1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 * 62 * $FreeBSD$ 63 */ 64 65 /* 66 * Resident memory system definitions. 67 */ 68 69 #ifndef _VM_PAGE_ 70 #define _VM_PAGE_ 71 72 #include <sys/_bitset.h> 73 #include <sys/bitset.h> 74 #include <vm/pmap.h> 75 76 /* 77 * Management of resident (logical) pages. 78 * 79 * A small structure is kept for each resident 80 * page, indexed by page number. Each structure 81 * is an element of several collections: 82 * 83 * A radix tree used to quickly 84 * perform object/offset lookups 85 * 86 * A list of all pages for a given object, 87 * so they can be quickly deactivated at 88 * time of deallocation. 89 * 90 * An ordered list of pages due for pageout. 91 * 92 * In addition, the structure contains the object 93 * and offset to which this page belongs (for pageout), 94 * and sundry status bits. 95 * 96 * In general, operations on this structure's mutable fields are 97 * synchronized using either one of or a combination of locks. If a 98 * field is annotated with two of these locks then holding either is 99 * sufficient for read access but both are required for write access. 100 * The queue lock for a page depends on the value of its queue field and is 101 * described in detail below. 102 * 103 * The following annotations are possible: 104 * (A) the field must be accessed using atomic(9) and may require 105 * additional synchronization. 106 * (B) the page busy lock. 107 * (C) the field is immutable. 108 * (F) the per-domain lock for the free queues. 109 * (M) Machine dependent, defined by pmap layer. 110 * (O) the object that the page belongs to. 111 * (Q) the page's queue lock. 112 * 113 * The busy lock is an embedded reader-writer lock that protects the 114 * page's contents and identity (i.e., its <object, pindex> tuple) as 115 * well as certain valid/dirty modifications. To avoid bloating the 116 * the page structure, the busy lock lacks some of the features available 117 * the kernel's general-purpose synchronization primitives. As a result, 118 * busy lock ordering rules are not verified, lock recursion is not 119 * detected, and an attempt to xbusy a busy page or sbusy an xbusy page 120 * results will trigger a panic rather than causing the thread to block. 121 * vm_page_sleep_if_busy() can be used to sleep until the page's busy 122 * state changes, after which the caller must re-lookup the page and 123 * re-evaluate its state. vm_page_busy_acquire() will block until 124 * the lock is acquired. 125 * 126 * The valid field is protected by the page busy lock (B) and object 127 * lock (O). Transitions from invalid to valid are generally done 128 * via I/O or zero filling and do not require the object lock. 129 * These must be protected with the busy lock to prevent page-in or 130 * creation races. Page invalidation generally happens as a result 131 * of truncate or msync. When invalidated, pages must not be present 132 * in pmap and must hold the object lock to prevent concurrent 133 * speculative read-only mappings that do not require busy. I/O 134 * routines may check for validity without a lock if they are prepared 135 * to handle invalidation races with higher level locks (vnode) or are 136 * unconcerned with races so long as they hold a reference to prevent 137 * recycling. When a valid bit is set while holding a shared busy 138 * lock (A) atomic operations are used to protect against concurrent 139 * modification. 140 * 141 * In contrast, the synchronization of accesses to the page's 142 * dirty field is a mix of machine dependent (M) and busy (B). In 143 * the machine-independent layer, the page busy must be held to 144 * operate on the field. However, the pmap layer is permitted to 145 * set all bits within the field without holding that lock. If the 146 * underlying architecture does not support atomic read-modify-write 147 * operations on the field's type, then the machine-independent 148 * layer uses a 32-bit atomic on the aligned 32-bit word that 149 * contains the dirty field. In the machine-independent layer, 150 * the implementation of read-modify-write operations on the 151 * field is encapsulated in vm_page_clear_dirty_mask(). An 152 * exclusive busy lock combined with pmap_remove_{write/all}() is the 153 * only way to ensure a page can not become dirty. I/O generally 154 * removes the page from pmap to ensure exclusive access and atomic 155 * writes. 