xref: /freebsd/sys/vm/vm_page.h (revision 6b2c1e49da284f28ec7b52f7c031474087e37104)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD$
63  */
64 
65 /*
66  *	Resident memory system definitions.
67  */
68 
69 #ifndef	_VM_PAGE_
70 #define	_VM_PAGE_
71 
72 #include <vm/pmap.h>
73 
74 /*
75  *	Management of resident (logical) pages.
76  *
77  *	A small structure is kept for each resident
78  *	page, indexed by page number.  Each structure
79  *	is an element of several collections:
80  *
81  *		A radix tree used to quickly
82  *		perform object/offset lookups
83  *
84  *		A list of all pages for a given object,
85  *		so they can be quickly deactivated at
86  *		time of deallocation.
87  *
88  *		An ordered list of pages due for pageout.
89  *
90  *	In addition, the structure contains the object
91  *	and offset to which this page belongs (for pageout),
92  *	and sundry status bits.
93  *
94  *	In general, operations on this structure's mutable fields are
95  *	synchronized using either one of or a combination of locks.  If a
96  *	field is annotated with two of these locks then holding either is
97  *	sufficient for read access but both are required for write access.
98  *	The physical address of a page is used to select its page lock from
99  *	a pool.  The queue lock for a page depends on the value of its queue
100  *	field and is described in detail below.
101  *
102  *	The following annotations are possible:
103  *	(A) the field is atomic and may require additional synchronization.
104  *	(B) the page busy lock.
105  *	(C) the field is immutable.
106  *	(F) the per-domain lock for the free queues
107  *	(M) Machine dependent, defined by pmap layer.
108  *	(O) the object that the page belongs to.
109  *	(P) the page lock.
110  *	(Q) the page's queue lock.
111  *
112  *	The busy lock is an embedded reader-writer lock that protects the
113  *	page's contents and identity (i.e., its <object, pindex> tuple) as
114  *	well as certain valid/dirty modifications.  To avoid bloating the
115  *	the page structure, the busy lock lacks some of the features available
116  *	the kernel's general-purpose synchronization primitives.  As a result,
117  *	busy lock ordering rules are not verified, lock recursion is not
118  *	detected, and an attempt to xbusy a busy page or sbusy an xbusy page
119  *	results will trigger a panic rather than causing the thread to block.
120  *	vm_page_sleep_if_busy() can be used to sleep until the page's busy
121  *	state changes, after which the caller must re-lookup the page and
122  *	re-evaluate its state.  vm_page_busy_acquire() will block until
123  *	the lock is acquired.
124  *
125  *	The valid field is protected by the page busy lock (B) and object
126  *	lock (O).  Transitions from invalid to valid are generally done
127  *	via I/O or zero filling and do not require the object lock.
128  *	These must be protected with the busy lock to prevent page-in or
129  *	creation races.  Page invalidation generally happens as a result
130  *	of truncate or msync.  When invalidated, pages must not be present
131  *	in pmap and must hold the object lock to prevent concurrent
132  *	speculative read-only mappings that do not require busy.  I/O
133  *	routines may check for validity without a lock if they are prepared
134  *	to handle invalidation races with higher level locks (vnode) or are
135  *	unconcerned with races so long as they hold a reference to prevent
136  *	recycling.  When a valid bit is set while holding a shared busy
137  *	lock (A) atomic operations are used to protect against concurrent
138  *	modification.
139  *
140  *	In contrast, the synchronization of accesses to the page's
141  *	dirty field is a mix of machine dependent (M) and busy (B).  In
142  *	the machine-independent layer, the page busy must be held to
143  *	operate on the field.  However, the pmap layer is permitted to
144  *	set all bits within the field without holding that lock.  If the
145  *	underlying architecture does not support atomic read-modify-write
146  *	operations on the field's type, then the machine-independent
147  *	layer uses a 32-bit atomic on the aligned 32-bit word that
148  *	contains the dirty field.  In the machine-independent layer,
149  *	the implementation of read-modify-write operations on the
150  *	field is encapsulated in vm_page_clear_dirty_mask().  An
151  *	exclusive busy lock combined with pmap_remove_{write/all}() is the
152  *	only way to ensure a page can not become dirty.  I/O generally
153  *	removes the page from pmap to ensure exclusive access and atomic
154  *	writes.
155  *
156  *	The ref_count field tracks references to the page.  References that
157  *	prevent the page from being reclaimable are called wirings and are
158  *	counted in the low bits of ref_count.  The containing object's
159  *	reference, if one exists, is counted using the VPRC_OBJREF bit in the
160  *	ref_count field.  Additionally, the VPRC_BLOCKED bit is used to
161  *	atomically check for wirings and prevent new wirings via
162  *	pmap_extract_and_hold().  When a page belongs to an object, it may be
163  *	wired only when the object is locked, or the page is busy, or by
164  *	pmap_extract_and_hold().  As a result, if the object is locked and the
165  *	page is not busy (or is exclusively busied by the current thread), and
166  *	the page is unmapped, its wire count will not increase.  The ref_count
167  *	field is updated using atomic operations in most cases, except when it
168  *	is known that no other references to the page exist, such as in the page
169  *	allocator.  A page may be present in the page queues, or even actively
170  *	scanned by the page daemon, without an explicitly counted referenced.
