xref: /freebsd/sys/vm/vm_page.h (revision e7ab133648a168c4bf7c11da840663c5581771d8)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD$
63  */
64 
65 /*
66  *	Resident memory system definitions.
67  */
68 
69 #ifndef	_VM_PAGE_
70 #define	_VM_PAGE_
71 
72 #include <vm/pmap.h>
73 #include <vm/_vm_phys.h>
74 
75 /*
76  *	Management of resident (logical) pages.
77  *
78  *	A small structure is kept for each resident
79  *	page, indexed by page number.  Each structure
80  *	is an element of several collections:
81  *
82  *		A radix tree used to quickly
83  *		perform object/offset lookups
84  *
85  *		A list of all pages for a given object,
86  *		so they can be quickly deactivated at
87  *		time of deallocation.
88  *
89  *		An ordered list of pages due for pageout.
90  *
91  *	In addition, the structure contains the object
92  *	and offset to which this page belongs (for pageout),
93  *	and sundry status bits.
94  *
95  *	In general, operations on this structure's mutable fields are
96  *	synchronized using either one of or a combination of locks.  If a
97  *	field is annotated with two of these locks then holding either is
98  *	sufficient for read access but both are required for write access.
99  *	The queue lock for a page depends on the value of its queue field and is
100  *	described in detail below.
101  *
102  *	The following annotations are possible:
103  *	(A) the field must be accessed using atomic(9) and may require
104  *	    additional synchronization.
105  *	(B) the page busy lock.
106  *	(C) the field is immutable.
107  *	(F) the per-domain lock for the free queues.
108  *	(M) Machine dependent, defined by pmap layer.
109  *	(O) the object that the page belongs to.
110  *	(Q) the page's queue lock.
111  *
112  *	The busy lock is an embedded reader-writer lock that protects the
113  *	page's contents and identity (i.e., its <object, pindex> tuple) as
114  *	well as certain valid/dirty modifications.  To avoid bloating the
115  *	the page structure, the busy lock lacks some of the features available
116  *	the kernel's general-purpose synchronization primitives.  As a result,
117  *	busy lock ordering rules are not verified, lock recursion is not
118  *	detected, and an attempt to xbusy a busy page or sbusy an xbusy page
119  *	results will trigger a panic rather than causing the thread to block.
120  *	vm_page_sleep_if_busy() can be used to sleep until the page's busy
121  *	state changes, after which the caller must re-lookup the page and
122  *	re-evaluate its state.  vm_page_busy_acquire() will block until
123  *	the lock is acquired.
124  *
125  *	The valid field is protected by the page busy lock (B) and object
126  *	lock (O).  Transitions from invalid to valid are generally done
127  *	via I/O or zero filling and do not require the object lock.
128  *	These must be protected with the busy lock to prevent page-in or
129  *	creation races.  Page invalidation generally happens as a result
130  *	of truncate or msync.  When invalidated, pages must not be present
131  *	in pmap and must hold the object lock to prevent concurrent
132  *	speculative read-only mappings that do not require busy.  I/O
133  *	routines may check for validity without a lock if they are prepared
134  *	to handle invalidation races with higher level locks (vnode) or are
135  *	unconcerned with races so long as they hold a reference to prevent
136  *	recycling.  When a valid bit is set while holding a shared busy
137  *	lock (A) atomic operations are used to protect against concurrent
138  *	modification.
139  *
140  *	In contrast, the synchronization of accesses to the page's
141  *	dirty field is a mix of machine dependent (M) and busy (B).  In
142  *	the machine-independent layer, the page busy must be held to
143  *	operate on the field.  However, the pmap layer is permitted to
144  *	set all bits within the field without holding that lock.  If the
145  *	underlying architecture does not support atomic read-modify-write
146  *	operations on the field's type, then the machine-independent
147  *	layer uses a 32-bit atomic on the aligned 32-bit word that
148  *	contains the dirty field.  In the machine-independent layer,
149  *	the implementation of read-modify-write operations on the
150  *	field is encapsulated in vm_page_clear_dirty_mask().  An
151  *	exclusive busy lock combined with pmap_remove_{write/all}() is the
152  *	only way to ensure a page can not become dirty.  I/O generally
153  *	removes the page from pmap to ensure exclusive access and atomic
154  *	writes.
155  *
156  *	The ref_count field tracks references to the page.  References that
157  *	prevent the page from being reclaimable are called wirings and are
158  *	counted in the low bits of ref_count.  The containing object's
159  *	reference, if one exists, is counted using the VPRC_OBJREF bit in the
160  *	ref_count field.  Additionally, the VPRC_BLOCKED bit is used to
161  *	atomically check for wirings and prevent new wirings via
162  *	pmap_extract_and_hold().  When a page belongs to an object, it may be
163  *	wired only when the object is locked, or the page is busy, or by
164  *	pmap_extract_and_hold().  As a result, if the object is locked and the
165  *	page is not busy (or is exclusively busied by the current thread), and
166  *	the page is unmapped, its wire count will not increase.  The ref_count
167  *	field is updated using atomic operations in most cases, except when it
168  *	is known that no other references to the page exist, such as in the page
169  *	allocator.  A page may be present in the page queues, or even actively
170  *	scanned by the page daemon, without an explicitly counted referenced.
171  *	The page daemon must therefore handle the possibility of a concurrent
172  *	free of the page.