156 * 157 * The ref_count field tracks references to the page. References that 158 * prevent the page from being reclaimable are called wirings and are 159 * counted in the low bits of ref_count. The containing object's 160 * reference, if one exists, is counted using the VPRC_OBJREF bit in the 161 * ref_count field. Additionally, the VPRC_BLOCKED bit is used to 162 * atomically check for wirings and prevent new wirings via 163 * pmap_extract_and_hold(). When a page belongs to an object, it may be 164 * wired only when the object is locked, or the page is busy, or by 165 * pmap_extract_and_hold(). As a result, if the object is locked and the 166 * page is not busy (or is exclusively busied by the current thread), and 167 * the page is unmapped, its wire count will not increase. The ref_count 168 * field is updated using atomic operations in most cases, except when it 169 * is known that no other references to the page exist, such as in the page 170 * allocator. A page may be present in the page queues, or even actively 171 * scanned by the page daemon, without an explicitly counted referenced. 172 * The page daemon must therefore handle the possibility of a concurrent 173 * free of the page. 174 * 175 * The queue state of a page consists of the queue and act_count fields of 176 * its atomically updated state, and the subset of atomic flags specified 177 * by PGA_QUEUE_STATE_MASK. The queue field contains the page's page queue 178 * index, or PQ_NONE if it does not belong to a page queue. To modify the 179 * queue field, the page queue lock corresponding to the old value must be 180 * held, unless that value is PQ_NONE, in which case the queue index must 181 * be updated using an atomic RMW operation. There is one exception to 182 * this rule: the page daemon may transition the queue field from 183 * PQ_INACTIVE to PQ_NONE immediately prior to freeing the page during an 184 * inactive queue scan. At that point the page is already dequeued and no 185 * other references to that vm_page structure can exist. The PGA_ENQUEUED 186 * flag, when set, indicates that the page structure is physically inserted 187 * into the queue corresponding to the page's queue index, and may only be 188 * set or cleared with the corresponding page queue lock held. 189 * 190 * To avoid contention on page queue locks, page queue operations (enqueue, 191 * dequeue, requeue) are batched using fixed-size per-CPU queues. A 192 * deferred operation is requested by setting one of the flags in 193 * PGA_QUEUE_OP_MASK and inserting an entry into a batch queue. When a 194 * queue is full, an attempt to insert a new entry will lock the page 195 * queues and trigger processing of the pending entries. The 196 * type-stability of vm_page structures is crucial to this scheme since the 197 * processing of entries in a given batch queue may be deferred 198 * indefinitely. In particular, a page may be freed with pending batch 199 * queue entries. The page queue operation flags must be set using atomic 200 * RWM operations. 201 */ 202 203 #if PAGE_SIZE == 4096 204 #define VM_PAGE_BITS_ALL 0xffu 205 typedef uint8_t vm_page_bits_t; 206 #elif PAGE_SIZE == 8192 207 #define VM_PAGE_BITS_ALL 0xffffu 208 typedef uint16_t vm_page_bits_t; 209 #elif PAGE_SIZE == 16384 210 #define VM_PAGE_BITS_ALL 0xffffffffu 211 typedef uint32_t vm_page_bits_t; 212 #elif PAGE_SIZE == 32768 213 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu 214 typedef uint64_t vm_page_bits_t; 215 #endif 216 217 typedef union vm_page_astate { 218 struct { 219 uint16_t flags; 220 uint8_t queue; 221 uint8_t act_count; 222 }; 223 uint32_t _bits; 224 } vm_page_astate_t; 225 226 struct vm_page { 227 union { 228 TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */ 229 struct { 230 SLIST_ENTRY(vm_page) ss; /* private slists */ 231 } s; 232 struct { 233 u_long p; 234 u_long v; 235 } memguard; 236 struct { 237 void *slab; 238 void *zone; 239 } uma; 240 } plinks; 241 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ 242 vm_object_t object; /* which object am I in (O) */ 243 vm_pindex_t pindex; /* offset into object (O,P) */ 244 vm_paddr_t phys_addr; /* physical address of page (C) */ 245 struct md_page md; /* machine dependent stuff */ 246 u_int ref_count; /* page references (A) */ 247 u_int busy_lock; /* busy owners lock (A) */ 248 union vm_page_astate a; /* state accessed atomically (A) */ 249 uint8_t order; /* index of the buddy queue (F) */ 250 uint8_t pool; /* vm_phys freepool index (F) */ 251 uint8_t flags; /* page PG_* flags (P) */ 252 uint8_t oflags; /* page VPO_* flags (O) */ 253 int8_t psind; /* pagesizes[] index (O) */ 254 int8_t segind; /* vm_phys segment index (C) */ 255 /* NOTE that these must support one bit per DEV_BSIZE in a page */ 256 /* so, on normal X86 kernels, they must be at least 8 bits wide */ 257 vm_page_bits_t valid; /* valid DEV_BSIZE chunk map (O,B) */ 258 vm_page_bits_t dirty; /* dirty DEV_BSIZE chunk map (M,B) */ 259 }; 260 261 /* 262 * Special bits used in the ref_count field. 263 * 264 * ref_count is normally used to count wirings that prevent the page from being 265 * reclaimed, but also supports several special types of references that do not 266 * prevent reclamation. Accesses to the ref_count field must be atomic unless 267 * the page is unallocated. 