xref: /freebsd/sys/vm/vm_page.h (revision ccfa9ac5ac128fa59291fb99dcae27e890c58cbc)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD$
63  */
64 
65 /*
66  *	Resident memory system definitions.
67  */
68 
69 #ifndef	_VM_PAGE_
70 #define	_VM_PAGE_
71 
72 #include <vm/pmap.h>
73 #include <vm/_vm_phys.h>
74 
75 /*
76  *	Management of resident (logical) pages.
77  *
78  *	A small structure is kept for each resident
79  *	page, indexed by page number.  Each structure
80  *	is an element of several collections:
81  *
82  *		A radix tree used to quickly
83  *		perform object/offset lookups
84  *
85  *		A list of all pages for a given object,
86  *		so they can be quickly deactivated at
87  *		time of deallocation.
88  *
89  *		An ordered list of pages due for pageout.
90  *
91  *	In addition, the structure contains the object
92  *	and offset to which this page belongs (for pageout),
93  *	and sundry status bits.
94  *
95  *	In general, operations on this structure's mutable fields are
96  *	synchronized using either one of or a combination of locks.  If a
97  *	field is annotated with two of these locks then holding either is
98  *	sufficient for read access but both are required for write access.
99  *	The queue lock for a page depends on the value of its queue field and is
100  *	described in detail below.
101  *
102  *	The following annotations are possible:
103  *	(A) the field must be accessed using atomic(9) and may require
104  *	    additional synchronization.
105  *	(B) the page busy lock.
106  *	(C) the field is immutable.
107  *	(F) the per-domain lock for the free queues.
108  *	(M) Machine dependent, defined by pmap layer.
109  *	(O) the object that the page belongs to.
110  *	(Q) the page's queue lock.
111  *
112  *	The busy lock is an embedded reader-writer lock that protects the
113  *	page's contents and identity (i.e., its <object, pindex> tuple) as
114  *	well as certain valid/dirty modifications.  To avoid bloating the
115  *	the page structure, the busy lock lacks some of the features available
116  *	the kernel's general-purpose synchronization primitives.  As a result,
117  *	busy lock ordering rules are not verified, lock recursion is not
118  *	detected, and an attempt to xbusy a busy page or sbusy an xbusy page
119  *	results will trigger a panic rather than causing the thread to block.
120  *	vm_page_sleep_if_busy() can be used to sleep until the page's busy
121  *	state changes, after which the caller must re-lookup the page and
122  *	re-evaluate its state.  vm_page_busy_acquire() will block until
123  *	the lock is acquired.
124  *
125  *	The valid field is protected by the page busy lock (B) and object
126  *	lock (O).  Transitions from invalid to valid are generally done
127  *	via I/O or zero filling and do not require the object lock.
128  *	These must be protected with the busy lock to prevent page-in or
129  *	creation races.  Page invalidation generally happens as a result
130  *	of truncate or msync.  When invalidated, pages must not be present
131  *	in pmap and must hold the object lock to prevent concurrent
132  *	speculative read-only mappings that do not require busy.  I/O
133  *	routines may check for validity without a lock if they are prepared
134  *	to handle invalidation races with higher level locks (vnode) or are
135  *	unconcerned with races so long as they hold a reference to prevent
136  *	recycling.  When a valid bit is set while holding a shared busy
137  *	lock (A) atomic operations are used to protect against concurrent
138  *	modification.
139  *
140  *	In contrast, the synchronization of accesses to the page's
141  *	dirty field is a mix of machine dependent (M) and busy (B).  In
142  *	the machine-independent layer, the page busy must be held to
143  *	operate on the field.  However, the pmap layer is permitted to
144  *	set all bits within the field without holding that lock.  If the
145  *	underlying architecture does not support atomic read-modify-write
146  *	operations on the field's type, then the machine-independent
147  *	layer uses a 32-bit atomic on the aligned 32-bit word that
148  *	contains the dirty field.  In the machine-independent layer,
149  *	the implementation of read-modify-write operations on the
150  *	field is encapsulated in vm_page_clear_dirty_mask().  An
151  *	exclusive busy lock combined with pmap_remove_{write/all}() is the
152  *	only way to ensure a page can not become dirty.  I/O generally
153  *	removes the page from pmap to ensure exclusive access and atomic
154  *	writes.
155  *
156  *	The ref_count field tracks references to the page.  References that
157  *	prevent the page from being reclaimable are called wirings and are
158  *	counted in the low bits of ref_count.  The containing object's
159  *	reference, if one exists, is counted using the VPRC_OBJREF bit in the
160  *	ref_count field.  Additionally, the VPRC_BLOCKED bit is used to
161  *	atomically check for wirings and prevent new wirings via
162  *	pmap_extract_and_hold().  When a page belongs to an object, it may be
163  *	wired only when the object is locked, or the page is busy, or by
164  *	pmap_extract_and_hold().  As a result, if the object is locked and the
165  *	page is not busy (or is exclusively busied by the current thread), and
166  *	the page is unmapped, its wire count will not increase.  The ref_count
167  *	field is updated using atomic operations in most cases, except when it
168  *	is known that no other references to the page exist, such as in the page
169  *	allocator.  A page may be present in the page queues, or even actively
170  *	scanned by the page daemon, without an explicitly counted referenced.
171  *	The page daemon must therefore handle the possibility of a concurrent
172  *	free of the page.