173  *
174  *	The queue state of a page consists of the queue and act_count fields of
175  *	its atomically updated state, and the subset of atomic flags specified
176  *	by PGA_QUEUE_STATE_MASK.  The queue field contains the page's page queue
177  *	index, or PQ_NONE if it does not belong to a page queue.  To modify the
178  *	queue field, the page queue lock corresponding to the old value must be
179  *	held, unless that value is PQ_NONE, in which case the queue index must
180  *	be updated using an atomic RMW operation.  There is one exception to
181  *	this rule: the page daemon may transition the queue field from
182  *	PQ_INACTIVE to PQ_NONE immediately prior to freeing the page during an
183  *	inactive queue scan.  At that point the page is already dequeued and no
184  *	other references to that vm_page structure can exist.  The PGA_ENQUEUED
185  *	flag, when set, indicates that the page structure is physically inserted
186  *	into the queue corresponding to the page's queue index, and may only be
187  *	set or cleared with the corresponding page queue lock held.
188  *
189  *	To avoid contention on page queue locks, page queue operations (enqueue,
190  *	dequeue, requeue) are batched using fixed-size per-CPU queues.  A
191  *	deferred operation is requested by setting one of the flags in
192  *	PGA_QUEUE_OP_MASK and inserting an entry into a batch queue.  When a
193  *	queue is full, an attempt to insert a new entry will lock the page
194  *	queues and trigger processing of the pending entries.  The
195  *	type-stability of vm_page structures is crucial to this scheme since the
196  *	processing of entries in a given batch queue may be deferred
197  *	indefinitely.  In particular, a page may be freed with pending batch
198  *	queue entries.  The page queue operation flags must be set using atomic
199  *	RWM operations.
200  */
201 
202 #if PAGE_SIZE == 4096
203 #define VM_PAGE_BITS_ALL 0xffu
204 typedef uint8_t vm_page_bits_t;
205 #elif PAGE_SIZE == 8192
206 #define VM_PAGE_BITS_ALL 0xffffu
207 typedef uint16_t vm_page_bits_t;
208 #elif PAGE_SIZE == 16384
209 #define VM_PAGE_BITS_ALL 0xffffffffu
210 typedef uint32_t vm_page_bits_t;
211 #elif PAGE_SIZE == 32768
212 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
213 typedef uint64_t vm_page_bits_t;
214 #endif
215 
216 typedef union vm_page_astate {
217 	struct {
218 		uint16_t flags;
219 		uint8_t	queue;
220 		uint8_t act_count;
221 	};
222 	uint32_t _bits;
223 } vm_page_astate_t;
224 
225 struct vm_page {
226 	union {
227 		TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */
228 		struct {
229 			SLIST_ENTRY(vm_page) ss; /* private slists */
230 		} s;
231 		struct {
232 			u_long p;
233 			u_long v;
234 		} memguard;
235 		struct {
236 			void *slab;
237 			void *zone;
238 		} uma;
239 	} plinks;
240 	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) */
241 	vm_object_t object;		/* which object am I in (O) */
242 	vm_pindex_t pindex;		/* offset into object (O,P) */
243 	vm_paddr_t phys_addr;		/* physical address of page (C) */
244 	struct md_page md;		/* machine dependent stuff */
245 	u_int ref_count;		/* page references (A) */
246 	u_int busy_lock;		/* busy owners lock (A) */
247 	union vm_page_astate a;		/* state accessed atomically (A) */
248 	uint8_t order;			/* index of the buddy queue (F) */
249 	uint8_t pool;			/* vm_phys freepool index (F) */
250 	uint8_t flags;			/* page PG_* flags (P) */
251 	uint8_t oflags;			/* page VPO_* flags (O) */
252 	int8_t psind;			/* pagesizes[] index (O) */
253 	int8_t segind;			/* vm_phys segment index (C) */
254 	/* NOTE that these must support one bit per DEV_BSIZE in a page */
255 	/* so, on normal X86 kernels, they must be at least 8 bits wide */
256 	vm_page_bits_t valid;		/* valid DEV_BSIZE chunk map (O,B) */
257 	vm_page_bits_t dirty;		/* dirty DEV_BSIZE chunk map (M,B) */
258 };
259 
260 /*
261  * Special bits used in the ref_count field.
262  *
263  * ref_count is normally used to count wirings that prevent the page from being
264  * reclaimed, but also supports several special types of references that do not
265  * prevent reclamation.  Accesses to the ref_count field must be atomic unless
266  * the page is unallocated.
267  *
268  * VPRC_OBJREF is the reference held by the containing object.  It can set or
269  * cleared only when the corresponding object's write lock is held.
270  *
271  * VPRC_BLOCKED is used to atomically block wirings via pmap lookups while
272  * attempting to tear down all mappings of a given page.  The page busy lock and
273  * object write lock must both be held in order to set or clear this bit.
274  */
275 #define	VPRC_BLOCKED	0x40000000u	/* mappings are being removed */
276 #define	VPRC_OBJREF	0x80000000u	/* object reference, cleared with (O) */
277 #define	VPRC_WIRE_COUNT(c)	((c) & ~(VPRC_BLOCKED | VPRC_OBJREF))
278 #define	VPRC_WIRE_COUNT_MAX	(~(VPRC_BLOCKED | VPRC_OBJREF))
279 
280 /*
281  * Page flags stored in oflags:
282  *
283  * Access to these page flags is synchronized by the lock on the object
284  * containing the page (O).
