xref: /freebsd/sys/vm/vm_page.h (revision 7d99ab9fd0cc2c1ce2ecef0ed6d0672c2a50b0cb)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD$
61  */
62 
63 /*
64  *	Resident memory system definitions.
65  */
66 
67 #ifndef	_VM_PAGE_
68 #define	_VM_PAGE_
69 
70 #include <vm/pmap.h>
71 
72 /*
73  *	Management of resident (logical) pages.
74  *
75  *	A small structure is kept for each resident
76  *	page, indexed by page number.  Each structure
77  *	is an element of several collections:
78  *
79  *		A radix tree used to quickly
80  *		perform object/offset lookups
81  *
82  *		A list of all pages for a given object,
83  *		so they can be quickly deactivated at
84  *		time of deallocation.
85  *
86  *		An ordered list of pages due for pageout.
87  *
88  *	In addition, the structure contains the object
89  *	and offset to which this page belongs (for pageout),
90  *	and sundry status bits.
91  *
92  *	In general, operations on this structure's mutable fields are
93  *	synchronized using either one of or a combination of the lock on the
94  *	object that the page belongs to (O), the pool lock for the page (P),
95  *	or the lock for either the free or paging queue (Q).  If a field is
96  *	annotated below with two of these locks, then holding either lock is
97  *	sufficient for read access, but both locks are required for write
98  *	access.
99  *
100  *	In contrast, the synchronization of accesses to the page's
101  *	dirty field is machine dependent (M).  In the
102  *	machine-independent layer, the lock on the object that the
103  *	page belongs to must be held in order to operate on the field.
104  *	However, the pmap layer is permitted to set all bits within
105  *	the field without holding that lock.  If the underlying
106  *	architecture does not support atomic read-modify-write
107  *	operations on the field's type, then the machine-independent
108  *	layer uses a 32-bit atomic on the aligned 32-bit word that
109  *	contains the dirty field.  In the machine-independent layer,
110  *	the implementation of read-modify-write operations on the
111  *	field is encapsulated in vm_page_clear_dirty_mask().
112  */
113 
114 #if PAGE_SIZE == 4096
115 #define VM_PAGE_BITS_ALL 0xffu
116 typedef uint8_t vm_page_bits_t;
117 #elif PAGE_SIZE == 8192
118 #define VM_PAGE_BITS_ALL 0xffffu
119 typedef uint16_t vm_page_bits_t;
120 #elif PAGE_SIZE == 16384
121 #define VM_PAGE_BITS_ALL 0xffffffffu
122 typedef uint32_t vm_page_bits_t;
123 #elif PAGE_SIZE == 32768
124 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
125 typedef uint64_t vm_page_bits_t;
126 #endif
127 
128 struct vm_page {
129 	TAILQ_ENTRY(vm_page) pageq;	/* page queue or free list (Q)	*/
130 	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) 	*/
131 
132 	vm_object_t object;		/* which object am I in (O,P)*/
133 	vm_pindex_t pindex;		/* offset into object (O,P) */
134 	vm_paddr_t phys_addr;		/* physical address of page */
135 	struct md_page md;		/* machine dependant stuff */
136 	uint8_t	queue;			/* page queue index (P,Q) */
137 	int8_t segind;
138 	short hold_count;		/* page hold count (P) */
139 	uint8_t	order;			/* index of the buddy queue */
140 	uint8_t pool;
141 	u_short cow;			/* page cow mapping count (P) */
142 	u_int wire_count;		/* wired down maps refs (P) */
143 	uint8_t aflags;			/* access is atomic */
144 	uint8_t oflags;			/* page VPO_* flags (O) */
145 	uint16_t flags;			/* page PG_* flags (P) */
146 	u_char	act_count;		/* page usage count (P) */
147 	u_char	busy;			/* page busy count (O) */
148 	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
149 	/* so, on normal X86 kernels, they must be at least 8 bits wide */
150 	vm_page_bits_t valid;		/* map of valid DEV_BSIZE chunks (O) */
151 	vm_page_bits_t dirty;		/* map of dirty DEV_BSIZE chunks (M) */
152 };
153 
154 /*
155  * Page flags stored in oflags:
156  *
157  * Access to these page flags is synchronized by the lock on the object
158  * containing the page (O).
