1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Resident memory system definitions. 69 */ 70 71 #ifndef _VM_PAGE_ 72 #define _VM_PAGE_ 73 74 #if !defined(KLD_MODULE) 75 #include "opt_vmpage.h" 76 #endif 77 78 #include <vm/pmap.h> 79 80 /* 81 * Management of resident (logical) pages. 82 * 83 * A small structure is kept for each resident 84 * page, indexed by page number. Each structure 85 * is an element of several lists: 86 * 87 * A hash table bucket used to quickly 88 * perform object/offset lookups 89 * 90 * A list of all pages for a given object, 91 * so they can be quickly deactivated at 92 * time of deallocation. 93 * 94 * An ordered list of pages due for pageout. 95 * 96 * In addition, the structure contains the object 97 * and offset to which this page belongs (for pageout), 98 * and sundry status bits. 99 * 100 * Fields in this structure are locked either by the lock on the 101 * object that the page belongs to (O) or by the lock on the page 102 * queues (P). 103 * 104 * The 'valid' and 'dirty' fields are distinct. A page may have dirty 105 * bits set without having associated valid bits set. This is used by 106 * NFS to implement piecemeal writes. 107 */ 108 109 TAILQ_HEAD(pglist, vm_page); 110 111 struct vm_page { 112 TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO queue or free list (P) */ 113 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ 114 struct vm_page *left; /* splay tree link (O) */ 115 struct vm_page *right; /* splay tree link (O) */ 116 117 vm_object_t object; /* which object am I in (O,P)*/ 118 vm_pindex_t pindex; /* offset into object (O,P) */ 119 vm_paddr_t phys_addr; /* physical address of page */ 120 struct md_page md; /* machine dependant stuff */ 121 u_short queue; /* page queue index */ 122 u_short flags, /* see below */ 123 pc; /* page color */ 124 u_short wire_count; /* wired down maps refs (P) */ 125 short hold_count; /* page hold count */ 126 u_char act_count; /* page usage count */ 127 u_char busy; /* page busy count */ 128 /* NOTE that these must support one bit per DEV_BSIZE in a page!!! */ 129 /* so, on normal X86 kernels, they must be at least 8 bits wide */ 130 #if PAGE_SIZE == 4096 131 u_char valid; /* map of valid DEV_BSIZE chunks */ 132 u_char dirty; /* map of dirty DEV_BSIZE chunks */ 133 #elif PAGE_SIZE == 8192 134 u_short valid; /* map of valid DEV_BSIZE chunks */ 135 u_short dirty; /* map of dirty DEV_BSIZE chunks */ 136 #elif PAGE_SIZE == 16384 137 u_int valid; /* map of valid DEV_BSIZE chunks */ 138 u_int dirty; /* map of dirty DEV_BSIZE chunks */ 139 #elif PAGE_SIZE == 32768 140 u_long valid; /* map of valid DEV_BSIZE chunks */ 141 u_long dirty; /* map of dirty DEV_BSIZE chunks */ 142 #endif 143 u_int cow; /* page cow mapping count */ 144 }; 145 146 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 147 #if PAGE_SIZE == 32768 148 #ifdef CTASSERT 149 CTASSERT(sizeof(u_long) >= 8); 150 #endif 151 #endif 152 153 /* 154 * note: currently use SWAPBLK_NONE as an absolute value rather then 155 * a flag bit. 156 */ 157 158 #define SWAPBLK_MASK ((daddr_t)((u_daddr_t)-1 >> 1)) /* mask */ 159 #define SWAPBLK_NONE ((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */ 160 161 #if !defined(KLD_MODULE) 162 /* 163 * Page coloring parameters 164 */ 165 /* Each of PQ_FREE, and PQ_CACHE have PQ_HASH_SIZE entries */ 166 167 /* Backward compatibility for existing PQ_*CACHE config options. */ 168 #if !defined(PQ_CACHESIZE) 169 #if defined(PQ_HUGECACHE) 170 #define PQ_CACHESIZE 1024 171 #elif defined(PQ_LARGECACHE) 172 #define PQ_CACHESIZE 512 173 #elif defined(PQ_MEDIUMCACHE) 174 #define PQ_CACHESIZE 256 175 #elif defined(PQ_NORMALCACHE) 176 #define PQ_CACHESIZE 64 177 #elif defined(PQ_NOOPT) 178 #define PQ_CACHESIZE 0 179 #else 180 #define PQ_CACHESIZE 128 181 #endif 182 #endif /* !defined(PQ_CACHESIZE) */ 183 184 #if PQ_CACHESIZE >= 1024 185 #define PQ_PRIME1 31 /* Prime number somewhat less than PQ_HASH_SIZE */ 186 #define PQ_PRIME2 23 /* Prime number somewhat less than