285  *
286  * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
287  * 	 indicates that the page is not under PV management but
288  * 	 otherwise should be treated as a normal page.  Pages not
289  * 	 under PV management cannot be paged out via the
290  * 	 object/vm_page_t because there is no knowledge of their pte
291  * 	 mappings, and such pages are also not on any PQ queue.
292  *
293  */
294 #define	VPO_KMEM_EXEC	0x01		/* kmem mapping allows execution */
295 #define	VPO_SWAPSLEEP	0x02		/* waiting for swap to finish */
296 #define	VPO_UNMANAGED	0x04		/* no PV management for page */
297 #define	VPO_SWAPINPROG	0x08		/* swap I/O in progress on page */
298 
299 /*
300  * Busy page implementation details.
301  * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation,
302  * even if the support for owner identity is removed because of size
303  * constraints.  Checks on lock recursion are then not possible, while the
304  * lock assertions effectiveness is someway reduced.
305  */
306 #define	VPB_BIT_SHARED		0x01
307 #define	VPB_BIT_EXCLUSIVE	0x02
308 #define	VPB_BIT_WAITERS		0x04
309 #define	VPB_BIT_FLAGMASK						\
310 	(VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS)
311 
312 #define	VPB_SHARERS_SHIFT	3
313 #define	VPB_SHARERS(x)							\
314 	(((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT)
315 #define	VPB_SHARERS_WORD(x)	((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED)
316 #define	VPB_ONE_SHARER		(1 << VPB_SHARERS_SHIFT)
317 
318 #define	VPB_SINGLE_EXCLUSIVE	VPB_BIT_EXCLUSIVE
319 #ifdef INVARIANTS
320 #define	VPB_CURTHREAD_EXCLUSIVE						\
321 	(VPB_BIT_EXCLUSIVE | ((u_int)(uintptr_t)curthread & ~VPB_BIT_FLAGMASK))
322 #else
323 #define	VPB_CURTHREAD_EXCLUSIVE	VPB_SINGLE_EXCLUSIVE
324 #endif
325 
326 #define	VPB_UNBUSIED		VPB_SHARERS_WORD(0)
327 
328 /* Freed lock blocks both shared and exclusive. */
329 #define	VPB_FREED		(0xffffffff - VPB_BIT_SHARED)
330 
331 #define	PQ_NONE		255
332 #define	PQ_INACTIVE	0
333 #define	PQ_ACTIVE	1
334 #define	PQ_LAUNDRY	2
335 #define	PQ_UNSWAPPABLE	3
336 #define	PQ_COUNT	4
337 
338 #ifndef VM_PAGE_HAVE_PGLIST
339 TAILQ_HEAD(pglist, vm_page);
340 #define VM_PAGE_HAVE_PGLIST
341 #endif
342 SLIST_HEAD(spglist, vm_page);
343 
344 #ifdef _KERNEL
345 extern vm_page_t bogus_page;
346 #endif	/* _KERNEL */
347 
348 extern struct mtx_padalign pa_lock[];
349 
350 #if defined(__arm__)
351 #define	PDRSHIFT	PDR_SHIFT
352 #elif !defined(PDRSHIFT)
353 #define PDRSHIFT	21
354 #endif
355 
356 #define	pa_index(pa)	((pa) >> PDRSHIFT)
357 #define	PA_LOCKPTR(pa)	((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT]))
358 #define	PA_LOCKOBJPTR(pa)	((struct lock_object *)PA_LOCKPTR((pa)))
359 #define	PA_LOCK(pa)	mtx_lock(PA_LOCKPTR(pa))
360 #define	PA_TRYLOCK(pa)	mtx_trylock(PA_LOCKPTR(pa))
361 #define	PA_UNLOCK(pa)	mtx_unlock(PA_LOCKPTR(pa))
362 #define	PA_UNLOCK_COND(pa) 			\
363 	do {		   			\
364 		if ((pa) != 0) {		\
365 			PA_UNLOCK((pa));	\
366 			(pa) = 0;		\
367 		}				\
368 	} while (0)
369 
370 #define	PA_LOCK_ASSERT(pa, a)	mtx_assert(PA_LOCKPTR(pa), (a))
371 
372 #if defined(KLD_MODULE) && !defined(KLD_TIED)
373 #define	vm_page_lock(m)		vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
374 #define	vm_page_unlock(m)	vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
375 #define	vm_page_trylock(m)	vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
376 #else	/* !KLD_MODULE */
377 #define	vm_page_lockptr(m)	(PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
378 #define	vm_page_lock(m)		mtx_lock(vm_page_lockptr((m)))
379 #define	vm_page_unlock(m)	mtx_unlock(vm_page_lockptr((m)))
380 #define	vm_page_trylock(m)	mtx_trylock(vm_page_lockptr((m)))
381 #endif
382 #if defined(INVARIANTS)
383 #define	vm_page_assert_locked(m)		\
384     vm_page_assert_locked_KBI((m), __FILE__, __LINE__)
385 #define	vm_page_lock_assert(m, a)		\
386     vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
387 #else
388 #define	vm_page_assert_locked(m)
389 #define	vm_page_lock_assert(m, a)
390 #endif
391 
392 /*
393  * The vm_page's aflags are updated using atomic operations.  To set or clear
394  * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
395  * must be used.  Neither these flags nor these functions are part of the KBI.