173  *
174  *	The queue state of a page consists of the queue and act_count fields of
175  *	its atomically updated state, and the subset of atomic flags specified
176  *	by PGA_QUEUE_STATE_MASK.  The queue field contains the page's page queue
177  *	index, or PQ_NONE if it does not belong to a page queue.  To modify the
178  *	queue field, the page queue lock corresponding to the old value must be
179  *	held, unless that value is PQ_NONE, in which case the queue index must
180  *	be updated using an atomic RMW operation.  There is one exception to
181  *	this rule: the page daemon may transition the queue field from
182  *	PQ_INACTIVE to PQ_NONE immediately prior to freeing the page during an
183  *	inactive queue scan.  At that point the page is already dequeued and no
184  *	other references to that vm_page structure can exist.  The PGA_ENQUEUED
185  *	flag, when set, indicates that the page structure is physically inserted
186  *	into the queue corresponding to the page's queue index, and may only be
187  *	set or cleared with the corresponding page queue lock held.
188  *
189  *	To avoid contention on page queue locks, page queue operations (enqueue,
190  *	dequeue, requeue) are batched using fixed-size per-CPU queues.  A
191  *	deferred operation is requested by setting one of the flags in
192  *	PGA_QUEUE_OP_MASK and inserting an entry into a batch queue.  When a
193  *	queue is full, an attempt to insert a new entry will lock the page
194  *	queues and trigger processing of the pending entries.  The
195  *	type-stability of vm_page structures is crucial to this scheme since the
196  *	processing of entries in a given batch queue may be deferred
197  *	indefinitely.  In particular, a page may be freed with pending batch
198  *	queue entries.  The page queue operation flags must be set using atomic
199  *	RWM operations.
200  */
201 
202 #if PAGE_SIZE == 4096
203 #define VM_PAGE_BITS_ALL 0xffu
204 typedef uint8_t vm_page_bits_t;
205 #elif PAGE_SIZE == 8192
206 #define VM_PAGE_BITS_ALL 0xffffu
207 typedef uint16_t vm_page_bits_t;
208 #elif PAGE_SIZE == 16384
209 #define VM_PAGE_BITS_ALL 0xffffffffu
210 typedef uint32_t vm_page_bits_t;
211 #elif PAGE_SIZE == 32768
212 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
213 typedef uint64_t vm_page_bits_t;
214 #endif
215 
216 typedef union vm_page_astate {
217 	struct {
218 		uint16_t flags;
219 		uint8_t	queue;
220 		uint8_t act_count;
221 	};
222 	uint32_t _bits;
223 } vm_page_astate_t;
224 
225 struct vm_page {
226 	union {
227 		TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */
228 		struct {
229 			SLIST_ENTRY(vm_page) ss; /* private slists */
230 		} s;
231 		struct {
232 			u_long p;
233 			u_long v;
234 		} memguard;
235 		struct {
236 			void *slab;
237 			void *zone;
238 		} uma;
239 	} plinks;
240 	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) */
241 	vm_object_t object;		/* which object am I in (O) */
242 	vm_pindex_t pindex;		/* offset into object (O,P) */
243 	vm_paddr_t phys_addr;		/* physical address of page (C) */
244 	struct md_page md;		/* machine dependent stuff */
245 	u_int ref_count;		/* page references (A) */
246 	u_int busy_lock;		/* busy owners lock (A) */
247 	union vm_page_astate a;		/* state accessed atomically (A) */
248 	uint8_t order;			/* index of the buddy queue (F) */
249 	uint8_t pool;			/* vm_phys freepool index (F) */
250 	uint8_t flags;			/* page PG_* flags (P) */
251 	uint8_t oflags;			/* page VPO_* flags (O) */
252 	int8_t psind;			/* pagesizes[] index (O) */
253 	int8_t segind;			/* vm_phys segment index (C) */
254 	/* NOTE that these must support one bit per DEV_BSIZE in a page */
255 	/* so, on normal X86 kernels, they must be at least 8 bits wide */
256 	vm_page_bits_t valid;		/* valid DEV_BSIZE chunk map (O,B) */
257 	vm_page_bits_t dirty;		/* dirty DEV_BSIZE chunk map (M,B) */
258 };
259 
260 /*
261  * Special bits used in the ref_count field.
262  *
263  * ref_count is normally used to count wirings that prevent the page from being
264  * reclaimed, but also supports several special types of references that do not
265  * prevent reclamation.  Accesses to the ref_count field must be atomic unless
266  * the page is unallocated.
267  *
268  * VPRC_OBJREF is the reference held by the containing object.  It can set or
269  * cleared only when the corresponding object's write lock is held.
270  *
271  * VPRC_BLOCKED is used to atomically block wirings via pmap lookups while
272  * attempting to tear down all mappings of a given page.  The page busy lock and
273  * object write lock must both be held in order to set or clear this bit.
274  */
275 #define	VPRC_BLOCKED	0x40000000u	/* mappings are being removed */
276 #define	VPRC_OBJREF	0x80000000u	/* object reference, cleared with (O) */
277 #define	VPRC_WIRE_COUNT(c)	((c) & ~(VPRC_BLOCKED | VPRC_OBJREF))
278 #define	VPRC_WIRE_COUNT_MAX	(~(VPRC_BLOCKED | VPRC_OBJREF))
279 
280 /*
281  * Page flags stored in oflags:
282  *
283  * Access to these page flags is synchronized by the lock on the object
284  * containing the page (O).