PQ_HASH_SIZE */ 187 #define PQ_L2_SIZE 256 /* A number of colors opt for 1M cache */ 188 189 #elif PQ_CACHESIZE >= 512 190 #define PQ_PRIME1 31 /* Prime number somewhat less than PQ_HASH_SIZE */ 191 #define PQ_PRIME2 23 /* Prime number somewhat less than PQ_HASH_SIZE */ 192 #define PQ_L2_SIZE 128 /* A number of colors opt for 512K cache */ 193 194 #elif PQ_CACHESIZE >= 256 195 #define PQ_PRIME1 13 /* Prime number somewhat less than PQ_HASH_SIZE */ 196 #define PQ_PRIME2 7 /* Prime number somewhat less than PQ_HASH_SIZE */ 197 #define PQ_L2_SIZE 64 /* A number of colors opt for 256K cache */ 198 199 #elif PQ_CACHESIZE >= 128 200 #define PQ_PRIME1 9 /* Produces a good PQ_L2_SIZE/3 + PQ_PRIME1 */ 201 #define PQ_PRIME2 5 /* Prime number somewhat less than PQ_HASH_SIZE */ 202 #define PQ_L2_SIZE 32 /* A number of colors opt for 128k cache */ 203 204 #elif PQ_CACHESIZE >= 64 205 #define PQ_PRIME1 5 /* Prime number somewhat less than PQ_HASH_SIZE */ 206 #define PQ_PRIME2 3 /* Prime number somewhat less than PQ_HASH_SIZE */ 207 #define PQ_L2_SIZE 16 /* A reasonable number of colors (opt for 64K cache) */ 208 209 #else 210 #define PQ_PRIME1 1 /* Disable page coloring. */ 211 #define PQ_PRIME2 1 212 #define PQ_L2_SIZE 1 213 214 #endif 215 216 #define PQ_L2_MASK (PQ_L2_SIZE - 1) 217 218 #define PQ_NONE 0 219 #define PQ_FREE 1 220 #define PQ_INACTIVE (1 + 1*PQ_L2_SIZE) 221 #define PQ_ACTIVE (2 + 1*PQ_L2_SIZE) 222 #define PQ_CACHE (3 + 1*PQ_L2_SIZE) 223 #define PQ_HOLD (3 + 2*PQ_L2_SIZE) 224 #define PQ_COUNT (4 + 2*PQ_L2_SIZE) 225 226 struct vpgqueues { 227 struct pglist pl; 228 int *cnt; 229 int lcnt; 230 }; 231 232 extern struct vpgqueues vm_page_queues[PQ_COUNT]; 233 extern struct mtx vm_page_queue_free_mtx; 234 235 #endif /* !defined(KLD_MODULE) */ 236 237 /* 238 * These are the flags defined for vm_page. 239 * 240 * Note: PG_FILLED and PG_DIRTY are added for the filesystems. 241 * 242 * Note: PG_UNMANAGED (used by OBJT_PHYS) indicates that the page is 243 * not under PV management but otherwise should be treated as a 244 * normal page. Pages not under PV management cannot be paged out 245 * via the object/vm_page_t because there is no knowledge of their 246 * pte mappings, nor can they be removed from their objects via 247 * the object, and such pages are also not on any PQ queue. 248 */ 249 #define PG_BUSY 0x0001 /* page is in transit (O) */ 250 #define PG_WANTED 0x0002 /* someone is waiting for page (O) */ 251 #define PG_WINATCFLS 0x0004 /* flush dirty page on inactive q */ 252 #define PG_FICTITIOUS 0x0008 /* physical page doesn't exist (O) */ 253 #define PG_WRITEABLE 0x0010 /* page is mapped writeable */ 254 #define PG_ZERO 0x0040 /* page is zeroed */ 255 #define PG_REFERENCED 0x0080 /* page has been referenced */ 256 #define PG_CLEANCHK 0x0100 /* page will be checked for cleaning */ 257 #define PG_SWAPINPROG 0x0200 /* swap I/O in progress on page */ 258 #define PG_NOSYNC 0x0400 /* do not collect for syncer */ 259 #define PG_UNMANAGED 0x0800 /* No PV management for page */ 260 #define PG_MARKER 0x1000 /* special queue marker page */ 261 #define PG_SLAB 0x2000 /* object pointer is actually a slab */ 262 263 /* 264 * Misc constants. 265 */ 266 #define ACT_DECLINE 1 267 #define ACT_ADVANCE 3 268 #define ACT_INIT 5 269 #define ACT_MAX 64 270 #define PFCLUSTER_BEHIND 3 271 #define PFCLUSTER_AHEAD 3 272 273 #ifdef _KERNEL 274 /* 275 * Each pageable resident page falls into one of four lists: 276 * 277 * free 278 * Available for allocation now. 279 * 280 * The following are all LRU sorted: 281 * 282 * cache 283 * Almost available for allocation. Still in an 284 * object, but clean and immediately freeable at 285 * non-interrupt times. 286 * 287 * inactive 288 * Low activity, candidates for reclamation. 289 * This is the list of pages that should be 290 * paged out next. 291 * 292 * active 293 * Pages that are "active" i.e. they have been 294 * recently referenced. 