396  *
397  * PGA_REFERENCED may be cleared only if the page is locked.  It is set by
398  * both the MI and MD VM layers.  However, kernel loadable modules should not
399  * directly set this flag.  They should call vm_page_reference() instead.
400  *
401  * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().
402  * When it does so, the object must be locked, or the page must be
403  * exclusive busied.  The MI VM layer must never access this flag
404  * directly.  Instead, it should call pmap_page_is_write_mapped().
405  *
406  * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
407  * at least one executable mapping.  It is not consumed by the MI VM layer.
408  *
409  * PGA_NOSYNC must be set and cleared with the page busy lock held.
410  *
411  * PGA_ENQUEUED is set and cleared when a page is inserted into or removed
412  * from a page queue, respectively.  It determines whether the plinks.q field
413  * of the page is valid.  To set or clear this flag, page's "queue" field must
414  * be a valid queue index, and the corresponding page queue lock must be held.
415  *
416  * PGA_DEQUEUE is set when the page is scheduled to be dequeued from a page
417  * queue, and cleared when the dequeue request is processed.  A page may
418  * have PGA_DEQUEUE set and PGA_ENQUEUED cleared, for instance if a dequeue
419  * is requested after the page is scheduled to be enqueued but before it is
420  * actually inserted into the page queue.
421  *
422  * PGA_REQUEUE is set when the page is scheduled to be enqueued or requeued
423  * in its page queue.
424  *
425  * PGA_REQUEUE_HEAD is a special flag for enqueuing pages near the head of
426  * the inactive queue, thus bypassing LRU.
427  *
428  * The PGA_DEQUEUE, PGA_REQUEUE and PGA_REQUEUE_HEAD flags must be set using an
429  * atomic RMW operation to ensure that the "queue" field is a valid queue index,
430  * and the corresponding page queue lock must be held when clearing any of the
431  * flags.
432  *
433  * PGA_SWAP_FREE is used to defer freeing swap space to the pageout daemon
434  * when the context that dirties the page does not have the object write lock
435  * held.
436  */
437 #define	PGA_WRITEABLE	0x0001		/* page may be mapped writeable */
438 #define	PGA_REFERENCED	0x0002		/* page has been referenced */
439 #define	PGA_EXECUTABLE	0x0004		/* page may be mapped executable */
440 #define	PGA_ENQUEUED	0x0008		/* page is enqueued in a page queue */
441 #define	PGA_DEQUEUE	0x0010		/* page is due to be dequeued */
442 #define	PGA_REQUEUE	0x0020		/* page is due to be requeued */
443 #define	PGA_REQUEUE_HEAD 0x0040		/* page requeue should bypass LRU */
444 #define	PGA_NOSYNC	0x0080		/* do not collect for syncer */
445 #define	PGA_SWAP_FREE	0x0100		/* page with swap space was dirtied */
446 #define	PGA_SWAP_SPACE	0x0200		/* page has allocated swap space */
447 
448 #define	PGA_QUEUE_OP_MASK	(PGA_DEQUEUE | PGA_REQUEUE | PGA_REQUEUE_HEAD)
449 #define	PGA_QUEUE_STATE_MASK	(PGA_ENQUEUED | PGA_QUEUE_OP_MASK)
450 
451 /*
452  * Page flags.  Updates to these flags are not synchronized, and thus they must
453  * be set during page allocation or free to avoid races.
454  *
455  * The PG_PCPU_CACHE flag is set at allocation time if the page was
456  * allocated from a per-CPU cache.  It is cleared the next time that the
457  * page is allocated from the physical memory allocator.
458  */
459 #define	PG_PCPU_CACHE	0x01		/* was allocated from per-CPU caches */
460 #define	PG_FICTITIOUS	0x02		/* physical page doesn't exist */
461 #define	PG_ZERO		0x04		/* page is zeroed */
462 #define	PG_MARKER	0x08		/* special queue marker page */
463 #define	PG_NODUMP	0x10		/* don't include this page in a dump */
464 
465 /*
466  * Misc constants.
467  */
468 #define ACT_DECLINE		1
469 #define ACT_ADVANCE		3
470 #define ACT_INIT		5
471 #define ACT_MAX			64
472 
473 #ifdef _KERNEL
474 
475 #include <sys/kassert.h>
476 #include <machine/atomic.h>
477 
478 /*
479  * Each pageable resident page falls into one of five lists:
480  *
481  *	free
482  *		Available for allocation now.
483  *
484  *	inactive
485  *		Low activity, candidates for reclamation.
486  *		This list is approximately LRU ordered.
487  *
488  *	laundry
489  *		This is the list of pages that should be
490  *		paged out next.
491  *
492  *	unswappable
493  *		Dirty anonymous pages that cannot be paged
494  *		out because no swap device is configured.
495  *
496  *	active
497  *		Pages that are "active", i.e., they have been
498  *		recently referenced.
499  *
500  */
501 
502 extern vm_page_t vm_page_array;		/* First resident page in table */
503 extern long vm_page_array_size;		/* number of vm_page_t's */
504 extern long first_page;			/* first physical page number */
505 
506 #define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
507 
508 /*
509  * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory
510  * page to which the given physical address belongs. The correct vm_page_t
511  * object is returned for addresses that are not page-aligned.