171  *	The page daemon must therefore handle the possibility of a concurrent
172  *	free of the page.
173  *
174  *	The queue field is the index of the page queue containing the page,
175  *	or PQ_NONE if the page is not enqueued.  The queue lock of a page is
176  *	the page queue lock corresponding to the page queue index, or the
177  *	page lock (P) for the page if it is not enqueued.  To modify the
178  *	queue field, the queue lock for the old value of the field must be
179  *	held.  There is one exception to this rule: the page daemon may
180  *	transition the queue field from PQ_INACTIVE to PQ_NONE immediately
181  *	prior to freeing a page during an inactive queue scan.  At that
182  *	point the page has already been physically dequeued and no other
183  *	references to that vm_page structure exist.
184  *
185  *	To avoid contention on page queue locks, page queue operations
186  *	(enqueue, dequeue, requeue) are batched using per-CPU queues.  A
187  *	deferred operation is requested by inserting an entry into a batch
188  *	queue; the entry is simply a pointer to the page, and the request
189  *	type is encoded in the page's aflags field using the values in
190  *	PGA_QUEUE_STATE_MASK.  The type-stability of struct vm_pages is
191  *	crucial to this scheme since the processing of entries in a given
192  *	batch queue may be deferred indefinitely.  In particular, a page may
193  *	be freed before its pending batch queue entries have been processed.
194  *	The page lock (P) must be held to schedule a batched queue
195  *	operation, and the page queue lock must be held in order to process
196  *	batch queue entries for the page queue.  There is one exception to
197  *	this rule: the thread freeing a page may schedule a dequeue without
198  *	holding the page lock.  In this scenario the only other thread which
199  *	may hold a reference to the page is the page daemon, which is
200  *	careful to avoid modifying the page's queue state once the dequeue
201  *	has been requested by setting PGA_DEQUEUE.
202  */
203 
204 #if PAGE_SIZE == 4096
205 #define VM_PAGE_BITS_ALL 0xffu
206 typedef uint8_t vm_page_bits_t;
207 #elif PAGE_SIZE == 8192
208 #define VM_PAGE_BITS_ALL 0xffffu
209 typedef uint16_t vm_page_bits_t;
210 #elif PAGE_SIZE == 16384
211 #define VM_PAGE_BITS_ALL 0xffffffffu
212 typedef uint32_t vm_page_bits_t;
213 #elif PAGE_SIZE == 32768
214 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
215 typedef uint64_t vm_page_bits_t;
216 #endif
217 
218 struct vm_page {
219 	union {
220 		TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */
221 		struct {
222 			SLIST_ENTRY(vm_page) ss; /* private slists */
223 			void *pv;
224 		} s;
225 		struct {
226 			u_long p;
227 			u_long v;
228 		} memguard;
229 	} plinks;
230 	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) */
231 	vm_object_t object;		/* which object am I in (O) */
232 	vm_pindex_t pindex;		/* offset into object (O,P) */
233 	vm_paddr_t phys_addr;		/* physical address of page (C) */
234 	struct md_page md;		/* machine dependent stuff */
235 	u_int ref_count;		/* page references (A) */
236 	volatile u_int busy_lock;	/* busy owners lock */
237 	uint16_t aflags;		/* atomic flags (A) */
238 	uint8_t queue;			/* page queue index (Q) */
239 	uint8_t act_count;		/* page usage count (P) */
240 	uint8_t order;			/* index of the buddy queue (F) */
241 	uint8_t pool;			/* vm_phys freepool index (F) */
242 	uint8_t flags;			/* page PG_* flags (P) */
243 	uint8_t oflags;			/* page VPO_* flags (O) */
244 	int8_t psind;			/* pagesizes[] index (O) */
245 	int8_t segind;			/* vm_phys segment index (C) */
246 	/* NOTE that these must support one bit per DEV_BSIZE in a page */
247 	/* so, on normal X86 kernels, they must be at least 8 bits wide */
248 	vm_page_bits_t valid;		/* valid DEV_BSIZE chunk map (O,B) */
249 	vm_page_bits_t dirty;		/* dirty DEV_BSIZE chunk map (M,B) */
250 };
251 
252 /*
253  * Special bits used in the ref_count field.
254  *
255  * ref_count is normally used to count wirings that prevent the page from being
256  * reclaimed, but also supports several special types of references that do not
257  * prevent reclamation.  Accesses to the ref_count field must be atomic unless
258  * the page is unallocated.
259  *
260  * VPRC_OBJREF is the reference held by the containing object.  It can set or
261  * cleared only when the corresponding object's write lock is held.
262  *
263  * VPRC_BLOCKED is used to atomically block wirings via pmap lookups while
264  * attempting to tear down all mappings of a given page.  The page lock and
265  * object write lock must both be held in order to set or clear this bit.
