1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 * 60 * $FreeBSD$ 61 */ 62 63 /* 64 * Resident memory system definitions. 65 */ 66 67 #ifndef _VM_PAGE_ 68 #define _VM_PAGE_ 69 70 #include <vm/pmap.h> 71 72 /* 73 * Management of resident (logical) pages. 74 * 75 * A small structure is kept for each resident 76 * page, indexed by page number. Each structure 77 * is an element of several collections: 78 * 79 * A radix tree used to quickly 80 * perform object/offset lookups 81 * 82 * A list of all pages for a given object, 83 * so they can be quickly deactivated at 84 * time of deallocation. 85 * 86 * An ordered list of pages due for pageout. 87 * 88 * In addition, the structure contains the object 89 * and offset to which this page belongs (for pageout), 90 * and sundry status bits. 91 * 92 * In general, operations on this structure's mutable fields are 93 * synchronized using either one of or a combination of the lock on the 94 * object that the page belongs to (O), the pool lock for the page (P), 95 * or the lock for either the free or paging queue (Q). If a field is 96 * annotated below with two of these locks, then holding either lock is 97 * sufficient for read access, but both locks are required for write 98 * access. 99 * 100 * In contrast, the synchronization of accesses to the page's 101 * dirty field is machine dependent (M). In the 102 * machine-independent layer, the lock on the object that the 103 * page belongs to must be held in order to operate on the field. 104 * However, the pmap layer is permitted to set all bits within 105 * the field without holding that lock. If the underlying 106 * architecture does not support atomic read-modify-write 107 * operations on the field's type, then the machine-independent 108 * layer uses a 32-bit atomic on the aligned 32-bit word that 109 * contains the dirty field. In the machine-independent layer, 110 * the implementation of read-modify-write operations on the 111 * field is encapsulated in vm_page_clear_dirty_mask(). 112 */ 113 114 #if PAGE_SIZE == 4096 115 #define VM_PAGE_BITS_ALL 0xffu 116 typedef uint8_t vm_page_bits_t; 117 #elif PAGE_SIZE == 8192 118 #define VM_PAGE_BITS_ALL 0xffffu 119 typedef uint16_t vm_page_bits_t; 120 #elif PAGE_SIZE == 16384 121 #define VM_PAGE_BITS_ALL 0xffffffffu 122 typedef uint32_t vm_page_bits_t; 123 #elif PAGE_SIZE == 32768 124 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu 125 typedef uint64_t vm_page_bits_t; 126 #endif 127 128 struct vm_page { 129 union { 130 TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */ 131 struct { 132 SLIST_ENTRY(vm_page) ss; /* private slists */ 133 void *pv; 134 } s; 135 struct { 136 u_long p; 137 u_long v; 138 } memguard; 139 } plinks; 140 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ 141 vm_object_t object; /* which object am I in (O,P) */ 142 vm_pindex_t pindex; /* offset into object (O,P) */ 143 vm_paddr_t phys_addr; /* physical address of page */ 144 struct md_page md; /* machine dependant stuff */ 145 u_int wire_count; /* wired down maps refs (P) */ 146 volatile u_int busy_lock; /* busy owners lock */ 147 uint16_t hold_count; /* page hold count (P) */ 148 uint16_t flags; /* page PG_* flags (P) */ 149 uint8_t aflags; /* access is atomic */ 150 uint8_t oflags; /* page VPO_* flags (O) */ 151 uint8_t queue; /* page queue index (P,Q) */ 152 int8_t psind; /* pagesizes[] index (O) */ 153 int8_t segind; 154 uint8_t order; /* index of the buddy queue */ 155 uint8_t pool; 156 u_char act_count; /* page usage count (P) */ 157 /* NOTE that these must support one bit per DEV_BSIZE in a page */ 158 /* so, on normal X86 kernels, they must be at least 8 bits wide */ 159 vm_page_bits_t valid; /* map of valid DEV_BSIZE chunks (O) */ 160 vm_page_bits_t dirty; /* map of dirty DEV_BSIZE chunks (M) */ 161 }; 162 163 /* 164 * Page flags stored in oflags: 165 * 166 * Access to these page flags is synchronized by the lock on the object 167 * containing the page (O). 