268 * 269 * VPRC_OBJREF is the reference held by the containing object. It can set or 270 * cleared only when the corresponding object's write lock is held. 271 * 272 * VPRC_BLOCKED is used to atomically block wirings via pmap lookups while 273 * attempting to tear down all mappings of a given page. The page busy lock and 274 * object write lock must both be held in order to set or clear this bit. 275 */ 276 #define VPRC_BLOCKED 0x40000000u /* mappings are being removed */ 277 #define VPRC_OBJREF 0x80000000u /* object reference, cleared with (O) */ 278 #define VPRC_WIRE_COUNT(c) ((c) & ~(VPRC_BLOCKED | VPRC_OBJREF)) 279 #define VPRC_WIRE_COUNT_MAX (~(VPRC_BLOCKED | VPRC_OBJREF)) 280 281 /* 282 * Page flags stored in oflags: 283 * 284 * Access to these page flags is synchronized by the lock on the object 285 * containing the page (O). 286 * 287 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG) 288 * indicates that the page is not under PV management but 289 * otherwise should be treated as a normal page. Pages not 290 * under PV management cannot be paged out via the 291 * object/vm_page_t because there is no knowledge of their pte 292 * mappings, and such pages are also not on any PQ queue. 293 * 294 */ 295 #define VPO_KMEM_EXEC 0x01 /* kmem mapping allows execution */ 296 #define VPO_SWAPSLEEP 0x02 /* waiting for swap to finish */ 297 #define VPO_UNMANAGED 0x04 /* no PV management for page */ 298 #define VPO_SWAPINPROG 0x08 /* swap I/O in progress on page */ 299 300 /* 301 * Busy page implementation details. 302 * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation, 303 * even if the support for owner identity is removed because of size 304 * constraints. Checks on lock recursion are then not possible, while the 305 * lock assertions effectiveness is someway reduced. 306 */ 307 #define VPB_BIT_SHARED 0x01 308 #define VPB_BIT_EXCLUSIVE 0x02 309 #define VPB_BIT_WAITERS 0x04 310 #define VPB_BIT_FLAGMASK \ 311 (VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS) 312 313 #define VPB_SHARERS_SHIFT 3 314 #define VPB_SHARERS(x) \ 315 (((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT) 316 #define VPB_SHARERS_WORD(x) ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED) 317 #define VPB_ONE_SHARER (1 << VPB_SHARERS_SHIFT) 318 319 #define VPB_SINGLE_EXCLUSIVE VPB_BIT_EXCLUSIVE 320 #ifdef INVARIANTS 321 #define VPB_CURTHREAD_EXCLUSIVE \ 322 (VPB_BIT_EXCLUSIVE | ((u_int)(uintptr_t)curthread & ~VPB_BIT_FLAGMASK)) 323 #else 324 #define VPB_CURTHREAD_EXCLUSIVE VPB_SINGLE_EXCLUSIVE 325 #endif 326 327 #define VPB_UNBUSIED VPB_SHARERS_WORD(0) 328 329 /* Freed lock blocks both shared and exclusive. */ 330 #define VPB_FREED (0xffffffff - VPB_BIT_SHARED) 331 332 #define PQ_NONE 255 333 #define PQ_INACTIVE 0 334 #define PQ_ACTIVE 1 335 #define PQ_LAUNDRY 2 336 #define PQ_UNSWAPPABLE 3 337 #define PQ_COUNT 4 338 339 #ifndef VM_PAGE_HAVE_PGLIST 340 TAILQ_HEAD(pglist, vm_page); 341 #define VM_PAGE_HAVE_PGLIST 342 #endif 343 SLIST_HEAD(spglist, vm_page); 344 345 #ifdef _KERNEL 346 extern vm_page_t bogus_page; 347 #endif /* _KERNEL */ 348 349 extern struct mtx_padalign pa_lock[]; 350 351 #if defined(__arm__) 352 #define PDRSHIFT PDR_SHIFT 353 #elif !defined(PDRSHIFT) 354 #define PDRSHIFT 21 355 #endif 356 357 #define pa_index(pa) ((pa) >> PDRSHIFT) 358 #define PA_LOCKPTR(pa) ((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT])) 359 #define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa))) 360 #define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa)) 361 #define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa)) 362 #define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa)) 363 #define PA_UNLOCK_COND(pa) \ 364 do { \ 365 if ((pa) != 0) { \ 366 PA_UNLOCK((pa)); \ 367 (pa) = 0; \ 368 } \ 369 } while (0) 370 371 #define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a)) 372 373 #if defined(KLD_MODULE) && !defined(KLD_TIED) 374 #define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE) 375 #define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE) 376 #define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE) 377 #else /* !KLD_MODULE */ 378 #define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m)))) 379 #define vm_page_lock(m) mtx_lock(vm_page_lockptr((m))) 380 #define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m))) 381 #define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m))) 382 #endif 383 #if defined(INVARIANTS) 384 #define vm_page_assert_locked(m) \ 385 vm_page_assert_locked_KBI((m), __FILE__, __LINE__) 386 #define vm_page_lock_assert(m, a) \ 387 vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__) 388 #else 389 #define vm_page_assert_locked(m) 390 #define vm_page_lock_assert(m, a) 391 #endif 392 393 /* 394 * The vm_page's aflags are updated using atomic operations. To set or clear 395 * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear() 396 * must be used. Neither these flags nor these functions are part of the KBI. 397 * 398 * PGA_REFERENCED may be cleared only if the page is locked. It is set by 399 * both the MI and MD VM layers. However, kernel loadable modules should not 400 * directly set this flag. They should call vm_page_reference() instead. 