xref: /freebsd/sys/vm/vm_page.h (revision 7d0873ebb83b19ba1e8a89e679470d885efe12e3)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Resident memory system definitions.
63  */
64 
65 #ifndef	_VM_PAGE_
66 #define	_VM_PAGE_
67 
68 #include <vm/pmap.h>
69 #include <vm/_vm_phys.h>
70 
71 /*
72  *	Management of resident (logical) pages.
73  *
74  *	A small structure is kept for each resident
75  *	page, indexed by page number.  Each structure
76  *	is an element of several collections:
77  *
78  *		A radix tree used to quickly
79  *		perform object/offset lookups
80  *
81  *		A list of all pages for a given object,
82  *		so they can be quickly deactivated at
83  *		time of deallocation.
84  *
85  *		An ordered list of pages due for pageout.
86  *
87  *	In addition, the structure contains the object
88  *	and offset to which this page belongs (for pageout),
89  *	and sundry status bits.
90  *
91  *	In general, operations on this structure's mutable fields are
92  *	synchronized using either one of or a combination of locks.  If a
93  *	field is annotated with two of these locks then holding either is
94  *	sufficient for read access but both are required for write access.
95  *	The queue lock for a page depends on the value of its queue field and is
96  *	described in detail below.
97  *
98  *	The following annotations are possible:
99  *	(A) the field must be accessed using atomic(9) and may require
100  *	    additional synchronization.
101  *	(B) the page busy lock.
102  *	(C) the field is immutable.
103  *	(F) the per-domain lock for the free queues.
104  *	(M) Machine dependent, defined by pmap layer.
105  *	(O) the object that the page belongs to.
106  *	(Q) the page's queue lock.
107  *
108  *	The busy lock is an embedded reader-writer lock that protects the
109  *	page's contents and identity (i.e., its <object, pindex> tuple) as
110  *	well as certain valid/dirty modifications.  To avoid bloating the
111  *	the page structure, the busy lock lacks some of the features available
112  *	the kernel's general-purpose synchronization primitives.  As a result,
113  *	busy lock ordering rules are not verified, lock recursion is not
114  *	detected, and an attempt to xbusy a busy page or sbusy an xbusy page
115  *	results will trigger a panic rather than causing the thread to block.
116  *	vm_page_sleep_if_busy() can be used to sleep until the page's busy
117  *	state changes, after which the caller must re-lookup the page and
118  *	re-evaluate its state.  vm_page_busy_acquire() will block until
119  *	the lock is acquired.
120  *
121  *	The valid field is protected by the page busy lock (B) and object
122  *	lock (O).  Transitions from invalid to valid are generally done
123  *	via I/O or zero filling and do not require the object lock.
124  *	These must be protected with the busy lock to prevent page-in or
125  *	creation races.  Page invalidation generally happens as a result
126  *	of truncate or msync.  When invalidated, pages must not be present
127  *	in pmap and must hold the object lock to prevent concurrent
128  *	speculative read-only mappings that do not require busy.  I/O
129  *	routines may check for validity without a lock if they are prepared
130  *	to handle invalidation races with higher level locks (vnode) or are
131  *	unconcerned with races so long as they hold a reference to prevent
132  *	recycling.  When a valid bit is set while holding a shared busy
133  *	lock (A) atomic operations are used to protect against concurrent
134  *	modification.
135  *
136  *	In contrast, the synchronization of accesses to the page's
137  *	dirty field is a mix of machine dependent (M) and busy (B).  In
138  *	the machine-independent layer, the page busy must be held to
139  *	operate on the field.  However, the pmap layer is permitted to
140  *	set all bits within the field without holding that lock.  If the
141  *	underlying architecture does not support atomic read-modify-write
142  *	operations on the field's type, then the machine-independent
143  *	layer uses a 32-bit atomic on the aligned 32-bit word that
144  *	contains the dirty field.  In the machine-independent layer,
145  *	the implementation of read-modify-write operations on the
146  *	field is encapsulated in vm_page_clear_dirty_mask().  An
147  *	exclusive busy lock combined with pmap_remove_{write/all}() is the
148  *	only way to ensure a page can not become dirty.  I/O generally
149  *	removes the page from pmap to ensure exclusive access and atomic
150  *	writes.
151  *
152  *	The ref_count field tracks references to the page.  References that
153  *	prevent the page from being reclaimable are called wirings and are
154  *	counted in the low bits of ref_count.  The containing object's
155  *	reference, if one exists, is counted using the VPRC_OBJREF bit in the
156  *	ref_count field.  Additionally, the VPRC_BLOCKED bit is used to
157  *	atomically check for wirings and prevent new wirings via
158  *	pmap_extract_and_hold().  When a page belongs to an object, it may be
159  *	wired only when the object is locked, or the page is busy, or by
160  *	pmap_extract_and_hold().  As a result, if the object is locked and the
161  *	page is not busy (or is exclusively busied by the current thread), and
162  *	the page is unmapped, its wire count will not increase.  The ref_count
163  *	field is updated using atomic operations in most cases, except when it
164  *	is known that no other references to the page exist, such as in the page
165  *	allocator.  A page may be present in the page queues, or even actively
166  *	scanned by the page daemon, without an explicitly counted referenced.
167  *	The page daemon must therefore handle the possibility of a concurrent
168  *	free of the page.
