1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 * 60 * $FreeBSD$ 61 */ 62 63 /* 64 * Resident memory system definitions. 65 */ 66 67 #ifndef _VM_PAGE_ 68 #define _VM_PAGE_ 69 70 #include <vm/pmap.h> 71 72 /* 73 * Management of resident (logical) pages. 74 * 75 * A small structure is kept for each resident 76 * page, indexed by page number. Each structure 77 * is an element of several collections: 78 * 79 * A radix tree used to quickly 80 * perform object/offset lookups 81 * 82 * A list of all pages for a given object, 83 * so they can be quickly deactivated at 84 * time of deallocation. 85 * 86 * An ordered list of pages due for pageout. 87 * 88 * In addition, the structure contains the object 89 * and offset to which this page belongs (for pageout), 90 * and sundry status bits. 91 * 92 * In general, operations on this structure's mutable fields are 93 * synchronized using either one of or a combination of the lock on the 94 * object that the page belongs to (O), the pool lock for the page (P), 95 * or the lock for either the free or paging queue (Q). If a field is 96 * annotated below with two of these locks, then holding either lock is 97 * sufficient for read access, but both locks are required for write 98 * access. 99 * 100 * In contrast, the synchronization of accesses to the page's 101 * dirty field is machine dependent (M). In the 102 * machine-independent layer, the lock on the object that the 103 * page belongs to must be held in order to operate on the field. 104 * However, the pmap layer is permitted to set all bits within 105 * the field without holding that lock. If the underlying 106 * architecture does not support atomic read-modify-write 107 * operations on the field's type, then the machine-independent 108 * layer uses a 32-bit atomic on the aligned 32-bit word that 109 * contains the dirty field. In the machine-independent layer, 110 * the implementation of read-modify-write operations on the 111 * field is encapsulated in vm_page_clear_dirty_mask(). 112 */ 113 114 #if PAGE_SIZE == 4096 115 #define VM_PAGE_BITS_ALL 0xffu 116 typedef uint8_t vm_page_bits_t; 117 #elif PAGE_SIZE == 8192 118 #define VM_PAGE_BITS_ALL 0xffffu 119 typedef uint16_t vm_page_bits_t; 120 #elif PAGE_SIZE == 16384 121 #define VM_PAGE_BITS_ALL 0xffffffffu 122 typedef uint32_t vm_page_bits_t; 123 #elif PAGE_SIZE == 32768 124 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu 125 typedef uint64_t vm_page_bits_t; 126 #endif 127 128 struct vm_page { 129 TAILQ_ENTRY(vm_page) pageq; /* page queue or free list (Q) */ 130 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ 131 132 vm_object_t object; /* which object am I in (O,P)*/ 133 vm_pindex_t pindex; /* offset into object (O,P) */ 134 vm_paddr_t phys_addr; /* physical address of page */ 135 struct md_page md; /* machine dependant stuff */ 136 uint8_t queue; /* page queue index (P,Q) */ 137 int8_t segind; 138 short hold_count; /* page hold count (P) */ 139 uint8_t order; /* index of the buddy queue */ 140 uint8_t pool; 141 u_short cow; /* page cow mapping count (P) */ 142 u_int wire_count; /* wired down maps refs (P) */ 143 uint8_t aflags; /* access is atomic */ 144 uint8_t oflags; /* page VPO_* flags (O) */ 145 uint16_t flags; /* page PG_* flags (P) */ 146 u_char act_count; /* page usage count (P) */ 147 u_char __pad0; /* unused padding */ 148 /* NOTE that these must support one bit per DEV_BSIZE in a page!!! */ 149 /* so, on normal X86 kernels, they must be at least 8 bits wide */ 150 vm_page_bits_t valid; /* map of valid DEV_BSIZE chunks (O) */ 151 vm_page_bits_t dirty; /* map of dirty DEV_BSIZE chunks (M) */ 152 volatile u_int busy_lock; /* busy owners lock */ 153 }; 154 155 /* 156 * Page flags stored in oflags: 157 * 158 * Access to these page flags is synchronized by the lock on the object 159 * containing the page (O). 