1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 * 60 * $FreeBSD$ 61 */ 62 63 /* 64 * Resident memory system definitions. 65 */ 66 67 #ifndef _VM_PAGE_ 68 #define _VM_PAGE_ 69 70 #include <vm/pmap.h> 71 72 /* 73 * Management of resident (logical) pages. 74 * 75 * A small structure is kept for each resident 76 * page, indexed by page number. Each structure 77 * is an element of several lists: 78 * 79 * A hash table bucket used to quickly 80 * perform object/offset lookups 81 * 82 * A list of all pages for a given object, 83 * so they can be quickly deactivated at 84 * time of deallocation. 85 * 86 * An ordered list of pages due for pageout. 87 * 88 * In addition, the structure contains the object 89 * and offset to which this page belongs (for pageout), 90 * and sundry status bits. 91 * 92 * Fields in this structure are locked either by the lock on the 93 * object that the page belongs to (O) or by the lock on the page 94 * queues (P). 95 * 96 * The 'valid' and 'dirty' fields are distinct. A page may have dirty 97 * bits set without having associated valid bits set. This is used by 98 * NFS to implement piecemeal writes. 99 */ 100 101 TAILQ_HEAD(pglist, vm_page); 102 103 struct vm_page { 104 TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO queue or free list (P) */ 105 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ 106 struct vm_page *left; /* splay tree link (O) */ 107 struct vm_page *right; /* splay tree link (O) */ 108 109 vm_object_t object; /* which object am I in (O,P)*/ 110 vm_pindex_t pindex; /* offset into object (O,P) */ 111 vm_paddr_t phys_addr; /* physical address of page */ 112 struct md_page md; /* machine dependant stuff */ 113 u_short queue; /* page queue index */ 114 u_short flags, /* see below */ 115 pc; /* page color */ 116 u_short wire_count; /* wired down maps refs (P) */ 117 u_int cow; /* page cow mapping count */ 118 short hold_count; /* page hold count */ 119 u_short oflags; /* page flags (O) */ 120 u_char act_count; /* page usage count */ 121 u_char busy; /* page busy count (O) */ 122 /* NOTE that these must support one bit per DEV_BSIZE in a page!!! */ 123 /* so, on normal X86 kernels, they must be at least 8 bits wide */ 124 #if PAGE_SIZE == 4096 125 u_char valid; /* map of valid DEV_BSIZE chunks (O) */ 126 u_char dirty; /* map of dirty DEV_BSIZE chunks */ 127 #elif PAGE_SIZE == 8192 128 u_short valid; /* map of valid DEV_BSIZE chunks (O) */ 129 u_short dirty; /* map of dirty DEV_BSIZE chunks */ 130 #elif PAGE_SIZE == 16384 131 u_int valid; /* map of valid DEV_BSIZE chunks (O) */ 132 u_int dirty; /* map of dirty DEV_BSIZE chunks */ 133 #elif PAGE_SIZE == 32768 134 u_long valid; /* map of valid DEV_BSIZE chunks (O) */ 135 u_long dirty; /* map of dirty DEV_BSIZE chunks */ 136 #endif 137 }; 138 139 /* 140 * Page flags stored in oflags: 141 * 142 * Access to these page flags is synchronized by the lock on the object 143 * containing the page (O). 144 */ 145 #define VPO_BUSY 0x0001 /* page is in transit */ 146 #define VPO_WANTED 0x0002 /* someone is waiting for page */ 147 #define VPO_SWAPINPROG 0x0200 /* swap I/O in progress on page */ 148 #define VPO_NOSYNC 0x0400 /* do not collect for syncer */ 149 150 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 151 #if PAGE_SIZE == 32768 152 #ifdef CTASSERT 153 CTASSERT(sizeof(u_long) >= 8); 154 #endif 155 #endif 156 157 /* PQ_CACHE and PQ_FREE represents a PQ_NUMCOLORS consecutive queue. */ 158 #define PQ_NONE 0 159 #define PQ_FREE 1 160 #define PQ_INACTIVE (page_queue_coloring.inactive) 161 #define PQ_ACTIVE (page_queue_coloring.active) 162 #define PQ_CACHE (page_queue_coloring.cache) 163 #define PQ_HOLD (page_queue_coloring.hold) 164 #define PQ_COUNT (page_queue_coloring.count) 165 #define PQ_MAXCOLORS 1024 166 #define PQ_MAXCOUNT (4 + 2 * PQ_MAXCOLORS) 167 #define PQ_NUMCOLORS (page_queue_coloring.numcolors) 168 #define PQ_PRIME1 (page_queue_coloring.prime1) 169 #define PQ_PRIME2 (page_queue_coloring.prime2) 170 #define PQ_COLORMASK (page_queue_coloring.colormask) 171 #define PQ_MAXLENGTH (page_queue_coloring.maxlength) 172 173 /* Returns the real queue a page is on. */ 174 #define VM_PAGE_GETQUEUE(m) ((m)->queue) 175 176 /* Returns the well known queue a page is on. */ 177 #define VM_PAGE_GETKNOWNQUEUE1(m) ((m)->queue - (m)->pc) 178 #define VM_PAGE_GETKNOWNQUEUE2(m) VM_PAGE_GETQUEUE(m) 179 180 /* Given the real queue number and a page color return the well know queue. */ 181 #define VM_PAGE_RESOLVEQUEUE(m, q) ((q) - (m)->pc) 182 183 /* Returns true if the page is in the named well known queue. */ 184 #define VM_PAGE_INQUEUE1(m, q) (VM_PAGE_GETKNOWNQUEUE1(m) == (q)) 185 #define VM_PAGE_INQUEUE2(m, q) (VM_PAGE_GETKNOWNQUEUE2(m) == (q)) 186 187 /* Sets the queue a page is on. */ 188 #define VM_PAGE_SETQUEUE1(m, q) (VM_PAGE_GETQUEUE(m) = (q) + (m)->pc) 189 #define VM_PAGE_SETQUEUE2(m, q) (VM_PAGE_GETQUEUE(m) = (q)) 190 191 struct vpgqueues { 192 struct pglist pl; 193 int *cnt; 194 int lcnt; 195 }; 196 197 struct pq_coloring { 198 int numcolors; 199 int colormask; 200 int prime1; 201 int prime2; 202 int inactive; 203 int active; 204 int cache; 205 int hold; 206 int count; 207 int maxlength; 208 }; 209 210 extern struct vpgqueues vm_page_queues[PQ_MAXCOUNT]; 211 extern struct mtx vm_page_queue_free_mtx; 212 extern struct pq_coloring page_queue_coloring; 213 214 /* 215 * These are the flags defined for vm_page. 216 * 217 * Note: PG_UNMANAGED (used by OBJT_PHYS) indicates that the page is 218 * not under PV management but otherwise should be treated as a 219 * normal page. Pages not under PV management cannot be paged out 220 * via the object/vm_page_t because there is no knowledge of their 221 * pte mappings, nor can they be removed from their objects via 222 * the object, and such pages are also not on any PQ queue. 223 */ 224 #define PG_WINATCFLS 0x0004 /* flush dirty page on inactive q */ 225 #define PG_FICTITIOUS 0x0008 /* physical page doesn't exist (O) */ 226 #define PG_WRITEABLE 0x0010 /* page is mapped writeable */ 227 #define PG_ZERO 0x0040 /* page is zeroed */ 228 #define PG_REFERENCED 0x0080 /* page has been referenced */ 229 #define PG_CLEANCHK 0x0100 /* page will be checked for cleaning */ 230 #define PG_UNMANAGED 0x0800 /* No PV management for page */ 231 #define PG_MARKER 0x1000 /* special queue marker page */ 232 #define PG_SLAB 0x2000 /* object pointer is actually a slab */ 233 234 /* 235 * Misc constants. 236 */ 237 #define ACT_DECLINE 1 238 #define ACT_ADVANCE 3 239 #define ACT_INIT 5 240 #define ACT_MAX 64 241 242 #ifdef _KERNEL 243 /* 244 * Each pageable resident page falls into one of four lists: 245 * 246 * free 247 * Available for allocation now. 248 * 249 * The following are all LRU sorted: 250 * 251 * cache 252 * Almost available for allocation. Still in an 253 * object, but clean and immediately freeable at 254 * non-interrupt times. 255 * 256 * inactive 257 * Low activity, candidates for reclamation. 258 * This is the list of pages that should be 259 * paged out next. 260 * 261 * active 262 * Pages that are "active" i.e. they have been 263 * recently referenced. 264 * 265 * zero 266 * Pages that are really free and have been pre-zeroed 267 * 268 */ 269 270 extern int vm_page_zero_count; 271 272 extern vm_page_t vm_page_array; /* First resident page in table */ 273 extern int vm_page_array_size; /* number of vm_page_t's */ 274 extern long first_page; /* first physical page number */ 275 276 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) 277 278 #define PHYS_TO_VM_PAGE(pa) \ 279 (&vm_page_array[atop(pa) - first_page ]) 280 281 extern struct mtx vm_page_queue_mtx; 282 #define vm_page_lock_queues() mtx_lock(&vm_page_queue_mtx) 283 #define vm_page_unlock_queues() mtx_unlock(&vm_page_queue_mtx) 284 285 #if PAGE_SIZE == 4096 286 #define VM_PAGE_BITS_ALL 0xffu 287 #elif PAGE_SIZE == 8192 288 #define VM_PAGE_BITS_ALL 0xffffu 289 #elif