * The following lists are LRU sorted: 357 * 358 * inactive 359 * Low activity, candidates for reclamation. 360 * This is the list of pages that should be 361 * paged out next. 362 * 363 * active 364 * Pages that are "active" i.e. they have been 365 * recently referenced. 366 * 367 */ 368 369 extern int vm_page_zero_count; 370 371 extern vm_page_t vm_page_array; /* First resident page in table */ 372 extern long vm_page_array_size; /* number of vm_page_t's */ 373 extern long first_page; /* first physical page number */ 374 375 #define VM_PAGE_IS_FREE(m) (((m)->flags & PG_FREE) != 0) 376 377 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) 378 379 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa); 380 381 /* page allocation classes: */ 382 #define VM_ALLOC_NORMAL 0 383 #define VM_ALLOC_INTERRUPT 1 384 #define VM_ALLOC_SYSTEM 2 385 #define VM_ALLOC_CLASS_MASK 3 386 /* page allocation flags: */ 387 #define VM_ALLOC_WIRED 0x0020 /* non pageable */ 388 #define VM_ALLOC_ZERO 0x0040 /* Try to obtain a zeroed page */ 389 #define VM_ALLOC_NOOBJ 0x0100 /* No associated object */ 390 #define VM_ALLOC_NOBUSY 0x0200 /* Do not busy the page */ 391 #define VM_ALLOC_IFCACHED 0x0400 /* Fail if the page is not cached */ 392 #define VM_ALLOC_IFNOTCACHED 0x0800 /* Fail if the page is cached */ 393 #define VM_ALLOC_IGN_SBUSY 0x1000 /* vm_page_grab() only */ 394 #define VM_ALLOC_NODUMP 0x2000 /* don't include in dump */ 395 #define VM_ALLOC_SBUSY 0x4000 /* Shared busy the page */ 396 397 #define VM_ALLOC_COUNT_SHIFT 16 398 #define VM_ALLOC_COUNT(count) ((count) << VM_ALLOC_COUNT_SHIFT) 399 400 #ifdef M_NOWAIT 401 static inline int 402 malloc2vm_flags(int malloc_flags) 403 { 404 int pflags; 405 406 KASSERT((malloc_flags & M_USE_RESERVE) == 0 || 407 (malloc_flags & M_NOWAIT) != 0, 408 ("M_USE_RESERVE requires M_NOWAIT")); 409 pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT : 410 VM_ALLOC_SYSTEM; 411 if ((malloc_flags & M_ZERO) != 0) 412 pflags |= VM_ALLOC_ZERO; 413 if ((malloc_flags & M_NODUMP) != 0) 414 pflags |= VM_ALLOC_NODUMP; 415 return (pflags); 416 } 417 #endif 418 419 void vm_page_busy_downgrade(vm_page_t m); 420 void vm_page_busy_sleep(vm_page_t m, const char *msg); 421 void vm_page_flash(vm_page_t m); 422 void vm_page_hold(vm_page_t mem); 423 void vm_page_unhold(vm_page_t mem); 424 void vm_page_free(vm_page_t m); 425 void vm_page_free_zero(vm_page_t m); 426 427 void vm_page_activate (vm_page_t); 428 void vm_page_advise(vm_page_t m, int advice); 429 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int); 430 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 431 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 432 vm_paddr_t boundary, vm_memattr_t memattr); 433 vm_page_t vm_page_alloc_freelist(int, int); 434 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int); 435 void vm_page_cache(vm_page_t); 436 void vm_page_cache_free(vm_object_t, vm_pindex_t, vm_pindex_t); 437 void vm_page_cache_transfer(vm_object_t, vm_pindex_t, vm_object_t); 438 int vm_page_try_to_cache (vm_page_t); 439 int vm_page_try_to_free (vm_page_t); 440 void vm_page_deactivate (vm_page_t); 441 void vm_page_dequeue(vm_page_t m); 442 void vm_page_dequeue_locked(vm_page_t m); 443 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t); 444 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr); 445 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 446 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t); 447 boolean_t