169  *
170  *	The queue state of a page consists of the queue and act_count fields of
171  *	its atomically updated state, and the subset of atomic flags specified
172  *	by PGA_QUEUE_STATE_MASK.  The queue field contains the page's page queue
173  *	index, or PQ_NONE if it does not belong to a page queue.  To modify the
174  *	queue field, the page queue lock corresponding to the old value must be
175  *	held, unless that value is PQ_NONE, in which case the queue index must
176  *	be updated using an atomic RMW operation.  There is one exception to
177  *	this rule: the page daemon may transition the queue field from
178  *	PQ_INACTIVE to PQ_NONE immediately prior to freeing the page during an
179  *	inactive queue scan.  At that point the page is already dequeued and no
180  *	other references to that vm_page structure can exist.  The PGA_ENQUEUED
181  *	flag, when set, indicates that the page structure is physically inserted
182  *	into the queue corresponding to the page's queue index, and may only be
183  *	set or cleared with the corresponding page queue lock held.
184  *
185  *	To avoid contention on page queue locks, page queue operations (enqueue,
186  *	dequeue, requeue) are batched using fixed-size per-CPU queues.  A
187  *	deferred operation is requested by setting one of the flags in
188  *	PGA_QUEUE_OP_MASK and inserting an entry into a batch queue.  When a
189  *	queue is full, an attempt to insert a new entry will lock the page
190  *	queues and trigger processing of the pending entries.  The
191  *	type-stability of vm_page structures is crucial to this scheme since the
192  *	processing of entries in a given batch queue may be deferred
193  *	indefinitely.  In particular, a page may be freed with pending batch
194  *	queue entries.  The page queue operation flags must be set using atomic
195  *	RWM operations.
196  */
197 
198 #if PAGE_SIZE == 4096
199 #define VM_PAGE_BITS_ALL 0xffu
200 typedef uint8_t vm_page_bits_t;
201 #elif PAGE_SIZE == 8192
202 #define VM_PAGE_BITS_ALL 0xffffu
203 typedef uint16_t vm_page_bits_t;
204 #elif PAGE_SIZE == 16384
205 #define VM_PAGE_BITS_ALL 0xffffffffu
206 typedef uint32_t vm_page_bits_t;
207 #elif PAGE_SIZE == 32768
208 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
209 typedef uint64_t vm_page_bits_t;
210 #endif
211 
212 typedef union vm_page_astate {
213 	struct {
214 		uint16_t flags;
215 		uint8_t	queue;
216 		uint8_t act_count;
217 	};
218 	uint32_t _bits;
219 } vm_page_astate_t;
220 
221 struct vm_page {
222 	union {
223 		TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */
224 		struct {
225 			SLIST_ENTRY(vm_page) ss; /* private slists */
226 		} s;
227 		struct {
228 			u_long p;
229 			u_long v;
230 		} memguard;
231 		struct {
232 			void *slab;
233 			void *zone;
234 		} uma;
235 	} plinks;
236 	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) */
237 	vm_object_t object;		/* which object am I in (O) */
238 	vm_pindex_t pindex;		/* offset into object (O,P) */
239 	vm_paddr_t phys_addr;		/* physical address of page (C) */
240 	struct md_page md;		/* machine dependent stuff */
241 	u_int ref_count;		/* page references (A) */
242 	u_int busy_lock;		/* busy owners lock (A) */
243 	union vm_page_astate a;		/* state accessed atomically (A) */
244 	uint8_t order;			/* index of the buddy queue (F) */
245 	uint8_t pool;			/* vm_phys freepool index (F) */
246 	uint8_t flags;			/* page PG_* flags (P) */
247 	uint8_t oflags;			/* page VPO_* flags (O) */
248 	int8_t psind;			/* pagesizes[] index (O) */
249 	int8_t segind;			/* vm_phys segment index (C) */
250 	/* NOTE that these must support one bit per DEV_BSIZE in a page */
251 	/* so, on normal X86 kernels, they must be at least 8 bits wide */
252 	vm_page_bits_t valid;		/* valid DEV_BSIZE chunk map (O,B) */
253 	vm_page_bits_t dirty;		/* dirty DEV_BSIZE chunk map (M,B) */
254 };
255 
256 /*
257  * Special bits used in the ref_count field.
258  *
259  * ref_count is normally used to count wirings that prevent the page from being
260  * reclaimed, but also supports several special types of references that do not
261  * prevent reclamation.  Accesses to the ref_count field must be atomic unless
262  * the page is unallocated.
263  *
264  * VPRC_OBJREF is the reference held by the containing object.  It can set or
265  * cleared only when the corresponding object's write lock is held.
266  *
267  * VPRC_BLOCKED is used to atomically block wirings via pmap lookups while
268  * attempting to tear down all mappings of a given page.  The page busy lock and
269  * object write lock must both be held in order to set or clear this bit.
270  */
271 #define	VPRC_BLOCKED	0x40000000u	/* mappings are being removed */
272 #define	VPRC_OBJREF	0x80000000u	/* object reference, cleared with (O) */
273 #define	VPRC_WIRE_COUNT(c)	((c) & ~(VPRC_BLOCKED | VPRC_OBJREF))
274 #define	VPRC_WIRE_COUNT_MAX	(~(VPRC_BLOCKED | VPRC_OBJREF))
275 
276 /*
277  * Page flags stored in oflags:
278  *
279  * Access to these page flags is synchronized by the lock on the object
280  * containing the page (O).
