xref: /freebsd/sys/vm/vm_page.h (revision 6e8394b8baa7d5d9153ab90de6824bcd19b3b4e1)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $Id: vm_page.h,v 1.61 1999/06/19 18:42:53 alc Exp $
65  */
66 
67 /*
68  *	Resident memory system definitions.
69  */
70 
71 #ifndef	_VM_PAGE_
72 #define	_VM_PAGE_
73 
74 #if !defined(KLD_MODULE)
75 #include "opt_vmpage.h"
76 #endif
77 
78 #include <vm/pmap.h>
79 #include <machine/atomic.h>
80 
81 /*
82  *	Management of resident (logical) pages.
83  *
84  *	A small structure is kept for each resident
85  *	page, indexed by page number.  Each structure
86  *	is an element of several lists:
87  *
88  *		A hash table bucket used to quickly
89  *		perform object/offset lookups
90  *
91  *		A list of all pages for a given object,
92  *		so they can be quickly deactivated at
93  *		time of deallocation.
94  *
95  *		An ordered list of pages due for pageout.
96  *
97  *	In addition, the structure contains the object
98  *	and offset to which this page belongs (for pageout),
99  *	and sundry status bits.
100  *
101  *	Fields in this structure are locked either by the lock on the
102  *	object that the page belongs to (O) or by the lock on the page
103  *	queues (P).
104  *
105  *	The 'valid' and 'dirty' fields are distinct.  A page may have dirty
106  *	bits set without having associated valid bits set.  This is used by
107  *	NFS to implement piecemeal writes.
108  */
109 
110 TAILQ_HEAD(pglist, vm_page);
111 
112 struct vm_page {
113 	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (P) */
114 	struct vm_page	*hnext;		/* hash table link (O,P)	*/
115 	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) 	*/
116 
117 	vm_object_t object;		/* which object am I in (O,P)*/
118 	vm_pindex_t pindex;		/* offset into object (O,P) */
119 	vm_offset_t phys_addr;		/* physical address of page */
120 	u_short	queue;			/* page queue index */
121 	u_short	flags,			/* see below */
122 		pc;			/* page color */
123 	u_short wire_count;		/* wired down maps refs (P) */
124 	short hold_count;		/* page hold count */
125 	u_char	act_count;		/* page usage count */
126 	u_char	busy;			/* page busy count */
127 	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
128 	/* so, on normal X86 kernels, they must be at least 8 bits wide */
129 #if PAGE_SIZE == 4096
130 	u_char	valid;			/* map of valid DEV_BSIZE chunks */
131 	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
132 #elif PAGE_SIZE == 8192
133 	u_short	valid;			/* map of valid DEV_BSIZE chunks */
134 	u_short	dirty;			/* map of dirty DEV_BSIZE chunks */
135 #endif
136 };
137 
138 /*
139  * note SWAPBLK_NONE is a flag, basically the high bit.
140  */
141 
142 #define SWAPBLK_MASK	((daddr_t)((u_daddr_t)-1 >> 1))		/* mask */
143 #define SWAPBLK_NONE	((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */
144 
145 #if !defined(KLD_MODULE)
146 
147 /*
148  * Page coloring parameters
149  */
150 /* Each of PQ_FREE, and PQ_CACHE have PQ_HASH_SIZE entries */
151 
152 /* Define one of the following */
153 #if defined(PQ_HUGECACHE)
154 #define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
155 #define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
156 #define PQ_PRIME3 17	/* Prime number somewhat less than PQ_HASH_SIZE */
157 #define PQ_L2_SIZE 256	/* A number of colors opt for 1M cache */
158 #endif
159 
160 /* Define one of the following */
161 #if defined(PQ_LARGECACHE)
162 #define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
163 #define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
164 #define PQ_PRIME3 17	/* Prime number somewhat less than PQ_HASH_SIZE */
165 #define PQ_L2_SIZE 128	/* A number of colors opt for 512K cache */
166 #endif
167 
168 
169 /*
170  * Use 'options PQ_NOOPT' to disable page coloring
171  */
172 #if defined(PQ_NOOPT)
173 #define PQ_PRIME1 1
174 #define PQ_PRIME2 1
175 #define PQ_PRIME3 1
176 #define PQ_L2_SIZE 1
177 #endif
178 
179 #if defined(PQ_NORMALCACHE)
180 #define PQ_PRIME1 5	/* Prime number somewhat less than PQ_HASH_SIZE */
181 #define PQ_PRIME2 3	/* Prime number somewhat less than PQ_HASH_SIZE */
