1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 * 60 * $FreeBSD$ 61 */ 62 63 /* 64 * Resident memory system definitions. 65 */ 66 67 #ifndef _VM_PAGE_ 68 #define _VM_PAGE_ 69 70 #include <vm/pmap.h> 71 72 /* 73 * Management of resident (logical) pages. 74 * 75 * A small structure is kept for each resident 76 * page, indexed by page number. Each structure 77 * is an element of several lists: 78 * 79 * A hash table bucket used to quickly 80 * perform object/offset lookups 81 * 82 * A list of all pages for a given object, 83 * so they can be quickly deactivated at 84 * time of deallocation. 85 * 86 * An ordered list of pages due for pageout. 87 * 88 * In addition, the structure contains the object 89 * and offset to which this page belongs (for pageout), 90 * and sundry status bits. 91 * 92 * Fields in this structure are locked either by the lock on the 93 * object that the page belongs to (O), its corresponding page lock (P), 94 * or by the lock on the page queues (Q). 95 * 96 */ 97 98 TAILQ_HEAD(pglist, vm_page); 99 100 struct vm_page { 101 TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO queue or free list (Q) */ 102 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ 103 struct vm_page *left; /* splay tree link (O) */ 104 struct vm_page *right; /* splay tree link (O) */ 105 106 vm_object_t object; /* which object am I in (O,P)*/ 107 vm_pindex_t pindex; /* offset into object (O,Q) */ 108 vm_paddr_t phys_addr; /* physical address of page */ 109 struct md_page md; /* machine dependant stuff */ 110 uint8_t queue; /* page queue index (P,Q) */ 111 int8_t segind; 112 u_short flags; /* see below */ 113 uint8_t order; /* index of the buddy queue */ 114 uint8_t pool; 115 u_short cow; /* page cow mapping count (P) */ 116 u_int wire_count; /* wired down maps refs (P) */ 117 short hold_count; /* page hold count (P) */ 118 u_short oflags; /* page flags (O) */ 119 u_char act_count; /* page usage count (P) */ 120 u_char busy; /* page busy count (O) */ 121 /* NOTE that these must support one bit per DEV_BSIZE in a page!!! */ 122 /* so, on normal X86 kernels, they must be at least 8 bits wide */ 123 #if PAGE_SIZE == 4096 124 u_char valid; /* map of valid DEV_BSIZE chunks (O) */ 125 u_char dirty; /* map of dirty DEV_BSIZE chunks (O) */ 126 #elif PAGE_SIZE == 8192 127 u_short valid; /* map of valid DEV_BSIZE chunks (O) */ 128 u_short dirty; /* map of dirty DEV_BSIZE chunks (O) */ 129 #elif PAGE_SIZE == 16384 130 u_int valid; /* map of valid DEV_BSIZE chunks (O) */ 131 u_int dirty; /* map of dirty DEV_BSIZE chunks (O) */ 132 #elif PAGE_SIZE == 32768 133 u_long valid; /* map of valid DEV_BSIZE chunks (O) */ 134 u_long dirty; /* map of dirty DEV_BSIZE chunks (O) */ 135 #endif 136 }; 137 138 /* 139 * Page flags stored in oflags: 140 * 141 * Access to these page flags is synchronized by the lock on the object 142 * containing the page (O). 143 */ 144 #define VPO_BUSY 0x0001 /* page is in transit */ 145 #define VPO_WANTED 0x0002 /* someone is waiting for page */ 146 #define VPO_CLEANCHK 0x0100 /* page will be checked for cleaning */ 147 #define VPO_SWAPINPROG 0x0200 /* swap I/O in progress on page */ 148 #define VPO_NOSYNC 0x0400 /* do not collect for syncer */ 149 150 #define PQ_NONE 0 151 #define PQ_INACTIVE 1 152 #define PQ_ACTIVE 2 153 #define PQ_HOLD 3 154 #define PQ_COUNT 4 155 156 /* Returns the real queue a page is on. */ 157 #define VM_PAGE_GETQUEUE(m) ((m)->queue) 158 159 /* Returns the well known queue a page is on. */ 160 #define VM_PAGE_GETKNOWNQUEUE2(m) VM_PAGE_GETQUEUE(m) 161 162 /* Returns true if the page is in the named well known queue. */ 163 #define VM_PAGE_INQUEUE2(m, q) (VM_PAGE_GETKNOWNQUEUE2(m) == (q)) 164 165 /* Sets the queue a page is on. */ 166 #define VM_PAGE_SETQUEUE2(m, q) (VM_PAGE_GETQUEUE(m) = (q)) 167 168 struct vpgqueues { 169 struct pglist pl; 170 int *cnt; 171 }; 172 173 extern struct vpgqueues vm_page_queues[PQ_COUNT]; 174 175 struct vpglocks { 176 struct mtx data; 177 char pad[CACHE_LINE_SIZE - sizeof(struct mtx)]; 178 } __aligned(CACHE_LINE_SIZE); 179 180 extern struct vpglocks vm_page_queue_free_lock; 181 extern struct vpglocks pa_lock[]; 182 183 #if defined(__arm__) 184 #define PDRSHIFT PDR_SHIFT 185 #elif !defined(PDRSHIFT) 186 #define PDRSHIFT 21 187 #endif 188 189 #define pa_index(pa) ((pa) >> PDRSHIFT) 190 #define PA_LOCKPTR(pa) &pa_lock[pa_index((pa)) % PA_LOCK_COUNT].data 191 #define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa))) 192 #define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa)) 193 #define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa)) 194 #define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa)) 195 #define PA_UNLOCK_COND(pa) \ 196 do { \ 197 if ((pa) != 0) { \ 198 PA_UNLOCK((pa)); \ 199 (pa) = 0; \ 200 } \ 201 } while (0) 202 203 #define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a)) 204 205 #define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m)))) 206 #define vm_page_lock(m) mtx_lock(vm_page_lockptr((m))) 207 #define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m))) 208 #define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m))) 209 #define vm_page_lock_assert(m, a) mtx_assert(vm_page_lockptr((m)), (a)) 210 211 #define vm_page_queue_free_mtx vm_page_queue_free_lock.data 212 /* 213 * These are the flags defined for vm_page. 214 * 215 * Note: PG_UNMANAGED (used by OBJT_PHYS) indicates that the page is 216 * not under PV management but otherwise should be treated as a 217 * normal page. Pages not under PV management cannot be paged out 218 * via the object/vm_page_t because there is no knowledge of their 219 * pte mappings, nor can they be removed from their objects via 220 * the object, and such pages are also not on any PQ queue. 221 * 222 * PG_WRITEABLE is set exclusively on managed pages by pmap_enter(). When it 223 * does so, the page must be VPO_BUSY. 224 */ 225 #define PG_CACHED 0x0001 /* page is cached */ 226 #define PG_FREE 0x0002 /* page is free */ 227 #define PG_WINATCFLS 0x0004 /* flush dirty page on inactive q */ 228 #define PG_FICTITIOUS 0x0008 /* physical page doesn't exist (O) */ 229 #define PG_WRITEABLE 0x0010 /* page is mapped writeable */ 230 #define PG_ZERO 0x0040 /* page is zeroed */ 231 #define PG_REFERENCED 0x0080 /* page has been referenced */ 232 #define PG_UNMANAGED 0x0800 /* No PV management for page */ 233 #define PG_MARKER 0x1000 /* special queue marker page */ 234 #define PG_SLAB 0x2000 /* object pointer is actually a slab */ 235 236 /* 237 * Misc constants. 238 */ 239 #define ACT_DECLINE 1 240 #define ACT_ADVANCE 3 241 #define ACT_INIT 5 242 #define ACT_MAX 64 243 244 #ifdef _KERNEL 245 246 #include <vm/vm_param.h> 247 248 /* 249 * Each pageable resident page falls into one of five lists: 250 * 251 * free 252 * Available for allocation now. 253 * 254 * cache 255 * Almost available for allocation. Still associated with 256 * an object, but clean and immediately freeable. 257 * 258 * hold 259 * Will become free after a pending I/O operation 260 * completes. 261 * 262 * The following lists are LRU sorted: 263 * 264 * inactive 265 * Low activity, candidates for reclamation. 266 * This is the list of pages that should be 267 * paged out next. 268 * 269 * active 270 * Pages that are "active" i.e. they have been 271 * recently referenced. 272 * 273 */ 274 275 extern int vm_page_zero_count; 276 277 extern vm_page_t vm_page_array; /* First resident page in table */ 278 extern int vm_page_array_size; /* number of vm_page_t's */ 279 extern long first_page; /* first physical page number */ 280 281 #define VM_PAGE_IS_FREE(m) (((m)->flags & PG_FREE) != 0) 282 283 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) 284 285 vm_page_t vm_phys_paddr_to_vm_page(vm_paddr_t pa); 286 287 static __inline vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa); 288 289 static __inline vm_page_t 290 PHYS_TO_VM_PAGE(vm_paddr_t pa) 291 { 292 #ifdef VM_PHYSSEG_SPARSE 293 return (vm_phys_paddr_to_vm_page(pa)); 294 #elif defined(VM_PHYSSEG_DENSE) 295 return (&vm_page_array[atop(pa) - first_page]); 296 #else 297 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 298 #endif 299 } 300 301 extern struct vpglocks vm_page_queue_lock; 302 303 #define vm_page_queue_mtx vm_page_queue_lock.data 304 #define vm_page_lock_queues() mtx_lock(&vm_page_queue_mtx) 