168 * 169 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG) 170 * indicates that the page is not under PV management but 171 * otherwise should be treated as a normal page. Pages not 172 * under PV management cannot be paged out via the 173 * object/vm_page_t because there is no knowledge of their pte 174 * mappings, and such pages are also not on any PQ queue. 175 * 176 */ 177 #define VPO_UNUSED01 0x01 /* --available-- */ 178 #define VPO_SWAPSLEEP 0x02 /* waiting for swap to finish */ 179 #define VPO_UNMANAGED 0x04 /* no PV management for page */ 180 #define VPO_SWAPINPROG 0x08 /* swap I/O in progress on page */ 181 #define VPO_NOSYNC 0x10 /* do not collect for syncer */ 182 183 /* 184 * Busy page implementation details. 185 * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation, 186 * even if the support for owner identity is removed because of size 187 * constraints. Checks on lock recursion are then not possible, while the 188 * lock assertions effectiveness is someway reduced. 189 */ 190 #define VPB_BIT_SHARED 0x01 191 #define VPB_BIT_EXCLUSIVE 0x02 192 #define VPB_BIT_WAITERS 0x04 193 #define VPB_BIT_FLAGMASK \ 194 (VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS) 195 196 #define VPB_SHARERS_SHIFT 3 197 #define VPB_SHARERS(x) \ 198 (((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT) 199 #define VPB_SHARERS_WORD(x) ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED) 200 #define VPB_ONE_SHARER (1 << VPB_SHARERS_SHIFT) 201 202 #define VPB_SINGLE_EXCLUSIVER VPB_BIT_EXCLUSIVE 203 204 #define VPB_UNBUSIED VPB_SHARERS_WORD(0) 205 206 #define PQ_NONE 255 207 #define PQ_INACTIVE 0 208 #define PQ_ACTIVE 1 209 #define PQ_COUNT 2 210 211 TAILQ_HEAD(pglist, vm_page); 212 SLIST_HEAD(spglist, vm_page); 213 214 struct vm_pagequeue { 215 struct mtx pq_mutex; 216 struct pglist pq_pl; 217 int pq_cnt; 218 int * const pq_vcnt; 219 const char * const pq_name; 220 } __aligned(CACHE_LINE_SIZE); 221 222 223 struct vm_domain { 224 struct vm_pagequeue vmd_pagequeues[PQ_COUNT]; 225 u_int vmd_page_count; 226 u_int vmd_free_count; 227 long vmd_segs; /* bitmask of the segments */ 228 boolean_t vmd_oom; 229 int vmd_pass; /* local pagedaemon pass */ 230 struct vm_page vmd_marker; /* marker for pagedaemon private use */ 231 }; 232 233 extern struct vm_domain vm_dom[MAXMEMDOM]; 234 235 #define vm_pagequeue_assert_locked(pq) mtx_assert(&(pq)->pq_mutex, MA_OWNED) 236 #define vm_pagequeue_lock(pq) mtx_lock(&(pq)->pq_mutex) 237 #define vm_pagequeue_unlock(pq) mtx_unlock(&(pq)->pq_mutex) 238 239 #ifdef _KERNEL 240 static __inline void 241 vm_pagequeue_cnt_add(struct vm_pagequeue *pq, int addend) 242 { 243 244 #ifdef notyet 245 vm_pagequeue_assert_locked(pq); 246 #endif 247 pq->pq_cnt += addend; 248 atomic_add_int(pq->pq_vcnt, addend); 249 } 250 #define vm_pagequeue_cnt_inc(pq) vm_pagequeue_cnt_add((pq), 1) 251 #define vm_pagequeue_cnt_dec(pq) vm_pagequeue_cnt_add((pq), -1) 252 #endif /* _KERNEL */ 253 254 extern struct mtx_padalign vm_page_queue_free_mtx; 255 extern struct mtx_padalign pa_lock[]; 256 257 #if defined(__arm__) 258 #define PDRSHIFT