281  *
282  * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
283  * 	 indicates that the page is not under PV management but
284  * 	 otherwise should be treated as a normal page.  Pages not
285  * 	 under PV management cannot be paged out via the
286  * 	 object/vm_page_t because there is no knowledge of their pte
287  * 	 mappings, and such pages are also not on any PQ queue.
288  *
289  */
290 #define	VPO_KMEM_EXEC	0x01		/* kmem mapping allows execution */
291 #define	VPO_SWAPSLEEP	0x02		/* waiting for swap to finish */
292 #define	VPO_UNMANAGED	0x04		/* no PV management for page */
293 #define	VPO_SWAPINPROG	0x08		/* swap I/O in progress on page */
294 
295 /*
296  * Busy page implementation details.
297  * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation,
298  * even if the support for owner identity is removed because of size
299  * constraints.  Checks on lock recursion are then not possible, while the
300  * lock assertions effectiveness is someway reduced.
301  */
302 #define	VPB_BIT_SHARED		0x01
303 #define	VPB_BIT_EXCLUSIVE	0x02
304 #define	VPB_BIT_WAITERS		0x04
305 #define	VPB_BIT_FLAGMASK						\
306 	(VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS)
307 
308 #define	VPB_SHARERS_SHIFT	3
309 #define	VPB_SHARERS(x)							\
310 	(((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT)
311 #define	VPB_SHARERS_WORD(x)	((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED)
312 #define	VPB_ONE_SHARER		(1 << VPB_SHARERS_SHIFT)
313 
314 #define	VPB_SINGLE_EXCLUSIVE	VPB_BIT_EXCLUSIVE
315 #ifdef INVARIANTS
316 #define	VPB_CURTHREAD_EXCLUSIVE						\
317 	(VPB_BIT_EXCLUSIVE | ((u_int)(uintptr_t)curthread & ~VPB_BIT_FLAGMASK))
318 #else
319 #define	VPB_CURTHREAD_EXCLUSIVE	VPB_SINGLE_EXCLUSIVE
320 #endif
321 
322 #define	VPB_UNBUSIED		VPB_SHARERS_WORD(0)
323 
324 /* Freed lock blocks both shared and exclusive. */
325 #define	VPB_FREED		(0xffffffff - VPB_BIT_SHARED)
326 
327 #define	PQ_NONE		255
328 #define	PQ_INACTIVE	0
329 #define	PQ_ACTIVE	1
330 #define	PQ_LAUNDRY	2
331 #define	PQ_UNSWAPPABLE	3
332 #define	PQ_COUNT	4
333 
334 #ifndef VM_PAGE_HAVE_PGLIST
335 TAILQ_HEAD(pglist, vm_page);
336 #define VM_PAGE_HAVE_PGLIST
337 #endif
338 SLIST_HEAD(spglist, vm_page);
339 
340 #ifdef _KERNEL
341 extern vm_page_t bogus_page;
342 #endif	/* _KERNEL */
343 
344 extern struct mtx_padalign pa_lock[];
345 
346 #if defined(__arm__)
347 #define	PDRSHIFT	PDR_SHIFT
348 #elif !defined(PDRSHIFT)
349 #define PDRSHIFT	21
350 #endif
351 
352 #define	pa_index(pa)	((pa) >> PDRSHIFT)
353 #define	PA_LOCKPTR(pa)	((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT]))
354 #define	PA_LOCKOBJPTR(pa)	((struct lock_object *)PA_LOCKPTR((pa)))
355 #define	PA_LOCK(pa)	mtx_lock(PA_LOCKPTR(pa))
356 #define	PA_TRYLOCK(pa)	mtx_trylock(PA_LOCKPTR(pa))
357 #define	PA_UNLOCK(pa)	mtx_unlock(PA_LOCKPTR(pa))
358 #define	PA_UNLOCK_COND(pa) 			\
359 	do {		   			\
360 		if ((pa) != 0) {		\
361 			PA_UNLOCK((pa));	\
362 			(pa) = 0;		\
363 		}				\
364 	} while (0)
365 
366 #define	PA_LOCK_ASSERT(pa, a)	mtx_assert(PA_LOCKPTR(pa), (a))
367 
368 #if defined(KLD_MODULE) && !defined(KLD_TIED)
369 #define	vm_page_lock(m)		vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
370 #define	vm_page_unlock(m)	vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
371 #define	vm_page_trylock(m)	vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
372 #else	/* !KLD_MODULE */
373 #define	vm_page_lockptr(m)	(PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
374 #define	vm_page_lock(m)		mtx_lock(vm_page_lockptr((m)))
375 #define	vm_page_unlock(m)	mtx_unlock(vm_page_lockptr((m)))
376 #define	vm_page_trylock(m)	mtx_trylock(vm_page_lockptr((m)))
377 #endif
378 #if defined(INVARIANTS)
379 #define	vm_page_assert_locked(m)		\
380     vm_page_assert_locked_KBI((m), __FILE__, __LINE__)
381 #define	vm_page_lock_assert(m, a)		\
382     vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
383 #else
384 #define	vm_page_assert_locked(m)
385 #define	vm_page_lock_assert(m, a)
386 #endif
387 
388 /*
389  * The vm_page's aflags are updated using atomic operations.  To set or clear
390  * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
391  * must be used.  Neither these flags nor these functions are part of the KBI.
392  *
393  * PGA_REFERENCED may be cleared only if the page is locked.  It is set by
394  * both the MI and MD VM layers.  However, kernel loadable modules should not
395  * directly set this flag.  They should call vm_page_reference() instead.