512  */
513 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
514 
515 /*
516  * Page allocation parameters for vm_page for the functions
517  * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and
518  * vm_page_alloc_freelist().  Some functions support only a subset
519  * of the flags, and ignore others, see the flags legend.
520  *
521  * The meaning of VM_ALLOC_ZERO differs slightly between the vm_page_alloc*()
522  * and the vm_page_grab*() functions.  See these functions for details.
523  *
524  * Bits 0 - 1 define class.
525  * Bits 2 - 15 dedicated for flags.
526  * Legend:
527  * (a) - vm_page_alloc() supports the flag.
528  * (c) - vm_page_alloc_contig() supports the flag.
529  * (g) - vm_page_grab() supports the flag.
530  * (n) - vm_page_alloc_noobj() and vm_page_alloc_freelist() support the flag.
531  * (p) - vm_page_grab_pages() supports the flag.
532  * Bits above 15 define the count of additional pages that the caller
533  * intends to allocate.
534  */
535 #define VM_ALLOC_NORMAL		0
536 #define VM_ALLOC_INTERRUPT	1
537 #define VM_ALLOC_SYSTEM		2
538 #define	VM_ALLOC_CLASS_MASK	3
539 #define	VM_ALLOC_WAITOK		0x0008	/* (acn) Sleep and retry */
540 #define	VM_ALLOC_WAITFAIL	0x0010	/* (acn) Sleep and return error */
541 #define	VM_ALLOC_WIRED		0x0020	/* (acgnp) Allocate a wired page */
542 #define	VM_ALLOC_ZERO		0x0040	/* (acgnp) Allocate a zeroed page */
543 #define	VM_ALLOC_NORECLAIM	0x0080	/* (c) Do not reclaim after failure */
544 #define	VM_ALLOC_AVAIL0		0x0100
545 #define	VM_ALLOC_NOBUSY		0x0200	/* (acgp) Do not excl busy the page */
546 #define	VM_ALLOC_NOCREAT	0x0400	/* (gp) Don't create a page */
547 #define	VM_ALLOC_AVAIL1		0x0800
548 #define	VM_ALLOC_IGN_SBUSY	0x1000	/* (gp) Ignore shared busy flag */
549 #define	VM_ALLOC_NODUMP		0x2000	/* (ag) don't include in dump */
550 #define	VM_ALLOC_SBUSY		0x4000	/* (acgp) Shared busy the page */
551 #define	VM_ALLOC_NOWAIT		0x8000	/* (acgnp) Do not sleep */
552 #define	VM_ALLOC_COUNT_MAX	0xffff
553 #define	VM_ALLOC_COUNT_SHIFT	16
554 #define	VM_ALLOC_COUNT_MASK	(VM_ALLOC_COUNT(VM_ALLOC_COUNT_MAX))
555 #define	VM_ALLOC_COUNT(count)	({				\
556 	KASSERT((count) <= VM_ALLOC_COUNT_MAX,			\
557 	    ("%s: invalid VM_ALLOC_COUNT value", __func__));	\
558 	(count) << VM_ALLOC_COUNT_SHIFT;			\
559 })
560 
561 #ifdef M_NOWAIT
562 static inline int
563 malloc2vm_flags(int malloc_flags)
564 {
565 	int pflags;
566 
567 	KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
568 	    (malloc_flags & M_NOWAIT) != 0,
569 	    ("M_USE_RESERVE requires M_NOWAIT"));
570 	pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
571 	    VM_ALLOC_SYSTEM;
572 	if ((malloc_flags & M_ZERO) != 0)
573 		pflags |= VM_ALLOC_ZERO;
574 	if ((malloc_flags & M_NODUMP) != 0)
575 		pflags |= VM_ALLOC_NODUMP;
576 	if ((malloc_flags & M_NOWAIT))
577 		pflags |= VM_ALLOC_NOWAIT;
578 	if ((malloc_flags & M_WAITOK))
579 		pflags |= VM_ALLOC_WAITOK;
580 	if ((malloc_flags & M_NORECLAIM))
581 		pflags |= VM_ALLOC_NORECLAIM;
582 	return (pflags);
583 }
584 #endif
585 
586 /*
587  * Predicates supported by vm_page_ps_test():
588  *
589  *	PS_ALL_DIRTY is true only if the entire (super)page is dirty.
590  *	However, it can be spuriously false when the (super)page has become
591  *	dirty in the pmap but that information has not been propagated to the
592  *	machine-independent layer.