160 * 161 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG) 162 * indicates that the page is not under PV management but 163 * otherwise should be treated as a normal page. Pages not 164 * under PV management cannot be paged out via the 165 * object/vm_page_t because there is no knowledge of their pte 166 * mappings, and such pages are also not on any PQ queue. 167 * 168 */ 169 #define VPO_UNUSED01 0x01 /* --available-- */ 170 #define VPO_SWAPSLEEP 0x02 /* waiting for swap to finish */ 171 #define VPO_UNMANAGED 0x04 /* no PV management for page */ 172 #define VPO_SWAPINPROG 0x08 /* swap I/O in progress on page */ 173 #define VPO_NOSYNC 0x10 /* do not collect for syncer */ 174 175 /* 176 * Busy page implementation details. 177 * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation, 178 * even if the support for owner identity is removed because of size 179 * constraints. Checks on lock recursion are then not possible, while the 180 * lock assertions effectiveness is someway reduced. 181 */ 182 #define VPB_BIT_SHARED 0x01 183 #define VPB_BIT_EXCLUSIVE 0x02 184 #define VPB_BIT_WAITERS 0x04 185 #define VPB_BIT_FLAGMASK \ 186 (VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS) 187 188 #define VPB_SHARERS_SHIFT 3 189 #define VPB_SHARERS(x) \ 190 (((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT) 191 #define VPB_SHARERS_WORD(x) ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED) 192 #define VPB_ONE_SHARER (1 << VPB_SHARERS_SHIFT) 193 194 #define VPB_SINGLE_EXCLUSIVER VPB_BIT_EXCLUSIVE 195 196 #define VPB_UNBUSIED VPB_SHARERS_WORD(0) 197 198 #define PQ_NONE 255 199 #define PQ_INACTIVE 0 200 #define PQ_ACTIVE 1 201 #define PQ_COUNT 2 202 203 TAILQ_HEAD(pglist, vm_page); 204 205 struct vm_pagequeue { 206 struct mtx pq_mutex; 207 struct pglist pq_pl; 208 int pq_cnt; 209 int * const pq_vcnt; 210 const char * const pq_name; 211 } __aligned(CACHE_LINE_SIZE); 212 213 214 struct vm_domain { 215 struct vm_pagequeue vmd_pagequeues[PQ_COUNT]; 216 int vmd_fullintervalcount; 217 u_int vmd_page_count; 218 u_int vmd_free_count; 219 long vmd_segs; /* bitmask of the segments */ 220 boolean_t vmd_oom; 221 int vmd_pass; /* local pagedaemon pass */ 222 struct vm_page vmd_marker; /* marker for pagedaemon private use */ 223 }; 224 225 extern struct vm_domain vm_dom[MAXMEMDOM]; 226 227 #define vm_pagequeue_assert_locked(pq) mtx_assert(&(pq)->pq_mutex, MA_OWNED) 228 #define vm_pagequeue_lock(pq) mtx_lock(&(pq)->pq_mutex) 229 #define vm_pagequeue_unlock(pq) mtx_unlock(&(pq)->pq_mutex) 230 231 #ifdef _KERNEL 232 static __inline void 233 vm_pagequeue_cnt_add(struct vm_pagequeue *pq, int addend) 234 { 235 236 #ifdef notyet 237 vm_pagequeue_assert_locked(pq); 238 #endif 239 pq->pq_cnt += addend; 240 atomic_add_int(pq->pq_vcnt, addend); 241 } 242 #define vm_pagequeue_cnt_inc(pq) vm_pagequeue_cnt_add((pq), 1) 243 #define vm_pagequeue_cnt_dec(pq) vm_pagequeue_cnt_add((pq), -1) 244 #endif /* _KERNEL */ 245 246 extern struct mtx_padalign vm_page_queue_free_mtx; 247 extern struct mtx_padalign pa_lock[]; 248 249 #if defined(__arm__) 250 #define PDRSHIFT PDR_SHIFT 251 #elif !defined(PDRSHIFT) 252 #define PDRSHIFT 21 253 #endif 254 255 #define pa_index(pa) ((pa) >> PDRSHIFT) 256 #define