396  *
397  * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().
398  * When it does so, the object must be locked, or the page must be
399  * exclusive busied.  The MI VM layer must never access this flag
400  * directly.  Instead, it should call pmap_page_is_write_mapped().
401  *
402  * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
403  * at least one executable mapping.  It is not consumed by the MI VM layer.
404  *
405  * PGA_NOSYNC must be set and cleared with the page busy lock held.
406  *
407  * PGA_ENQUEUED is set and cleared when a page is inserted into or removed
408  * from a page queue, respectively.  It determines whether the plinks.q field
409  * of the page is valid.  To set or clear this flag, page's "queue" field must
410  * be a valid queue index, and the corresponding page queue lock must be held.
411  *
412  * PGA_DEQUEUE is set when the page is scheduled to be dequeued from a page
413  * queue, and cleared when the dequeue request is processed.  A page may
414  * have PGA_DEQUEUE set and PGA_ENQUEUED cleared, for instance if a dequeue
415  * is requested after the page is scheduled to be enqueued but before it is
416  * actually inserted into the page queue.
417  *
418  * PGA_REQUEUE is set when the page is scheduled to be enqueued or requeued
419  * in its page queue.
420  *
421  * PGA_REQUEUE_HEAD is a special flag for enqueuing pages near the head of
422  * the inactive queue, thus bypassing LRU.
423  *
424  * The PGA_DEQUEUE, PGA_REQUEUE and PGA_REQUEUE_HEAD flags must be set using an
425  * atomic RMW operation to ensure that the "queue" field is a valid queue index,
426  * and the corresponding page queue lock must be held when clearing any of the
427  * flags.
428  *
429  * PGA_SWAP_FREE is used to defer freeing swap space to the pageout daemon
430  * when the context that dirties the page does not have the object write lock
431  * held.
432  */
433 #define	PGA_WRITEABLE	0x0001		/* page may be mapped writeable */
434 #define	PGA_REFERENCED	0x0002		/* page has been referenced */
435 #define	PGA_EXECUTABLE	0x0004		/* page may be mapped executable */
436 #define	PGA_ENQUEUED	0x0008		/* page is enqueued in a page queue */
437 #define	PGA_DEQUEUE	0x0010		/* page is due to be dequeued */
438 #define	PGA_REQUEUE	0x0020		/* page is due to be requeued */
439 #define	PGA_REQUEUE_HEAD 0x0040		/* page requeue should bypass LRU */
440 #define	PGA_NOSYNC	0x0080		/* do not collect for syncer */
441 #define	PGA_SWAP_FREE	0x0100		/* page with swap space was dirtied */
442 #define	PGA_SWAP_SPACE	0x0200		/* page has allocated swap space */
443 
444 #define	PGA_QUEUE_OP_MASK	(PGA_DEQUEUE | PGA_REQUEUE | PGA_REQUEUE_HEAD)
445 #define	PGA_QUEUE_STATE_MASK	(PGA_ENQUEUED | PGA_QUEUE_OP_MASK)
446 
447 /*
448  * Page flags.  Updates to these flags are not synchronized, and thus they must
449  * be set during page allocation or free to avoid races.
450  *
451  * The PG_PCPU_CACHE flag is set at allocation time if the page was
452  * allocated from a per-CPU cache.  It is cleared the next time that the
453  * page is allocated from the physical memory allocator.
454  */
455 #define	PG_PCPU_CACHE	0x01		/* was allocated from per-CPU caches */
456 #define	PG_FICTITIOUS	0x02		/* physical page doesn't exist */
457 #define	PG_ZERO		0x04		/* page is zeroed */
458 #define	PG_MARKER	0x08		/* special queue marker page */
459 #define	PG_NODUMP	0x10		/* don't include this page in a dump */
460 #define	PG_NOFREE	0x20		/* page should never be freed. */
461 
462 /*
463  * Misc constants.
464  */
465 #define ACT_DECLINE		1
466 #define ACT_ADVANCE		3
467 #define ACT_INIT		5
468 #define ACT_MAX			64
469 
470 #ifdef _KERNEL
471 
472 #include <sys/kassert.h>
473 #include <machine/atomic.h>
474 struct pctrie_iter;
475 
476 /*
477  * Each pageable resident page falls into one of five lists:
478  *
479  *	free
480  *		Available for allocation now.
481  *
482  *	inactive
483  *		Low activity, candidates for reclamation.
484  *		This list is approximately LRU ordered.
485  *
486  *	laundry
487  *		This is the list of pages that should be
488  *		paged out next.
489  *
490  *	unswappable
491  *		Dirty anonymous pages that cannot be paged
492  *		out because no swap device is configured.
493  *
494  *	active
495  *		Pages that are "active", i.e., they have been
496  *		recently referenced.
497  *
498  */
499 
500 extern vm_page_t vm_page_array;		/* First resident page in table */
501 extern long vm_page_array_size;		/* number of vm_page_t's */
502 extern long first_page;			/* first physical page number */
503 
504 #define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
505 
506 /*
507  * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory
508  * page to which the given physical address belongs. The correct vm_page_t
509  * object is returned for addresses that are not page-aligned.
510  */
511 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
512 
513 /*
514  * Page allocation parameters for vm_page for the functions
515  * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and
516  * vm_page_alloc_freelist().  Some functions support only a subset
517  * of the flags, and ignore others, see the flags legend.