285  *
286  * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
287  * 	 indicates that the page is not under PV management but
288  * 	 otherwise should be treated as a normal page.  Pages not
289  * 	 under PV management cannot be paged out via the
290  * 	 object/vm_page_t because there is no knowledge of their pte
291  * 	 mappings, and such pages are also not on any PQ queue.
292  *
293  */
294 #define	VPO_KMEM_EXEC	0x01		/* kmem mapping allows execution */
295 #define	VPO_SWAPSLEEP	0x02		/* waiting for swap to finish */
296 #define	VPO_UNMANAGED	0x04		/* no PV management for page */
297 #define	VPO_SWAPINPROG	0x08		/* swap I/O in progress on page */
298 
299 /*
300  * Busy page implementation details.
301  * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation,
302  * even if the support for owner identity is removed because of size
303  * constraints.  Checks on lock recursion are then not possible, while the
304  * lock assertions effectiveness is someway reduced.
305  */
306 #define	VPB_BIT_SHARED		0x01
307 #define	VPB_BIT_EXCLUSIVE	0x02
308 #define	VPB_BIT_WAITERS		0x04
309 #define	VPB_BIT_FLAGMASK						\
310 	(VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS)
311 
312 #define	VPB_SHARERS_SHIFT	3
313 #define	VPB_SHARERS(x)							\
314 	(((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT)
315 #define	VPB_SHARERS_WORD(x)	((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED)
316 #define	VPB_ONE_SHARER		(1 << VPB_SHARERS_SHIFT)
317 
318 #define	VPB_SINGLE_EXCLUSIVE	VPB_BIT_EXCLUSIVE
319 #ifdef INVARIANTS
320 #define	VPB_CURTHREAD_EXCLUSIVE						\
321 	(VPB_BIT_EXCLUSIVE | ((u_int)(uintptr_t)curthread & ~VPB_BIT_FLAGMASK))
322 #else
323 #define	VPB_CURTHREAD_EXCLUSIVE	VPB_SINGLE_EXCLUSIVE
324 #endif
325 
326 #define	VPB_UNBUSIED		VPB_SHARERS_WORD(0)
327 
328 /* Freed lock blocks both shared and exclusive. */
329 #define	VPB_FREED		(0xffffffff - VPB_BIT_SHARED)
330 
331 #define	PQ_NONE		255
332 #define	PQ_INACTIVE	0
333 #define	PQ_ACTIVE	1
334 #define	PQ_LAUNDRY	2
335 #define	PQ_UNSWAPPABLE	3
336 #define	PQ_COUNT	4
337 
338 #ifndef VM_PAGE_HAVE_PGLIST
339 TAILQ_HEAD(pglist, vm_page);
340 #define VM_PAGE_HAVE_PGLIST
341 #endif
342 SLIST_HEAD(spglist, vm_page);
343 
344 #ifdef _KERNEL
345 extern vm_page_t bogus_page;
346 #endif	/* _KERNEL */
347 
348 extern struct mtx_padalign pa_lock[];
349 
350 #if defined(__arm__)
351 #define	PDRSHIFT	PDR_SHIFT
352 #elif !defined(PDRSHIFT)
353 #define PDRSHIFT	21
354 #endif
355 
356 #define	pa_index(pa)	((pa) >> PDRSHIFT)
357 #define	PA_LOCKPTR(pa)	((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT]))
358 #define	PA_LOCKOBJPTR(pa)	((struct lock_object *)PA_LOCKPTR((pa)))
359 #define	PA_LOCK(pa)	mtx_lock(PA_LOCKPTR(pa))
360 #define	PA_TRYLOCK(pa)	mtx_trylock(PA_LOCKPTR(pa))
361 #define	PA_UNLOCK(pa)	mtx_unlock(PA_LOCKPTR(pa))
362 #define	PA_UNLOCK_COND(pa) 			\
363 	do {		   			\
364 		if ((pa) != 0) {		\
365 			PA_UNLOCK((pa));	\
366 			(pa) = 0;		\
367 		}				\
368 	} while (0)
369 
370 #define	PA_LOCK_ASSERT(pa, a)	mtx_assert(PA_LOCKPTR(pa), (a))
371 
372 #if defined(KLD_MODULE) && !defined(KLD_TIED)
373 #define	vm_page_lock(m)		vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
374 #define	vm_page_unlock(m)	vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
375 #define	vm_page_trylock(m)	vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
376 #else	/* !KLD_MODULE */
377 #define	vm_page_lockptr(m)	(PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
378 #define	vm_page_lock(m)		mtx_lock(vm_page_lockptr((m)))
379 #define	vm_page_unlock(m)	mtx_unlock(vm_page_lockptr((m)))
380 #define	vm_page_trylock(m)	mtx_trylock(vm_page_lockptr((m)))
381 #endif
382 #if defined(INVARIANTS)
383 #define	vm_page_assert_locked(m)		\
384     vm_page_assert_locked_KBI((m), __FILE__, __LINE__)
385 #define	vm_page_lock_assert(m, a)		\
386     vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
387 #else
388 #define	vm_page_assert_locked(m)
389 #define	vm_page_lock_assert(m, a)
390 #endif
391 
392 /*
393  * The vm_page's aflags are updated using atomic operations.  To set or clear
394  * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
395  * must be used.  Neither these flags nor these functions are part of the KBI.