PA_LOCKPTR(pa) ((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT])) 257 #define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa))) 258 #define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa)) 259 #define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa)) 260 #define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa)) 261 #define PA_UNLOCK_COND(pa) \ 262 do { \ 263 if ((pa) != 0) { \ 264 PA_UNLOCK((pa)); \ 265 (pa) = 0; \ 266 } \ 267 } while (0) 268 269 #define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a)) 270 271 #ifdef KLD_MODULE 272 #define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE) 273 #define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE) 274 #define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE) 275 #else /* !KLD_MODULE */ 276 #define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m)))) 277 #define vm_page_lock(m) mtx_lock(vm_page_lockptr((m))) 278 #define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m))) 279 #define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m))) 280 #endif 281 #if defined(INVARIANTS) 282 #define vm_page_assert_locked(m) \ 283 vm_page_assert_locked_KBI((m), __FILE__, __LINE__) 284 #define vm_page_lock_assert(m, a) \ 285 vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__) 286 #else 287 #define vm_page_assert_locked(m) 288 #define vm_page_lock_assert(m, a) 289 #endif 290 291 /* 292 * The vm_page's aflags are updated using atomic operations. To set or clear 293 * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear() 294 * must be used. Neither these flags nor these functions are part of the KBI. 295 * 296 * PGA_REFERENCED may be cleared only if the page is locked. It is set by 297 * both the MI and MD VM layers. However, kernel loadable modules should not 298 * directly set this flag. They should call vm_page_reference() instead. 299 * 300 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter(). When it 301 * does so, the page must be exclusive busied. The MI VM layer must never 302 * access this flag directly. Instead, it should call 303 * pmap_page_is_write_mapped(). 304 * 305 * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has 306 * at least one executable mapping. It is not consumed by the MI VM layer. 307 */ 308 #define PGA_WRITEABLE 0x01 /* page may be mapped writeable */ 309 #define PGA_REFERENCED 0x02 /* page has been referenced */ 310 #define PGA_EXECUTABLE 0x04 /* page may be mapped executable */ 311 312 /* 313 * Page flags. If changed at any other time than page allocation or 314 * freeing, the modification must be protected by the vm_page lock. 315 */ 316 #define PG_CACHED 0x0001 /* page is cached */ 317 #define PG_FREE 0x0002 /* page is free */ 318 #define PG_FICTITIOUS 0x0004 /* physical page doesn't exist */ 319 #define PG_ZERO 0x0008 /* page is zeroed */ 320 #define PG_MARKER 0x0010 /* special queue marker page */ 321 #define PG_SLAB 0x0020 /* object pointer is actually a slab */ 322 #define PG_WINATCFLS 0x0040 /* flush dirty page on inactive q */ 323 #define PG_NODUMP 0x0080 /* don't include this page in a dump */ 324 #define PG_UNHOLDFREE 0x0100 /* delayed free of a held page */ 325 326 /* 327 * Misc constants. 328 */ 329 #define ACT_DECLINE 1 330 #define ACT_ADVANCE 3 331 #define ACT_INIT 5 332 #define ACT_MAX 64 333 334 #ifdef _KERNEL 335 336 #include <sys/systm.h> 337 338 #include <machine/atomic.h> 339 340 /* 341 * Each pageable resident page falls into one of four lists: 342 * 343 * free 344 * Available for allocation now. 345 * 346 * cache 347 * Almost available for allocation. Still associated with 348 * an object, but clean and immediately freeable. 