xref: /freebsd/sys/vm/vm_page.h (revision b601c69bdbe8755d26570261d7fd4c02ee4eff74)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Resident memory system definitions.
69  */
70 
71 #ifndef	_VM_PAGE_
72 #define	_VM_PAGE_
73 
74 #if !defined(KLD_MODULE)
75 #include "opt_vmpage.h"
76 #endif
77 
78 #include <vm/pmap.h>
79 #include <machine/atomic.h>
80 
81 /*
82  *	Management of resident (logical) pages.
83  *
84  *	A small structure is kept for each resident
85  *	page, indexed by page number.  Each structure
86  *	is an element of several lists:
87  *
88  *		A hash table bucket used to quickly
89  *		perform object/offset lookups
90  *
91  *		A list of all pages for a given object,
92  *		so they can be quickly deactivated at
93  *		time of deallocation.
94  *
95  *		An ordered list of pages due for pageout.
96  *
97  *	In addition, the structure contains the object
98  *	and offset to which this page belongs (for pageout),
99  *	and sundry status bits.
100  *
101  *	Fields in this structure are locked either by the lock on the
102  *	object that the page belongs to (O) or by the lock on the page
103  *	queues (P).
104  *
105  *	The 'valid' and 'dirty' fields are distinct.  A page may have dirty
106  *	bits set without having associated valid bits set.  This is used by
107  *	NFS to implement piecemeal writes.
108  */
109 
110 TAILQ_HEAD(pglist, vm_page);
111 
112 struct vm_page {
113 	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (P) */
114 	struct vm_page	*hnext;		/* hash table link (O,P)	*/
115 	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) 	*/
116 
117 	vm_object_t object;		/* which object am I in (O,P)*/
118 	vm_pindex_t pindex;		/* offset into object (O,P) */
119 	vm_offset_t phys_addr;		/* physical address of page */
120 	struct md_page md;		/* machine dependant stuff */
121 	u_short	queue;			/* page queue index */
122 	u_short	flags,			/* see below */
123 		pc;			/* page color */
124 	u_short wire_count;		/* wired down maps refs (P) */
125 	short hold_count;		/* page hold count */
126 	u_char	act_count;		/* page usage count */
127 	u_char	busy;			/* page busy count */
128 	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
129 	/* so, on normal X86 kernels, they must be at least 8 bits wide */
130 #if PAGE_SIZE == 4096
131 	u_char	valid;			/* map of valid DEV_BSIZE chunks */
132 	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
133 #elif PAGE_SIZE == 8192
134 	u_short	valid;			/* map of valid DEV_BSIZE chunks */
135 	u_short	dirty;			/* map of dirty DEV_BSIZE chunks */
136 #endif
137 };
138 
139 /*
140  * note: currently use SWAPBLK_NONE as an absolute value rather then
141  * a flag bit.