295 * 296 * zero 297 * Pages that are really free and have been pre-zeroed 298 * 299 */ 300 301 extern int vm_page_zero_count; 302 303 extern vm_page_t vm_page_array; /* First resident page in table */ 304 extern int vm_page_array_size; /* number of vm_page_t's */ 305 extern long first_page; /* first physical page number */ 306 307 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) 308 309 #define PHYS_TO_VM_PAGE(pa) \ 310 (&vm_page_array[atop(pa) - first_page ]) 311 312 extern struct mtx vm_page_queue_mtx; 313 #define vm_page_lock_queues() mtx_lock(&vm_page_queue_mtx) 314 #define vm_page_unlock_queues() mtx_unlock(&vm_page_queue_mtx) 315 316 #if PAGE_SIZE == 4096 317 #define VM_PAGE_BITS_ALL 0xffu 318 #elif PAGE_SIZE == 8192 319 #define VM_PAGE_BITS_ALL 0xffffu 320 #elif PAGE_SIZE == 16384 321 #define VM_PAGE_BITS_ALL 0xffffffffu 322 #elif PAGE_SIZE == 32768 323 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu 324 #endif 325 326 /* page allocation classes: */ 327 #define VM_ALLOC_NORMAL 0 328 #define VM_ALLOC_INTERRUPT 1 329 #define VM_ALLOC_SYSTEM 2 330 #define VM_ALLOC_CLASS_MASK 3 331 /* page allocation flags: */ 332 #define VM_ALLOC_WIRED 0x0020 /* non pageable */ 333 #define VM_ALLOC_ZERO 0x0040 /* Try to obtain a zeroed page */ 334 #define VM_ALLOC_RETRY 0x0080 /* vm_page_grab() only */ 335 #define VM_ALLOC_NOOBJ 0x0100 /* No associated object */ 336 337 void vm_page_flag_set(vm_page_t m, unsigned short bits); 338 void vm_page_flag_clear(vm_page_t m, unsigned short bits); 339 void vm_page_busy(vm_page_t m); 340 void vm_page_flash(vm_page_t m); 341 void vm_page_io_start(vm_page_t m); 342 void vm_page_io_finish(vm_page_t m); 343 void vm_page_hold(vm_page_t mem); 344 void vm_page_unhold(vm_page_t mem); 345 void vm_page_copy(vm_page_t src_m, vm_page_t dest_m); 346 void vm_page_free(vm_page_t m); 347 void vm_page_free_zero(vm_page_t m); 348 int vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg); 349 void vm_page_dirty(vm_page_t m); 350 void vm_page_wakeup(vm_page_t m); 351 352 void vm_pageq_init(void); 353 vm_page_t vm_pageq_add_new_page(vm_paddr_t pa); 354 void vm_pageq_enqueue(int queue, vm_page_t m); 355 void vm_pageq_remove_nowakeup(vm_page_t m); 356 void vm_pageq_remove(vm_page_t m); 357 vm_page_t vm_pageq_find(int basequeue, int index, boolean_t prefer_zero); 358 void vm_pageq_requeue(vm_page_t m); 359 360 void vm_page_activate (vm_page_t); 361 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int); 362 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int); 363 void vm_page_cache (register vm_page_t); 364 int vm_page_try_to_cache (vm_page_t); 365 int vm_page_try_to_free (vm_page_t); 366 void vm_page_dontneed (register vm_page_t); 367 void vm_page_deactivate (vm_page_t); 368 void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t); 369 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t); 370 void vm_page_remove (vm_page_t); 371 void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t); 372 vm_page_t vm_page_splay(vm_pindex_t, vm_page_t); 373 vm_offset_t vm_page_startup (vm_offset_t, vm_offset_t, vm_offset_t); 374 void vm_page_unmanage (vm_page_t); 375 void vm_page_unwire (vm_page_t, int); 376 void vm_page_wire (vm_page_t); 377 void vm_page_set_validclean (vm_page_t, int, int); 378 void vm_page_set_dirty (vm_page_t, int, int); 379 void vm_page_clear_dirty (vm_page_t, int, int); 380 void vm_page_set_invalid (vm_page_t, int, int); 381 int vm_page_is_valid (vm_page_t, int, int); 382 void vm_page_test_dirty (vm_page_t); 383 int vm_page_bits (int, int); 384 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid); 385 void vm_page_free_toq(vm_page_t m); 386 void vm_page_zero_idle_wakeup(void); 387 void vm_page_cowfault (vm_page_t); 388 void vm_page_cowsetup (vm_page_t); 389 void vm_page_cowclear (vm_page_t); 390 391 /* 392 * vm_page_undirty: 393 * 394 * Set page to not be dirty. Note: does not clear pmap modify bits 395 */ 396 static __inline void 397 vm_page_undirty(vm_page_t m) 398 { 399 m->dirty = 0; 400 } 401 402 #endif /* _KERNEL */ 403 #endif /* !_VM_PAGE_ */ 404