401 * 402 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter(). 403 * When it does so, the object must be locked, or the page must be 404 * exclusive busied. The MI VM layer must never access this flag 405 * directly. Instead, it should call pmap_page_is_write_mapped(). 406 * 407 * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has 408 * at least one executable mapping. It is not consumed by the MI VM layer. 409 * 410 * PGA_NOSYNC must be set and cleared with the page busy lock held. 411 * 412 * PGA_ENQUEUED is set and cleared when a page is inserted into or removed 413 * from a page queue, respectively. It determines whether the plinks.q field 414 * of the page is valid. To set or clear this flag, page's "queue" field must 415 * be a valid queue index, and the corresponding page queue lock must be held. 416 * 417 * PGA_DEQUEUE is set when the page is scheduled to be dequeued from a page 418 * queue, and cleared when the dequeue request is processed. A page may 419 * have PGA_DEQUEUE set and PGA_ENQUEUED cleared, for instance if a dequeue 420 * is requested after the page is scheduled to be enqueued but before it is 421 * actually inserted into the page queue. 422 * 423 * PGA_REQUEUE is set when the page is scheduled to be enqueued or requeued 424 * in its page queue. 425 * 426 * PGA_REQUEUE_HEAD is a special flag for enqueuing pages near the head of 427 * the inactive queue, thus bypassing LRU. 428 * 429 * The PGA_DEQUEUE, PGA_REQUEUE and PGA_REQUEUE_HEAD flags must be set using an 430 * atomic RMW operation to ensure that the "queue" field is a valid queue index, 431 * and the corresponding page queue lock must be held when clearing any of the 432 * flags. 433 * 434 * PGA_SWAP_FREE is used to defer freeing swap space to the pageout daemon 435 * when the context that dirties the page does not have the object write lock 436 * held. 437 */ 438 #define PGA_WRITEABLE 0x0001 /* page may be mapped writeable */ 439 #define PGA_REFERENCED 0x0002 /* page has been referenced */ 440 #define PGA_EXECUTABLE 0x0004 /* page may be mapped executable */ 441 #define PGA_ENQUEUED 0x0008 /* page is enqueued in a page queue */ 442 #define PGA_DEQUEUE 0x0010 /* page is due to be dequeued */ 443 #define PGA_REQUEUE 0x0020 /* page is due to be requeued */ 444 #define PGA_REQUEUE_HEAD 0x0040 /* page requeue should bypass LRU */ 445 #define PGA_NOSYNC 0x0080 /* do not collect for syncer */ 446 #define PGA_SWAP_FREE 0x0100 /* page with swap space was dirtied */ 447 #define PGA_SWAP_SPACE 0x0200 /* page has allocated swap space */ 448 449 #define PGA_QUEUE_OP_MASK (PGA_DEQUEUE | PGA_REQUEUE | PGA_REQUEUE_HEAD) 450 #define PGA_QUEUE_STATE_MASK (PGA_ENQUEUED | PGA_QUEUE_OP_MASK) 451 452 /* 453 * Page flags. Updates to these flags are not synchronized, and thus they must 454 * be set during page allocation or free to avoid races. 455 * 456 * The PG_PCPU_CACHE flag is set at allocation time if the page was 457 * allocated from a per-CPU cache. It is cleared the next time that the 458 * page is allocated from the physical memory allocator. 459 */ 460 #define PG_PCPU_CACHE 0x01 /* was allocated from per-CPU caches */ 461 #define PG_FICTITIOUS 0x02 /* physical page doesn't exist */ 462 #define PG_ZERO 0x04 /* page is zeroed */ 463 #define PG_MARKER 0x08 /* special queue marker page */ 464 #define PG_NODUMP 0x10 /* don't include this page in a dump */ 465 466 /* 467 * Misc constants. 468 */ 469 #define ACT_DECLINE 1 470 #define ACT_ADVANCE 3 471 #define ACT_INIT 5 472 #define ACT_MAX 64 473 474 #ifdef _KERNEL 475 476 #include <sys/systm.h> 477 478 #include <machine/atomic.h> 479 480 /* 481 * Each pageable resident page falls into one of five lists: 482 * 483 * free 484 * Available for allocation now. 485 * 486 * inactive 487 * Low activity, candidates for reclamation. 488 * This list is approximately LRU ordered. 489 * 490 * laundry 491 * This is the list of pages that should be 492 * paged out next. 493 * 494 * unswappable 495 * Dirty anonymous pages that cannot be paged 496 * out because no swap device is configured. 497 * 498 * active 499 * Pages that are "active", i.e., they have been 500 * recently referenced. 