266  */
267 #define	VPRC_BLOCKED	0x40000000u	/* mappings are being removed */
268 #define	VPRC_OBJREF	0x80000000u	/* object reference, cleared with (O) */
269 #define	VPRC_WIRE_COUNT(c)	((c) & ~(VPRC_BLOCKED | VPRC_OBJREF))
270 #define	VPRC_WIRE_COUNT_MAX	(~(VPRC_BLOCKED | VPRC_OBJREF))
271 
272 /*
273  * Page flags stored in oflags:
274  *
275  * Access to these page flags is synchronized by the lock on the object
276  * containing the page (O).
277  *
278  * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
279  * 	 indicates that the page is not under PV management but
280  * 	 otherwise should be treated as a normal page.  Pages not
281  * 	 under PV management cannot be paged out via the
282  * 	 object/vm_page_t because there is no knowledge of their pte
283  * 	 mappings, and such pages are also not on any PQ queue.
284  *
285  */
286 #define	VPO_KMEM_EXEC	0x01		/* kmem mapping allows execution */
287 #define	VPO_SWAPSLEEP	0x02		/* waiting for swap to finish */
288 #define	VPO_UNMANAGED	0x04		/* no PV management for page */
289 #define	VPO_SWAPINPROG	0x08		/* swap I/O in progress on page */
290 
291 /*
292  * Busy page implementation details.
293  * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation,
294  * even if the support for owner identity is removed because of size
295  * constraints.  Checks on lock recursion are then not possible, while the
296  * lock assertions effectiveness is someway reduced.
297  */
298 #define	VPB_BIT_SHARED		0x01
299 #define	VPB_BIT_EXCLUSIVE	0x02
300 #define	VPB_BIT_WAITERS		0x04
301 #define	VPB_BIT_FLAGMASK						\
302 	(VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS)
303 
304 #define	VPB_SHARERS_SHIFT	3
305 #define	VPB_SHARERS(x)							\
306 	(((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT)
307 #define	VPB_SHARERS_WORD(x)	((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED)
308 #define	VPB_ONE_SHARER		(1 << VPB_SHARERS_SHIFT)
309 
310 #define	VPB_SINGLE_EXCLUSIVE	VPB_BIT_EXCLUSIVE
311 #ifdef INVARIANTS
312 #define	VPB_CURTHREAD_EXCLUSIVE						\
313 	(VPB_BIT_EXCLUSIVE | ((u_int)(uintptr_t)curthread & ~VPB_BIT_FLAGMASK))
314 #else
315 #define	VPB_CURTHREAD_EXCLUSIVE	VPB_SINGLE_EXCLUSIVE
316 #endif
317 
318 #define	VPB_UNBUSIED		VPB_SHARERS_WORD(0)
319 
320 #define	PQ_NONE		255
321 #define	PQ_INACTIVE	0
322 #define	PQ_ACTIVE	1
323 #define	PQ_LAUNDRY	2
324 #define	PQ_UNSWAPPABLE	3
325 #define	PQ_COUNT	4
326 
327 #ifndef VM_PAGE_HAVE_PGLIST
328 TAILQ_HEAD(pglist, vm_page);
329 #define VM_PAGE_HAVE_PGLIST
330 #endif
331 SLIST_HEAD(spglist, vm_page);
332 
333 #ifdef _KERNEL
334 extern vm_page_t bogus_page;
335 #endif	/* _KERNEL */
336 
337 extern struct mtx_padalign pa_lock[];
338 
339 #if defined(__arm__)
340 #define	PDRSHIFT	PDR_SHIFT
341 #elif !defined(PDRSHIFT)
342 #define PDRSHIFT	21
343 #endif
344 
345 #define	pa_index(pa)	((pa) >> PDRSHIFT)
346 #define	PA_LOCKPTR(pa)	((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT]))
347 #define	PA_LOCKOBJPTR(pa)	((struct lock_object *)PA_LOCKPTR((pa)))
348 #define	PA_LOCK(pa)	mtx_lock(PA_LOCKPTR(pa))
349 #define	PA_TRYLOCK(pa)	mtx_trylock(PA_LOCKPTR(pa))
350 #define	PA_UNLOCK(pa)	mtx_unlock(PA_LOCKPTR(pa))
351 #define	PA_UNLOCK_COND(pa) 			\
352 	do {		   			\
353 		if ((pa) != 0) {		\
354 			PA_UNLOCK((pa));	\
355 			(pa) = 0;		\
356 		}				\
357 	} while (0)
358 
359 #define	PA_LOCK_ASSERT(pa, a)	mtx_assert(PA_LOCKPTR(pa), (a))
360 
361 #if defined(KLD_MODULE) && !defined(KLD_TIED)
362 #define	vm_page_lock(m)		vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
363 #define	vm_page_unlock(m)	vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
364 #define	vm_page_trylock(m)	vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
365 #else	/* !KLD_MODULE */
366 #define	vm_page_lockptr(m)	(PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
367 #define	vm_page_lock(m)		mtx_lock(vm_page_lockptr((m)))
368 #define	vm_page_unlock(m)	mtx_unlock(vm_page_lockptr((m)))
369 #define	vm_page_trylock(m)	mtx_trylock(vm_page_lockptr((m)))
370 #endif
371 #if defined(INVARIANTS)
372 #define	vm_page_assert_locked(m)		\
373     vm_page_assert_locked_KBI((m), __FILE__, __LINE__)
374 #define	vm_page_lock_assert(m, a)		\
375     vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
376 #else
377 #define	vm_page_assert_locked(m)
378 #define	vm_page_lock_assert(m, a)
379 #endif
380 
381 /*
382  * The vm_page's aflags are updated using atomic operations.  To set or clear
383  * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
384  * must be used.  Neither these flags nor these functions are part of the KBI.