142  */
143 
144 #define SWAPBLK_MASK	((daddr_t)((u_daddr_t)-1 >> 1))		/* mask */
145 #define SWAPBLK_NONE	((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */
146 
147 #if !defined(KLD_MODULE)
148 
149 /*
150  * Page coloring parameters
151  */
152 /* Each of PQ_FREE, and PQ_CACHE have PQ_HASH_SIZE entries */
153 
154 /* Backward compatibility for existing PQ_*CACHE config options. */
155 #if !defined(PQ_CACHESIZE)
156 #if defined(PQ_HUGECACHE)
157 #define PQ_CACHESIZE 1024
158 #elif defined(PQ_LARGECACHE)
159 #define PQ_CACHESIZE 512
160 #elif defined(PQ_MEDIUMCACHE)
161 #define PQ_CACHESIZE 256
162 #elif defined(PQ_NORMALCACHE)
163 #define PQ_CACHESIZE 64
164 #elif defined(PQ_NOOPT)
165 #define PQ_CACHESIZE 0
166 #else
167 #define PQ_CACHESIZE 128
168 #endif
169 #endif
170 
171 #if PQ_CACHESIZE >= 1024
172 #define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
173 #define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
174 #define PQ_L2_SIZE 256	/* A number of colors opt for 1M cache */
175 
176 #elif PQ_CACHESIZE >= 512
177 #define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
178 #define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
179 #define PQ_L2_SIZE 128	/* A number of colors opt for 512K cache */
180 
181 #elif PQ_CACHESIZE >= 256
182 #define PQ_PRIME1 13	/* Prime number somewhat less than PQ_HASH_SIZE */
183 #define PQ_PRIME2 7	/* Prime number somewhat less than PQ_HASH_SIZE */
184 #define PQ_L2_SIZE 64	/* A number of colors opt for 256K cache */
185 
186 #elif PQ_CACHESIZE >= 128
187 #define PQ_PRIME1 9	/* Produces a good PQ_L2_SIZE/3 + PQ_PRIME1 */
188 #define PQ_PRIME2 5	/* Prime number somewhat less than PQ_HASH_SIZE */
189 #define PQ_L2_SIZE 32	/* A number of colors opt for 128k cache */
190 
191 #elif PQ_CACHESIZE >= 64
192 #define PQ_PRIME1 5	/* Prime number somewhat less than PQ_HASH_SIZE */
193 #define PQ_PRIME2 3	/* Prime number somewhat less than PQ_HASH_SIZE */
194 #define PQ_L2_SIZE 16	/* A reasonable number of colors (opt for 64K cache) */
195 
196 #else
197 #define PQ_PRIME1 1	/* Disable page coloring. */
198 #define PQ_PRIME2 1
199 #define PQ_L2_SIZE 1
200 
201 #endif
202 
203 #define PQ_L2_MASK (PQ_L2_SIZE - 1)
204 
205 #if 1
206 #define PQ_NONE 0
207 #define PQ_FREE	1
208 #define PQ_INACTIVE (1 + 1*PQ_L2_SIZE)
209 #define PQ_ACTIVE (2 + 1*PQ_L2_SIZE)
210 #define PQ_CACHE (3 + 1*PQ_L2_SIZE)
211 #define PQ_COUNT (3 + 2*PQ_L2_SIZE)
212 #else
213 #define PQ_NONE		PQ_COUNT
214 #define PQ_FREE		0
215 #define PQ_INACTIVE	PQ_L2_SIZE
216 #define PQ_ACTIVE	(1 +   PQ_L2_SIZE)
217 #define PQ_CACHE	(2 +   PQ_L2_SIZE)
218 #define PQ_COUNT	(2 + 2*PQ_L2_SIZE)
219 #endif
220 
221 struct vpgqueues {
222 	struct pglist pl;
223 	int	*cnt;
224 	int	lcnt;
225 };
226 
227 extern struct vpgqueues vm_page_queues[PQ_COUNT];
228 
229 #endif
230 
231 /*
232  * These are the flags defined for vm_page.
233  *
234  * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
235  *
236  * Note: PG_UNMANAGED (used by OBJT_PHYS) indicates that the page is
237  * 	 not under PV management but otherwise should be treated as a
238  *	 normal page.  Pages not under PV management cannot be paged out
239  *	 via the object/vm_page_t because there is no knowledge of their
240  *	 pte mappings, nor can they be removed from their objects via
241  *	 the object, and such pages are also not on any PQ queue.