182 #define PQ_PRIME3 11	/* Prime number somewhat less than PQ_HASH_SIZE */
183 #define PQ_L2_SIZE 16	/* A reasonable number of colors (opt for 64K cache) */
184 #endif
185 
186 #if defined(PQ_MEDIUMCACHE) || !defined(PQ_L2_SIZE)
187 #define PQ_PRIME1 13	/* Prime number somewhat less than PQ_HASH_SIZE */
188 #define PQ_PRIME2 7	/* Prime number somewhat less than PQ_HASH_SIZE */
189 #define PQ_PRIME3 5	/* Prime number somewhat less than PQ_HASH_SIZE */
190 #define PQ_L2_SIZE 64	/* A number of colors opt for 256K cache */
191 #endif
192 
193 #define PQ_L2_MASK (PQ_L2_SIZE - 1)
194 
195 #define PQ_NONE 0
196 #define PQ_FREE	1
197 /* #define PQ_ZERO (1 + PQ_L2_SIZE) */
198 #define PQ_INACTIVE (1 + 1*PQ_L2_SIZE)
199 #define PQ_ACTIVE (2 + 1*PQ_L2_SIZE)
200 #define PQ_CACHE (3 + 1*PQ_L2_SIZE)
201 #define PQ_COUNT (3 + 2*PQ_L2_SIZE)
202 
203 extern struct vpgqueues {
204 	struct pglist *pl;
205 	int	*cnt;
206 	int	*lcnt;
207 } vm_page_queues[PQ_COUNT];
208 
209 #endif
210 
211 /*
212  * These are the flags defined for vm_page.
213  *
214  * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
215  */
216 #define	PG_BUSY		0x0001		/* page is in transit (O) */
217 #define	PG_WANTED	0x0002		/* someone is waiting for page (O) */
218 #define	PG_FICTITIOUS	0x0008		/* physical page doesn't exist (O) */
219 #define	PG_WRITEABLE	0x0010		/* page is mapped writeable */
220 #define PG_MAPPED	0x0020		/* page is mapped */
221 #define	PG_ZERO		0x0040		/* page is zeroed */
222 #define PG_REFERENCED	0x0080		/* page has been referenced */
223 #define PG_CLEANCHK	0x0100		/* page will be checked for cleaning */
224 #define PG_SWAPINPROG	0x0200		/* swap I/O in progress on page	     */
225 
226 /*
227  * Misc constants.
228  */
229 
230 #define ACT_DECLINE		1
231 #define ACT_ADVANCE		3
232 #define ACT_INIT		5
233 #define ACT_MAX			64
234 #define PFCLUSTER_BEHIND	3
235 #define PFCLUSTER_AHEAD		3
236 
237 #ifdef KERNEL
238 /*
239  * Each pageable resident page falls into one of four lists:
240  *
241  *	free
242  *		Available for allocation now.
243  *
244  * The following are all LRU sorted:
245  *
246  *	cache
247  *		Almost available for allocation. Still in an
248  *		object, but clean and immediately freeable at
249  *		non-interrupt times.
250  *
251  *	inactive
252  *		Low activity, candidates for reclamation.
253  *		This is the list of pages that should be
254  *		paged out next.
255  *
256  *	active
257  *		Pages that are "active" i.e. they have been
258  *		recently referenced.
259  *
260  *	zero
261  *		Pages that are really free and have been pre-zeroed
262  *
263  */
264 
265 #if !defined(KLD_MODULE)
266 
267 extern struct pglist vm_page_queue_free[PQ_L2_SIZE];/* memory free queue */
268 extern struct pglist vm_page_queue_active;	/* active memory queue */
269 extern struct pglist vm_page_queue_inactive;	/* inactive memory queue */
270 extern struct pglist vm_page_queue_cache[PQ_L2_SIZE];/* cache memory queue */
271 
272 #endif
273 
274 extern int vm_page_zero_count;
275 
276 extern vm_page_t vm_page_array;		/* First resident page in table */
277 extern long first_page;			/* first physical page number */
278 
279 #define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
280 
281 #define PHYS_TO_VM_PAGE(pa) \
282 		(&vm_page_array[atop(pa) - first_page ])
283 
284 /*
285  *	Functions implemented as macros
286  */
287 
288 static __inline void
289 vm_page_flag_set(vm_page_t m, unsigned int bits)
290 {
291 	atomic_set_short(&(m)->flags, bits);
292 }
293 
294 static __inline void
295 vm_page_flag_clear(vm_page_t m, unsigned int bits)
296 {
297 	atomic_clear_short(&(m)->flags, bits);
298 }
299 
300 #if 0
301 static __inline void
302 vm_page_assert_wait(vm_page_t m, int interruptible)
303 {
304 	vm_page_flag_set(m, PG_WANTED);
305 	assert_wait((int) m, interruptible);
306 }
307 #endif
308 
309 static __inline void
310 vm_page_busy(vm_page_t m)
311 {
312 	KASSERT((m->flags & PG_BUSY) == 0, ("vm_page_busy: page already busy!!!"));
313 	vm_page_flag_set(m, PG_BUSY);
314 }
315 
316 /*
317  *	vm_page_flash:
318  *
319  *	wakeup anyone waiting for the page.