PDR_SHIFT 259 #elif !defined(PDRSHIFT) 260 #define PDRSHIFT 21 261 #endif 262 263 #define pa_index(pa) ((pa) >> PDRSHIFT) 264 #define PA_LOCKPTR(pa) ((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT])) 265 #define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa))) 266 #define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa)) 267 #define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa)) 268 #define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa)) 269 #define PA_UNLOCK_COND(pa) \ 270 do { \ 271 if ((pa) != 0) { \ 272 PA_UNLOCK((pa)); \ 273 (pa) = 0; \ 274 } \ 275 } while (0) 276 277 #define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a)) 278 279 #ifdef KLD_MODULE 280 #define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE) 281 #define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE) 282 #define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE) 283 #else /* !KLD_MODULE */ 284 #define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m)))) 285 #define vm_page_lock(m) mtx_lock(vm_page_lockptr((m))) 286 #define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m))) 287 #define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m))) 288 #endif 289 #if defined(INVARIANTS) 290 #define vm_page_assert_locked(m) \ 291 vm_page_assert_locked_KBI((m), __FILE__, __LINE__) 292 #define vm_page_lock_assert(m, a) \ 293 vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__) 294 #else 295 #define vm_page_assert_locked(m) 296 #define vm_page_lock_assert(m, a) 297 #endif 298 299 /* 300 * The vm_page's aflags are updated using atomic operations. To set or clear 301 * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear() 302 * must be used. Neither these flags nor these functions are part of the KBI. 303 * 304 * PGA_REFERENCED may be cleared only if the page is locked. It is set by 305 * both the MI and MD VM layers. However, kernel loadable modules should not 306 * directly set this flag. They should call vm_page_reference() instead. 307 * 308 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter(). When it 309 * does so, the page must be exclusive busied. The MI VM layer must never 310 * access this flag directly. Instead, it should call 311 * pmap_page_is_write_mapped(). 312 * 313 * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has 314 * at least one executable mapping. It is not consumed by the MI VM layer. 315 */ 316 #define PGA_WRITEABLE 0x01 /* page may be mapped writeable */ 317 #define PGA_REFERENCED 0x02 /* page has been referenced */ 318 #define PGA_EXECUTABLE 0x04 /* page may be mapped executable */ 319 320 /* 321 * Page flags. If changed at any other time than page allocation or 322 * freeing, the modification must be protected by the vm_page lock. 323 */ 324 #define PG_CACHED 0x0001 /* page is cached */ 325 #define PG_FICTITIOUS 0x0004 /* physical page doesn't exist */ 326 #define PG_ZERO 0x0008 /* page is zeroed */ 327 #define PG_MARKER 0x0010 /* special queue marker page */ 328 #define PG_WINATCFLS 0x0040 /* flush dirty page on inactive q */ 329 #define PG_NODUMP 0x0080 /* don't include this page in a dump */ 330 #define PG_UNHOLDFREE 0x0100 /* delayed free of a held page */ 331 332 /* 333 * Misc constants. 334 */ 335 #define ACT_DECLINE 1 336 #define ACT_ADVANCE 3 337 #define ACT_INIT 5 338 #define ACT_MAX 64 339 340 #ifdef _KERNEL 341 342 #include <sys/systm.h> 343 344 #include <machine/atomic.h> 345 346 /* 347 * Each pageable resident page falls into one of four lists: 348 * 349 * free 350 * Available for allocation now. 351 * 352 * cache 353 * Almost available for allocation. Still associated with 354 * an object, but clean and immediately freeable. 