xref: /freebsd/sys/vm/vm_page.h (revision 64db83a8ab2d1f72a9b2174b39d2ef42b5b0580c)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Resident memory system definitions.
69  */
70 
71 #ifndef	_VM_PAGE_
72 #define	_VM_PAGE_
73 
74 #if !defined(KLD_MODULE)
75 #include "opt_vmpage.h"
76 #endif
77 
78 #include <vm/pmap.h>
79 #include <machine/atomic.h>
80 
81 /*
82  *	Management of resident (logical) pages.
83  *
84  *	A small structure is kept for each resident
85  *	page, indexed by page number.  Each structure
86  *	is an element of several lists:
87  *
88  *		A hash table bucket used to quickly
89  *		perform object/offset lookups
90  *
91  *		A list of all pages for a given object,
92  *		so they can be quickly deactivated at
93  *		time of deallocation.
94  *
95  *		An ordered list of pages due for pageout.
96  *
97  *	In addition, the structure contains the object
98  *	and offset to which this page belongs (for pageout),
99  *	and sundry status bits.
100  *
101  *	Fields in this structure are locked either by the lock on the
102  *	object that the page belongs to (O) or by the lock on the page
103  *	queues (P).
104  *
105  *	The 'valid' and 'dirty' fields are distinct.  A page may have dirty
106  *	bits set without having associated valid bits set.  This is used by
107  *	NFS to implement piecemeal writes.
108  */
109 
110 TAILQ_HEAD(pglist, vm_page);
111 
112 struct vm_page {
113 	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (P) */
114 	struct vm_page	*hnext;		/* hash table link (O,P)	*/
115 	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) 	*/
116 
117 	vm_object_t object;		/* which object am I in (O,P)*/
118 	vm_pindex_t pindex;		/* offset into object (O,P) */
119 	vm_offset_t phys_addr;		/* physical address of page */
120 	struct md_page md;		/* machine dependant stuff */
121 	u_short	queue;			/* page queue index */
122 	u_short	flags,			/* see below */
123 		pc;			/* page color */
124 	u_short wire_count;		/* wired down maps refs (P) */
125 	short hold_count;		/* page hold count */
126 	u_char	act_count;		/* page usage count */
127 	u_char	busy;			/* page busy count */
128 	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
129 	/* so, on normal X86 kernels, they must be at least 8 bits wide */
130 #if PAGE_SIZE == 4096
131 	u_char	valid;			/* map of valid DEV_BSIZE chunks */
132 	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
133 #elif PAGE_SIZE == 8192
134 	u_short	valid;			/* map of valid DEV_BSIZE chunks */
135 	u_short	dirty;			/* map of dirty DEV_BSIZE chunks */
136 #endif
137 };
138 
139 /*
140  * note: currently use SWAPBLK_NONE as an absolute value rather then
141  * a flag bit.
142  */
143 
144 #define SWAPBLK_MASK	((daddr_t)((u_daddr_t)-1 >> 1))		/* mask */
145 #define SWAPBLK_NONE	((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */
146 
147 #if !defined(KLD_MODULE)
148 
149 /*
150  * Page coloring parameters
151  */
152 /* Each of PQ_FREE, and PQ_CACHE have PQ_HASH_SIZE entries */
153 
154 /* Define one of the following */
155 #if defined(PQ_HUGECACHE)
156 #define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
157 #define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
158 #define PQ_L2_SIZE 256	/* A number of colors opt for 1M cache */
159 #endif
160 
161 /* Define one of the following */
162 #if defined(PQ_LARGECACHE)
163 #define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
164 #define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
165 #define PQ_L2_SIZE 128	/* A number of colors opt for 512K cache */
166 #endif
167 
168 
169 /*
170  * Use 'options PQ_NOOPT' to disable page coloring
171  */
172 #if defined(PQ_NOOPT)
173 #define PQ_PRIME1 1
174 #define PQ_PRIME2 1
175 #define PQ_L2_SIZE 1
176 #endif
177 
178 #if defined(PQ_NORMALCACHE)
179 #define PQ_PRIME1 5	/* Prime number somewhat less than PQ_HASH_SIZE */
180 #define PQ_PRIME2 3	/* Prime number somewhat less than PQ_HASH_SIZE */
181 #define PQ_L2_SIZE 16	/* A reasonable number of colors (opt for 64K cache) */
182 #endif
183 
184 #if defined(PQ_MEDIUMCACHE)
185 #define PQ_PRIME1 13	/* Prime number somewhat less than PQ_HASH_SIZE */
186 #define PQ_PRIME2 7	/* Prime number somewhat less than PQ_HASH_SIZE */
187 #define PQ_L2_SIZE 64	/* A number of colors opt for 256K cache */
188 #endif
189 
190 #if !defined(PQ_L2_SIZE)
191 #define PQ_PRIME1 9	/* Produces a good PQ_L2_SIZE/3 + PQ_PRIME1 */
192 #define PQ_PRIME2 5	/* Prime number somewhat less than PQ_HASH_SIZE */
193 #define PQ_L2_SIZE 32	/* 512KB or smaller, 4-way set-associative cache */
194 #endif
195 
196 #define PQ_L2_MASK (PQ_L2_SIZE - 1)
197 
198 #if 1
199 #define PQ_NONE 0
200 #define PQ_FREE	1
201 #define PQ_INACTIVE (1 + 1*PQ_L2_SIZE)
202 #define PQ_ACTIVE (2 + 1*PQ_L2_SIZE)
203 #define PQ_CACHE (3 + 1*PQ_L2_SIZE)
204 #define PQ_COUNT (3 + 2*PQ_L2_SIZE)
205 #else
206 #define PQ_NONE		PQ_COUNT
207 #define PQ_FREE		0
208 #define PQ_INACTIVE	PQ_L2_SIZE
209 #define PQ_ACTIVE	(1 +   PQ_L2_SIZE)
210 #define PQ_CACHE	(2 +   PQ_L2_SIZE)
211 #define PQ_COUNT	(2 + 2*PQ_L2_SIZE)
212 #endif
213 
214 struct vpgqueues {
215 	struct pglist pl;
216 	int	*cnt;
217 	int	lcnt;
218 };
219 
220 extern struct vpgqueues vm_page_queues[PQ_COUNT];
221 
222 #endif
223 
224 /*
225  * These are the flags defined for vm_page.