396  *
397  * PGA_REFERENCED may be cleared only if the page is locked.  It is set by
398  * both the MI and MD VM layers.  However, kernel loadable modules should not
399  * directly set this flag.  They should call vm_page_reference() instead.
400  *
401  * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().
402  * When it does so, the object must be locked, or the page must be
403  * exclusive busied.  The MI VM layer must never access this flag
404  * directly.  Instead, it should call pmap_page_is_write_mapped().
405  *
406  * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
407  * at least one executable mapping.  It is not consumed by the MI VM layer.
408  *
409  * PGA_NOSYNC must be set and cleared with the page busy lock held.
410  *
411  * PGA_ENQUEUED is set and cleared when a page is inserted into or removed
412  * from a page queue, respectively.  It determines whether the plinks.q field
413  * of the page is valid.  To set or clear this flag, page's "queue" field must
414  * be a valid queue index, and the corresponding page queue lock must be held.
415  *
416  * PGA_DEQUEUE is set when the page is scheduled to be dequeued from a page
417  * queue, and cleared when the dequeue request is processed.  A page may
418  * have PGA_DEQUEUE set and PGA_ENQUEUED cleared, for instance if a dequeue
419  * is requested after the page is scheduled to be enqueued but before it is
420  * actually inserted into the page queue.
421  *
422  * PGA_REQUEUE is set when the page is scheduled to be enqueued or requeued
423  * in its page queue.
424  *
425  * PGA_REQUEUE_HEAD is a special flag for enqueuing pages near the head of
426  * the inactive queue, thus bypassing LRU.
427  *
428  * The PGA_DEQUEUE, PGA_REQUEUE and PGA_REQUEUE_HEAD flags must be set using an
429  * atomic RMW operation to ensure that the "queue" field is a valid queue index,
430  * and the corresponding page queue lock must be held when clearing any of the
431  * flags.
432  *
433  * PGA_SWAP_FREE is used to defer freeing swap space to the pageout daemon
434  * when the context that dirties the page does not have the object write lock
435  * held.
436  */
437 #define	PGA_WRITEABLE	0x0001		/* page may be mapped writeable */
438 #define	PGA_REFERENCED	0x0002		/* page has been referenced */
439 #define	PGA_EXECUTABLE	0x0004		/* page may be mapped executable */
440 #define	PGA_ENQUEUED	0x0008		/* page is enqueued in a page queue */
441 #define	PGA_DEQUEUE	0x0010		/* page is due to be dequeued */
442 #define	PGA_REQUEUE	0x0020		/* page is due to be requeued */
443 #define	PGA_REQUEUE_HEAD 0x0040		/* page requeue should bypass LRU */
444 #define	PGA_NOSYNC	0x0080		/* do not collect for syncer */
445 #define	PGA_SWAP_FREE	0x0100		/* page with swap space was dirtied */
446 #define	PGA_SWAP_SPACE	0x0200		/* page has allocated swap space */
447 
448 #define	PGA_QUEUE_OP_MASK	(PGA_DEQUEUE | PGA_REQUEUE | PGA_REQUEUE_HEAD)
449 #define	PGA_QUEUE_STATE_MASK	(PGA_ENQUEUED | PGA_QUEUE_OP_MASK)
450 
451 /*
452  * Page flags.  Updates to these flags are not synchronized, and thus they must
453  * be set during page allocation or free to avoid races.
454  *
455  * The PG_PCPU_CACHE flag is set at allocation time if the page was
456  * allocated from a per-CPU cache.  It is cleared the next time that the
457  * page is allocated from the physical memory allocator.
458  */
459 #define	PG_PCPU_CACHE	0x01		/* was allocated from per-CPU caches */
460 #define	PG_FICTITIOUS	0x02		/* physical page doesn't exist */
461 #define	PG_ZERO		0x04		/* page is zeroed */
462 #define	PG_MARKER	0x08		/* special queue marker page */
463 #define	PG_NODUMP	0x10		/* don't include this page in a dump */
464 
465 /*
466  * Misc constants.
467  */
468 #define ACT_DECLINE		1
469 #define ACT_ADVANCE		3
470 #define ACT_INIT		5
471 #define ACT_MAX			64
472 
473 #ifdef _KERNEL
474 
475 #include <sys/systm.h>
476 
477 #include <machine/atomic.h>
478 
479 /*
480  * Each pageable resident page falls into one of five lists:
481  *
482  *	free
483  *		Available for allocation now.
484  *
485  *	inactive
486  *		Low activity, candidates for reclamation.
487  *		This list is approximately LRU ordered.
488  *
489  *	laundry
490  *		This is the list of pages that should be
491  *		paged out next.
492  *
493  *	unswappable
494  *		Dirty anonymous pages that cannot be paged
495  *		out because no swap device is configured.
496  *
497  *	active
498  *		Pages that are "active", i.e., they have been
499  *		recently referenced.
500  *
501  */
502 
503 extern vm_page_t vm_page_array;		/* First resident page in table */
504 extern long vm_page_array_size;		/* number of vm_page_t's */
505 extern long first_page;			/* first physical page number */
506 
507 #define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
508 
509 /*
510  * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory
511  * page to which the given physical address belongs. The correct vm_page_t
512  * object is returned for addresses that are not page-aligned.