518  *
519  * The meaning of VM_ALLOC_ZERO differs slightly between the vm_page_alloc*()
520  * and the vm_page_grab*() functions.  See these functions for details.
521  *
522  * Bits 0 - 1 define class.
523  * Bits 2 - 15 dedicated for flags.
524  * Legend:
525  * (a) - vm_page_alloc() supports the flag.
526  * (c) - vm_page_alloc_contig() supports the flag.
527  * (g) - vm_page_grab() supports the flag.
528  * (n) - vm_page_alloc_noobj() and vm_page_alloc_freelist() support the flag.
529  * (p) - vm_page_grab_pages() supports the flag.
530  * Bits above 15 define the count of additional pages that the caller
531  * intends to allocate.
532  */
533 #define VM_ALLOC_NORMAL		0
534 #define VM_ALLOC_INTERRUPT	1
535 #define VM_ALLOC_SYSTEM		2
536 #define	VM_ALLOC_CLASS_MASK	3
537 #define	VM_ALLOC_WAITOK		0x0008	/* (acn) Sleep and retry */
538 #define	VM_ALLOC_WAITFAIL	0x0010	/* (acn) Sleep and return error */
539 #define	VM_ALLOC_WIRED		0x0020	/* (acgnp) Allocate a wired page */
540 #define	VM_ALLOC_ZERO		0x0040	/* (acgnp) Allocate a zeroed page */
541 #define	VM_ALLOC_NORECLAIM	0x0080	/* (c) Do not reclaim after failure */
542 #define	VM_ALLOC_NOFREE		0x0100	/* (an) Page will never be released */
543 #define	VM_ALLOC_NOBUSY		0x0200	/* (acgp) Do not excl busy the page */
544 #define	VM_ALLOC_NOCREAT	0x0400	/* (gp) Don't create a page */
545 #define	VM_ALLOC_AVAIL1		0x0800
546 #define	VM_ALLOC_IGN_SBUSY	0x1000	/* (gp) Ignore shared busy flag */
547 #define	VM_ALLOC_NODUMP		0x2000	/* (ag) don't include in dump */
548 #define	VM_ALLOC_SBUSY		0x4000	/* (acgp) Shared busy the page */
549 #define	VM_ALLOC_NOWAIT		0x8000	/* (acgnp) Do not sleep */
550 #define	VM_ALLOC_COUNT_MAX	0xffff
551 #define	VM_ALLOC_COUNT_SHIFT	16
552 #define	VM_ALLOC_COUNT_MASK	(VM_ALLOC_COUNT(VM_ALLOC_COUNT_MAX))
553 #define	VM_ALLOC_COUNT(count)	({				\
554 	KASSERT((count) <= VM_ALLOC_COUNT_MAX,			\
555 	    ("%s: invalid VM_ALLOC_COUNT value", __func__));	\
556 	(count) << VM_ALLOC_COUNT_SHIFT;			\
557 })
558 
559 #ifdef M_NOWAIT
560 static inline int
561 malloc2vm_flags(int malloc_flags)
562 {
563 	int pflags;
564 
565 	KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
566 	    (malloc_flags & M_NOWAIT) != 0,
567 	    ("M_USE_RESERVE requires M_NOWAIT"));
568 	pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
569 	    VM_ALLOC_SYSTEM;
570 	if ((malloc_flags & M_ZERO) != 0)
571 		pflags |= VM_ALLOC_ZERO;
572 	if ((malloc_flags & M_NODUMP) != 0)
573 		pflags |= VM_ALLOC_NODUMP;
574 	if ((malloc_flags & M_NOWAIT))
575 		pflags |= VM_ALLOC_NOWAIT;
576 	if ((malloc_flags & M_WAITOK))
577 		pflags |= VM_ALLOC_WAITOK;
578 	if ((malloc_flags & M_NORECLAIM))
579 		pflags |= VM_ALLOC_NORECLAIM;
580 	if ((malloc_flags & M_NEVERFREED))
581 		pflags |= VM_ALLOC_NOFREE;
582 	return (pflags);
583 }
584 #endif
585 
586 /*
587  * Predicates supported by vm_page_ps_test():
588  *
589  *	PS_ALL_DIRTY is true only if the entire (super)page is dirty.
590  *	However, it can be spuriously false when the (super)page has become
591  *	dirty in the pmap but that information has not been propagated to the
592  *	machine-independent layer.