159  *
160  * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
161  * 	 indicates that the page is not under PV management but
162  * 	 otherwise should be treated as a normal page.  Pages not
163  * 	 under PV management cannot be paged out via the
164  * 	 object/vm_page_t because there is no knowledge of their pte
165  * 	 mappings, and such pages are also not on any PQ queue.
166  *
167  */
168 #define	VPO_BUSY	0x01		/* page is in transit */
169 #define	VPO_WANTED	0x02		/* someone is waiting for page */
170 #define	VPO_UNMANAGED	0x04		/* no PV management for page */
171 #define	VPO_SWAPINPROG	0x08		/* swap I/O in progress on page */
172 #define	VPO_NOSYNC	0x10		/* do not collect for syncer */
173 
174 #define	PQ_NONE		255
175 #define	PQ_INACTIVE	0
176 #define	PQ_ACTIVE	1
177 #define	PQ_COUNT	2
178 
179 TAILQ_HEAD(pglist, vm_page);
180 
181 struct vm_pagequeue {
182 	struct mtx	pq_mutex;
183 	struct pglist	pq_pl;
184 	int *const	pq_cnt;
185 	const char *const pq_name;
186 } __aligned(CACHE_LINE_SIZE);
187 
188 extern struct vm_pagequeue vm_pagequeues[PQ_COUNT];
189 
190 #define	vm_pagequeue_assert_locked(pq)	mtx_assert(&(pq)->pq_mutex, MA_OWNED)
191 #define	vm_pagequeue_init_lock(pq)	mtx_init(&(pq)->pq_mutex,	\
192 	    (pq)->pq_name, "vm pagequeue", MTX_DEF | MTX_DUPOK);
193 #define	vm_pagequeue_lock(pq)		mtx_lock(&(pq)->pq_mutex)
194 #define	vm_pagequeue_unlock(pq)		mtx_unlock(&(pq)->pq_mutex)
195 
196 extern struct mtx_padalign vm_page_queue_free_mtx;
197 extern struct mtx_padalign pa_lock[];
198 
199 #if defined(__arm__)
200 #define	PDRSHIFT	PDR_SHIFT
201 #elif !defined(PDRSHIFT)
202 #define PDRSHIFT	21
203 #endif
204 
205 #define	pa_index(pa)	((pa) >> PDRSHIFT)
206 #define	PA_LOCKPTR(pa)	((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT]))
207 #define	PA_LOCKOBJPTR(pa)	((struct lock_object *)PA_LOCKPTR((pa)))
208 #define	PA_LOCK(pa)	mtx_lock(PA_LOCKPTR(pa))
209 #define	PA_TRYLOCK(pa)	mtx_trylock(PA_LOCKPTR(pa))
210 #define	PA_UNLOCK(pa)	mtx_unlock(PA_LOCKPTR(pa))
211 #define	PA_UNLOCK_COND(pa) 			\
212 	do {		   			\
213 		if ((pa) != 0) {		\
214 			PA_UNLOCK((pa));	\
215 			(pa) = 0;		\
216 		}				\
217 	} while (0)
218 
219 #define	PA_LOCK_ASSERT(pa, a)	mtx_assert(PA_LOCKPTR(pa), (a))
220 
221 #ifdef KLD_MODULE
222 #define	vm_page_lock(m)		vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
223 #define	vm_page_unlock(m)	vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
224 #define	vm_page_trylock(m)	vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
225 #else	/* !KLD_MODULE */
226 #define	vm_page_lockptr(m)	(PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
227 #define	vm_page_lock(m)		mtx_lock(vm_page_lockptr((m)))
228 #define	vm_page_unlock(m)	mtx_unlock(vm_page_lockptr((m)))
229 #define	vm_page_trylock(m)	mtx_trylock(vm_page_lockptr((m)))
230 #endif
231 #if defined(INVARIANTS)
232 #define	vm_page_assert_locked(m)		\
233     vm_page_assert_locked_KBI((m), __FILE__, __LINE__)
234 #define	vm_page_lock_assert(m, a)		\
235     vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
236 #else
237 #define	vm_page_assert_locked(m)
238 #define	vm_page_lock_assert(m, a)
239 #endif
240 
241 /*
242  * The vm_page's aflags are updated using atomic operations.  To set or clear
243  * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
244  * must be used.  Neither these flags nor these functions are part of the KBI.