385  *
386  * PGA_REFERENCED may be cleared only if the page is locked.  It is set by
387  * both the MI and MD VM layers.  However, kernel loadable modules should not
388  * directly set this flag.  They should call vm_page_reference() instead.
389  *
390  * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().
391  * When it does so, the object must be locked, or the page must be
392  * exclusive busied.  The MI VM layer must never access this flag
393  * directly.  Instead, it should call pmap_page_is_write_mapped().
394  *
395  * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
396  * at least one executable mapping.  It is not consumed by the MI VM layer.
397  *
398  * PGA_NOSYNC must be set and cleared with the page busy lock held.
399  *
400  * PGA_ENQUEUED is set and cleared when a page is inserted into or removed
401  * from a page queue, respectively.  It determines whether the plinks.q field
402  * of the page is valid.  To set or clear this flag, the queue lock for the
403  * page must be held: the page queue lock corresponding to the page's "queue"
404  * field if its value is not PQ_NONE, and the page lock otherwise.
405  *
406  * PGA_DEQUEUE is set when the page is scheduled to be dequeued from a page
407  * queue, and cleared when the dequeue request is processed.  A page may
408  * have PGA_DEQUEUE set and PGA_ENQUEUED cleared, for instance if a dequeue
409  * is requested after the page is scheduled to be enqueued but before it is
410  * actually inserted into the page queue.  For allocated pages, the page lock
411  * must be held to set this flag, but it may be set by vm_page_free_prep()
412  * without the page lock held.  The page queue lock must be held to clear the
413  * PGA_DEQUEUE flag.
414  *
415  * PGA_REQUEUE is set when the page is scheduled to be enqueued or requeued
416  * in its page queue.  The page lock must be held to set this flag, and the
417  * queue lock for the page must be held to clear it.
418  *
419  * PGA_REQUEUE_HEAD is a special flag for enqueuing pages near the head of
420  * the inactive queue, thus bypassing LRU.  The page lock must be held to
421  * set this flag, and the queue lock for the page must be held to clear it.
422  */
423 #define	PGA_WRITEABLE	0x0001		/* page may be mapped writeable */
424 #define	PGA_REFERENCED	0x0002		/* page has been referenced */
425 #define	PGA_EXECUTABLE	0x0004		/* page may be mapped executable */
426 #define	PGA_ENQUEUED	0x0008		/* page is enqueued in a page queue */
427 #define	PGA_DEQUEUE	0x0010		/* page is due to be dequeued */
428 #define	PGA_REQUEUE	0x0020		/* page is due to be requeued */
429 #define	PGA_REQUEUE_HEAD 0x0040		/* page requeue should bypass LRU */
430 #define	PGA_NOSYNC	0x0080		/* do not collect for syncer */
431 
432 #define	PGA_QUEUE_STATE_MASK	(PGA_ENQUEUED | PGA_DEQUEUE | PGA_REQUEUE | \
433 				PGA_REQUEUE_HEAD)
434 
435 /*
436  * Page flags.  If changed at any other time than page allocation or
437  * freeing, the modification must be protected by the vm_page lock.
438  *
439  * The PG_PCPU_CACHE flag is set at allocation time if the page was
440  * allocated from a per-CPU cache.  It is cleared the next time that the
441  * page is allocated from the physical memory allocator.
442  */
443 #define	PG_PCPU_CACHE	0x01		/* was allocated from per-CPU caches */
444 #define	PG_FICTITIOUS	0x02		/* physical page doesn't exist */
445 #define	PG_ZERO		0x04		/* page is zeroed */
446 #define	PG_MARKER	0x08		/* special queue marker page */
447 #define	PG_NODUMP	0x10		/* don't include this page in a dump */
448 
449 /*
450  * Misc constants.
451  */
452 #define ACT_DECLINE		1
453 #define ACT_ADVANCE		3
454 #define ACT_INIT		5
455 #define ACT_MAX			64
456 
457 #ifdef _KERNEL
458 
459 #include <sys/systm.h>
460 
461 #include <machine/atomic.h>
462 
463 /*
464  * Each pageable resident page falls into one of five lists:
465  *
466  *	free
467  *		Available for allocation now.
468  *
469  *	inactive
470  *		Low activity, candidates for reclamation.
471  *		This list is approximately LRU ordered.
472  *
473  *	laundry
474  *		This is the list of pages that should be
475  *		paged out next.
476  *
477  *	unswappable
478  *		Dirty anonymous pages that cannot be paged
479  *		out because no swap device is configured.
480  *
481  *	active
482  *		Pages that are "active", i.e., they have been
483  *		recently referenced.