593  */
594 #define	PS_ALL_DIRTY	0x1
595 #define	PS_ALL_VALID	0x2
596 #define	PS_NONE_BUSY	0x4
597 
598 bool vm_page_busy_acquire(vm_page_t m, int allocflags);
599 void vm_page_busy_downgrade(vm_page_t m);
600 int vm_page_busy_tryupgrade(vm_page_t m);
601 bool vm_page_busy_sleep(vm_page_t m, const char *msg, int allocflags);
602 void vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m,
603     vm_pindex_t pindex, const char *wmesg, int allocflags);
604 void vm_page_free(vm_page_t m);
605 void vm_page_free_zero(vm_page_t m);
606 
607 void vm_page_activate (vm_page_t);
608 void vm_page_advise(vm_page_t m, int advice);
609 vm_page_t vm_page_mpred(vm_object_t, vm_pindex_t);
610 vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int);
611 vm_page_t vm_page_alloc_domain_after(vm_object_t, vm_pindex_t, int, int,
612     vm_page_t);
613 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
614     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
615     vm_paddr_t boundary, vm_memattr_t memattr);
616 vm_page_t vm_page_alloc_contig_domain(vm_object_t object,
617     vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low,
618     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
619     vm_memattr_t memattr);
620 vm_page_t vm_page_alloc_noobj(int);
621 vm_page_t vm_page_alloc_noobj_domain(int, int);
622 vm_page_t vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
623     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
624     vm_memattr_t memattr);
625 vm_page_t vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
626     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
627     vm_memattr_t memattr);
628 void vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set);
629 bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose);
630 vm_page_t vm_page_grab(vm_object_t, vm_pindex_t, int);
631 vm_page_t vm_page_grab_unlocked(vm_object_t, vm_pindex_t, int);
632 int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
633     vm_page_t *ma, int count);
634 int vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
635     int allocflags, vm_page_t *ma, int count);
636 int vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
637     int allocflags);
638 int vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
639     vm_pindex_t pindex, int allocflags);
640 void vm_page_deactivate(vm_page_t);
641 void vm_page_deactivate_noreuse(vm_page_t);
642 void vm_page_dequeue(vm_page_t m);
643 void vm_page_dequeue_deferred(vm_page_t m);
644 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
645 vm_page_t vm_page_iter_lookup_ge(struct pctrie_iter *, vm_pindex_t);
646 void vm_page_free_invalid(vm_page_t);
647 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
648 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
649 void vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags);
650 void vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool);
651 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
652 void vm_page_invalid(vm_page_t m);
653 void vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m);
654 void vm_page_iter_init(struct pctrie_iter *, vm_object_t);
655 void vm_page_iter_limit_init(struct pctrie_iter *, vm_object_t, vm_pindex_t);
656 vm_page_t vm_page_iter_lookup(struct pctrie_iter *, vm_pindex_t);
657 bool vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m);
658 bool vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
659     vm_object_t new_object, vm_pindex_t new_pindex);
660 void vm_page_launder(vm_page_t m);
661 vm_page_t vm_page_lookup(vm_object_t, vm_pindex_t);
662 vm_page_t vm_page_lookup_unlocked(vm_object_t, vm_pindex_t);
663 vm_page_t vm_page_next(vm_page_t m);
664 void vm_page_pqbatch_drain(void);
665 void vm_page_pqbatch_submit(vm_page_t m, uint8_t queue);
666 bool vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old,
667     vm_page_astate_t new);
668 vm_page_t vm_page_prev(vm_page_t m);
669 bool vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m);
670 void vm_page_putfake(vm_page_t m);
671 void vm_page_readahead_finish(vm_page_t m);
672 int vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low,
673     vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
674 int vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
675     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
676 int vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
677     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
678     int desired_runs);
679 void vm_page_reference(vm_page_t m);
680 #define	VPR_TRYFREE	0x01
681 #define	VPR_NOREUSE	0x02
682 void vm_page_release(vm_page_t m, int flags);
683 void vm_page_release_locked(vm_page_t m, int flags);
684 vm_page_t vm_page_relookup(vm_object_t, vm_pindex_t);
685 bool vm_page_remove(vm_page_t);
686 bool vm_page_remove_xbusy(vm_page_t);
687 void vm_page_replace(vm_page_t mnew, vm_object_t object,
688     vm_pindex_t pindex, vm_page_t mold);
689 int vm_page_sbusied(vm_page_t m);
690 vm_page_bits_t vm_page_set_dirty(vm_page_t m);
691 void vm_page_set_valid_range(vm_page_t m, int base, int size);
692 vm_offset_t vm_page_startup(vm_offset_t vaddr);
693 void vm_page_sunbusy(vm_page_t m);
694 bool vm_page_try_remove_all(vm_page_t m);
695 bool vm_page_try_remove_write(vm_page_t m);
696 int vm_page_trysbusy(vm_page_t m);
697 int vm_page_tryxbusy(vm_page_t m);
698 void vm_page_unhold_pages(vm_page_t *ma, int count);
699 void vm_page_unswappable(vm_page_t m);
700 void vm_page_unwire(vm_page_t m, uint8_t queue);
701 bool vm_page_unwire_noq(vm_page_t m);
702 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
703 void vm_page_wire(vm_page_t);
704 bool vm_page_wire_mapped(vm_page_t m);
705 void vm_page_xunbusy_hard(vm_page_t m);