501 * 502 */ 503 504 extern vm_page_t vm_page_array; /* First resident page in table */ 505 extern long vm_page_array_size; /* number of vm_page_t's */ 506 extern long first_page; /* first physical page number */ 507 508 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) 509 510 /* 511 * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory 512 * page to which the given physical address belongs. The correct vm_page_t 513 * object is returned for addresses that are not page-aligned. 514 */ 515 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa); 516 517 /* 518 * Page allocation parameters for vm_page for the functions 519 * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and 520 * vm_page_alloc_freelist(). Some functions support only a subset 521 * of the flags, and ignore others, see the flags legend. 522 * 523 * The meaning of VM_ALLOC_ZERO differs slightly between the vm_page_alloc*() 524 * and the vm_page_grab*() functions. See these functions for details. 525 * 526 * Bits 0 - 1 define class. 527 * Bits 2 - 15 dedicated for flags. 528 * Legend: 529 * (a) - vm_page_alloc() supports the flag. 530 * (c) - vm_page_alloc_contig() supports the flag. 531 * (f) - vm_page_alloc_freelist() supports the flag. 532 * (g) - vm_page_grab() supports the flag. 533 * (p) - vm_page_grab_pages() supports the flag. 534 * Bits above 15 define the count of additional pages that the caller 535 * intends to allocate. 536 */ 537 #define VM_ALLOC_NORMAL 0 538 #define VM_ALLOC_INTERRUPT 1 539 #define VM_ALLOC_SYSTEM 2 540 #define VM_ALLOC_CLASS_MASK 3 541 #define VM_ALLOC_WAITOK 0x0008 /* (acf) Sleep and retry */ 542 #define VM_ALLOC_WAITFAIL 0x0010 /* (acf) Sleep and return error */ 543 #define VM_ALLOC_WIRED 0x0020 /* (acfgp) Allocate a wired page */ 544 #define VM_ALLOC_ZERO 0x0040 /* (acfgp) Allocate a prezeroed page */ 545 #define VM_ALLOC_NOOBJ 0x0100 /* (acg) No associated object */ 546 #define VM_ALLOC_NOBUSY 0x0200 /* (acgp) Do not excl busy the page */ 547 #define VM_ALLOC_NOCREAT 0x0400 /* (gp) Don't create a page */ 548 #define VM_ALLOC_IGN_SBUSY 0x1000 /* (gp) Ignore shared busy flag */ 549 #define VM_ALLOC_NODUMP 0x2000 /* (ag) don't include in dump */ 550 #define VM_ALLOC_SBUSY 0x4000 /* (acgp) Shared busy the page */ 551 #define VM_ALLOC_NOWAIT 0x8000 /* (acfgp) Do not sleep */ 552 #define VM_ALLOC_COUNT_SHIFT 16 553 #define VM_ALLOC_COUNT(count) ((count) << VM_ALLOC_COUNT_SHIFT) 554 555 #ifdef M_NOWAIT 556 static inline int 557 malloc2vm_flags(int malloc_flags) 558 { 559 int pflags; 560 561 KASSERT((malloc_flags & M_USE_RESERVE) == 0 || 562 (malloc_flags & M_NOWAIT) != 0, 563 ("M_USE_RESERVE requires M_NOWAIT")); 564 pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT : 565 VM_ALLOC_SYSTEM; 566 if ((malloc_flags & M_ZERO) != 0) 567 pflags |= VM_ALLOC_ZERO; 568 if ((malloc_flags & M_NODUMP) != 0) 569 pflags |= VM_ALLOC_NODUMP; 570 if ((malloc_flags & M_NOWAIT)) 571 pflags |= VM_ALLOC_NOWAIT; 572 if ((malloc_flags & M_WAITOK)) 573 pflags |= VM_ALLOC_WAITOK; 574 return (pflags); 575 } 576 #endif 577 578 /* 579 * Predicates supported by vm_page_ps_test(): 580 * 581 * PS_ALL_DIRTY is true only if the entire (super)page is dirty. 582 * However, it can be spuriously false when the (super)page has become 583 * dirty in the pmap but that information has not been propagated to the 584 * machine-independent layer. 585 */ 586 #define PS_ALL_DIRTY 0x1 587 #define PS_ALL_VALID 0x2 588 #define PS_NONE_BUSY 0x4 589 590 extern struct bitset *vm_page_dump; 591 extern long vm_page_dump_pages; 592 extern vm_paddr_t dump_avail[]; 593 594 static inline void 595 dump_add_page(vm_paddr_t pa) 596 { 597 vm_pindex_t adj; 598 int i; 599 600 adj = 0; 601 for (i = 0; dump_avail[i + 1] != 0; i += 2) { 602 if (pa >= dump_avail[i] && pa < dump_avail[i + 1]) { 603 BIT_SET_ATOMIC(vm_page_dump_pages, 604 (pa >> PAGE_SHIFT) - (dump_avail[i] >> PAGE_SHIFT) + 605 adj, vm_page_dump); 606 return; 607 } 608 adj += howmany(dump_avail[i + 1], PAGE_SIZE) - 609 dump_avail[i] / PAGE_SIZE; 610 } 611 } 612 613 static inline void 614 dump_drop_page(vm_paddr_t pa) 615 { 616 vm_pindex_t adj; 617 int i; 618 619 adj = 0; 620 for (i = 0; dump_avail[i + 1] != 0; i += 2) { 621 if (pa >= dump_avail[i] && pa < dump_avail[i + 1]) { 622 BIT_CLR_ATOMIC(vm_page_dump_pages, 623 (pa >> PAGE_SHIFT) - (dump_avail[i] >> PAGE_SHIFT) + 624 adj, vm_page_dump); 625 return; 626 } 627 adj += howmany(dump_avail[i + 1], PAGE_SIZE) - 628 dump_avail[i] / PAGE_SIZE; 629 } 630 } 631 632 static inline vm_paddr_t 633 vm_page_dump_index_to_pa(int bit) 634 { 635 int i, tot; 636 637 for (i = 0; dump_avail[i + 1] != 0; i += 2) { 638 tot = howmany(dump_avail[i + 1], PAGE_SIZE) - 639 dump_avail[i] / PAGE_SIZE; 640 if (bit < tot) 641 return ((vm_paddr_t)bit * PAGE_SIZE + 642 (dump_avail[i] & ~PAGE_MASK)); 643 bit -= tot; 644 } 645 return ((vm_paddr_t)NULL); 646 } 647 648 #define VM_PAGE_DUMP_FOREACH(pa) \ 649 for (vm_pindex_t __b = BIT_FFS(vm_page_dump_pages, vm_page_dump); \ 650 (pa) = vm_page_dump_index_to_pa(__b - 1), __b != 0; \ 651 __b = BIT_FFS_AT(vm_page_dump_pages, vm_page_dump, __b)) 652 653 bool vm_page_busy_acquire(vm_page_t m, int allocflags); 654 void vm_page_busy_downgrade(vm_page_t m); 655 int vm_page_busy_tryupgrade(vm_page_t m); 656 void vm_page_busy_sleep(vm_page_t m, const char *msg, bool nonshared); 657 void vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, 658 vm_pindex_t pindex, const char *wmesg, bool nonshared); 659 void vm_page_free(vm_page_t m); 660 void vm_page_free_zero(vm_page_t m); 661 662 void vm_page_activate (vm_page_t); 663 void vm_page_advise(vm_page_t m, int advice); 664 vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int); 665 vm_page_t vm_page_alloc_domain(vm_object_t, vm_pindex_t, int, int); 666 vm_page_t vm_page_alloc_after(vm_object_t, vm_pindex_t, int, vm_page_t); 667 vm_page_t vm_page_alloc_domain_after(vm_object_t, vm_pindex_t, int, int, 668 vm_page_t); 669 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 670 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 671 vm_paddr_t boundary, vm_memattr_t memattr); 672 vm_page_t vm_page_alloc_contig_domain(vm_object_t object, 673 vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low, 674 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 675 vm_memattr_t memattr); 676 vm_page_t vm_page_alloc_freelist(int, int); 677 vm_page_t vm_page_alloc_freelist_domain(int, int, int); 678 void vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set); 679 bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose); 680 vm_page_t vm_page_grab(vm_object_t, vm_pindex_t, int); 681 vm_page_t vm_page_grab_unlocked(vm_object_t, vm_pindex_t, int); 682 int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 683 vm_page_t *ma, int count); 684 int vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex, 685 int allocflags, vm_page_t *ma, int count); 686 int vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, 687 int allocflags); 688 int vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object, 689 vm_pindex_t pindex, int allocflags); 690 void vm_page_deactivate(vm_page_t); 691 void vm_page_deactivate_noreuse(vm_page_t); 692 void vm_page_dequeue(vm_page_t m); 693 void vm_page_dequeue_deferred(vm_page_t m); 694 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t); 695 void vm_page_free_invalid(vm_page_t); 696 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr); 697 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 698 void vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags); 699 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t); 700 void vm_page_invalid(vm_page_t m); 701 void vm_page_launder(vm_page_t m); 702 vm_page_t vm_page_lookup(vm_object_t, vm_pindex_t); 703 vm_page_t vm_page_lookup_unlocked(vm_object_t, vm_pindex_t); 704 vm_page_t vm_page_next(vm_page_t m); 705 void vm_page_pqbatch_drain(void); 706 void vm_page_pqbatch_submit(vm_page_t m, uint8_t queue); 707 bool vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, 708 vm_page_astate_t new); 709 vm_page_t vm_page_prev(vm_page_t m); 710 bool vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m); 711 void vm_page_putfake(vm_page_t m); 712 void vm_page_readahead_finish(vm_page_t m); 713 bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, 714 vm_paddr_t high, u_long alignment, vm_paddr_t boundary); 715 bool vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 716 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary); 717 void vm_page_reference(vm_page_t m); 718 #define VPR_TRYFREE 0x01 719 #define VPR_NOREUSE 0x02 720 void vm_page_release(vm_page_t m, int flags); 721 void vm_page_release_locked(vm_page_t m, int flags); 722 vm_page_t vm_page_relookup(vm_object_t, vm_pindex_t); 723 bool vm_page_remove(vm_page_t); 724 bool vm_page_remove_xbusy(vm_page_t); 725 int vm_page_rename(vm_page_t, vm_object_t, vm_pindex_t); 726 void vm_page_replace(vm_page_t mnew, vm_object_t object, 727 vm_pindex_t pindex, vm_page_t mold); 728 int vm_page_sbusied(vm_page_t m); 729 vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start, 730 vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options); 731 vm_page_bits_t vm_page_set_dirty(vm_page_t m); 732 void vm_page_set_valid_range(vm_page_t m, int base, int size); 733 int vm_page_sleep_if_busy(vm_page_t m, const char *msg); 734 int vm_page_sleep_if_xbusy(vm_page_t m, const char *msg); 735 vm_offset_t vm_page_startup(vm_offset_t vaddr); 736 void vm_page_sunbusy(vm_page_t m); 737 bool vm_page_try_remove_all(vm_page_t m); 738 bool vm_page_try_remove_write(vm_page_t m); 739 int vm_page_trysbusy(vm_page_t m); 740 int vm_page_tryxbusy(vm_page_t m); 741 void vm_page_unhold_pages(vm_page_t *ma, int count); 742 void