513  */
514 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
515 
516 /*
517  * Page allocation parameters for vm_page for the functions
518  * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and
519  * vm_page_alloc_freelist().  Some functions support only a subset
520  * of the flags, and ignore others, see the flags legend.
521  *
522  * The meaning of VM_ALLOC_ZERO differs slightly between the vm_page_alloc*()
523  * and the vm_page_grab*() functions.  See these functions for details.
524  *
525  * Bits 0 - 1 define class.
526  * Bits 2 - 15 dedicated for flags.
527  * Legend:
528  * (a) - vm_page_alloc() supports the flag.
529  * (c) - vm_page_alloc_contig() supports the flag.
530  * (g) - vm_page_grab() supports the flag.
531  * (n) - vm_page_alloc_noobj() and vm_page_alloc_freelist() support the flag.
532  * (p) - vm_page_grab_pages() supports the flag.
533  * Bits above 15 define the count of additional pages that the caller
534  * intends to allocate.
535  */
536 #define VM_ALLOC_NORMAL		0
537 #define VM_ALLOC_INTERRUPT	1
538 #define VM_ALLOC_SYSTEM		2
539 #define	VM_ALLOC_CLASS_MASK	3
540 #define	VM_ALLOC_WAITOK		0x0008	/* (acn) Sleep and retry */
541 #define	VM_ALLOC_WAITFAIL	0x0010	/* (acn) Sleep and return error */
542 #define	VM_ALLOC_WIRED		0x0020	/* (acgnp) Allocate a wired page */
543 #define	VM_ALLOC_ZERO		0x0040	/* (acgnp) Allocate a zeroed page */
544 #define	VM_ALLOC_NORECLAIM	0x0080	/* (c) Do not reclaim after failure */
545 #define	VM_ALLOC_AVAIL0		0x0100
546 #define	VM_ALLOC_NOBUSY		0x0200	/* (acgp) Do not excl busy the page */
547 #define	VM_ALLOC_NOCREAT	0x0400	/* (gp) Don't create a page */
548 #define	VM_ALLOC_AVAIL1		0x0800
549 #define	VM_ALLOC_IGN_SBUSY	0x1000	/* (gp) Ignore shared busy flag */
550 #define	VM_ALLOC_NODUMP		0x2000	/* (ag) don't include in dump */
551 #define	VM_ALLOC_SBUSY		0x4000	/* (acgp) Shared busy the page */
552 #define	VM_ALLOC_NOWAIT		0x8000	/* (acgnp) Do not sleep */
553 #define	VM_ALLOC_COUNT_MAX	0xffff
554 #define	VM_ALLOC_COUNT_SHIFT	16
555 #define	VM_ALLOC_COUNT_MASK	(VM_ALLOC_COUNT(VM_ALLOC_COUNT_MAX))
556 #define	VM_ALLOC_COUNT(count)	({				\
557 	KASSERT((count) <= VM_ALLOC_COUNT_MAX,			\
558 	    ("%s: invalid VM_ALLOC_COUNT value", __func__));	\
559 	(count) << VM_ALLOC_COUNT_SHIFT;			\
560 })
561 
562 #ifdef M_NOWAIT
563 static inline int
564 malloc2vm_flags(int malloc_flags)
565 {
566 	int pflags;
567 
568 	KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
569 	    (malloc_flags & M_NOWAIT) != 0,
570 	    ("M_USE_RESERVE requires M_NOWAIT"));
571 	pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
572 	    VM_ALLOC_SYSTEM;
573 	if ((malloc_flags & M_ZERO) != 0)
574 		pflags |= VM_ALLOC_ZERO;
575 	if ((malloc_flags & M_NODUMP) != 0)
576 		pflags |= VM_ALLOC_NODUMP;
577 	if ((malloc_flags & M_NOWAIT))
578 		pflags |= VM_ALLOC_NOWAIT;
579 	if ((malloc_flags & M_WAITOK))
580 		pflags |= VM_ALLOC_WAITOK;
581 	if ((malloc_flags & M_NORECLAIM))
582 		pflags |= VM_ALLOC_NORECLAIM;
583 	return (pflags);
584 }
585 #endif
586 
587 /*
588  * Predicates supported by vm_page_ps_test():
589  *
590  *	PS_ALL_DIRTY is true only if the entire (super)page is dirty.
591  *	However, it can be spuriously false when the (super)page has become
592  *	dirty in the pmap but that information has not been propagated to the
593  *	machine-independent layer.