349 * 350 * The following lists are LRU sorted: 351 * 352 * inactive 353 * Low activity, candidates for reclamation. 354 * This is the list of pages that should be 355 * paged out next. 356 * 357 * active 358 * Pages that are "active" i.e. they have been 359 * recently referenced. 360 * 361 */ 362 363 extern int vm_page_zero_count; 364 365 extern vm_page_t vm_page_array; /* First resident page in table */ 366 extern long vm_page_array_size; /* number of vm_page_t's */ 367 extern long first_page; /* first physical page number */ 368 369 #define VM_PAGE_IS_FREE(m) (((m)->flags & PG_FREE) != 0) 370 371 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) 372 373 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa); 374 375 /* page allocation classes: */ 376 #define VM_ALLOC_NORMAL 0 377 #define VM_ALLOC_INTERRUPT 1 378 #define VM_ALLOC_SYSTEM 2 379 #define VM_ALLOC_CLASS_MASK 3 380 /* page allocation flags: */ 381 #define VM_ALLOC_WIRED 0x0020 /* non pageable */ 382 #define VM_ALLOC_ZERO 0x0040 /* Try to obtain a zeroed page */ 383 #define VM_ALLOC_RETRY 0x0080 /* Mandatory with vm_page_grab() */ 384 #define VM_ALLOC_NOOBJ 0x0100 /* No associated object */ 385 #define VM_ALLOC_NOBUSY 0x0200 /* Do not busy the page */ 386 #define VM_ALLOC_IFCACHED 0x0400 /* Fail if the page is not cached */ 387 #define VM_ALLOC_IFNOTCACHED 0x0800 /* Fail if the page is cached */ 388 #define VM_ALLOC_IGN_SBUSY 0x1000 /* vm_page_grab() only */ 389 #define VM_ALLOC_NODUMP 0x2000 /* don't include in dump */ 390 #define VM_ALLOC_SBUSY 0x4000 /* Shared busy the page */ 391 392 #define VM_ALLOC_COUNT_SHIFT 16 393 #define VM_ALLOC_COUNT(count) ((count) << VM_ALLOC_COUNT_SHIFT) 394 395 #ifdef M_NOWAIT 396 static inline int 397 malloc2vm_flags(int malloc_flags) 398 { 399 int pflags; 400 401 KASSERT((malloc_flags & M_USE_RESERVE) == 0 || 402 (malloc_flags & M_NOWAIT) != 0, 403 ("M_USE_RESERVE requires M_NOWAIT")); 404 pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT : 405 VM_ALLOC_SYSTEM; 406 if ((malloc_flags & M_ZERO) != 0) 407 pflags |= VM_ALLOC_ZERO; 408 if ((malloc_flags & M_NODUMP) != 0) 409 pflags |= VM_ALLOC_NODUMP; 410 return (pflags); 411 } 412 #endif 413 414 void vm_page_busy_downgrade(vm_page_t m); 415 void vm_page_busy_sleep(vm_page_t m, const char *msg); 416 void vm_page_flash(vm_page_t m); 417 void vm_page_hold(vm_page_t mem); 418 void vm_page_unhold(vm_page_t mem); 419 void vm_page_free(vm_page_t m); 420 void vm_page_free_zero(vm_page_t m); 421 422 void vm_page_activate (vm_page_t); 423 void vm_page_advise(vm_page_t m, int advice); 424 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int); 425 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 426 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 427 vm_paddr_t boundary, vm_memattr_t memattr); 428 vm_page_t vm_page_alloc_freelist(int, int); 429 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int); 430 void vm_page_cache(vm_page_t); 431 void vm_page_cache_free(vm_object_t, vm_pindex_t, vm_pindex_t); 432 void vm_page_cache_transfer(vm_object_t, vm_pindex_t, vm_object_t); 433 int vm_page_try_to_cache (vm_page_t); 434 int vm_page_try_to_free (vm_page_t); 435 void vm_page_deactivate (vm_page_t); 436 void vm_page_dequeue(vm_page_t m); 437 void vm_page_dequeue_locked(vm_page_t m); 438 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t); 439 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr); 440 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 