355 * 356 * The following lists are LRU sorted: 357 * 358 * inactive 359 * Low activity, candidates for reclamation. 360 * This is the list of pages that should be 361 * paged out next. 362 * 363 * active 364 * Pages that are "active" i.e. they have been 365 * recently referenced. 366 * 367 */ 368 369 extern int vm_page_zero_count; 370 371 extern vm_page_t vm_page_array; /* First resident page in table */ 372 extern long vm_page_array_size; /* number of vm_page_t's */ 373 extern long first_page; /* first physical page number */ 374 375 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) 376 377 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa); 378 379 /* page allocation classes: */ 380 #define VM_ALLOC_NORMAL 0 381 #define VM_ALLOC_INTERRUPT 1 382 #define VM_ALLOC_SYSTEM 2 383 #define VM_ALLOC_CLASS_MASK 3 384 /* page allocation flags: */ 385 #define VM_ALLOC_WIRED 0x0020 /* non pageable */ 386 #define VM_ALLOC_ZERO 0x0040 /* Try to obtain a zeroed page */ 387 #define VM_ALLOC_NOOBJ 0x0100 /* No associated object */ 388 #define VM_ALLOC_NOBUSY 0x0200 /* Do not busy the page */ 389 #define VM_ALLOC_IFCACHED 0x0400 /* Fail if the page is not cached */ 390 #define VM_ALLOC_IFNOTCACHED 0x0800 /* Fail if the page is cached */ 391 #define VM_ALLOC_IGN_SBUSY 0x1000 /* vm_page_grab() only */ 392 #define VM_ALLOC_NODUMP 0x2000 /* don't include in dump */ 393 #define VM_ALLOC_SBUSY 0x4000 /* Shared busy the page */ 394 395 #define VM_ALLOC_COUNT_SHIFT 16 396 #define VM_ALLOC_COUNT(count) ((count) << VM_ALLOC_COUNT_SHIFT) 397 398 #ifdef M_NOWAIT 399 static inline int 400 malloc2vm_flags(int malloc_flags) 401 { 402 int pflags; 403 404 KASSERT((malloc_flags & M_USE_RESERVE) == 0 || 405 (malloc_flags & M_NOWAIT) != 0, 406 ("M_USE_RESERVE requires M_NOWAIT")); 407 pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT : 408 VM_ALLOC_SYSTEM; 409 if ((malloc_flags & M_ZERO) != 0) 410 pflags |= VM_ALLOC_ZERO; 411 if ((malloc_flags & M_NODUMP) != 0) 412 pflags |= VM_ALLOC_NODUMP; 413 return (pflags); 414 } 415 #endif 416 417 void vm_page_busy_downgrade(vm_page_t m); 418 void vm_page_busy_sleep(vm_page_t m, const char *msg); 419 void vm_page_flash(vm_page_t m); 420 void vm_page_hold(vm_page_t mem); 421 void vm_page_unhold(vm_page_t mem); 422 void vm_page_free(vm_page_t m); 423 void vm_page_free_zero(vm_page_t m); 424 425 void vm_page_activate (vm_page_t); 426 void vm_page_advise(vm_page_t m, int advice); 427 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int); 428 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 429 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 430 vm_paddr_t boundary, vm_memattr_t memattr); 431 vm_page_t vm_page_alloc_freelist(int, int); 432 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int); 433 void vm_page_cache(vm_page_t); 434 void vm_page_cache_free(vm_object_t, vm_pindex_t, vm_pindex_t); 435 void vm_page_cache_transfer(vm_object_t, vm_pindex_t, vm_object_t); 436 int vm_page_try_to_cache (vm_page_t); 437 int vm_page_try_to_free (vm_page_t); 438 void vm_page_deactivate (vm_page_t); 439 void vm_page_dequeue(vm_page_t m); 440 void vm_page_dequeue_locked(vm_page_t m); 441 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t); 442 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr); 443 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 444 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t); 