484  *
485  */
486 
487 extern vm_page_t vm_page_array;		/* First resident page in table */
488 extern long vm_page_array_size;		/* number of vm_page_t's */
489 extern long first_page;			/* first physical page number */
490 
491 #define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
492 
493 /*
494  * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory
495  * page to which the given physical address belongs. The correct vm_page_t
496  * object is returned for addresses that are not page-aligned.
497  */
498 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
499 
500 /*
501  * Page allocation parameters for vm_page for the functions
502  * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and
503  * vm_page_alloc_freelist().  Some functions support only a subset
504  * of the flags, and ignore others, see the flags legend.
505  *
506  * The meaning of VM_ALLOC_ZERO differs slightly between the vm_page_alloc*()
507  * and the vm_page_grab*() functions.  See these functions for details.
508  *
509  * Bits 0 - 1 define class.
510  * Bits 2 - 15 dedicated for flags.
511  * Legend:
512  * (a) - vm_page_alloc() supports the flag.
513  * (c) - vm_page_alloc_contig() supports the flag.
514  * (f) - vm_page_alloc_freelist() supports the flag.
515  * (g) - vm_page_grab() supports the flag.
516  * (p) - vm_page_grab_pages() supports the flag.
517  * Bits above 15 define the count of additional pages that the caller
518  * intends to allocate.
519  */
520 #define VM_ALLOC_NORMAL		0
521 #define VM_ALLOC_INTERRUPT	1
522 #define VM_ALLOC_SYSTEM		2
523 #define	VM_ALLOC_CLASS_MASK	3
524 #define	VM_ALLOC_WAITOK		0x0008	/* (acf) Sleep and retry */
525 #define	VM_ALLOC_WAITFAIL	0x0010	/* (acf) Sleep and return error */
526 #define	VM_ALLOC_WIRED		0x0020	/* (acfgp) Allocate a wired page */
527 #define	VM_ALLOC_ZERO		0x0040	/* (acfgp) Allocate a prezeroed page */
528 #define	VM_ALLOC_NOOBJ		0x0100	/* (acg) No associated object */
529 #define	VM_ALLOC_NOBUSY		0x0200	/* (acgp) Do not excl busy the page */
530 #define	VM_ALLOC_NOCREAT	0x0400	/* (gp) Don't create a page */
531 #define	VM_ALLOC_IGN_SBUSY	0x1000	/* (gp) Ignore shared busy flag */
532 #define	VM_ALLOC_NODUMP		0x2000	/* (ag) don't include in dump */
533 #define	VM_ALLOC_SBUSY		0x4000	/* (acgp) Shared busy the page */
534 #define	VM_ALLOC_NOWAIT		0x8000	/* (acfgp) Do not sleep */
535 #define	VM_ALLOC_COUNT_SHIFT	16
536 #define	VM_ALLOC_COUNT(count)	((count) << VM_ALLOC_COUNT_SHIFT)
537 
538 #ifdef M_NOWAIT
539 static inline int
540 malloc2vm_flags(int malloc_flags)
541 {
542 	int pflags;
543 
544 	KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
545 	    (malloc_flags & M_NOWAIT) != 0,
546 	    ("M_USE_RESERVE requires M_NOWAIT"));
547 	pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
548 	    VM_ALLOC_SYSTEM;
549 	if ((malloc_flags & M_ZERO) != 0)
550 		pflags |= VM_ALLOC_ZERO;
551 	if ((malloc_flags & M_NODUMP) != 0)
552 		pflags |= VM_ALLOC_NODUMP;
553 	if ((malloc_flags & M_NOWAIT))
554 		pflags |= VM_ALLOC_NOWAIT;
555 	if ((malloc_flags & M_WAITOK))
556 		pflags |= VM_ALLOC_WAITOK;
557 	return (pflags);
558 }
559 #endif
560 
561 /*
562  * Predicates supported by vm_page_ps_test():
563  *
564  *	PS_ALL_DIRTY is true only if the entire (super)page is dirty.
565  *	However, it can be spuriously false when the (super)page has become
566  *	dirty in the pmap but that information has not been propagated to the
567  *	machine-independent layer.