320  */
321 
322 static __inline void
323 vm_page_flash(vm_page_t m)
324 {
325 	if (m->flags & PG_WANTED) {
326 		vm_page_flag_clear(m, PG_WANTED);
327 		wakeup(m);
328 	}
329 }
330 
331 /*
332  *	vm_page_wakeup:
333  *
334  *	clear the PG_BUSY flag and wakeup anyone waiting for the
335  *	page.
336  *
337  */
338 
339 static __inline void
340 vm_page_wakeup(vm_page_t m)
341 {
342 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
343 	vm_page_flag_clear(m, PG_BUSY);
344 	vm_page_flash(m);
345 }
346 
347 /*
348  *
349  *
350  */
351 
352 static __inline void
353 vm_page_io_start(vm_page_t m)
354 {
355 	atomic_add_char(&(m)->busy, 1);
356 }
357 
358 static __inline void
359 vm_page_io_finish(vm_page_t m)
360 {
361 	atomic_subtract_char(&m->busy, 1);
362 	if (m->busy == 0)
363 		vm_page_flash(m);
364 }
365 
366 
367 #if PAGE_SIZE == 4096
368 #define VM_PAGE_BITS_ALL 0xff
369 #endif
370 
371 #if PAGE_SIZE == 8192
372 #define VM_PAGE_BITS_ALL 0xffff
373 #endif
374 
375 #define VM_ALLOC_NORMAL		0
376 #define VM_ALLOC_INTERRUPT	1
377 #define VM_ALLOC_SYSTEM		2
378 #define	VM_ALLOC_ZERO		3
379 #define	VM_ALLOC_RETRY		0x80
380 
381 void vm_page_activate __P((vm_page_t));
382 vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int));
383 vm_page_t vm_page_grab __P((vm_object_t, vm_pindex_t, int));
384 void vm_page_cache __P((register vm_page_t));
385 static __inline void vm_page_copy __P((vm_page_t, vm_page_t));
386 static __inline void vm_page_free __P((vm_page_t));
387 static __inline void vm_page_free_zero __P((vm_page_t));
388 void vm_page_deactivate __P((vm_page_t));
389 void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t));
390 vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t));
391 void vm_page_remove __P((vm_page_t));
392 void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t));
393 vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t));
394 void vm_page_unwire __P((vm_page_t, int));
395 void vm_page_wire __P((vm_page_t));
396 void vm_page_unqueue __P((vm_page_t));
397 void vm_page_unqueue_nowakeup __P((vm_page_t));
398 void vm_page_set_validclean __P((vm_page_t, int, int));
399 void vm_page_set_dirty __P((vm_page_t, int, int));
400 void vm_page_clear_dirty __P((vm_page_t, int, int));
401 void vm_page_set_invalid __P((vm_page_t, int, int));
402 static __inline boolean_t vm_page_zero_fill __P((vm_page_t));
403 int vm_page_is_valid __P((vm_page_t, int, int));
404 void vm_page_test_dirty __P((vm_page_t));
405 int vm_page_bits __P((int, int));
406 vm_page_t _vm_page_list_find __P((int, int));
407 #if 0
408 int vm_page_sleep(vm_page_t m, char *msg, char *busy);
409 int vm_page_asleep(vm_page_t m, char *msg, char *busy);
410 #endif
411 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
412 void vm_page_free_toq(vm_page_t m);
413 
414 /*
415  * Keep page from being freed by the page daemon
416  * much of the same effect as wiring, except much lower
417  * overhead and should be used only for *very* temporary
418  * holding ("wiring").
419  */
420 static __inline void
421 vm_page_hold(vm_page_t mem)
422 {
423 	mem->hold_count++;
424 }
425 
426 static __inline void
427 vm_page_unhold(vm_page_t mem)
428 {
429 	--mem->hold_count;
430 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
431 }
432 
433 /*
434  * 	vm_page_protect:
435  *
436  *	Reduce the protection of a page.  This routine never
437  *	raises the protection and therefore can be safely
438  *	called if the page is already at VM_PROT_NONE ( it
439  *	will be a NOP effectively ).