594  */
595 #define	PS_ALL_DIRTY	0x1
596 #define	PS_ALL_VALID	0x2
597 #define	PS_NONE_BUSY	0x4
598 
599 bool vm_page_busy_acquire(vm_page_t m, int allocflags);
600 void vm_page_busy_downgrade(vm_page_t m);
601 int vm_page_busy_tryupgrade(vm_page_t m);
602 void vm_page_busy_sleep(vm_page_t m, const char *msg, bool nonshared);
603 void vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m,
604     vm_pindex_t pindex, const char *wmesg, bool nonshared);
605 void vm_page_free(vm_page_t m);
606 void vm_page_free_zero(vm_page_t m);
607 
608 void vm_page_activate (vm_page_t);
609 void vm_page_advise(vm_page_t m, int advice);
610 vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int);
611 vm_page_t vm_page_alloc_domain(vm_object_t, vm_pindex_t, int, int);
612 vm_page_t vm_page_alloc_after(vm_object_t, vm_pindex_t, int, vm_page_t);
613 vm_page_t vm_page_alloc_domain_after(vm_object_t, vm_pindex_t, int, int,
614     vm_page_t);
615 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
616     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
617     vm_paddr_t boundary, vm_memattr_t memattr);
618 vm_page_t vm_page_alloc_contig_domain(vm_object_t object,
619     vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low,
620     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
621     vm_memattr_t memattr);
622 vm_page_t vm_page_alloc_freelist(int, int);
623 vm_page_t vm_page_alloc_freelist_domain(int, int, int);
624 vm_page_t vm_page_alloc_noobj(int);
625 vm_page_t vm_page_alloc_noobj_domain(int, int);
626 vm_page_t vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
627     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
628     vm_memattr_t memattr);
629 vm_page_t vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
630     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
631     vm_memattr_t memattr);
632 void vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set);
633 bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose);
634 vm_page_t vm_page_grab(vm_object_t, vm_pindex_t, int);
635 vm_page_t vm_page_grab_unlocked(vm_object_t, vm_pindex_t, int);
636 int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
637     vm_page_t *ma, int count);
638 int vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
639     int allocflags, vm_page_t *ma, int count);
640 int vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
641     int allocflags);
642 int vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
643     vm_pindex_t pindex, int allocflags);
644 void vm_page_deactivate(vm_page_t);
645 void vm_page_deactivate_noreuse(vm_page_t);
646 void vm_page_dequeue(vm_page_t m);
647 void vm_page_dequeue_deferred(vm_page_t m);
648 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
649 void vm_page_free_invalid(vm_page_t);
650 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
651 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
652 void vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags);
653 void vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind);
654 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
655 void vm_page_invalid(vm_page_t m);
656 void vm_page_launder(vm_page_t m);
657 vm_page_t vm_page_lookup(vm_object_t, vm_pindex_t);
658 vm_page_t vm_page_lookup_unlocked(vm_object_t, vm_pindex_t);
659 vm_page_t vm_page_next(vm_page_t m);
660 void vm_page_pqbatch_drain(void);
661 void vm_page_pqbatch_submit(vm_page_t m, uint8_t queue);
662 bool vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old,
663     vm_page_astate_t new);
664 vm_page_t vm_page_prev(vm_page_t m);
665 bool vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m);
666 void vm_page_putfake(vm_page_t m);
667 void vm_page_readahead_finish(vm_page_t m);
668 bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low,
669     vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
670 bool vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
671     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
672 void vm_page_reference(vm_page_t m);
673 #define	VPR_TRYFREE	0x01
674 #define	VPR_NOREUSE	0x02
675 void vm_page_release(vm_page_t m, int flags);
676 void vm_page_release_locked(vm_page_t m, int flags);
677 vm_page_t vm_page_relookup(vm_object_t, vm_pindex_t);
678 bool vm_page_remove(vm_page_t);
679 bool vm_page_remove_xbusy(vm_page_t);
680 int vm_page_rename(vm_page_t, vm_object_t, vm_pindex_t);
681 void vm_page_replace(vm_page_t mnew, vm_object_t object,
682     vm_pindex_t pindex, vm_page_t mold);
683 int vm_page_sbusied(vm_page_t m);
684 vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start,
685     vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options);
686 vm_page_bits_t vm_page_set_dirty(vm_page_t m);
687 void vm_page_set_valid_range(vm_page_t m, int base, int size);
688 int vm_page_sleep_if_busy(vm_page_t m, const char *msg);
689 int vm_page_sleep_if_xbusy(vm_page_t m, const char *msg);
690 vm_offset_t vm_page_startup(vm_offset_t vaddr);
691 void vm_page_sunbusy(vm_page_t m);
692 bool vm_page_try_remove_all(vm_page_t m);
693 bool vm_page_try_remove_write(vm_page_t m);
694 int vm_page_trysbusy(vm_page_t m);
695 int vm_page_tryxbusy(vm_page_t m);
696 void vm_page_unhold_pages(vm_page_t *ma, int count);
697 void vm_page_unswappable(vm_page_t m);
698 void vm_page_unwire(vm_page_t m, uint8_t queue);
699 bool vm_page_unwire_noq(vm_page_t m);
700 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
701 void vm_page_wire(vm_page_t);
702 bool vm_page_wire_mapped(vm_page_t m);
703 void vm_page_xunbusy_hard(vm_page_t m);
704 void vm_page_xunbusy_hard_unchecked(vm_page_t m);