568  */
569 #define	PS_ALL_DIRTY	0x1
570 #define	PS_ALL_VALID	0x2
571 #define	PS_NONE_BUSY	0x4
572 
573 int vm_page_busy_acquire(vm_page_t m, int allocflags);
574 void vm_page_busy_downgrade(vm_page_t m);
575 int vm_page_busy_tryupgrade(vm_page_t m);
576 void vm_page_busy_sleep(vm_page_t m, const char *msg, bool nonshared);
577 void vm_page_free(vm_page_t m);
578 void vm_page_free_zero(vm_page_t m);
579 
580 void vm_page_activate (vm_page_t);
581 void vm_page_advise(vm_page_t m, int advice);
582 vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int);
583 vm_page_t vm_page_alloc_domain(vm_object_t, vm_pindex_t, int, int);
584 vm_page_t vm_page_alloc_after(vm_object_t, vm_pindex_t, int, vm_page_t);
585 vm_page_t vm_page_alloc_domain_after(vm_object_t, vm_pindex_t, int, int,
586     vm_page_t);
587 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
588     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
589     vm_paddr_t boundary, vm_memattr_t memattr);
590 vm_page_t vm_page_alloc_contig_domain(vm_object_t object,
591     vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low,
592     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
593     vm_memattr_t memattr);
594 vm_page_t vm_page_alloc_freelist(int, int);
595 vm_page_t vm_page_alloc_freelist_domain(int, int, int);
596 void vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set);
597 bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose);
598 void vm_page_change_lock(vm_page_t m, struct mtx **mtx);
599 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
600 int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
601     vm_page_t *ma, int count);
602 int vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
603     int allocflags);
604 void vm_page_deactivate(vm_page_t);
605 void vm_page_deactivate_noreuse(vm_page_t);
606 void vm_page_dequeue(vm_page_t m);
607 void vm_page_dequeue_deferred(vm_page_t m);
608 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
609 bool vm_page_free_prep(vm_page_t m);
610 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
611 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
612 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
613 void vm_page_invalid(vm_page_t m);
614 void vm_page_launder(vm_page_t m);
615 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
616 vm_page_t vm_page_next(vm_page_t m);
617 void vm_page_pqbatch_drain(void);
618 void vm_page_pqbatch_submit(vm_page_t m, uint8_t queue);
619 vm_page_t vm_page_prev(vm_page_t m);
620 bool vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m);
621 void vm_page_putfake(vm_page_t m);
622 void vm_page_readahead_finish(vm_page_t m);
623 bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low,
624     vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
625 bool vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
626     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
627 void vm_page_reference(vm_page_t m);
628 #define	VPR_TRYFREE	0x01
629 #define	VPR_NOREUSE	0x02
630 void vm_page_release(vm_page_t m, int flags);
631 void vm_page_release_locked(vm_page_t m, int flags);
632 bool vm_page_remove(vm_page_t);
633 int vm_page_rename(vm_page_t, vm_object_t, vm_pindex_t);
634 vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object,
635     vm_pindex_t pindex);
636 void vm_page_requeue(vm_page_t m);
637 int vm_page_sbusied(vm_page_t m);
638 vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start,
639     vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options);
640 void vm_page_set_valid_range(vm_page_t m, int base, int size);
641 int vm_page_sleep_if_busy(vm_page_t m, const char *msg);
642 int vm_page_sleep_if_xbusy(vm_page_t m, const char *msg);
643 vm_offset_t vm_page_startup(vm_offset_t vaddr);
644 void vm_page_sunbusy(vm_page_t m);
645 void vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq);
646 bool vm_page_try_remove_all(vm_page_t m);
647 bool vm_page_try_remove_write(vm_page_t m);
648 int vm_page_trysbusy(vm_page_t m);
649 int vm_page_tryxbusy(vm_page_t m);
650 void vm_page_unhold_pages(vm_page_t *ma, int count);
651 void vm_page_unswappable(vm_page_t m);
652 void vm_page_unwire(vm_page_t m, uint8_t queue);
653 bool vm_page_unwire_noq(vm_page_t m);
654 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
655 void vm_page_wire(vm_page_t);
656 bool vm_page_wire_mapped(vm_page_t m);
657 void vm_page_xunbusy_hard(vm_page_t m);
658 void vm_page_xunbusy_hard_unchecked(vm_page_t m);
659 void vm_page_set_validclean (vm_page_t, int, int);
660 void vm_page_clear_dirty(vm_page_t, int, int);
661 void vm_page_set_invalid(vm_page_t, int, int);
662 void vm_page_valid(vm_page_t m);
663 int vm_page_is_valid(vm_page_t, int, int);
664 void vm_page_test_dirty(vm_page_t);
665 vm_page_bits_t vm_page_bits(int base, int size);
666 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
667 void vm_page_free_toq(vm_page_t m);
668 void vm_page_free_pages_toq(struct spglist *free, bool update_wire_count);
669 
670 void vm_page_dirty_KBI(vm_page_t m);
671 void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
672 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
673 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
674 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
675 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line);
676 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
677 #endif
678 
679 #define	vm_page_assert_busied(m)					\
680 	KASSERT(vm_page_busied(m),					\