245  *
246  * PGA_REFERENCED may be cleared only if the page is locked.  It is set by
247  * both the MI and MD VM layers.  However, kernel loadable modules should not
248  * directly set this flag.  They should call vm_page_reference() instead.
249  *
250  * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().  When it
251  * does so, the page must be VPO_BUSY.  The MI VM layer must never access this
252  * flag directly.  Instead, it should call pmap_page_is_write_mapped().
253  *
254  * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
255  * at least one executable mapping.  It is not consumed by the MI VM layer.
256  */
257 #define	PGA_WRITEABLE	0x01		/* page may be mapped writeable */
258 #define	PGA_REFERENCED	0x02		/* page has been referenced */
259 #define	PGA_EXECUTABLE	0x04		/* page may be mapped executable */
260 
261 /*
262  * Page flags.  If changed at any other time than page allocation or
263  * freeing, the modification must be protected by the vm_page lock.
264  */
265 #define	PG_CACHED	0x0001		/* page is cached */
266 #define	PG_FREE		0x0002		/* page is free */
267 #define	PG_FICTITIOUS	0x0004		/* physical page doesn't exist */
268 #define	PG_ZERO		0x0008		/* page is zeroed */
269 #define	PG_MARKER	0x0010		/* special queue marker page */
270 #define	PG_SLAB		0x0020		/* object pointer is actually a slab */
271 #define	PG_WINATCFLS	0x0040		/* flush dirty page on inactive q */
272 #define	PG_NODUMP	0x0080		/* don't include this page in a dump */
273 #define	PG_UNHOLDFREE	0x0100		/* delayed free of a held page */
274 
275 /*
276  * Misc constants.
277  */
278 #define ACT_DECLINE		1
279 #define ACT_ADVANCE		3
280 #define ACT_INIT		5
281 #define ACT_MAX			64
282 
283 #ifdef _KERNEL
284 
285 #include <sys/systm.h>
286 
287 #include <machine/atomic.h>
288 
289 /*
290  * Each pageable resident page falls into one of four lists:
291  *
292  *	free
293  *		Available for allocation now.
294  *
295  *	cache
296  *		Almost available for allocation. Still associated with
297  *		an object, but clean and immediately freeable.
298  *
299  * The following lists are LRU sorted:
300  *
301  *	inactive
302  *		Low activity, candidates for reclamation.
303  *		This is the list of pages that should be
304  *		paged out next.
305  *
306  *	active
307  *		Pages that are "active" i.e. they have been
308  *		recently referenced.
309  *
310  */
311 
312 extern int vm_page_zero_count;
313 
314 extern vm_page_t vm_page_array;		/* First resident page in table */
315 extern long vm_page_array_size;		/* number of vm_page_t's */
316 extern long first_page;			/* first physical page number */
317 
318 #define	VM_PAGE_IS_FREE(m)	(((m)->flags & PG_FREE) != 0)
319 
320 #define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
321 
322 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
323 
324 /* page allocation classes: */
325 #define VM_ALLOC_NORMAL		0
326 #define VM_ALLOC_INTERRUPT	1
327 #define VM_ALLOC_SYSTEM		2
328 #define	VM_ALLOC_CLASS_MASK	3
329 /* page allocation flags: */
330 #define	VM_ALLOC_WIRED		0x0020	/* non pageable */
331 #define	VM_ALLOC_ZERO		0x0040	/* Try to obtain a zeroed page */
332 #define	VM_ALLOC_RETRY		0x0080	/* Mandatory with vm_page_grab() */
333 #define	VM_ALLOC_NOOBJ		0x0100	/* No associated object */
334 #define	VM_ALLOC_NOBUSY		0x0200	/* Do not busy the page */
335 #define	VM_ALLOC_IFCACHED	0x0400	/* Fail if the page is not cached */
336 #define	VM_ALLOC_IFNOTCACHED	0x0800	/* Fail if the page is cached */
337 #define	VM_ALLOC_IGN_SBUSY	0x1000	/* vm_page_grab() only */
338 #define	VM_ALLOC_NODUMP		0x2000	/* don't include in dump */
339 
340 #define	VM_ALLOC_COUNT_SHIFT	16
341 #define	VM_ALLOC_COUNT(count)	((count) << VM_ALLOC_COUNT_SHIFT)
342 
343 #ifdef M_NOWAIT
344 static inline int
345 malloc2vm_flags(int malloc_flags)
346 {
347 	int pflags;
348 
349 	KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
350 	    (malloc_flags & M_NOWAIT) != 0,