vm_page_unswappable(vm_page_t m); 743 void vm_page_unwire(vm_page_t m, uint8_t queue); 744 bool vm_page_unwire_noq(vm_page_t m); 745 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 746 void vm_page_wire(vm_page_t); 747 bool vm_page_wire_mapped(vm_page_t m); 748 void vm_page_xunbusy_hard(vm_page_t m); 749 void vm_page_xunbusy_hard_unchecked(vm_page_t m); 750 void vm_page_set_validclean (vm_page_t, int, int); 751 void vm_page_clear_dirty(vm_page_t, int, int); 752 void vm_page_set_invalid(vm_page_t, int, int); 753 void vm_page_valid(vm_page_t m); 754 int vm_page_is_valid(vm_page_t, int, int); 755 void vm_page_test_dirty(vm_page_t); 756 vm_page_bits_t vm_page_bits(int base, int size); 757 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid); 758 void vm_page_free_pages_toq(struct spglist *free, bool update_wire_count); 759 760 void vm_page_dirty_KBI(vm_page_t m); 761 void vm_page_lock_KBI(vm_page_t m, const char *file, int line); 762 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line); 763 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line); 764 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 765 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line); 766 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line); 767 #endif 768 769 #define vm_page_busy_fetch(m) atomic_load_int(&(m)->busy_lock) 770 771 #define vm_page_assert_busied(m) \ 772 KASSERT(vm_page_busied(m), \ 773 ("vm_page_assert_busied: page %p not busy @ %s:%d", \ 774 (m), __FILE__, __LINE__)) 775 776 #define vm_page_assert_sbusied(m) \ 777 KASSERT(vm_page_sbusied(m), \ 778 ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \ 779 (m), __FILE__, __LINE__)) 780 781 #define vm_page_assert_unbusied(m) \ 782 KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) != \ 783 VPB_CURTHREAD_EXCLUSIVE, \ 784 ("vm_page_assert_xbusied: page %p busy_lock %#x owned" \ 785 " by me @ %s:%d", \ 786 (m), (m)->busy_lock, __FILE__, __LINE__)); \ 787 788 #define vm_page_assert_xbusied_unchecked(m) do { \ 789 KASSERT(vm_page_xbusied(m), \ 790 ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \ 791 (m), __FILE__, __LINE__)); \ 792 } while (0) 793 #define vm_page_assert_xbusied(m) do { \ 794 vm_page_assert_xbusied_unchecked(m); \ 795 KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) == \ 796 VPB_CURTHREAD_EXCLUSIVE, \ 797 ("vm_page_assert_xbusied: page %p busy_lock %#x not owned" \ 798 " by me @ %s:%d", \ 799 (m), (m)->busy_lock, __FILE__, __LINE__)); \ 800 } while (0) 801 802 #define vm_page_busied(m) \ 803 (vm_page_busy_fetch(m) != VPB_UNBUSIED) 804 805 #define vm_page_sbusy(m) do { \ 806 if (!vm_page_trysbusy(m)) \ 807 panic("%s: page %p failed shared busying", __func__, \ 808 (m)); \ 809 } while (0) 810 811 #define vm_page_xbusied(m) \ 812 ((vm_page_busy_fetch(m) & VPB_SINGLE_EXCLUSIVE) != 0) 813 814 #define vm_page_busy_freed(m) \ 815 (vm_page_busy_fetch(m) == VPB_FREED) 816 817 #define vm_page_xbusy(m) do { \ 818 if (!vm_page_tryxbusy(m)) \ 819 panic("%s: page %p failed exclusive busying", __func__, \ 820 (m)); \ 821 } while (0) 822 823 /* Note: page m's lock must not be owned by the caller. */ 824 #define vm_page_xunbusy(m) do { \ 825 if (!atomic_cmpset_rel_int(&(m)->busy_lock, \ 826 VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED)) \ 827 vm_page_xunbusy_hard(m); \ 828 } while (0) 829 #define vm_page_xunbusy_unchecked(m) do { \ 830 if (!atomic_cmpset_rel_int(&(m)->busy_lock, \ 831 VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED)) \ 832 vm_page_xunbusy_hard_unchecked(m); \ 833 } while (0) 834 835 #ifdef INVARIANTS 836 void vm_page_object_busy_assert(vm_page_t m); 837 #define VM_PAGE_OBJECT_BUSY_ASSERT(m) vm_page_object_busy_assert(m) 838 void vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits); 839 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) \ 840 vm_page_assert_pga_writeable(m, bits) 841 /* 842 * Claim ownership of a page's xbusy state. In non-INVARIANTS kernels this 843 * operation is a no-op since ownership is not tracked. In particular 844 * this macro does not provide any synchronization with the previous owner. 845 */ 846 #define vm_page_xbusy_claim(m) do { \ 847 u_int _busy_lock; \ 848 \ 849 vm_page_assert_xbusied_unchecked((m)); \ 850 do { \ 851 _busy_lock = vm_page_busy_fetch(m); \ 852 } while (!atomic_cmpset_int(&(m)->busy_lock, _busy_lock, \ 853 (_busy_lock & VPB_BIT_FLAGMASK) | VPB_CURTHREAD_EXCLUSIVE)); \ 854 } while (0) 855 #else 856 #define VM_PAGE_OBJECT_BUSY_ASSERT(m) (void)0 857 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) (void)0 858 #define vm_page_xbusy_claim(m) 859 #endif 860 861 #if BYTE_ORDER == BIG_ENDIAN 862 #define VM_PAGE_AFLAG_SHIFT 16 863 #else 864 #define VM_PAGE_AFLAG_SHIFT 0 865 #endif 866 867 /* 868 * Load a snapshot of a page's 32-bit atomic state. 