593  */
594 #define	PS_ALL_DIRTY	0x1
595 #define	PS_ALL_VALID	0x2
596 #define	PS_NONE_BUSY	0x4
597 
598 bool vm_page_busy_acquire(vm_page_t m, int allocflags);
599 void vm_page_busy_downgrade(vm_page_t m);
600 int vm_page_busy_tryupgrade(vm_page_t m);
601 bool vm_page_busy_sleep(vm_page_t m, const char *msg, int allocflags);
602 void vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m,
603     vm_pindex_t pindex, const char *wmesg, int allocflags);
604 void vm_page_free(vm_page_t m);
605 void vm_page_free_zero(vm_page_t m);
606 
607 void vm_page_activate (vm_page_t);
608 void vm_page_advise(vm_page_t m, int advice);
609 vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int);
610 vm_page_t vm_page_alloc_domain(vm_object_t, vm_pindex_t, int, int);
611 vm_page_t vm_page_alloc_after(vm_object_t, vm_pindex_t, int, vm_page_t);
612 vm_page_t vm_page_alloc_domain_after(vm_object_t, vm_pindex_t, int, int,
613     vm_page_t);
614 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
615     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
616     vm_paddr_t boundary, vm_memattr_t memattr);
617 vm_page_t vm_page_alloc_contig_domain(vm_object_t object,
618     vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low,
619     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
620     vm_memattr_t memattr);
621 vm_page_t vm_page_alloc_freelist(int, int);
622 vm_page_t vm_page_alloc_freelist_domain(int, int, int);
623 vm_page_t vm_page_alloc_noobj(int);
624 vm_page_t vm_page_alloc_noobj_domain(int, int);
625 vm_page_t vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
626     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
627     vm_memattr_t memattr);
628 vm_page_t vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
629     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
630     vm_memattr_t memattr);
631 void vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set);
632 bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose);
633 vm_page_t vm_page_grab(vm_object_t, vm_pindex_t, int);
634 vm_page_t vm_page_grab_unlocked(vm_object_t, vm_pindex_t, int);
635 int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
636     vm_page_t *ma, int count);
637 int vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
638     int allocflags, vm_page_t *ma, int count);
639 int vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
640     int allocflags);
641 int vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
642     vm_pindex_t pindex, int allocflags);
643 void vm_page_deactivate(vm_page_t);
644 void vm_page_deactivate_noreuse(vm_page_t);
645 void vm_page_dequeue(vm_page_t m);
646 void vm_page_dequeue_deferred(vm_page_t m);
647 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
648 void vm_page_free_invalid(vm_page_t);
649 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
650 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
651 void vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags);
652 void vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind);
653 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
654 void vm_page_invalid(vm_page_t m);
655 void vm_page_launder(vm_page_t m);
656 vm_page_t vm_page_lookup(vm_object_t, vm_pindex_t);
657 vm_page_t vm_page_lookup_unlocked(vm_object_t, vm_pindex_t);
658 vm_page_t vm_page_next(vm_page_t m);
659 void vm_page_pqbatch_drain(void);
660 void vm_page_pqbatch_submit(vm_page_t m, uint8_t queue);
661 bool vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old,
662     vm_page_astate_t new);
663 vm_page_t vm_page_prev(vm_page_t m);
664 bool vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m);
665 void vm_page_putfake(vm_page_t m);
666 void vm_page_readahead_finish(vm_page_t m);
667 bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low,
668     vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
669 bool vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
670     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
671 void vm_page_reference(vm_page_t m);
672 #define	VPR_TRYFREE	0x01
673 #define	VPR_NOREUSE	0x02
674 void vm_page_release(vm_page_t m, int flags);
675 void vm_page_release_locked(vm_page_t m, int flags);
676 vm_page_t vm_page_relookup(vm_object_t, vm_pindex_t);
677 bool vm_page_remove(vm_page_t);
678 bool vm_page_remove_xbusy(vm_page_t);
679 int vm_page_rename(vm_page_t, vm_object_t, vm_pindex_t);
680 void vm_page_replace(vm_page_t mnew, vm_object_t object,
681     vm_pindex_t pindex, vm_page_t mold);
682 int vm_page_sbusied(vm_page_t m);
683 vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start,
684     vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options);
685 vm_page_bits_t vm_page_set_dirty(vm_page_t m);
686 void vm_page_set_valid_range(vm_page_t m, int base, int size);
687 vm_offset_t vm_page_startup(vm_offset_t vaddr);
688 void vm_page_sunbusy(vm_page_t m);
689 bool vm_page_try_remove_all(vm_page_t m);
690 bool vm_page_try_remove_write(vm_page_t m);
691 int vm_page_trysbusy(vm_page_t m);
692 int vm_page_tryxbusy(vm_page_t m);
693 void vm_page_unhold_pages(vm_page_t *ma, int count);
694 void vm_page_unswappable(vm_page_t m);
695 void vm_page_unwire(vm_page_t m, uint8_t queue);
696 bool vm_page_unwire_noq(vm_page_t m);
697 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
698 void vm_page_wire(vm_page_t);
699 bool vm_page_wire_mapped(vm_page_t m);