440  */
441 
442 static __inline void
443 vm_page_protect(vm_page_t mem, int prot)
444 {
445 	if (prot == VM_PROT_NONE) {
446 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
447 			pmap_page_protect(VM_PAGE_TO_PHYS(mem), VM_PROT_NONE);
448 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
449 		}
450 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
451 		pmap_page_protect(VM_PAGE_TO_PHYS(mem), VM_PROT_READ);
452 		vm_page_flag_clear(mem, PG_WRITEABLE);
453 	}
454 }
455 
456 /*
457  *	vm_page_zero_fill:
458  *
459  *	Zero-fill the specified page.
460  *	Written as a standard pagein routine, to
461  *	be used by the zero-fill object.
462  */
463 static __inline boolean_t
464 vm_page_zero_fill(m)
465 	vm_page_t m;
466 {
467 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
468 	return (TRUE);
469 }
470 
471 /*
472  *	vm_page_copy:
473  *
474  *	Copy one page to another
475  */
476 static __inline void
477 vm_page_copy(src_m, dest_m)
478 	vm_page_t src_m;
479 	vm_page_t dest_m;
480 {
481 	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
482 	dest_m->valid = VM_PAGE_BITS_ALL;
483 }
484 
485 /*
486  *	vm_page_free:
487  *
488  *	Free a page
489  *
490  *	The clearing of PG_ZERO is a temporary safety until the code can be
491  *	reviewed to determine that PG_ZERO is being properly cleared on
492  *	write faults or maps.  PG_ZERO was previously cleared in
493  *	vm_page_alloc().
494  */
495 static __inline void
496 vm_page_free(m)
497 	vm_page_t m;
498 {
499 	vm_page_flag_clear(m, PG_ZERO);
500 	vm_page_free_toq(m);
501 }
502 
503 /*
504  *	vm_page_free_zero:
505  *
506  *	Free a page to the zerod-pages queue
507  */
508 static __inline void
509 vm_page_free_zero(m)
510 	vm_page_t m;
511 {
512 	vm_page_flag_set(m, PG_ZERO);
513 	vm_page_free_toq(m);
514 }
515 
516 /*
517  *	vm_page_sleep_busy:
518  *
519  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
520  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
521  *	it almost had to sleep and made temporary spl*() mods), FALSE
522  *	otherwise.
523  *
524  *	This routine assumes that interrupts can only remove the busy
525  *	status from a page, not set the busy status or change it from
526  *	PG_BUSY to m->busy or vise versa (which would create a timing
527  *	window).
528  *
529  *	Note that being an inline, this code will be well optimized.
530  */
531 
532 static __inline int
533 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
534 {
535 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
536 		int s = splvm();
537 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
538 			/*
539 			 * Page is busy. Wait and retry.
540 			 */
541 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
542 			tsleep(m, PVM, msg, 0);
543 		}
544 		splx(s);
545 		return(TRUE);
546 		/* not reached */
547 	}
548 	return(FALSE);
549 }
550 
551 #if !defined(KLD_MODULE)
552 
553 /*
554  *	vm_page_dirty:
555  *
556  *	make page all dirty
557  */
558 
559 static __inline void
560 vm_page_dirty(vm_page_t m)
561 {
562 	KASSERT(m->queue - m->pc != PQ_CACHE, ("vm_page_dirty: page in cache!"));
563 	m->dirty = VM_PAGE_BITS_ALL;
564 }
565 
566 static __inline vm_page_t
567 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
568 {
569 	vm_page_t m;
570 
571 #if PQ_L2_SIZE > 1
572 	if (prefer_zero) {
573 		m = TAILQ_LAST(vm_page_queues[basequeue+index].pl, pglist);
574 	} else {
575 		m = TAILQ_FIRST(vm_page_queues[basequeue+index].pl);
576 	}
577 	if (m == NULL)
578 		m = _vm_page_list_find(basequeue, index);
579 #else
580 	if (prefer_zero) {
581 		m = TAILQ_LAST(vm_page_queues[basequeue].pl, pglist);
582 	} else {
583 		m = TAILQ_FIRST(vm_page_queues[basequeue].pl);
584 	}
585 #endif
586 	return(m);
587 }
588 
589 #endif
590 
591 #endif				/* KERNEL */
592 #endif				/* !_VM_PAGE_ */
593