242  */
243 #define	PG_BUSY		0x0001		/* page is in transit (O) */
244 #define	PG_WANTED	0x0002		/* someone is waiting for page (O) */
245 #define	PG_FICTITIOUS	0x0008		/* physical page doesn't exist (O) */
246 #define	PG_WRITEABLE	0x0010		/* page is mapped writeable */
247 #define PG_MAPPED	0x0020		/* page is mapped */
248 #define	PG_ZERO		0x0040		/* page is zeroed */
249 #define PG_REFERENCED	0x0080		/* page has been referenced */
250 #define PG_CLEANCHK	0x0100		/* page will be checked for cleaning */
251 #define PG_SWAPINPROG	0x0200		/* swap I/O in progress on page	     */
252 #define PG_NOSYNC	0x0400		/* do not collect for syncer */
253 #define PG_UNMANAGED	0x0800		/* No PV management for page */
254 
255 /*
256  * Misc constants.
257  */
258 
259 #define ACT_DECLINE		1
260 #define ACT_ADVANCE		3
261 #define ACT_INIT		5
262 #define ACT_MAX			64
263 #define PFCLUSTER_BEHIND	3
264 #define PFCLUSTER_AHEAD		3
265 
266 #ifdef _KERNEL
267 /*
268  * Each pageable resident page falls into one of four lists:
269  *
270  *	free
271  *		Available for allocation now.
272  *
273  * The following are all LRU sorted:
274  *
275  *	cache
276  *		Almost available for allocation. Still in an
277  *		object, but clean and immediately freeable at
278  *		non-interrupt times.
279  *
280  *	inactive
281  *		Low activity, candidates for reclamation.
282  *		This is the list of pages that should be
283  *		paged out next.
284  *
285  *	active
286  *		Pages that are "active" i.e. they have been
287  *		recently referenced.
288  *
289  *	zero
290  *		Pages that are really free and have been pre-zeroed
291  *
292  */
293 
294 extern int vm_page_zero_count;
295 
296 extern vm_page_t vm_page_array;		/* First resident page in table */
297 extern int vm_page_array_size;		/* number of vm_page_t's */
298 extern long first_page;			/* first physical page number */
299 
300 #define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
301 
302 #define PHYS_TO_VM_PAGE(pa) \
303 		(&vm_page_array[atop(pa) - first_page ])
304 
305 /*
306  *	Functions implemented as macros
307  */
308 
309 static __inline void
310 vm_page_flag_set(vm_page_t m, unsigned int bits)
311 {
312 	atomic_set_short(&(m)->flags, bits);
313 }
314 
315 static __inline void
316 vm_page_flag_clear(vm_page_t m, unsigned int bits)
317 {
318 	atomic_clear_short(&(m)->flags, bits);
319 }
320 
321 #if 0
322 static __inline void
323 vm_page_assert_wait(vm_page_t m, int interruptible)
324 {
325 	vm_page_flag_set(m, PG_WANTED);
326 	assert_wait((int) m, interruptible);
327 }
328 #endif
329 
330 static __inline void
331 vm_page_busy(vm_page_t m)
332 {
333 	KASSERT((m->flags & PG_BUSY) == 0, ("vm_page_busy: page already busy!!!"));
334 	vm_page_flag_set(m, PG_BUSY);
335 }
336 
337 /*
338  *	vm_page_flash:
339  *
340  *	wakeup anyone waiting for the page.
341  */
342 
343 static __inline void
344 vm_page_flash(vm_page_t m)
345 {
346 	if (m->flags & PG_WANTED) {
347 		vm_page_flag_clear(m, PG_WANTED);
348 		wakeup(m);
349 	}
350 }
351 
352 /*
353  *	vm_page_wakeup:
354  *
355  *	clear the PG_BUSY flag and wakeup anyone waiting for the
356  *	page.