700 void vm_page_xunbusy_hard(vm_page_t m);
701 void vm_page_xunbusy_hard_unchecked(vm_page_t m);
702 void vm_page_set_validclean (vm_page_t, int, int);
703 void vm_page_clear_dirty(vm_page_t, int, int);
704 void vm_page_set_invalid(vm_page_t, int, int);
705 void vm_page_valid(vm_page_t m);
706 int vm_page_is_valid(vm_page_t, int, int);
707 void vm_page_test_dirty(vm_page_t);
708 vm_page_bits_t vm_page_bits(int base, int size);
709 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
710 void vm_page_free_pages_toq(struct spglist *free, bool update_wire_count);
711 
712 void vm_page_dirty_KBI(vm_page_t m);
713 void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
714 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
715 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
716 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
717 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line);
718 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
719 #endif
720 
721 #define	vm_page_busy_fetch(m)	atomic_load_int(&(m)->busy_lock)
722 
723 #define	vm_page_assert_busied(m)					\
724 	KASSERT(vm_page_busied(m),					\
725 	    ("vm_page_assert_busied: page %p not busy @ %s:%d", \
726 	    (m), __FILE__, __LINE__))
727 
728 #define	vm_page_assert_sbusied(m)					\
729 	KASSERT(vm_page_sbusied(m),					\
730 	    ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \
731 	    (m), __FILE__, __LINE__))
732 
733 #define	vm_page_assert_unbusied(m)					\
734 	KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) !=		\
735 	    VPB_CURTHREAD_EXCLUSIVE,					\
736 	    ("vm_page_assert_xbusied: page %p busy_lock %#x owned"	\
737             " by me @ %s:%d",						\
738 	    (m), (m)->busy_lock, __FILE__, __LINE__));			\
739 
740 #define	vm_page_assert_xbusied_unchecked(m) do {			\
741 	KASSERT(vm_page_xbusied(m),					\
742 	    ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \
743 	    (m), __FILE__, __LINE__));					\
744 } while (0)
745 #define	vm_page_assert_xbusied(m) do {					\
746 	vm_page_assert_xbusied_unchecked(m);				\
747 	KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) ==		\
748 	    VPB_CURTHREAD_EXCLUSIVE,					\
749 	    ("vm_page_assert_xbusied: page %p busy_lock %#x not owned"	\
750             " by me @ %s:%d",						\
751 	    (m), (m)->busy_lock, __FILE__, __LINE__));			\
752 } while (0)
753 
754 #define	vm_page_busied(m)						\
755 	(vm_page_busy_fetch(m) != VPB_UNBUSIED)
756 
757 #define	vm_page_xbusied(m)						\
758 	((vm_page_busy_fetch(m) & VPB_SINGLE_EXCLUSIVE) != 0)
759 
760 #define	vm_page_busy_freed(m)						\
761 	(vm_page_busy_fetch(m) == VPB_FREED)
762 
763 /* Note: page m's lock must not be owned by the caller. */
764 #define	vm_page_xunbusy(m) do {						\
765 	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
766 	    VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED))			\
767 		vm_page_xunbusy_hard(m);				\
768 } while (0)
769 #define	vm_page_xunbusy_unchecked(m) do {				\
770 	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
771 	    VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED))			\
772 		vm_page_xunbusy_hard_unchecked(m);			\
773 } while (0)
774 
775 #ifdef INVARIANTS
776 void vm_page_object_busy_assert(vm_page_t m);
777 #define	VM_PAGE_OBJECT_BUSY_ASSERT(m)	vm_page_object_busy_assert(m)
778 void vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits);
779 #define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)				\
780 	vm_page_assert_pga_writeable(m, bits)
781 /*
782  * Claim ownership of a page's xbusy state.  In non-INVARIANTS kernels this
783  * operation is a no-op since ownership is not tracked.  In particular
784  * this macro does not provide any synchronization with the previous owner.
785  */
786 #define	vm_page_xbusy_claim(m) do {					\
787 	u_int _busy_lock;						\
788 									\
789 	vm_page_assert_xbusied_unchecked((m));				\
790 	do {								\
791 		_busy_lock = vm_page_busy_fetch(m);			\
792 	} while (!atomic_cmpset_int(&(m)->busy_lock, _busy_lock,	\
793 	    (_busy_lock & VPB_BIT_FLAGMASK) | VPB_CURTHREAD_EXCLUSIVE)); \
794 } while (0)
795 #else
796 #define	VM_PAGE_OBJECT_BUSY_ASSERT(m)	(void)0
797 #define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)	(void)0
798 #define	vm_page_xbusy_claim(m)
799 #endif
800 
801 #if BYTE_ORDER == BIG_ENDIAN
802 #define	VM_PAGE_AFLAG_SHIFT	16
803 #else
804 #define	VM_PAGE_AFLAG_SHIFT	0
805 #endif
806 
807 /*
808  *	Load a snapshot of a page's 32-bit atomic state.
809  */
810 static inline vm_page_astate_t
811 vm_page_astate_load(vm_page_t m)
812 {
813 	vm_page_astate_t a;
814 
815 	a._bits = atomic_load_32(&m->a._bits);
816 	return (a);
817 }
818 
819 /*
820  *	Atomically compare and set a page's atomic state.
821  */
822 static inline bool
823 vm_page_astate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
824 {
825 
826 	KASSERT(new.queue == PQ_INACTIVE || (new.flags & PGA_REQUEUE_HEAD) == 0,
827 	    ("%s: invalid head requeue request for page %p", __func__, m));
828 	KASSERT((new.flags & PGA_ENQUEUED) == 0 || new.queue != PQ_NONE,
829 	    ("%s: setting PGA_ENQUEUED with PQ_NONE in page %p", __func__, m));
830 	KASSERT(new._bits != old->_bits,
831 	    ("%s: bits are unchanged", __func__));
832 
833 	return (atomic_fcmpset_32(&m->a._bits, &old->_bits, new._bits) != 0);
834 }
835 
836 /*
837  *	Clear the given bits in the specified page.