445 boolean_t vm_page_is_cached(vm_object_t object, vm_pindex_t pindex); 446 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t); 447 vm_page_t vm_page_next(vm_page_t m); 448 int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *); 449 struct vm_pagequeue *vm_page_pagequeue(vm_page_t m); 450 vm_page_t vm_page_prev(vm_page_t m); 451 boolean_t vm_page_ps_is_valid(vm_page_t m); 452 void vm_page_putfake(vm_page_t m); 453 void vm_page_readahead_finish(vm_page_t m); 454 void vm_page_reference(vm_page_t m); 455 void vm_page_remove (vm_page_t); 456 int vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t); 457 vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object, 458 vm_pindex_t pindex); 459 void vm_page_requeue(vm_page_t m); 460 void vm_page_requeue_locked(vm_page_t m); 461 int vm_page_sbusied(vm_page_t m); 462 void vm_page_set_valid_range(vm_page_t m, int base, int size); 463 int vm_page_sleep_if_busy(vm_page_t m, const char *msg); 464 vm_offset_t vm_page_startup(vm_offset_t vaddr); 465 void vm_page_sunbusy(vm_page_t m); 466 int vm_page_trysbusy(vm_page_t m); 467 void vm_page_unhold_pages(vm_page_t *ma, int count); 468 void vm_page_unwire (vm_page_t, int); 469 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 470 void vm_page_wire (vm_page_t); 471 void vm_page_xunbusy_hard(vm_page_t m); 472 void vm_page_set_validclean (vm_page_t, int, int); 473 void vm_page_clear_dirty (vm_page_t, int, int); 474 void vm_page_set_invalid (vm_page_t, int, int); 475 int vm_page_is_valid (vm_page_t, int, int); 476 void vm_page_test_dirty (vm_page_t); 477 vm_page_bits_t vm_page_bits(int base, int size); 478 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid); 479 void vm_page_free_toq(vm_page_t m); 480 void vm_page_zero_idle_wakeup(void); 481 482 void vm_page_dirty_KBI(vm_page_t m); 483 void vm_page_lock_KBI(vm_page_t m, const char *file, int line); 484 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line); 485 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line); 486 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 487 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line); 488 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line); 489 #endif 490 491 #define vm_page_assert_sbusied(m) \ 492 KASSERT(vm_page_sbusied(m), \ 493 ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \ 494 (void *)m, __FILE__, __LINE__)); 495 496 #define vm_page_assert_unbusied(m) \ 497 KASSERT(!vm_page_busied(m), \ 498 ("vm_page_assert_unbusied: page %p busy @ %s:%d", \ 499 (void *)m, __FILE__, __LINE__)); 500 501 #define vm_page_assert_xbusied(m) \ 502 KASSERT(vm_page_xbusied(m), \ 503 ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \ 504 (void *)m, __FILE__, __LINE__)); 505 506 #define vm_page_busied(m) \ 507 ((m)->busy_lock != VPB_UNBUSIED) 508 509 #define vm_page_sbusy(m) do { \ 510 if (!vm_page_trysbusy(m)) \ 511 panic("%s: page %p failed shared busing", __func__, m); \ 512 } while (0) 513 514 #define vm_page_tryxbusy(m) \ 515 (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, \ 516 VPB_SINGLE_EXCLUSIVER)) 517 518 #define vm_page_xbusied(m) \ 519 ((m->busy_lock & VPB_SINGLE_EXCLUSIVER) != 0) 520 521 #define vm_page_xbusy(m) do { \ 522 if (!vm_page_tryxbusy(m)) \ 523 panic("%s: page %p failed exclusive busing", __func__, \ 524 m); \ 525 } while (0) 526 527 #define vm_page_xunbusy(m) do { \ 528 if (!atomic_cmpset_rel_int(&(m)->busy_lock, \ 529 VPB_SINGLE_EXCLUSIVER, VPB_UNBUSIED)) \ 530 vm_page_xunbusy_hard(m); \ 531 } while (0) 532 