705 void vm_page_set_validclean (vm_page_t, int, int);
706 void vm_page_clear_dirty(vm_page_t, int, int);
707 void vm_page_set_invalid(vm_page_t, int, int);
708 void vm_page_valid(vm_page_t m);
709 int vm_page_is_valid(vm_page_t, int, int);
710 void vm_page_test_dirty(vm_page_t);
711 vm_page_bits_t vm_page_bits(int base, int size);
712 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
713 void vm_page_free_pages_toq(struct spglist *free, bool update_wire_count);
714 
715 void vm_page_dirty_KBI(vm_page_t m);
716 void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
717 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
718 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
719 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
720 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line);
721 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
722 #endif
723 
724 #define	vm_page_busy_fetch(m)	atomic_load_int(&(m)->busy_lock)
725 
726 #define	vm_page_assert_busied(m)					\
727 	KASSERT(vm_page_busied(m),					\
728 	    ("vm_page_assert_busied: page %p not busy @ %s:%d", \
729 	    (m), __FILE__, __LINE__))
730 
731 #define	vm_page_assert_sbusied(m)					\
732 	KASSERT(vm_page_sbusied(m),					\
733 	    ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \
734 	    (m), __FILE__, __LINE__))
735 
736 #define	vm_page_assert_unbusied(m)					\
737 	KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) !=		\
738 	    VPB_CURTHREAD_EXCLUSIVE,					\
739 	    ("vm_page_assert_xbusied: page %p busy_lock %#x owned"	\
740             " by me @ %s:%d",						\
741 	    (m), (m)->busy_lock, __FILE__, __LINE__));			\
742 
743 #define	vm_page_assert_xbusied_unchecked(m) do {			\
744 	KASSERT(vm_page_xbusied(m),					\
745 	    ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \
746 	    (m), __FILE__, __LINE__));					\
747 } while (0)
748 #define	vm_page_assert_xbusied(m) do {					\
749 	vm_page_assert_xbusied_unchecked(m);				\
750 	KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) ==		\
751 	    VPB_CURTHREAD_EXCLUSIVE,					\
752 	    ("vm_page_assert_xbusied: page %p busy_lock %#x not owned"	\
753             " by me @ %s:%d",						\
754 	    (m), (m)->busy_lock, __FILE__, __LINE__));			\
755 } while (0)
756 
757 #define	vm_page_busied(m)						\
758 	(vm_page_busy_fetch(m) != VPB_UNBUSIED)
759 
760 #define	vm_page_sbusy(m) do {						\
761 	if (!vm_page_trysbusy(m))					\
762 		panic("%s: page %p failed shared busying", __func__,	\
763 		    (m));						\
764 } while (0)
765 
766 #define	vm_page_xbusied(m)						\
767 	((vm_page_busy_fetch(m) & VPB_SINGLE_EXCLUSIVE) != 0)
768 
769 #define	vm_page_busy_freed(m)						\
770 	(vm_page_busy_fetch(m) == VPB_FREED)
771 
772 #define	vm_page_xbusy(m) do {						\
773 	if (!vm_page_tryxbusy(m))					\
774 		panic("%s: page %p failed exclusive busying", __func__,	\
775 		    (m));						\
776 } while (0)
777 
778 /* Note: page m's lock must not be owned by the caller. */
779 #define	vm_page_xunbusy(m) do {						\
780 	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
781 	    VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED))			\
782 		vm_page_xunbusy_hard(m);				\
783 } while (0)
784 #define	vm_page_xunbusy_unchecked(m) do {				\
785 	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
786 	    VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED))			\
787 		vm_page_xunbusy_hard_unchecked(m);			\
788 } while (0)
789 
790 #ifdef INVARIANTS
791 void vm_page_object_busy_assert(vm_page_t m);
792 #define	VM_PAGE_OBJECT_BUSY_ASSERT(m)	vm_page_object_busy_assert(m)
793 void vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits);
794 #define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)				\
795 	vm_page_assert_pga_writeable(m, bits)
796 /*
797  * Claim ownership of a page's xbusy state.  In non-INVARIANTS kernels this
798  * operation is a no-op since ownership is not tracked.  In particular
799  * this macro does not provide any synchronization with the previous owner.
800  */
801 #define	vm_page_xbusy_claim(m) do {					\
802 	u_int _busy_lock;						\
803 									\
804 	vm_page_assert_xbusied_unchecked((m));				\
805 	do {								\
806 		_busy_lock = vm_page_busy_fetch(m);			\
807 	} while (!atomic_cmpset_int(&(m)->busy_lock, _busy_lock,	\
808 	    (_busy_lock & VPB_BIT_FLAGMASK) | VPB_CURTHREAD_EXCLUSIVE)); \
809 } while (0)
810 #else
811 #define	VM_PAGE_OBJECT_BUSY_ASSERT(m)	(void)0
812 #define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)	(void)0
813 #define	vm_page_xbusy_claim(m)
814 #endif
815 
816 #if BYTE_ORDER == BIG_ENDIAN
817 #define	VM_PAGE_AFLAG_SHIFT	16
818 #else
819 #define	VM_PAGE_AFLAG_SHIFT	0
820 #endif
821 
822 /*
823  *	Load a snapshot of a page's 32-bit atomic state.
824  */
825 static inline vm_page_astate_t
826 vm_page_astate_load(vm_page_t m)
827 {
828 	vm_page_astate_t a;
829 
830 	a._bits = atomic_load_32(&m->a._bits);
831 	return (a);
832 }
833 
834 /*
835  *	Atomically compare and set a page's atomic state.
836  */
837 static inline bool
838 vm_page_astate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
839 {
840 
841 	KASSERT(new.queue == PQ_INACTIVE || (new.flags & PGA_REQUEUE_HEAD) == 0,
842 	    ("%s: invalid head requeue request for page %p", __func__, m));
843 	KASSERT((new.flags & PGA_ENQUEUED) == 0 || new.queue != PQ_NONE,
844 	    ("%s: setting PGA_ENQUEUED with PQ_NONE in page %p", __func__, m));
845 	KASSERT(new._bits != old->_bits,
846 	    ("%s: bits are unchanged", __func__));
847 
848 	return (atomic_fcmpset_32(&m->a._bits, &old->_bits, new._bits) != 0);
849 }
850 
851 /*
852  *	Clear the given bits in the specified page.