869 */ 870 static inline vm_page_astate_t 871 vm_page_astate_load(vm_page_t m) 872 { 873 vm_page_astate_t a; 874 875 a._bits = atomic_load_32(&m->a._bits); 876 return (a); 877 } 878 879 /* 880 * Atomically compare and set a page's atomic state. 881 */ 882 static inline bool 883 vm_page_astate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 884 { 885 886 KASSERT(new.queue == PQ_INACTIVE || (new.flags & PGA_REQUEUE_HEAD) == 0, 887 ("%s: invalid head requeue request for page %p", __func__, m)); 888 KASSERT((new.flags & PGA_ENQUEUED) == 0 || new.queue != PQ_NONE, 889 ("%s: setting PGA_ENQUEUED with PQ_NONE in page %p", __func__, m)); 890 KASSERT(new._bits != old->_bits, 891 ("%s: bits are unchanged", __func__)); 892 893 return (atomic_fcmpset_32(&m->a._bits, &old->_bits, new._bits) != 0); 894 } 895 896 /* 897 * Clear the given bits in the specified page. 898 */ 899 static inline void 900 vm_page_aflag_clear(vm_page_t m, uint16_t bits) 901 { 902 uint32_t *addr, val; 903 904 /* 905 * Access the whole 32-bit word containing the aflags field with an 906 * atomic update. Parallel non-atomic updates to the other fields 907 * within this word are handled properly by the atomic update. 908 */ 909 addr = (void *)&m->a; 910 val = bits << VM_PAGE_AFLAG_SHIFT; 911 atomic_clear_32(addr, val); 912 } 913 914 /* 915 * Set the given bits in the specified page. 916 */ 917 static inline void 918 vm_page_aflag_set(vm_page_t m, uint16_t bits) 919 { 920 uint32_t *addr, val; 921 922 VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits); 923 924 /* 925 * Access the whole 32-bit word containing the aflags field with an 926 * atomic update. Parallel non-atomic updates to the other fields 927 * within this word are handled properly by the atomic update. 928 */ 929 addr = (void *)&m->a; 930 val = bits << VM_PAGE_AFLAG_SHIFT; 931 atomic_set_32(addr, val); 932 } 933 934 /* 935 * vm_page_dirty: 936 * 937 * Set all bits in the page's dirty field. 938 * 939 * The object containing the specified page must be locked if the 940 * call is made from the machine-independent layer. 941 * 942 * See vm_page_clear_dirty_mask(). 943 */ 944 static __inline void 945 vm_page_dirty(vm_page_t m) 946 { 947 948 /* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */ 949 #if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(INVARIANTS) 950 vm_page_dirty_KBI(m); 951 #else 952 m->dirty = VM_PAGE_BITS_ALL; 953 #endif 954 } 955 956 /* 957 * vm_page_undirty: 958 * 959 * Set page to not be dirty. Note: does not clear pmap modify bits 960 */ 961 static __inline void 962 vm_page_undirty(vm_page_t m) 963 { 964 965 VM_PAGE_OBJECT_BUSY_ASSERT(m); 966 m->dirty = 0; 967 } 968 969 static inline uint8_t 970 _vm_page_queue(vm_page_astate_t as) 971 { 972 973 if ((as.flags & PGA_DEQUEUE) != 0) 974 return (PQ_NONE); 975 return (as.queue); 976 } 977 978 /* 979 * vm_page_queue: 980 * 981 * Return the index of the queue containing m. 982 */ 983 static inline uint8_t 984 vm_page_queue(vm_page_t m) 985 { 986 987 return (_vm_page_queue(vm_page_astate_load(m))); 988 } 989 990 static inline bool 991 vm_page_active(vm_page_t m) 992 { 993 994 return (vm_page_queue(m) == PQ_ACTIVE); 995 } 996 997 static inline bool 998 vm_page_inactive(vm_page_t m) 999 { 1000 1001 return (vm_page_queue(m) == PQ_INACTIVE); 1002 } 1003 1004 static inline bool 1005 vm_page_in_laundry(vm_page_t m) 1006 { 1007 uint8_t queue; 1008 1009 queue = vm_page_queue(m); 1010 return (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE); 1011 } 1012 1013 /* 1014 * vm_page_drop: 1015 * 1016 * Release a reference to a page and return the old reference count. 1017 */ 1018 static inline u_int 1019 vm_page_drop(vm_page_t m, u_int val) 1020 { 1021 u_int old; 1022 1023 /* 1024 * Synchronize with vm_page_free_prep(): ensure that all updates to the 1025 * page structure are visible before it is freed. 1026 */ 1027 atomic_thread_fence_rel(); 1028 old = atomic_fetchadd_int(&m->ref_count, -val); 1029 KASSERT(old != VPRC_BLOCKED, 1030 ("vm_page_drop: page %p has an invalid refcount value", m)); 1031 return (old); 1032 } 1033 1034 /* 1035 * vm_page_wired: 1036 * 1037 * Perform a racy check to determine whether a reference prevents the page 1038 * from being reclaimable. If the page's object is locked, and the page is 1039 * unmapped and exclusively busied by the current thread, no new wirings 1040 * may be created. 1041 */ 1042 static inline bool 1043 vm_page_wired(vm_page_t m) 1044 { 1045 1046 return (VPRC_WIRE_COUNT(m->ref_count) > 0); 1047 } 1048 1049 static inline bool 1050 vm_page_all_valid(vm_page_t m) 1051 { 1052 1053 return (m->valid == VM_PAGE_BITS_ALL); 1054 } 1055 1056 static inline bool 1057 vm_page_none_valid(vm_page_t m) 1058 { 1059 1060 return (m->valid == 0); 1061 } 1062 1063 #endif /* _KERNEL */ 1064 #endif /* !_VM_PAGE_ */ 1065