533 #ifdef INVARIANTS 534 void vm_page_object_lock_assert(vm_page_t m); 535 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) vm_page_object_lock_assert(m) 536 #else 537 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) (void)0 538 #endif 539 540 /* 541 * We want to use atomic updates for the aflags field, which is 8 bits wide. 542 * However, not all architectures support atomic operations on 8-bit 543 * destinations. In order that we can easily use a 32-bit operation, we 544 * require that the aflags field be 32-bit aligned. 545 */ 546 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0); 547 548 /* 549 * Clear the given bits in the specified page. 550 */ 551 static inline void 552 vm_page_aflag_clear(vm_page_t m, uint8_t bits) 553 { 554 uint32_t *addr, val; 555 556 /* 557 * The PGA_REFERENCED flag can only be cleared if the page is locked. 558 */ 559 if ((bits & PGA_REFERENCED) != 0) 560 vm_page_assert_locked(m); 561 562 /* 563 * Access the whole 32-bit word containing the aflags field with an 564 * atomic update. Parallel non-atomic updates to the other fields 565 * within this word are handled properly by the atomic update. 566 */ 567 addr = (void *)&m->aflags; 568 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0, 569 ("vm_page_aflag_clear: aflags is misaligned")); 570 val = bits; 571 #if BYTE_ORDER == BIG_ENDIAN 572 val <<= 24; 573 #endif 574 atomic_clear_32(addr, val); 575 } 576 577 /* 578 * Set the given bits in the specified page. 579 */ 580 static inline void 581 vm_page_aflag_set(vm_page_t m, uint8_t bits) 582 { 583 uint32_t *addr, val; 584 585 /* 586 * The PGA_WRITEABLE flag can only be set if the page is managed and 587 * exclusive busied. Currently, this flag is only set by pmap_enter(). 588 */ 589 KASSERT((bits & PGA_WRITEABLE) == 0 || 590 ((m->oflags & VPO_UNMANAGED) == 0 && vm_page_xbusied(m)), 591 ("vm_page_aflag_set: PGA_WRITEABLE and not exclusive busy")); 592 593 /* 594 * Access the whole 32-bit word containing the aflags field with an 595 * atomic update. Parallel non-atomic updates to the other fields 596 * within this word are handled properly by the atomic update. 597 */ 598 addr = (void *)&m->aflags; 599 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0, 600 ("vm_page_aflag_set: aflags is misaligned")); 601 val = bits; 602 #if BYTE_ORDER == BIG_ENDIAN 603 val <<= 24; 604 #endif 605 atomic_set_32(addr, val); 606 } 607 608 /* 609 * vm_page_dirty: 610 * 611 * Set all bits in the page's dirty field. 612 * 613 * The object containing the specified page must be locked if the 614 * call is made from the machine-independent layer. 615 * 616 * See vm_page_clear_dirty_mask(). 617 */ 618 static __inline void 619 vm_page_dirty(vm_page_t m) 620 { 621 622 /* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */ 623 #if defined(KLD_MODULE) || defined(INVARIANTS) 624 vm_page_dirty_KBI(m); 625 #else 626 m->dirty = VM_PAGE_BITS_ALL; 627 #endif 628 } 629 630 /* 631 * vm_page_remque: 632 * 633 * If the given page is in a page queue, then remove it from that page 634 * queue. 635 * 636 * The page must be locked. 637 */ 638 static inline void 639 vm_page_remque(vm_page_t m) 640 { 641 642 if (m->queue != PQ_NONE) 643 vm_page_dequeue(m); 644 } 645 646 /* 647 * vm_page_undirty: 648 * 649 * Set page to not be dirty. Note: does not clear pmap modify bits 650 */ 651 static __inline void 652 vm_page_undirty(vm_page_t m) 653 { 654 655 VM_PAGE_OBJECT_LOCK_ASSERT(m); 656 m->dirty = 0; 657 } 658 659 #endif /* _KERNEL */ 660 #endif /* !_VM_PAGE_ */ 661