706 void vm_page_xunbusy_hard_unchecked(vm_page_t m);
707 void vm_page_set_validclean (vm_page_t, int, int);
708 void vm_page_clear_dirty(vm_page_t, int, int);
709 void vm_page_set_invalid(vm_page_t, int, int);
710 void vm_page_valid(vm_page_t m);
711 int vm_page_is_valid(vm_page_t, int, int);
712 void vm_page_test_dirty(vm_page_t);
713 vm_page_bits_t vm_page_bits(int base, int size);
714 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
715 int vm_page_free_pages_toq(struct spglist *free, bool update_wire_count);
716 
717 void vm_page_dirty_KBI(vm_page_t m);
718 void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
719 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
720 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
721 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
722 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line);
723 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
724 #endif
725 
726 #define	vm_page_busy_fetch(m)	atomic_load_int(&(m)->busy_lock)
727 
728 #define	vm_page_assert_busied(m)					\
729 	KASSERT(vm_page_busied(m),					\
730 	    ("vm_page_assert_busied: page %p not busy @ %s:%d", \
731 	    (m), __FILE__, __LINE__))
732 
733 #define	vm_page_assert_sbusied(m)					\
734 	KASSERT(vm_page_sbusied(m),					\
735 	    ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \
736 	    (m), __FILE__, __LINE__))
737 
738 #define	vm_page_assert_unbusied(m)					\
739 	KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) !=		\
740 	    VPB_CURTHREAD_EXCLUSIVE,					\
741 	    ("vm_page_assert_unbusied: page %p busy_lock %#x owned"	\
742 	     " by me (%p) @ %s:%d",					\
743 	    (m), (m)->busy_lock, curthread, __FILE__, __LINE__));	\
744 
745 #define	vm_page_assert_xbusied_unchecked(m) do {			\
746 	KASSERT(vm_page_xbusied(m),					\
747 	    ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \
748 	    (m), __FILE__, __LINE__));					\
749 } while (0)
750 #define	vm_page_assert_xbusied(m) do {					\
751 	vm_page_assert_xbusied_unchecked(m);				\
752 	KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) ==		\
753 	    VPB_CURTHREAD_EXCLUSIVE,					\
754 	    ("vm_page_assert_xbusied: page %p busy_lock %#x not owned"	\
755 	     " by me (%p) @ %s:%d",					\
756 	    (m), (m)->busy_lock, curthread, __FILE__, __LINE__));	\
757 } while (0)
758 
759 #define	vm_page_busied(m)						\
760 	(vm_page_busy_fetch(m) != VPB_UNBUSIED)
761 
762 #define	vm_page_xbusied(m)						\
763 	((vm_page_busy_fetch(m) & VPB_SINGLE_EXCLUSIVE) != 0)
764 
765 #define	vm_page_busy_freed(m)						\
766 	(vm_page_busy_fetch(m) == VPB_FREED)
767 
768 /* Note: page m's lock must not be owned by the caller. */
769 #define	vm_page_xunbusy(m) do {						\
770 	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
771 	    VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED))			\
772 		vm_page_xunbusy_hard(m);				\
773 } while (0)
774 #define	vm_page_xunbusy_unchecked(m) do {				\
775 	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
776 	    VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED))			\
777 		vm_page_xunbusy_hard_unchecked(m);			\
778 } while (0)
779 
780 #ifdef INVARIANTS
781 void vm_page_object_busy_assert(vm_page_t m);
782 #define	VM_PAGE_OBJECT_BUSY_ASSERT(m)	vm_page_object_busy_assert(m)
783 void vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits);
784 #define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)				\
785 	vm_page_assert_pga_writeable(m, bits)
786 /*
787  * Claim ownership of a page's xbusy state.  In non-INVARIANTS kernels this
788  * operation is a no-op since ownership is not tracked.  In particular
789  * this macro does not provide any synchronization with the previous owner.
790  */
791 #define	vm_page_xbusy_claim(m) do {					\
792 	u_int _busy_lock;						\
793 									\
794 	vm_page_assert_xbusied_unchecked((m));				\
795 	do {								\
796 		_busy_lock = vm_page_busy_fetch(m);			\
797 	} while (!atomic_cmpset_int(&(m)->busy_lock, _busy_lock,	\
798 	    (_busy_lock & VPB_BIT_FLAGMASK) | VPB_CURTHREAD_EXCLUSIVE)); \
799 } while (0)
800 #else
801 #define	VM_PAGE_OBJECT_BUSY_ASSERT(m)	(void)0
802 #define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)	(void)0
803 #define	vm_page_xbusy_claim(m)
804 #endif
805 
806 #if BYTE_ORDER == BIG_ENDIAN
807 #define	VM_PAGE_AFLAG_SHIFT	16
808 #else
809 #define	VM_PAGE_AFLAG_SHIFT	0
810 #endif
811 
812 /*
813  *	Load a snapshot of a page's 32-bit atomic state.
814  */
815 static inline vm_page_astate_t
816 vm_page_astate_load(vm_page_t m)
817 {
818 	vm_page_astate_t a;
819 
820 	a._bits = atomic_load_32(&m->a._bits);
821 	return (a);
822 }
823 
824 /*
825  *	Atomically compare and set a page's atomic state.
826  */
827 static inline bool
828 vm_page_astate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
829 {
830 
831 	KASSERT(new.queue == PQ_INACTIVE || (new.flags & PGA_REQUEUE_HEAD) == 0,
832 	    ("%s: invalid head requeue request for page %p", __func__, m));
833 	KASSERT((new.flags & PGA_ENQUEUED) == 0 || new.queue != PQ_NONE,
834 	    ("%s: setting PGA_ENQUEUED with PQ_NONE in page %p", __func__, m));
835 	KASSERT(new._bits != old->_bits,
836 	    ("%s: bits are unchanged", __func__));
837 
838 	return (atomic_fcmpset_32(&m->a._bits, &old->_bits, new._bits) != 0);
839 }
840 
841 /*
842  *	Clear the given bits in the specified page.
843  */
844 static inline void
845 vm_page_aflag_clear(vm_page_t m, uint16_t bits)
846 {
847 	uint32_t *addr, val;
848 
849 	/*
850 	 * Access the whole 32-bit word containing the aflags field with an
851 	 * atomic update.  Parallel non-atomic updates to the other fields
852 	 * within this word are handled properly by the atomic update.