351 	    ("M_USE_RESERVE requires M_NOWAIT"));
352 	pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
353 	    VM_ALLOC_SYSTEM;
354 	if ((malloc_flags & M_ZERO) != 0)
355 		pflags |= VM_ALLOC_ZERO;
356 	if ((malloc_flags & M_NODUMP) != 0)
357 		pflags |= VM_ALLOC_NODUMP;
358 	return (pflags);
359 }
360 #endif
361 
362 void vm_page_busy(vm_page_t m);
363 void vm_page_flash(vm_page_t m);
364 void vm_page_io_start(vm_page_t m);
365 void vm_page_io_finish(vm_page_t m);
366 void vm_page_hold(vm_page_t mem);
367 void vm_page_unhold(vm_page_t mem);
368 void vm_page_free(vm_page_t m);
369 void vm_page_free_zero(vm_page_t m);
370 void vm_page_wakeup(vm_page_t m);
371 
372 void vm_page_activate (vm_page_t);
373 void vm_page_advise(vm_page_t m, int advice);
374 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int);
375 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
376     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
377     vm_paddr_t boundary, vm_memattr_t memattr);
378 vm_page_t vm_page_alloc_freelist(int, int);
379 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
380 void vm_page_cache(vm_page_t);
381 void vm_page_cache_free(vm_object_t, vm_pindex_t, vm_pindex_t);
382 void vm_page_cache_transfer(vm_object_t, vm_pindex_t, vm_object_t);
383 int vm_page_try_to_cache (vm_page_t);
384 int vm_page_try_to_free (vm_page_t);
385 void vm_page_deactivate (vm_page_t);
386 void vm_page_dequeue(vm_page_t m);
387 void vm_page_dequeue_locked(vm_page_t m);
388 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
389 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
390 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
391 void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
392 boolean_t vm_page_is_cached(vm_object_t object, vm_pindex_t pindex);
393 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
394 vm_page_t vm_page_next(vm_page_t m);
395 int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *);
396 vm_page_t vm_page_prev(vm_page_t m);
397 void vm_page_putfake(vm_page_t m);
398 void vm_page_readahead_finish(vm_page_t m);
399 void vm_page_reference(vm_page_t m);
400 void vm_page_remove (vm_page_t);
401 void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
402 void vm_page_requeue(vm_page_t m);
403 void vm_page_requeue_locked(vm_page_t m);
404 void vm_page_set_valid_range(vm_page_t m, int base, int size);
405 void vm_page_sleep(vm_page_t m, const char *msg);
406 vm_offset_t vm_page_startup(vm_offset_t vaddr);
407 void vm_page_unhold_pages(vm_page_t *ma, int count);
408 void vm_page_unwire (vm_page_t, int);
409 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
410 void vm_page_wire (vm_page_t);
411 void vm_page_set_validclean (vm_page_t, int, int);
412 void vm_page_clear_dirty (vm_page_t, int, int);
413 void vm_page_set_invalid (vm_page_t, int, int);
414 int vm_page_is_valid (vm_page_t, int, int);
415 void vm_page_test_dirty (vm_page_t);
416 vm_page_bits_t vm_page_bits(int base, int size);
417 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
418 void vm_page_free_toq(vm_page_t m);
419 void vm_page_zero_idle_wakeup(void);
420 void vm_page_cowfault (vm_page_t);
421 int vm_page_cowsetup(vm_page_t);
422 void vm_page_cowclear (vm_page_t);
423 
424 void vm_page_dirty_KBI(vm_page_t m);
425 void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
426 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
427 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
428 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
429 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line);
430 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
431 #endif
432 
433 #ifdef INVARIANTS
434 void vm_page_object_lock_assert(vm_page_t m);
435 #define	VM_PAGE_OBJECT_LOCK_ASSERT(m)	vm_page_object_lock_assert(m)
436 #else
437 #define	VM_PAGE_OBJECT_LOCK_ASSERT(m)	(void)0
438 #endif
439 
440 /*
441  * We want to use atomic updates for the aflags field, which is 8 bits wide.