681 	    ("vm_page_assert_busied: page %p not busy @ %s:%d", \
682 	    (m), __FILE__, __LINE__))
683 
684 #define	vm_page_assert_sbusied(m)					\
685 	KASSERT(vm_page_sbusied(m),					\
686 	    ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \
687 	    (m), __FILE__, __LINE__))
688 
689 #define	vm_page_assert_unbusied(m)					\
690 	KASSERT(!vm_page_busied(m),					\
691 	    ("vm_page_assert_unbusied: page %p busy @ %s:%d",		\
692 	    (m), __FILE__, __LINE__))
693 
694 #define	vm_page_assert_xbusied_unchecked(m) do {			\
695 	KASSERT(vm_page_xbusied(m),					\
696 	    ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \
697 	    (m), __FILE__, __LINE__));					\
698 } while (0)
699 #define	vm_page_assert_xbusied(m) do {					\
700 	vm_page_assert_xbusied_unchecked(m);				\
701 	KASSERT((m->busy_lock & ~VPB_BIT_WAITERS) == 			\
702 	    VPB_CURTHREAD_EXCLUSIVE,					\
703 	    ("vm_page_assert_xbusied: page %p busy_lock %#x not owned"	\
704             " by me @ %s:%d",						\
705 	    (m), (m)->busy_lock, __FILE__, __LINE__));			\
706 } while (0)
707 
708 #define	vm_page_busied(m)						\
709 	((m)->busy_lock != VPB_UNBUSIED)
710 
711 #define	vm_page_sbusy(m) do {						\
712 	if (!vm_page_trysbusy(m))					\
713 		panic("%s: page %p failed shared busying", __func__,	\
714 		    (m));						\
715 } while (0)
716 
717 #define	vm_page_xbusied(m)						\
718 	(((m)->busy_lock & VPB_SINGLE_EXCLUSIVE) != 0)
719 
720 #define	vm_page_xbusy(m) do {						\
721 	if (!vm_page_tryxbusy(m))					\
722 		panic("%s: page %p failed exclusive busying", __func__,	\
723 		    (m));						\
724 } while (0)
725 
726 /* Note: page m's lock must not be owned by the caller. */
727 #define	vm_page_xunbusy(m) do {						\
728 	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
729 	    VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED))			\
730 		vm_page_xunbusy_hard(m);				\
731 } while (0)
732 #define	vm_page_xunbusy_unchecked(m) do {				\
733 	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
734 	    VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED))			\
735 		vm_page_xunbusy_hard_unchecked(m);			\
736 } while (0)
737 
738 #ifdef INVARIANTS
739 void vm_page_object_busy_assert(vm_page_t m);
740 #define	VM_PAGE_OBJECT_BUSY_ASSERT(m)	vm_page_object_busy_assert(m)
741 void vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits);
742 #define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)				\
743 	vm_page_assert_pga_writeable(m, bits)
744 #else
745 #define	VM_PAGE_OBJECT_BUSY_ASSERT(m)	(void)0
746 #define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)	(void)0
747 #endif
748 
749 /*
750  * We want to use atomic updates for the aflags field, which is 8 bits wide.
751  * However, not all architectures support atomic operations on 8-bit
752  * destinations.  In order that we can easily use a 32-bit operation, we
753  * require that the aflags field be 32-bit aligned.
754  */
755 _Static_assert(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0,
756     "aflags field is not 32-bit aligned");
757 
758 /*
759  * We want to be able to update the aflags and queue fields atomically in
760  * the same operation.
761  */
762 _Static_assert(offsetof(struct vm_page, aflags) / sizeof(uint32_t) ==
763     offsetof(struct vm_page, queue) / sizeof(uint32_t),
764     "aflags and queue fields do not belong to the same 32-bit word");
765 _Static_assert(offsetof(struct vm_page, queue) % sizeof(uint32_t) == 2,
766     "queue field is at an unexpected offset");
767 _Static_assert(sizeof(((struct vm_page *)NULL)->queue) == 1,
768     "queue field has an unexpected size");
769 
770 #if BYTE_ORDER == LITTLE_ENDIAN
771 #define	VM_PAGE_AFLAG_SHIFT	0
772 #define	VM_PAGE_QUEUE_SHIFT	16
773 #else
774 #define	VM_PAGE_AFLAG_SHIFT	16
775 #define	VM_PAGE_QUEUE_SHIFT	8
776 #endif
777 #define	VM_PAGE_QUEUE_MASK	(0xff << VM_PAGE_QUEUE_SHIFT)
778 
779 /*
780  *	Clear the given bits in the specified page.
781  */
782 static inline void
783 vm_page_aflag_clear(vm_page_t m, uint16_t bits)
784 {
785 	uint32_t *addr, val;
786 
787 	/*
788 	 * The PGA_REFERENCED flag can only be cleared if the page is locked.
789 	 */
790 	if ((bits & PGA_REFERENCED) != 0)
791 		vm_page_assert_locked(m);
792 
793 	/*
794 	 * Access the whole 32-bit word containing the aflags field with an
795 	 * atomic update.  Parallel non-atomic updates to the other fields
796 	 * within this word are handled properly by the atomic update.
797 	 */
798 	addr = (void *)&m->aflags;
799 	val = bits << VM_PAGE_AFLAG_SHIFT;
800 	atomic_clear_32(addr, val);
801 }
802 
803 /*
804  *	Set the given bits in the specified page.
805  */
806 static inline void
807 vm_page_aflag_set(vm_page_t m, uint16_t bits)
808 {
809 	uint32_t *addr, val;
810 
811 	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits);
812 
813 	/*
814 	 * Access the whole 32-bit word containing the aflags field with an
815 	 * atomic update.  Parallel non-atomic updates to the other fields
816 	 * within this word are handled properly by the atomic update.
817 	 */
818 	addr = (void *)&m->aflags;
819 	val = bits << VM_PAGE_AFLAG_SHIFT;
820 	atomic_set_32(addr, val);
821 }
822 
823 /*
824  *	Atomically update the queue state of the page.  The operation fails if
825  *	any of the queue flags in "fflags" are set or if the "queue" field of
826  *	the page does not match the expected value; if the operation is
827  *	successful, the flags in "nflags" are set and all other queue state
828  *	flags are cleared.