853  */
854 static inline void
855 vm_page_aflag_clear(vm_page_t m, uint16_t bits)
856 {
857 	uint32_t *addr, val;
858 
859 	/*
860 	 * Access the whole 32-bit word containing the aflags field with an
861 	 * atomic update.  Parallel non-atomic updates to the other fields
862 	 * within this word are handled properly by the atomic update.
863 	 */
864 	addr = (void *)&m->a;
865 	val = bits << VM_PAGE_AFLAG_SHIFT;
866 	atomic_clear_32(addr, val);
867 }
868 
869 /*
870  *	Set the given bits in the specified page.
871  */
872 static inline void
873 vm_page_aflag_set(vm_page_t m, uint16_t bits)
874 {
875 	uint32_t *addr, val;
876 
877 	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits);
878 
879 	/*
880 	 * Access the whole 32-bit word containing the aflags field with an
881 	 * atomic update.  Parallel non-atomic updates to the other fields
882 	 * within this word are handled properly by the atomic update.
883 	 */
884 	addr = (void *)&m->a;
885 	val = bits << VM_PAGE_AFLAG_SHIFT;
886 	atomic_set_32(addr, val);
887 }
888 
889 /*
890  *	vm_page_dirty:
891  *
892  *	Set all bits in the page's dirty field.
893  *
894  *	The object containing the specified page must be locked if the
895  *	call is made from the machine-independent layer.
896  *
897  *	See vm_page_clear_dirty_mask().
898  */
899 static __inline void
900 vm_page_dirty(vm_page_t m)
901 {
902 
903 	/* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
904 #if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(INVARIANTS)
905 	vm_page_dirty_KBI(m);
906 #else
907 	m->dirty = VM_PAGE_BITS_ALL;
908 #endif
909 }
910 
911 /*
912  *	vm_page_undirty:
913  *
914  *	Set page to not be dirty.  Note: does not clear pmap modify bits
915  */
916 static __inline void
917 vm_page_undirty(vm_page_t m)
918 {
919 
920 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
921 	m->dirty = 0;
922 }
923 
924 static inline uint8_t
925 _vm_page_queue(vm_page_astate_t as)
926 {
927 
928 	if ((as.flags & PGA_DEQUEUE) != 0)
929 		return (PQ_NONE);
930 	return (as.queue);
931 }
932 
933 /*
934  *	vm_page_queue:
935  *
936  *	Return the index of the queue containing m.
937  */
938 static inline uint8_t
939 vm_page_queue(vm_page_t m)
940 {
941 
942 	return (_vm_page_queue(vm_page_astate_load(m)));
943 }
944 
945 static inline bool
946 vm_page_active(vm_page_t m)
947 {
948 
949 	return (vm_page_queue(m) == PQ_ACTIVE);
950 }
951 
952 static inline bool
953 vm_page_inactive(vm_page_t m)
954 {
955 
956 	return (vm_page_queue(m) == PQ_INACTIVE);
957 }
958 
959 static inline bool
960 vm_page_in_laundry(vm_page_t m)
961 {
962 	uint8_t queue;
963 
964 	queue = vm_page_queue(m);
965 	return (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE);
966 }
967 
968 /*
969  *	vm_page_drop:
970  *
971  *	Release a reference to a page and return the old reference count.
972  */
973 static inline u_int
974 vm_page_drop(vm_page_t m, u_int val)
975 {
976 	u_int old;
977 
978 	/*
979 	 * Synchronize with vm_page_free_prep(): ensure that all updates to the
980 	 * page structure are visible before it is freed.
981 	 */
982 	atomic_thread_fence_rel();
983 	old = atomic_fetchadd_int(&m->ref_count, -val);
984 	KASSERT(old != VPRC_BLOCKED,
985 	    ("vm_page_drop: page %p has an invalid refcount value", m));
986 	return (old);
987 }
988 
989 /*
990  *	vm_page_wired:
991  *
992  *	Perform a racy check to determine whether a reference prevents the page
993  *	from being reclaimable.  If the page's object is locked, and the page is
994  *	unmapped and exclusively busied by the current thread, no new wirings
995  *	may be created.
996  */
997 static inline bool
998 vm_page_wired(vm_page_t m)
999 {
1000 
1001 	return (VPRC_WIRE_COUNT(m->ref_count) > 0);
1002 }
1003 
1004 static inline bool
1005 vm_page_all_valid(vm_page_t m)
1006 {
1007 
1008 	return (m->valid == VM_PAGE_BITS_ALL);
1009 }
1010 
1011 static inline bool
1012 vm_page_none_valid(vm_page_t m)
1013 {
1014 
1015 	return (m->valid == 0);
1016 }
1017 
1018 static inline int
1019 vm_page_domain(vm_page_t m)
1020 {
1021 #ifdef NUMA
1022 	int domn, segind;
1023 
1024 	segind = m->segind;
1025 	KASSERT(segind < vm_phys_nsegs, ("segind %d m %p", segind, m));
1026 	domn = vm_phys_segs[segind].domain;
1027 	KASSERT(domn >= 0 && domn < vm_ndomains, ("domain %d m %p", domn, m));
1028 	return (domn);
1029 #else
1030 	return (0);
1031 #endif
1032 }
1033 
1034 #endif				/* _KERNEL */
1035 #endif				/* !_VM_PAGE_ */
1036