442  * However, not all architectures support atomic operations on 8-bit
443  * destinations.  In order that we can easily use a 32-bit operation, we
444  * require that the aflags field be 32-bit aligned.
445  */
446 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
447 
448 /*
449  *	Clear the given bits in the specified page.
450  */
451 static inline void
452 vm_page_aflag_clear(vm_page_t m, uint8_t bits)
453 {
454 	uint32_t *addr, val;
455 
456 	/*
457 	 * The PGA_REFERENCED flag can only be cleared if the page is locked.
458 	 */
459 	if ((bits & PGA_REFERENCED) != 0)
460 		vm_page_assert_locked(m);
461 
462 	/*
463 	 * Access the whole 32-bit word containing the aflags field with an
464 	 * atomic update.  Parallel non-atomic updates to the other fields
465 	 * within this word are handled properly by the atomic update.
466 	 */
467 	addr = (void *)&m->aflags;
468 	KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0,
469 	    ("vm_page_aflag_clear: aflags is misaligned"));
470 	val = bits;
471 #if BYTE_ORDER == BIG_ENDIAN
472 	val <<= 24;
473 #endif
474 	atomic_clear_32(addr, val);
475 }
476 
477 /*
478  *	Set the given bits in the specified page.
479  */
480 static inline void
481 vm_page_aflag_set(vm_page_t m, uint8_t bits)
482 {
483 	uint32_t *addr, val;
484 
485 	/*
486 	 * The PGA_WRITEABLE flag can only be set if the page is managed and
487 	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
488 	 */
489 	KASSERT((bits & PGA_WRITEABLE) == 0 ||
490 	    (m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY,
491 	    ("vm_page_aflag_set: PGA_WRITEABLE and !VPO_BUSY"));
492 
493 	/*
494 	 * Access the whole 32-bit word containing the aflags field with an
495 	 * atomic update.  Parallel non-atomic updates to the other fields
496 	 * within this word are handled properly by the atomic update.
497 	 */
498 	addr = (void *)&m->aflags;
499 	KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0,
500 	    ("vm_page_aflag_set: aflags is misaligned"));
501 	val = bits;
502 #if BYTE_ORDER == BIG_ENDIAN
503 	val <<= 24;
504 #endif
505 	atomic_set_32(addr, val);
506 }
507 
508 /*
509  *	vm_page_dirty:
510  *
511  *	Set all bits in the page's dirty field.
512  *
513  *	The object containing the specified page must be locked if the
514  *	call is made from the machine-independent layer.
515  *
516  *	See vm_page_clear_dirty_mask().
517  */
518 static __inline void
519 vm_page_dirty(vm_page_t m)
520 {
521 
522 	/* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
523 #if defined(KLD_MODULE) || defined(INVARIANTS)
524 	vm_page_dirty_KBI(m);
525 #else
526 	m->dirty = VM_PAGE_BITS_ALL;
527 #endif
528 }
529 
530 /*
531  *	vm_page_remque:
532  *
533  *	If the given page is in a page queue, then remove it from that page
534  *	queue.
535  *
536  *	The page must be locked.
537  */
538 static inline void
539 vm_page_remque(vm_page_t m)
540 {
541 
542 	if (m->queue != PQ_NONE)
543 		vm_page_dequeue(m);
544 }
545 
546 /*
547  *	vm_page_sleep_if_busy:
548  *
549  *	Sleep and release the page queues lock if VPO_BUSY is set or,
550  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
551  *	thread slept and the page queues lock was released.
552  *	Otherwise, retains the page queues lock and returns FALSE.
553  *
554  *	The object containing the given page must be locked.
555  */
556 static __inline int
557 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
558 {
559 
560 	if ((m->oflags & VPO_BUSY) || (also_m_busy && m->busy)) {
561 		vm_page_sleep(m, msg);
562 		return (TRUE);
563 	}
564 	return (FALSE);
565 }
566 
567 /*
568  *	vm_page_undirty:
569  *
570  *	Set page to not be dirty.  Note: does not clear pmap modify bits
571  */
572 static __inline void
573 vm_page_undirty(vm_page_t m)
574 {
575 
576 	VM_PAGE_OBJECT_LOCK_ASSERT(m);
577 	m->dirty = 0;
578 }
579 
580 #endif				/* _KERNEL */
581 #endif				/* !_VM_PAGE_ */
582