vm_page_is_cached(vm_object_t object, vm_pindex_t pindex); 448 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t); 449 vm_page_t vm_page_next(vm_page_t m); 450 int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *); 451 struct vm_pagequeue *vm_page_pagequeue(vm_page_t m); 452 vm_page_t vm_page_prev(vm_page_t m); 453 void vm_page_putfake(vm_page_t m); 454 void vm_page_readahead_finish(vm_page_t m); 455 void vm_page_reference(vm_page_t m); 456 void vm_page_remove (vm_page_t); 457 int vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t); 458 vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object, 459 vm_pindex_t pindex); 460 void vm_page_requeue(vm_page_t m); 461 void vm_page_requeue_locked(vm_page_t m); 462 int vm_page_sbusied(vm_page_t m); 463 void vm_page_set_valid_range(vm_page_t m, int base, int size); 464 int vm_page_sleep_if_busy(vm_page_t m, const char *msg); 465 vm_offset_t vm_page_startup(vm_offset_t vaddr); 466 void vm_page_sunbusy(vm_page_t m); 467 int vm_page_trysbusy(vm_page_t m); 468 void vm_page_unhold_pages(vm_page_t *ma, int count); 469 void vm_page_unwire (vm_page_t, int); 470 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 471 void vm_page_wire (vm_page_t); 472 void vm_page_xunbusy_hard(vm_page_t m); 473 void vm_page_set_validclean (vm_page_t, int, int); 474 void vm_page_clear_dirty (vm_page_t, int, int); 475 void vm_page_set_invalid (vm_page_t, int, int); 476 int vm_page_is_valid (vm_page_t, int, int); 477 void vm_page_test_dirty (vm_page_t); 478 vm_page_bits_t vm_page_bits(int base, int size); 479 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid); 480 void vm_page_free_toq(vm_page_t m); 481 void vm_page_zero_idle_wakeup(void); 482 483 void vm_page_dirty_KBI(vm_page_t m); 484 void vm_page_lock_KBI(vm_page_t m, const char *file, int line); 485 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line); 486 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line); 487 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 488 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line); 489 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line); 490 #endif 491 492 #define vm_page_assert_sbusied(m) \ 493 KASSERT(vm_page_sbusied(m), \ 494 ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \ 495 (void *)m, __FILE__, __LINE__)); 496 497 #define vm_page_assert_unbusied(m) \ 498 KASSERT(!vm_page_busied(m), \ 499 ("vm_page_assert_unbusied: page %p busy @ %s:%d", \ 500 (void *)m, __FILE__, __LINE__)); 501 502 #define vm_page_assert_xbusied(m) \ 503 KASSERT(vm_page_xbusied(m), \ 504 ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \ 505 (void *)m, __FILE__, __LINE__)); 506 507 #define vm_page_busied(m) \ 508 ((m)->busy_lock != VPB_UNBUSIED) 509 510 #define vm_page_sbusy(m) do { \ 511 if (!vm_page_trysbusy(m)) \ 512 panic("%s: page %p failed shared busing", __func__, m); \ 513 } while (0) 514 515 #define vm_page_tryxbusy(m) \ 516 (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, \ 517 VPB_SINGLE_EXCLUSIVER)) 518 519 #define vm_page_xbusied(m) \ 520 ((m->busy_lock & VPB_SINGLE_EXCLUSIVER) != 0) 521 522 #define vm_page_xbusy(m) do { \ 523 if (!vm_page_tryxbusy(m)) \ 524 panic("%s: page %p failed exclusive busing", __func__, \ 525 m); \ 526 } while (0) 527 528 #define vm_page_xunbusy(m) do { \ 529 if (!atomic_cmpset_rel_int(&(m)->busy_lock, \ 530 VPB_SINGLE_EXCLUSIVER, VPB_UNBUSIED)) \ 531 vm_page_xunbusy_hard(m); \ 532 } while (0) 533 534 #ifdef INVARIANTS 535 void vm_page_object_lock_assert(vm_page_t m); 536 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) vm_page_object_lock_assert(m) 537 #else 538 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) (void)0 539 #endif 540 541 /* 542 * We want to use atomic updates for the aflags field, which is 8 bits wide. 543 * However, not all architectures support atomic operations on 8-bit 544 * destinations. In order that we can easily use a 32-bit operation, we 545 * require that the aflags field be 32-bit aligned. 