441 void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t); 442 boolean_t vm_page_is_cached(vm_object_t object, vm_pindex_t pindex); 443 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t); 444 vm_page_t vm_page_next(vm_page_t m); 445 int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *); 446 struct vm_pagequeue *vm_page_pagequeue(vm_page_t m); 447 vm_page_t vm_page_prev(vm_page_t m); 448 void vm_page_putfake(vm_page_t m); 449 void vm_page_readahead_finish(vm_page_t m); 450 void vm_page_reference(vm_page_t m); 451 void vm_page_remove (vm_page_t); 452 void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t); 453 void vm_page_requeue(vm_page_t m); 454 void vm_page_requeue_locked(vm_page_t m); 455 int vm_page_sbusied(vm_page_t m); 456 void vm_page_set_valid_range(vm_page_t m, int base, int size); 457 int vm_page_sleep_if_busy(vm_page_t m, const char *msg); 458 vm_offset_t vm_page_startup(vm_offset_t vaddr); 459 void vm_page_sunbusy(vm_page_t m); 460 int vm_page_trysbusy(vm_page_t m); 461 void vm_page_unhold_pages(vm_page_t *ma, int count); 462 void vm_page_unwire (vm_page_t, int); 463 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 464 void vm_page_wire (vm_page_t); 465 void vm_page_xunbusy_hard(vm_page_t m); 466 void vm_page_set_validclean (vm_page_t, int, int); 467 void vm_page_clear_dirty (vm_page_t, int, int); 468 void vm_page_set_invalid (vm_page_t, int, int); 469 int vm_page_is_valid (vm_page_t, int, int); 470 void vm_page_test_dirty (vm_page_t); 471 vm_page_bits_t vm_page_bits(int base, int size); 472 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid); 473 void vm_page_free_toq(vm_page_t m); 474 void vm_page_zero_idle_wakeup(void); 475 void vm_page_cowfault (vm_page_t); 476 int vm_page_cowsetup(vm_page_t); 477 void vm_page_cowclear (vm_page_t); 478 479 void vm_page_dirty_KBI(vm_page_t m); 480 void vm_page_lock_KBI(vm_page_t m, const char *file, int line); 481 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line); 482 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line); 483 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 484 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line); 485 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line); 486 #endif 487 488 #define vm_page_assert_sbusied(m) \ 489 KASSERT(vm_page_sbusied(m), \ 490 ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \ 491 (void *)m, __FILE__, __LINE__)); 492 493 #define vm_page_assert_unbusied(m) \ 494 KASSERT(!vm_page_busied(m), \ 495 ("vm_page_assert_unbusied: page %p busy @ %s:%d", \ 496 (void *)m, __FILE__, __LINE__)); 497 498 #define vm_page_assert_xbusied(m) \ 499 KASSERT(vm_page_xbusied(m), \ 500 ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \ 501 (void *)m, __FILE__, __LINE__)); 502 503 #define vm_page_busied(m) \ 504 ((m)->busy_lock != VPB_UNBUSIED) 505 506 #define vm_page_sbusy(m) do { \ 507 if (!vm_page_trysbusy(m)) \ 508 panic("%s: page %p failed shared busing", __func__, m); \ 509 } while (0) 510 511 #define vm_page_tryxbusy(m) \ 512 (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, \ 513 VPB_SINGLE_EXCLUSIVER)) 514 515 #define vm_page_xbusied(m) \ 516 ((m->busy_lock & VPB_SINGLE_EXCLUSIVER) != 0) 517 518 #define vm_page_xbusy(m) do { \ 519 if (!vm_page_tryxbusy(m)) \ 520 panic("%s: page %p failed exclusive busing", __func__, \ 521 m); \ 522 } while (0) 523 524 #define vm_page_xunbusy(m) do { \ 525 if (!atomic_cmpset_rel_int(&(m)->busy_lock, \ 526 VPB_SINGLE_EXCLUSIVER, VPB_UNBUSIED)) \ 527 vm_page_xunbusy_hard(m); \ 528 } while (0) 529 530 #ifdef INVARIANTS 531 void vm_page_object_lock_assert(vm_page_t m); 532 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) vm_page_object_lock_assert(m) 533 #else 534 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) (void)0 535 #endif 536 537 /* 538 * We want to use atomic updates for the aflags field, which is 8 bits wide. 539 * However, not all architectures support atomic operations on 8-bit 540 * destinations. In order that we can easily use a 32-bit operation, we 541 * require that the aflags field be 32-bit aligned. 542 */ 543 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0); 544 545 /* 546 * Clear the given bits in the specified page. 547 */ 548 static inline void 549 vm_page_aflag_clear(vm_page_t m, uint8_t bits) 550 { 551 uint32_t *addr, val; 552 553 /* 554 * The PGA_REFERENCED flag can only be cleared if the page is locked. 555 */ 556 if ((bits & PGA_REFERENCED) != 0) 557 vm_page_assert_locked(m); 558 559 /* 560 * Access the whole 32-bit word containing the aflags field with an 561 * atomic update. Parallel non-atomic updates to the other fields 562 * within this word are handled properly by the atomic update. 563 */ 564 addr = (void *)&m->aflags; 565 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0, 566 ("vm_page_aflag_clear: aflags is misaligned")); 567 val = bits; 568 #if BYTE_ORDER == BIG_ENDIAN 569 val <<= 24; 570 #endif 571 atomic_clear_32(addr, val); 572 } 573 574 /* 575 * Set the given bits in the specified page. 576 */ 577 static inline void 578 vm_page_aflag_set(vm_page_t m, uint8_t bits) 579 { 580 uint32_t *addr, val; 581 582 /* 583 * The PGA_WRITEABLE flag can only be set if the page is managed and 584 * exclusive busied. Currently, this flag is only set by pmap_enter(). 585 */ 586 KASSERT((bits & PGA_WRITEABLE) == 0 || 587 ((m->oflags & VPO_UNMANAGED) == 0 && vm_page_xbusied(m)), 588 ("vm_page_aflag_set: PGA_WRITEABLE and not exclusive busy")); 589 590 /* 591 * Access the whole 32-bit word containing the aflags field with an 592 * atomic update. Parallel non-atomic updates to the other fields 593 * within this word are handled properly by the atomic update. 594 */ 595 addr = (void *)&m->aflags; 596 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0, 597 ("vm_page_aflag_set: aflags is misaligned")); 598 val = bits; 599 #if BYTE_ORDER == BIG_ENDIAN 600 val <<= 24; 601 #endif 602 atomic_set_32(addr, val); 603 } 604 605 /* 606 * vm_page_dirty: 607 * 608 * Set all bits in the page's dirty field. 609 * 610 * The object containing the specified page must be locked if the 611 * call is made from the machine-independent layer. 612 * 613 * See vm_page_clear_dirty_mask(). 614 */ 615 static __inline void 616 vm_page_dirty(vm_page_t m) 617 { 618 619 /* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */ 620 #if defined(KLD_MODULE) || defined(INVARIANTS) 621 vm_page_dirty_KBI(m); 622 #else 623 m->dirty = VM_PAGE_BITS_ALL; 624 #endif 625 } 626 627 /* 628 * vm_page_remque: 629 * 630 * If the given page is in a page queue, then remove it from that page 631 * queue. 632 * 633 * The page must be locked. 634 */ 635 static inline void 636 vm_page_remque(vm_page_t m) 637 { 638 639 if (m->queue != PQ_NONE) 640 vm_page_dequeue(m); 641 } 642 643 /* 644 * vm_page_undirty: 645 * 646 * Set page to not be dirty. Note: does not clear pmap modify bits 647 */ 648 static __inline void 649 vm_page_undirty(vm_page_t m) 650 { 651 652 VM_PAGE_OBJECT_LOCK_ASSERT(m); 653 m->dirty = 0; 654 } 655 656 #endif /* _KERNEL */ 657 #endif /* !_VM_PAGE_ */ 658