853 	 */
854 	addr = (void *)&m->a;
855 	val = bits << VM_PAGE_AFLAG_SHIFT;
856 	atomic_clear_32(addr, val);
857 }
858 
859 /*
860  *	Set the given bits in the specified page.
861  */
862 static inline void
863 vm_page_aflag_set(vm_page_t m, uint16_t bits)
864 {
865 	uint32_t *addr, val;
866 
867 	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits);
868 
869 	/*
870 	 * Access the whole 32-bit word containing the aflags field with an
871 	 * atomic update.  Parallel non-atomic updates to the other fields
872 	 * within this word are handled properly by the atomic update.
873 	 */
874 	addr = (void *)&m->a;
875 	val = bits << VM_PAGE_AFLAG_SHIFT;
876 	atomic_set_32(addr, val);
877 }
878 
879 /*
880  *	vm_page_dirty:
881  *
882  *	Set all bits in the page's dirty field.
883  *
884  *	The object containing the specified page must be locked if the
885  *	call is made from the machine-independent layer.
886  *
887  *	See vm_page_clear_dirty_mask().
888  */
889 static __inline void
890 vm_page_dirty(vm_page_t m)
891 {
892 
893 	/* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
894 #if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(INVARIANTS)
895 	vm_page_dirty_KBI(m);
896 #else
897 	m->dirty = VM_PAGE_BITS_ALL;
898 #endif
899 }
900 
901 /*
902  *	vm_page_undirty:
903  *
904  *	Set page to not be dirty.  Note: does not clear pmap modify bits
905  */
906 static __inline void
907 vm_page_undirty(vm_page_t m)
908 {
909 
910 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
911 	m->dirty = 0;
912 }
913 
914 static inline uint8_t
915 _vm_page_queue(vm_page_astate_t as)
916 {
917 
918 	if ((as.flags & PGA_DEQUEUE) != 0)
919 		return (PQ_NONE);
920 	return (as.queue);
921 }
922 
923 /*
924  *	vm_page_queue:
925  *
926  *	Return the index of the queue containing m.
927  */
928 static inline uint8_t
929 vm_page_queue(vm_page_t m)
930 {
931 
932 	return (_vm_page_queue(vm_page_astate_load(m)));
933 }
934 
935 static inline bool
936 vm_page_active(vm_page_t m)
937 {
938 
939 	return (vm_page_queue(m) == PQ_ACTIVE);
940 }
941 
942 static inline bool
943 vm_page_inactive(vm_page_t m)
944 {
945 
946 	return (vm_page_queue(m) == PQ_INACTIVE);
947 }
948 
949 static inline bool
950 vm_page_in_laundry(vm_page_t m)
951 {
952 	uint8_t queue;
953 
954 	queue = vm_page_queue(m);
955 	return (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE);
956 }
957 
958 static inline void
959 vm_page_clearref(vm_page_t m)
960 {
961 	u_int r;
962 
963 	r = m->ref_count;
964 	while (atomic_fcmpset_int(&m->ref_count, &r, r & (VPRC_BLOCKED |
965 	    VPRC_OBJREF)) == 0)
966 		;
967 }
968 
969 /*
970  *	vm_page_drop:
971  *
972  *	Release a reference to a page and return the old reference count.
973  */
974 static inline u_int
975 vm_page_drop(vm_page_t m, u_int val)
976 {
977 	u_int old;
978 
979 	/*
980 	 * Synchronize with vm_page_free_prep(): ensure that all updates to the
981 	 * page structure are visible before it is freed.
982 	 */
983 	atomic_thread_fence_rel();
984 	old = atomic_fetchadd_int(&m->ref_count, -val);
985 	KASSERT(old != VPRC_BLOCKED,
986 	    ("vm_page_drop: page %p has an invalid refcount value", m));
987 	return (old);
988 }
989 
990 /*
991  *	vm_page_wired:
992  *
993  *	Perform a racy check to determine whether a reference prevents the page
994  *	from being reclaimable.  If the page's object is locked, and the page is
995  *	unmapped and exclusively busied by the current thread, no new wirings
996  *	may be created.
997  */
998 static inline bool
999 vm_page_wired(vm_page_t m)
1000 {
1001 
1002 	return (VPRC_WIRE_COUNT(m->ref_count) > 0);
1003 }
1004 
1005 static inline bool
1006 vm_page_all_valid(vm_page_t m)
1007 {
1008 
1009 	return (m->valid == VM_PAGE_BITS_ALL);
1010 }
1011 
1012 static inline bool
1013 vm_page_any_valid(vm_page_t m)
1014 {
1015 
1016 	return (m->valid != 0);
1017 }
1018 
1019 static inline bool
1020 vm_page_none_valid(vm_page_t m)
1021 {
1022 
1023 	return (m->valid == 0);
1024 }
1025 
1026 static inline int
1027 vm_page_domain(vm_page_t m __numa_used)
1028 {
1029 #ifdef NUMA
1030 	int domn, segind;
1031 
1032 	segind = m->segind;
1033 	KASSERT(segind < vm_phys_nsegs, ("segind %d m %p", segind, m));
1034 	domn = vm_phys_segs[segind].domain;
1035 	KASSERT(domn >= 0 && domn < vm_ndomains, ("domain %d m %p", domn, m));
1036 	return (domn);
1037 #else
1038 	return (0);
1039 #endif
1040 }
1041 
1042 #endif				/* _KERNEL */
1043 #endif				/* !_VM_PAGE_ */
1044