838  */
839 static inline void
840 vm_page_aflag_clear(vm_page_t m, uint16_t bits)
841 {
842 	uint32_t *addr, val;
843 
844 	/*
845 	 * Access the whole 32-bit word containing the aflags field with an
846 	 * atomic update.  Parallel non-atomic updates to the other fields
847 	 * within this word are handled properly by the atomic update.
848 	 */
849 	addr = (void *)&m->a;
850 	val = bits << VM_PAGE_AFLAG_SHIFT;
851 	atomic_clear_32(addr, val);
852 }
853 
854 /*
855  *	Set the given bits in the specified page.
856  */
857 static inline void
858 vm_page_aflag_set(vm_page_t m, uint16_t bits)
859 {
860 	uint32_t *addr, val;
861 
862 	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits);
863 
864 	/*
865 	 * Access the whole 32-bit word containing the aflags field with an
866 	 * atomic update.  Parallel non-atomic updates to the other fields
867 	 * within this word are handled properly by the atomic update.
868 	 */
869 	addr = (void *)&m->a;
870 	val = bits << VM_PAGE_AFLAG_SHIFT;
871 	atomic_set_32(addr, val);
872 }
873 
874 /*
875  *	vm_page_dirty:
876  *
877  *	Set all bits in the page's dirty field.
878  *
879  *	The object containing the specified page must be locked if the
880  *	call is made from the machine-independent layer.
881  *
882  *	See vm_page_clear_dirty_mask().
883  */
884 static __inline void
885 vm_page_dirty(vm_page_t m)
886 {
887 
888 	/* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
889 #if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(INVARIANTS)
890 	vm_page_dirty_KBI(m);
891 #else
892 	m->dirty = VM_PAGE_BITS_ALL;
893 #endif
894 }
895 
896 /*
897  *	vm_page_undirty:
898  *
899  *	Set page to not be dirty.  Note: does not clear pmap modify bits
900  */
901 static __inline void
902 vm_page_undirty(vm_page_t m)
903 {
904 
905 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
906 	m->dirty = 0;
907 }
908 
909 static inline uint8_t
910 _vm_page_queue(vm_page_astate_t as)
911 {
912 
913 	if ((as.flags & PGA_DEQUEUE) != 0)
914 		return (PQ_NONE);
915 	return (as.queue);
916 }
917 
918 /*
919  *	vm_page_queue:
920  *
921  *	Return the index of the queue containing m.
922  */
923 static inline uint8_t
924 vm_page_queue(vm_page_t m)
925 {
926 
927 	return (_vm_page_queue(vm_page_astate_load(m)));
928 }
929 
930 static inline bool
931 vm_page_active(vm_page_t m)
932 {
933 
934 	return (vm_page_queue(m) == PQ_ACTIVE);
935 }
936 
937 static inline bool
938 vm_page_inactive(vm_page_t m)
939 {
940 
941 	return (vm_page_queue(m) == PQ_INACTIVE);
942 }
943 
944 static inline bool
945 vm_page_in_laundry(vm_page_t m)
946 {
947 	uint8_t queue;
948 
949 	queue = vm_page_queue(m);
950 	return (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE);
951 }
952 
953 /*
954  *	vm_page_drop:
955  *
956  *	Release a reference to a page and return the old reference count.
957  */
958 static inline u_int
959 vm_page_drop(vm_page_t m, u_int val)
960 {
961 	u_int old;
962 
963 	/*
964 	 * Synchronize with vm_page_free_prep(): ensure that all updates to the
965 	 * page structure are visible before it is freed.
966 	 */
967 	atomic_thread_fence_rel();
968 	old = atomic_fetchadd_int(&m->ref_count, -val);
969 	KASSERT(old != VPRC_BLOCKED,
970 	    ("vm_page_drop: page %p has an invalid refcount value", m));
971 	return (old);
972 }
973 
974 /*
975  *	vm_page_wired:
976  *
977  *	Perform a racy check to determine whether a reference prevents the page
978  *	from being reclaimable.  If the page's object is locked, and the page is
979  *	unmapped and exclusively busied by the current thread, no new wirings
980  *	may be created.
981  */
982 static inline bool
983 vm_page_wired(vm_page_t m)
984 {
985 
986 	return (VPRC_WIRE_COUNT(m->ref_count) > 0);
987 }
988 
989 static inline bool
990 vm_page_all_valid(vm_page_t m)
991 {
992 
993 	return (m->valid == VM_PAGE_BITS_ALL);
994 }
995 
996 static inline bool
997 vm_page_any_valid(vm_page_t m)
998 {
999 
1000 	return (m->valid != 0);
1001 }
1002 
1003 static inline bool
1004 vm_page_none_valid(vm_page_t m)
1005 {
1006 
1007 	return (m->valid == 0);
1008 }
1009 
1010 static inline int
1011 vm_page_domain(vm_page_t m)
1012 {
1013 #ifdef NUMA
1014 	int domn, segind;
1015 
1016 	segind = m->segind;
1017 	KASSERT(segind < vm_phys_nsegs, ("segind %d m %p", segind, m));
1018 	domn = vm_phys_segs[segind].domain;
1019 	KASSERT(domn >= 0 && domn < vm_ndomains, ("domain %d m %p", domn, m));
1020 	return (domn);
1021 #else
1022 	return (0);
1023 #endif
1024 }
1025 
1026 #endif				/* _KERNEL */
1027 #endif				/* !_VM_PAGE_ */
1028