1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_page.h,v 1.31 1996/07/30 03:08:17 dyson Exp $ 65 */ 66 67 /* 68 * Resident memory system definitions. 69 */ 70 71 #ifndef _VM_PAGE_ 72 #define _VM_PAGE_ 73 74 #include <vm/pmap.h> 75 /* 76 * Management of resident (logical) pages. 77 * 78 * A small structure is kept for each resident 79 * page, indexed by page number. Each structure 80 * is an element of several lists: 81 * 82 * A hash table bucket used to quickly 83 * perform object/offset lookups 84 * 85 * A list of all pages for a given object, 86 * so they can be quickly deactivated at 87 * time of deallocation. 88 * 89 * An ordered list of pages due for pageout. 90 * 91 * In addition, the structure contains the object 92 * and offset to which this page belongs (for pageout), 93 * and sundry status bits. 94 * 95 * Fields in this structure are locked either by the lock on the 96 * object that the page belongs to (O) or by the lock on the page 97 * queues (P). 98 */ 99 100 TAILQ_HEAD(pglist, vm_page); 101 102 struct vm_page { 103 TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO queue or free list (P) */ 104 TAILQ_ENTRY(vm_page) hashq; /* hash table links (O) */ 105 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ 106 107 vm_object_t object; /* which object am I in (O,P) */ 108 vm_pindex_t pindex; /* offset into object (O,P) */ 109 vm_offset_t phys_addr; /* physical address of page */ 110 u_short queue; /* page queue index */ 111 u_short flags, /* see below */ 112 pc; /* page color */ 113 u_short wire_count; /* wired down maps refs (P) */ 114 short hold_count; /* page hold count */ 115 u_char act_count; /* page usage count */ 116 u_char busy; /* page busy count */ 117 /* NOTE that these must support one bit per DEV_BSIZE in a page!!! */ 118 /* so, on normal X86 kernels, they must be at least 8 bits wide */ 119 u_char valid; /* map of valid DEV_BSIZE chunks */ 120 u_char dirty; /* map of dirty DEV_BSIZE chunks */ 121 }; 122 123 /* 124 * Page coloring parameters 125 */ 126 /* Each of PQ_FREE, PQ_ZERO and PQ_CACHE have PQ_HASH_SIZE entries */ 127 128 /* Define one of the following */ 129 #if defined(PQ_LARGECACHE) 130 #define PQ_PRIME1 31 /* Prime number somewhat less than PQ_HASH_SIZE */ 131 #define PQ_PRIME2 23 /* Prime number somewhat less than PQ_HASH_SIZE */ 132 #define PQ_PRIME3 17 /* Prime number somewhat less than PQ_HASH_SIZE */ 133 #define PQ_L2_SIZE 128 /* A number of colors opt for 512K cache */ 134 #define PQ_L1_SIZE 2 /* Two page L1 cache */ 135 #endif 136 137 #if defined(PQ_MEDIUMCACHE) 138 #define PQ_PRIME1 13 /* Prime number somewhat less than PQ_HASH_SIZE */ 139 #define PQ_PRIME2 7 /* Prime number somewhat less than PQ_HASH_SIZE */ 140 #define PQ_PRIME3 5 /* Prime number somewhat less than PQ_HASH_SIZE */ 141 #define PQ_L2_SIZE 64 /* A number of colors opt for 256K cache */ 142 #define PQ_L1_SIZE 2 /* Two page L1 cache */ 143 #endif 144 145 /* 146 * Use 'options PQ_NOOPT' to disable page coloring 147 */ 148 #if defined(PQ_NOOPT) 149 #define PQ_PRIME1 1 150 #define PQ_PRIME2 1 151 #define PQ_PRIME3 1 152 #define PQ_L2_SIZE 1 153 #define PQ_L1_SIZE 1 154 #endif 155 156 #if defined(PQ_NORMALCACHE) || !defined(PQ_L2_SIZE) 157 #define PQ_PRIME1 5 /* Prime number somewhat less than PQ_HASH_SIZE */ 158 #define PQ_PRIME2 3 /* Prime number somewhat less than PQ_HASH_SIZE */ 159 #define PQ_PRIME3 11 /* Prime number somewhat less than PQ_HASH_SIZE */ 160 #define PQ_L2_SIZE 16 /* A reasonable number of colors (opt for 64K cache) */ 161 #define PQ_L1_SIZE 2 /* Two page L1 cache */ 162 #endif 163 164 #define PQ_L2_MASK (PQ_L2_SIZE - 1) 165 166 #define PQ_NONE 0 167 #define PQ_FREE 1 168 #define PQ_ZERO (1 + PQ_L2_SIZE) 169 #define PQ_INACTIVE (1 + 2*PQ_L2_SIZE) 170 #define PQ_ACTIVE (2 + 2*PQ_L2_SIZE) 171 #define PQ_CACHE (3 + 2*PQ_L2_SIZE) 172 #define PQ_COUNT (3 + 3*PQ_L2_SIZE) 173 174 extern struct vpgqueues { 175 struct pglist *pl; 176 int *cnt; 177 int *lcnt; 178 } vm_page_queues[PQ_COUNT]; 179 180 /* 181 * These are the flags defined for vm_page. 182 * 183 * Note: PG_FILLED and PG_DIRTY are added for the filesystems. 184 */ 185 #define PG_BUSY 0x01 /* page is in transit (O) */ 186 #define PG_WANTED 0x02 /* someone is waiting for page (O) */ 187 #define PG_TABLED 0x04 /* page is in VP table (O) */ 188 #define PG_FICTITIOUS 0x08 /* physical page doesn't exist (O) */ 189 #define PG_WRITEABLE 0x10 /* page is mapped writeable */ 190 #define PG_MAPPED 0x20 /* page is mapped */ 191 #define PG_ZERO 0x40 /* page is zeroed */ 192 #define PG_REFERENCED 0x80 /* page has been referenced */ 193 #define PG_CLEANCHK 0x100 /* page has been checked for cleaning */ 194 195 /* 196 * Misc constants. 197 */ 198 199 #define ACT_DECLINE 1 200 #define ACT_ADVANCE 3 201 #define ACT_INIT 5 202 #define ACT_MAX 64 203 #define PFCLUSTER_BEHIND 3 204 #define PFCLUSTER_AHEAD 3 205 206 #ifdef KERNEL 207 /* 208 * Each pageable resident page falls into one of four lists: 209 * 210 * free 211 * Available for allocation now. 212 * 213 * The following are all LRU sorted: 214 * 215 * cache 216 * Almost available for allocation. Still in an 217 * object, but clean and immediately freeable at 218 * non-interrupt times. 219 * 220 * inactive 221 * Low activity, candidates for reclamation. 222 * This is the list of pages that should be 223 * paged out next. 224 * 225 * active 226 * Pages that are "active" i.e. they have been 227 * recently referenced. 228 * 229 * zero 230 * Pages that are really free and have been pre-zeroed 231 * 232 */ 233 234 extern struct pglist vm_page_queue_free[PQ_L2_SIZE];/* memory free queue */ 235 extern struct pglist vm_page_queue_zero[PQ_L2_SIZE];/* zeroed memory free queue */ 236 extern struct pglist vm_page_queue_active; /* active memory queue */ 237 extern struct pglist vm_page_queue_inactive; /* inactive memory queue */ 238 extern struct pglist vm_page_queue_cache[PQ_L2_SIZE];/* cache memory queue */ 239 240 extern int vm_page_zero_count; 241 242 extern vm_page_t vm_page_array; /* First resident page in table */ 243 extern long first_page; /* first physical page number */ 244 245 /* ... represented in vm_page_array */ 246 extern long last_page; /* last physical page number */ 247 248 /* ... represented in vm_page_array */ 249 /* [INCLUSIVE] */ 250 extern vm_offset_t first_phys_addr; /* physical address for first_page */ 251 extern vm_offset_t last_phys_addr; /* physical address for last_page */ 252 253 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) 254 255 #define IS_VM_PHYSADDR(pa) \ 256 ((pa) >= first_phys_addr && (pa) <= last_phys_addr) 257 258 #define PHYS_TO_VM_PAGE(pa) \ 259 (&vm_page_array[atop(pa) - first_page ]) 260 261 /* 262 * Functions implemented as macros 263 */ 264 265 #define PAGE_ASSERT_WAIT(m, interruptible) { \ 266 (m)->flags |= PG_WANTED; \ 267 assert_wait((int) (m), (interruptible)); \ 268 } 269 270 #define PAGE_WAKEUP(m) { \ 271 (m)->flags &= ~PG_BUSY; \ 272 if ((m)->flags & PG_WANTED) { \ 273 (m)->flags &= ~PG_WANTED; \ 274 wakeup((caddr_t) (m)); \ 275 } \ 276 } 277 278 #if PAGE_SIZE == 4096 279 #define VM_PAGE_BITS_ALL 0xff 280 #endif 281 282 #if PAGE_SIZE == 8192 283 #define VM_PAGE_BITS_ALL 0xffff 284 #endif 285 286 #define VM_ALLOC_NORMAL 0 287 #define VM_ALLOC_INTERRUPT 1 288 #define VM_ALLOC_SYSTEM 2 289 #define VM_ALLOC_ZERO 3 290 291 void vm_page_activate __P((vm_page_t)); 292 vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int)); 293 void vm_page_cache __P((register vm_page_t)); 294 static __inline void vm_page_copy __P((vm_page_t, vm_page_t)); 295 void vm_page_deactivate __P((vm_page_t)); 296 void vm_page_free __P((vm_page_t)); 297 void vm_page_free_zero __P((vm_page_t)); 298 void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t)); 299 vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t)); 300 void vm_page_remove __P((vm_page_t)); 301 void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t)); 302 vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t)); 303 void vm_page_unwire __P((vm_page_t)); 304 void vm_page_wire __P((vm_page_t)); 305 void vm_page_unqueue __P((vm_page_t)); 306 void vm_page_unqueue_nowakeup __P((vm_page_t)); 307 void vm_page_set_validclean __P((vm_page_t, int, int)); 308 void vm_page_set_invalid __P((vm_page_t, int, int)); 309 static __inline boolean_t vm_page_zero_fill __P((vm_page_t)); 310 int vm_page_is_valid __P((vm_page_t, int, int)); 311 void vm_page_test_dirty __P((vm_page_t)); 312 int vm_page_bits __P((int, int)); 313 vm_page_t vm_page_list_find __P((int, int)); 314 int vm_page_queue_index __P((vm_offset_t, int)); 315 vm_page_t vm_page_select __P((vm_object_t, vm_pindex_t, int)); 316 317 /* 318 * Keep page from being freed by the page daemon 319 * much of the same effect as wiring, except much lower 320 * overhead and should be used only for *very* temporary 321 * holding ("wiring"). 322 */ 323 static __inline void 324 vm_page_hold(vm_page_t mem) 325 { 326 mem->hold_count++; 327 } 328 329 #ifdef DIAGNOSTIC 330 #include <sys/systm.h> /* make GCC shut up */ 331 #endif 332 333 static __inline void 334 vm_page_unhold(vm_page_t mem) 335 { 336 #ifdef DIAGNOSTIC 337 if (--mem->hold_count < 0) 338 panic("vm_page_unhold: hold count < 0!!!"); 339 #else 340 --mem->hold_count; 341 #endif 342 } 343 344 static __inline void 345 vm_page_protect(vm_page_t mem, int prot) 346 { 347 if (prot == VM_PROT_NONE) { 348 if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) { 349 pmap_page_protect(VM_PAGE_TO_PHYS(mem), prot); 350 mem->flags &= ~(PG_WRITEABLE|PG_MAPPED); 351 } 352 } else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) { 353 pmap_page_protect(VM_PAGE_TO_PHYS(mem), prot); 354 mem->flags &= ~PG_WRITEABLE; 355 } 356 } 357 358 /* 359 * vm_page_zero_fill: 360 * 361 * Zero-fill the specified page. 362 * Written as a standard pagein routine, to 363 * be used by the zero-fill object. 364 */ 365 static __inline boolean_t 366 vm_page_zero_fill(m) 367 vm_page_t m; 368 { 369 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 370 return (TRUE); 371 } 372 373 /* 374 * vm_page_copy: 375 * 376 * Copy one page to another 377 */ 378 static __inline void 379 vm_page_copy(src_m, dest_m) 380 vm_page_t src_m; 381 vm_page_t dest_m; 382 { 383 pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m)); 384 dest_m->valid = VM_PAGE_BITS_ALL; 385 } 386 387 #endif /* KERNEL */ 388 #endif /* !_VM_PAGE_ */ 389