546 */ 547 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0); 548 549 /* 550 * Clear the given bits in the specified page. 551 */ 552 static inline void 553 vm_page_aflag_clear(vm_page_t m, uint8_t bits) 554 { 555 uint32_t *addr, val; 556 557 /* 558 * The PGA_REFERENCED flag can only be cleared if the page is locked. 559 */ 560 if ((bits & PGA_REFERENCED) != 0) 561 vm_page_assert_locked(m); 562 563 /* 564 * Access the whole 32-bit word containing the aflags field with an 565 * atomic update. Parallel non-atomic updates to the other fields 566 * within this word are handled properly by the atomic update. 567 */ 568 addr = (void *)&m->aflags; 569 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0, 570 ("vm_page_aflag_clear: aflags is misaligned")); 571 val = bits; 572 #if BYTE_ORDER == BIG_ENDIAN 573 val <<= 24; 574 #endif 575 atomic_clear_32(addr, val); 576 } 577 578 /* 579 * Set the given bits in the specified page. 580 */ 581 static inline void 582 vm_page_aflag_set(vm_page_t m, uint8_t bits) 583 { 584 uint32_t *addr, val; 585 586 /* 587 * The PGA_WRITEABLE flag can only be set if the page is managed and 588 * exclusive busied. Currently, this flag is only set by pmap_enter(). 589 */ 590 KASSERT((bits & PGA_WRITEABLE) == 0 || 591 ((m->oflags & VPO_UNMANAGED) == 0 && vm_page_xbusied(m)), 592 ("vm_page_aflag_set: PGA_WRITEABLE and not exclusive busy")); 593 594 /* 595 * Access the whole 32-bit word containing the aflags field with an 596 * atomic update. Parallel non-atomic updates to the other fields 597 * within this word are handled properly by the atomic update. 598 */ 599 addr = (void *)&m->aflags; 600 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0, 601 ("vm_page_aflag_set: aflags is misaligned")); 602 val = bits; 603 #if BYTE_ORDER == BIG_ENDIAN 604 val <<= 24; 605 #endif 606 atomic_set_32(addr, val); 607 } 608 609 /* 610 * vm_page_dirty: 611 * 612 * Set all bits in the page's dirty field. 613 * 614 * The object containing the specified page must be locked if the 615 * call is made from the machine-independent layer. 616 * 617 * See vm_page_clear_dirty_mask(). 618 */ 619 static __inline void 620 vm_page_dirty(vm_page_t m) 621 { 622 623 /* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */ 624 #if defined(KLD_MODULE) || defined(INVARIANTS) 625 vm_page_dirty_KBI(m); 626 #else 627 m->dirty = VM_PAGE_BITS_ALL; 628 #endif 629 } 630 631 /* 632 * vm_page_remque: 633 * 634 * If the given page is in a page queue, then remove it from that page 635 * queue. 636 * 637 * The page must be locked. 638 */ 639 static inline void 640 vm_page_remque(vm_page_t m) 641 { 642 643 if (m->queue != PQ_NONE) 644 vm_page_dequeue(m); 645 } 646 647 /* 648 * vm_page_undirty: 649 * 650 * Set page to not be dirty. Note: does not clear pmap modify bits 651 */ 652 static __inline void 653 vm_page_undirty(vm_page_t m) 654 { 655 656 VM_PAGE_OBJECT_LOCK_ASSERT(m); 657 m->dirty = 0; 658 } 659 660 #endif /* _KERNEL */ 661 #endif /* !_VM_PAGE_ */ 662