305 #define vm_page_unlock_queues() mtx_unlock(&vm_page_queue_mtx) 306 307 #if PAGE_SIZE == 4096 308 #define VM_PAGE_BITS_ALL 0xffu 309 #elif PAGE_SIZE == 8192 310 #define VM_PAGE_BITS_ALL 0xffffu 311 #elif PAGE_SIZE == 16384 312 #define VM_PAGE_BITS_ALL 0xffffffffu 313 #elif PAGE_SIZE == 32768 314 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu 315 #endif 316 317 /* page allocation classes: */ 318 #define VM_ALLOC_NORMAL 0 319 #define VM_ALLOC_INTERRUPT 1 320 #define VM_ALLOC_SYSTEM 2 321 #define VM_ALLOC_CLASS_MASK 3 322 /* page allocation flags: */ 323 #define VM_ALLOC_WIRED 0x0020 /* non pageable */ 324 #define VM_ALLOC_ZERO 0x0040 /* Try to obtain a zeroed page */ 325 #define VM_ALLOC_RETRY 0x0080 /* vm_page_grab() only */ 326 #define VM_ALLOC_NOOBJ 0x0100 /* No associated object */ 327 #define VM_ALLOC_NOBUSY 0x0200 /* Do not busy the page */ 328 #define VM_ALLOC_IFCACHED 0x0400 /* Fail if the page is not cached */ 329 #define VM_ALLOC_IFNOTCACHED 0x0800 /* Fail if the page is cached */ 330 331 void vm_page_flag_set(vm_page_t m, unsigned short bits); 332 void vm_page_flag_clear(vm_page_t m, unsigned short bits); 333 void vm_page_busy(vm_page_t m); 334 void vm_page_flash(vm_page_t m); 335 void vm_page_io_start(vm_page_t m); 336 void vm_page_io_finish(vm_page_t m); 337 void vm_page_hold(vm_page_t mem); 338 void vm_page_unhold(vm_page_t mem); 339 void vm_page_free(vm_page_t m); 340 void vm_page_free_zero(vm_page_t m); 341 void vm_page_dirty(vm_page_t m); 342 void vm_page_wakeup(vm_page_t m); 343 344 void vm_pageq_remove(vm_page_t m); 345 346 void vm_page_activate (vm_page_t); 347 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int); 348 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int); 349 void vm_page_cache(vm_page_t); 350 void vm_page_cache_free(vm_object_t, vm_pindex_t, vm_pindex_t); 351 void vm_page_cache_remove(vm_page_t); 352 void vm_page_cache_transfer(vm_object_t, vm_pindex_t, vm_object_t); 353 int vm_page_try_to_cache (vm_page_t); 354 int vm_page_try_to_free (vm_page_t); 355 void vm_page_dontneed(vm_page_t); 356 void vm_page_deactivate (vm_page_t); 357 void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t); 358 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t); 359 int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *); 360 void vm_page_remove (vm_page_t); 361 void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t); 362 void vm_page_requeue(vm_page_t m); 363 void vm_page_set_valid(vm_page_t m, int base, int size); 364 void vm_page_sleep(vm_page_t m, const char *msg); 365 vm_page_t vm_page_splay(vm_pindex_t, vm_page_t); 366 vm_offset_t vm_page_startup(vm_offset_t vaddr); 367 void vm_page_unwire (vm_page_t, int); 368 void vm_page_wire (vm_page_t); 369 void vm_page_set_validclean (vm_page_t, int, int); 370 void vm_page_clear_dirty (vm_page_t, int, int); 371 void vm_page_set_invalid (vm_page_t, int, int); 372 int vm_page_is_valid (vm_page_t, int, int); 373 void vm_page_test_dirty (vm_page_t); 374 int vm_page_bits (int, int); 375 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid); 376 void vm_page_free_toq(vm_page_t m); 377 void vm_page_zero_idle_wakeup(void); 378 void vm_page_cowfault (vm_page_t); 379 int vm_page_cowsetup(vm_page_t); 380 void vm_page_cowclear (vm_page_t); 381 382 /* 383 * vm_page_sleep_if_busy: 384 * 385 * Sleep and release the page queues lock if VPO_BUSY is set or, 386 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 387 * thread slept and the page queues lock was released. 388 * Otherwise, retains the page queues lock and returns FALSE. 389 * 390 * The object containing the given page must be locked. 391 */ 392 static __inline int 393 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 394 { 395 396 if ((m->oflags & VPO_BUSY) || (also_m_busy && m->busy)) { 397 vm_page_sleep(m, msg); 398 return (TRUE); 399 } 400 return (FALSE); 401 } 402 403 /* 404 * vm_page_undirty: 405 * 406 * Set page to not be dirty. Note: does not clear pmap modify bits 407 */ 408 static __inline void 409 vm_page_undirty(vm_page_t m) 410 { 411 m->dirty = 0; 412 } 413 414 #endif /* _KERNEL */ 415 #endif /* !_VM_PAGE_ */ 416