PAGE_SIZE == 16384 290 #define VM_PAGE_BITS_ALL 0xffffffffu 291 #elif PAGE_SIZE == 32768 292 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu 293 #endif 294 295 /* page allocation classes: */ 296 #define VM_ALLOC_NORMAL 0 297 #define VM_ALLOC_INTERRUPT 1 298 #define VM_ALLOC_SYSTEM 2 299 #define VM_ALLOC_CLASS_MASK 3 300 /* page allocation flags: */ 301 #define VM_ALLOC_WIRED 0x0020 /* non pageable */ 302 #define VM_ALLOC_ZERO 0x0040 /* Try to obtain a zeroed page */ 303 #define VM_ALLOC_RETRY 0x0080 /* vm_page_grab() only */ 304 #define VM_ALLOC_NOOBJ 0x0100 /* No associated object */ 305 #define VM_ALLOC_NOBUSY 0x0200 /* Do not busy the page */ 306 307 void vm_page_flag_set(vm_page_t m, unsigned short bits); 308 void vm_page_flag_clear(vm_page_t m, unsigned short bits); 309 void vm_page_busy(vm_page_t m); 310 void vm_page_flash(vm_page_t m); 311 void vm_page_io_start(vm_page_t m); 312 void vm_page_io_finish(vm_page_t m); 313 void vm_page_hold(vm_page_t mem); 314 void vm_page_unhold(vm_page_t mem); 315 void vm_page_free(vm_page_t m); 316 void vm_page_free_zero(vm_page_t m); 317 void vm_page_dirty(vm_page_t m); 318 void vm_page_wakeup(vm_page_t m); 319 320 void vm_pageq_init(void); 321 void vm_pageq_add_new_page(vm_paddr_t pa); 322 void vm_pageq_enqueue(int queue, vm_page_t m); 323 void vm_pageq_remove_nowakeup(vm_page_t m); 324 void vm_pageq_remove(vm_page_t m); 325 vm_page_t vm_pageq_find(int basequeue, int index, boolean_t prefer_zero); 326 void vm_pageq_requeue(vm_page_t m); 327 328 void vm_page_activate (vm_page_t); 329 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int); 330 vm_page_t vm_page_alloc_contig (vm_pindex_t, vm_paddr_t, vm_paddr_t, 331 vm_offset_t, vm_offset_t); 332 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int); 333 void vm_page_cache (register vm_page_t); 334 int vm_page_try_to_cache (vm_page_t); 335 int vm_page_try_to_free (vm_page_t); 336 void vm_page_dontneed (register vm_page_t); 337 void vm_page_deactivate (vm_page_t); 338 void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t); 339 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t); 340 void vm_page_remove (vm_page_t); 341 void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t); 342 vm_page_t vm_page_select_cache(int); 343 void vm_page_sleep(vm_page_t m, const char *msg); 344 vm_page_t vm_page_splay(vm_pindex_t, vm_page_t); 345 vm_offset_t vm_page_startup(vm_offset_t vaddr); 346 void vm_page_unmanage (vm_page_t); 347 void vm_page_unwire (vm_page_t, int); 348 void vm_page_wire (vm_page_t); 349 void vm_page_set_validclean (vm_page_t, int, int); 350 void vm_page_clear_dirty (vm_page_t, int, int); 351 void vm_page_set_invalid (vm_page_t, int, int); 352 int vm_page_is_valid (vm_page_t, int, int); 353 void vm_page_test_dirty (vm_page_t); 354 int vm_page_bits (int, int); 355 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid); 356 void vm_page_free_toq(vm_page_t m); 357 void vm_page_zero_idle_wakeup(void); 358 void vm_page_cowfault (vm_page_t); 359 void vm_page_cowsetup (vm_page_t); 360 void vm_page_cowclear (vm_page_t); 361 362 /* 363 * vm_page_sleep_if_busy: 364 * 365 * Sleep and release the page queues lock if VPO_BUSY is set or, 366 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 367 * thread slept and the page queues lock was released. 368 * Otherwise, retains the page queues lock and returns FALSE. 369 * 370 * The object containing the given page must be locked. 371 */ 372 static __inline int 373 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 374 { 375 376 if ((m->oflags & VPO_BUSY) || (also_m_busy && m->busy)) { 377 vm_page_sleep(m, msg); 378 return (TRUE); 379 } 380 return (FALSE); 381 } 382 383 /* 384 * vm_page_undirty: 385 * 386 * Set page to not be dirty. Note: does not clear pmap modify bits 387 */ 388 static __inline void 389 vm_page_undirty(vm_page_t m) 390 { 391 m->dirty = 0; 392 } 393 394 #endif /* _KERNEL */ 395 #endif /* !_VM_PAGE_ */ 396