829  */
830 static inline bool
831 vm_page_pqstate_cmpset(vm_page_t m, uint32_t oldq, uint32_t newq,
832     uint32_t fflags, uint32_t nflags)
833 {
834 	uint32_t *addr, nval, oval, qsmask;
835 
836 	fflags <<= VM_PAGE_AFLAG_SHIFT;
837 	nflags <<= VM_PAGE_AFLAG_SHIFT;
838 	newq <<= VM_PAGE_QUEUE_SHIFT;
839 	oldq <<= VM_PAGE_QUEUE_SHIFT;
840 	qsmask = ((PGA_DEQUEUE | PGA_REQUEUE | PGA_REQUEUE_HEAD) <<
841 	    VM_PAGE_AFLAG_SHIFT) | VM_PAGE_QUEUE_MASK;
842 
843 	addr = (void *)&m->aflags;
844 	oval = atomic_load_32(addr);
845 	do {
846 		if ((oval & fflags) != 0)
847 			return (false);
848 		if ((oval & VM_PAGE_QUEUE_MASK) != oldq)
849 			return (false);
850 		nval = (oval & ~qsmask) | nflags | newq;
851 	} while (!atomic_fcmpset_32(addr, &oval, nval));
852 
853 	return (true);
854 }
855 
856 /*
857  *	vm_page_dirty:
858  *
859  *	Set all bits in the page's dirty field.
860  *
861  *	The object containing the specified page must be locked if the
862  *	call is made from the machine-independent layer.
863  *
864  *	See vm_page_clear_dirty_mask().
865  */
866 static __inline void
867 vm_page_dirty(vm_page_t m)
868 {
869 
870 	/* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
871 #if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(INVARIANTS)
872 	vm_page_dirty_KBI(m);
873 #else
874 	m->dirty = VM_PAGE_BITS_ALL;
875 #endif
876 }
877 
878 /*
879  *	vm_page_undirty:
880  *
881  *	Set page to not be dirty.  Note: does not clear pmap modify bits
882  */
883 static __inline void
884 vm_page_undirty(vm_page_t m)
885 {
886 
887 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
888 	m->dirty = 0;
889 }
890 
891 static inline void
892 vm_page_replace_checked(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
893     vm_page_t mold)
894 {
895 	vm_page_t mret;
896 
897 	mret = vm_page_replace(mnew, object, pindex);
898 	KASSERT(mret == mold,
899 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
900 
901 	/* Unused if !INVARIANTS. */
902 	(void)mold;
903 	(void)mret;
904 }
905 
906 /*
907  *	vm_page_queue:
908  *
909  *	Return the index of the queue containing m.  This index is guaranteed
910  *	not to change while the page lock is held.
911  */
912 static inline uint8_t
913 vm_page_queue(vm_page_t m)
914 {
915 
916 	vm_page_assert_locked(m);
917 
918 	if ((m->aflags & PGA_DEQUEUE) != 0)
919 		return (PQ_NONE);
920 	atomic_thread_fence_acq();
921 	return (m->queue);
922 }
923 
924 static inline bool
925 vm_page_active(vm_page_t m)
926 {
927 
928 	return (vm_page_queue(m) == PQ_ACTIVE);
929 }
930 
931 static inline bool
932 vm_page_inactive(vm_page_t m)
933 {
934 
935 	return (vm_page_queue(m) == PQ_INACTIVE);
936 }
937 
938 static inline bool
939 vm_page_in_laundry(vm_page_t m)
940 {
941 	uint8_t queue;
942 
943 	queue = vm_page_queue(m);
944 	return (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE);
945 }
946 
947 /*
948  *	vm_page_drop:
949  *
950  *	Release a reference to a page and return the old reference count.
951  */
952 static inline u_int
953 vm_page_drop(vm_page_t m, u_int val)
954 {
955 	u_int old;
956 
957 	/*
958 	 * Synchronize with vm_page_free_prep(): ensure that all updates to the
959 	 * page structure are visible before it is freed.
960 	 */
961 	atomic_thread_fence_rel();
962 	old = atomic_fetchadd_int(&m->ref_count, -val);
963 	KASSERT(old != VPRC_BLOCKED,
964 	    ("vm_page_drop: page %p has an invalid refcount value", m));
965 	return (old);
966 }
967 
968 /*
969  *	vm_page_wired:
970  *
971  *	Perform a racy check to determine whether a reference prevents the page
972  *	from being reclaimable.  If the page's object is locked, and the page is
973  *	unmapped and unbusied or exclusively busied by the current thread, no
974  *	new wirings may be created.
975  */
976 static inline bool
977 vm_page_wired(vm_page_t m)
978 {
979 
980 	return (VPRC_WIRE_COUNT(m->ref_count) > 0);
981 }
982 
983 static inline bool
984 vm_page_all_valid(vm_page_t m)
985 {
986 
987 	return (m->valid == VM_PAGE_BITS_ALL);
988 }
989 
990 static inline bool
991 vm_page_none_valid(vm_page_t m)
992 {
993 
994 	return (m->valid == 0);
995 }
996 
997 #endif				/* _KERNEL */
998 #endif				/* !_VM_PAGE_ */
999