357  *
358  */
359 
360 static __inline void
361 vm_page_wakeup(vm_page_t m)
362 {
363 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
364 	vm_page_flag_clear(m, PG_BUSY);
365 	vm_page_flash(m);
366 }
367 
368 /*
369  *
370  *
371  */
372 
373 static __inline void
374 vm_page_io_start(vm_page_t m)
375 {
376 	atomic_add_char(&(m)->busy, 1);
377 }
378 
379 static __inline void
380 vm_page_io_finish(vm_page_t m)
381 {
382 	atomic_subtract_char(&m->busy, 1);
383 	if (m->busy == 0)
384 		vm_page_flash(m);
385 }
386 
387 
388 #if PAGE_SIZE == 4096
389 #define VM_PAGE_BITS_ALL 0xff
390 #endif
391 
392 #if PAGE_SIZE == 8192
393 #define VM_PAGE_BITS_ALL 0xffff
394 #endif
395 
396 #define VM_ALLOC_NORMAL		0
397 #define VM_ALLOC_INTERRUPT	1
398 #define VM_ALLOC_SYSTEM		2
399 #define	VM_ALLOC_ZERO		3
400 #define	VM_ALLOC_RETRY		0x80
401 
402 void vm_page_activate __P((vm_page_t));
403 vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int));
404 vm_page_t vm_page_grab __P((vm_object_t, vm_pindex_t, int));
405 void vm_page_cache __P((register vm_page_t));
406 void vm_page_dontneed __P((register vm_page_t));
407 static __inline void vm_page_copy __P((vm_page_t, vm_page_t));
408 static __inline void vm_page_free __P((vm_page_t));
409 static __inline void vm_page_free_zero __P((vm_page_t));
410 void vm_page_deactivate __P((vm_page_t));
411 void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t));
412 vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t));
413 void vm_page_remove __P((vm_page_t));
414 void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t));
415 vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t));
416 vm_page_t vm_add_new_page __P((vm_offset_t pa));
417 void vm_page_unmanage __P((vm_page_t));
418 void vm_page_unwire __P((vm_page_t, int));
419 void vm_page_wire __P((vm_page_t));
420 void vm_page_unqueue __P((vm_page_t));
421 void vm_page_unqueue_nowakeup __P((vm_page_t));
422 void vm_page_set_validclean __P((vm_page_t, int, int));
423 void vm_page_set_dirty __P((vm_page_t, int, int));
424 void vm_page_clear_dirty __P((vm_page_t, int, int));
425 void vm_page_set_invalid __P((vm_page_t, int, int));
426 static __inline boolean_t vm_page_zero_fill __P((vm_page_t));
427 int vm_page_is_valid __P((vm_page_t, int, int));
428 void vm_page_test_dirty __P((vm_page_t));
429 int vm_page_bits __P((int, int));
430 vm_page_t _vm_page_list_find __P((int, int));
431 #if 0
432 int vm_page_sleep(vm_page_t m, char *msg, char *busy);
433 int vm_page_asleep(vm_page_t m, char *msg, char *busy);
434 #endif
435 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
436 void vm_page_free_toq(vm_page_t m);
437 
438 /*
439  * Keep page from being freed by the page daemon
440  * much of the same effect as wiring, except much lower
441  * overhead and should be used only for *very* temporary
442  * holding ("wiring").
443  */
444 static __inline void
445 vm_page_hold(vm_page_t mem)
446 {
447 	mem->hold_count++;
448 }
449 
450 static __inline void
451 vm_page_unhold(vm_page_t mem)
452 {
453 	--mem->hold_count;
454 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
455 }
456 
457 /*
458  * 	vm_page_protect:
459  *
460  *	Reduce the protection of a page.  This routine never raises the
461  *	protection and therefore can be safely called if the page is already
462  *	at VM_PROT_NONE (it will be a NOP effectively ).
463  */
464 
465 static __inline void
466 vm_page_protect(vm_page_t mem, int prot)
467 {
468 	if (prot == VM_PROT_NONE) {
469 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
470 			pmap_page_protect(mem, VM_PROT_NONE);
471 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
472 		}
473 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
474 		pmap_page_protect(mem, VM_PROT_READ);
475 		vm_page_flag_clear(mem, PG_WRITEABLE);
476 	}
477 }
478 
479 /*
480  *	vm_page_zero_fill:
481  *
482  *	Zero-fill the specified page.
483  *	Written as a standard pagein routine, to
484  *	be used by the zero-fill object.
485  */
486 static __inline boolean_t
487 vm_page_zero_fill(m)
488 	vm_page_t m;
489 {
490 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
491 	return (TRUE);
492 }
493 
494 /*
495  *	vm_page_copy:
496  *
497  *	Copy one page to another
498  */
499 static __inline void
500 vm_page_copy(src_m, dest_m)
501 	vm_page_t src_m;
502 	vm_page_t dest_m;
503 {
504 	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
505 	dest_m->valid = VM_PAGE_BITS_ALL;
506 }
507 
508 /*
509  *	vm_page_free:
510  *
511  *	Free a page
512  *
513  *	The clearing of PG_ZERO is a temporary safety until the code can be
514  *	reviewed to determine that PG_ZERO is being properly cleared on
515  *	write faults or maps.  PG_ZERO was previously cleared in
516  *	vm_page_alloc().
517  */
518 static __inline void
519 vm_page_free(m)
520 	vm_page_t m;
521 {
522 	vm_page_flag_clear(m, PG_ZERO);
523 	vm_page_free_toq(m);
524 }
525 
526 /*
527  *	vm_page_free_zero:
528  *
529  *	Free a page to the zerod-pages queue
530  */
531 static __inline void
532 vm_page_free_zero(m)
533 	vm_page_t m;
534 {
535 	vm_page_flag_set(m, PG_ZERO);
536 	vm_page_free_toq(m);
537 }
538 
539 /*
540  *	vm_page_sleep_busy:
541  *
542  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
543  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
544  *	it almost had to sleep and made temporary spl*() mods), FALSE
545  *	otherwise.
546  *
547  *	This routine assumes that interrupts can only remove the busy
548  *	status from a page, not set the busy status or change it from
549  *	PG_BUSY to m->busy or vise versa (which would create a timing
550  *	window).
551  *
552  *	Note that being an inline, this code will be well optimized.
553  */
554 
555 static __inline int
556 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
557 {
558 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
559 		int s = splvm();
560 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
561 			/*
562 			 * Page is busy. Wait and retry.
563 			 */
564 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
565 			tsleep(m, PVM, msg, 0);
566 		}
567 		splx(s);
568 		return(TRUE);
569 		/* not reached */
570 	}
571 	return(FALSE);
572 }
573 
574 /*
575  *	vm_page_dirty:
576  *
577  *	make page all dirty
578  */
579 
580 static __inline void
581 vm_page_dirty(vm_page_t m)
582 {
583 #if !defined(KLD_MODULE)
584 	KASSERT(m->queue - m->pc != PQ_CACHE, ("vm_page_dirty: page in cache!"));
585 #endif
586 	m->dirty = VM_PAGE_BITS_ALL;
587 }
588 
589 /*
590  *	vm_page_undirty:
591  *
592  *	Set page to not be dirty.  Note: does not clear pmap modify bits
593  */
594 
595 static __inline void
596 vm_page_undirty(vm_page_t m)
597 {
598 	m->dirty = 0;
599 }
600 
601 #if !defined(KLD_MODULE)
602 
603 static __inline vm_page_t
604 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
605 {
606 	vm_page_t m;
607 
608 #if PQ_L2_SIZE > 1
609 	if (prefer_zero) {
610 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
611 	} else {
612 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
613 	}
614 	if (m == NULL)
615 		m = _vm_page_list_find(basequeue, index);
616 #else
617 	if (prefer_zero) {
618 		m = TAILQ_LAST(&vm_page_queues[basequeue].pl, pglist);
619 	} else {
620 		m = TAILQ_FIRST(&vm_page_queues[basequeue].pl);
621 	}
622 #endif
623 	return(m);
624 }
625 
626 #endif
627 
628 #endif				/* _KERNEL */
629 #endif				/* !_VM_PAGE_ */
630