226  *
227  * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
228  */
229 #define	PG_BUSY		0x0001		/* page is in transit (O) */
230 #define	PG_WANTED	0x0002		/* someone is waiting for page (O) */
231 #define	PG_FICTITIOUS	0x0008		/* physical page doesn't exist (O) */
232 #define	PG_WRITEABLE	0x0010		/* page is mapped writeable */
233 #define PG_MAPPED	0x0020		/* page is mapped */
234 #define	PG_ZERO		0x0040		/* page is zeroed */
235 #define PG_REFERENCED	0x0080		/* page has been referenced */
236 #define PG_CLEANCHK	0x0100		/* page will be checked for cleaning */
237 #define PG_SWAPINPROG	0x0200		/* swap I/O in progress on page	     */
238 #define PG_NOSYNC	0x0400		/* do not collect for syncer */
239 
240 /*
241  * Misc constants.
242  */
243 
244 #define ACT_DECLINE		1
245 #define ACT_ADVANCE		3
246 #define ACT_INIT		5
247 #define ACT_MAX			64
248 #define PFCLUSTER_BEHIND	3
249 #define PFCLUSTER_AHEAD		3
250 
251 #ifdef _KERNEL
252 /*
253  * Each pageable resident page falls into one of four lists:
254  *
255  *	free
256  *		Available for allocation now.
257  *
258  * The following are all LRU sorted:
259  *
260  *	cache
261  *		Almost available for allocation. Still in an
262  *		object, but clean and immediately freeable at
263  *		non-interrupt times.
264  *
265  *	inactive
266  *		Low activity, candidates for reclamation.
267  *		This is the list of pages that should be
268  *		paged out next.
269  *
270  *	active
271  *		Pages that are "active" i.e. they have been
272  *		recently referenced.
273  *
274  *	zero
275  *		Pages that are really free and have been pre-zeroed
276  *
277  */
278 
279 extern int vm_page_zero_count;
280 
281 extern vm_page_t vm_page_array;		/* First resident page in table */
282 extern int vm_page_array_size;		/* number of vm_page_t's */
283 extern long first_page;			/* first physical page number */
284 
285 #define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
286 
287 #define PHYS_TO_VM_PAGE(pa) \
288 		(&vm_page_array[atop(pa) - first_page ])
289 
290 /*
291  *	Functions implemented as macros
292  */
293 
294 static __inline void
295 vm_page_flag_set(vm_page_t m, unsigned int bits)
296 {
297 	atomic_set_short(&(m)->flags, bits);
298 }
299 
300 static __inline void
301 vm_page_flag_clear(vm_page_t m, unsigned int bits)
302 {
303 	atomic_clear_short(&(m)->flags, bits);
304 }
305 
306 #if 0
307 static __inline void
308 vm_page_assert_wait(vm_page_t m, int interruptible)
309 {
310 	vm_page_flag_set(m, PG_WANTED);
311 	assert_wait((int) m, interruptible);
312 }
313 #endif
314 
315 static __inline void
316 vm_page_busy(vm_page_t m)
317 {
318 	KASSERT((m->flags & PG_BUSY) == 0, ("vm_page_busy: page already busy!!!"));
319 	vm_page_flag_set(m, PG_BUSY);
320 }
321 
322 /*
323  *	vm_page_flash:
324  *
325  *	wakeup anyone waiting for the page.
326  */
327 
328 static __inline void
329 vm_page_flash(vm_page_t m)
330 {
331 	if (m->flags & PG_WANTED) {
332 		vm_page_flag_clear(m, PG_WANTED);
333 		wakeup(m);
334 	}
335 }
336 
337 /*
338  *	vm_page_wakeup:
339  *
340  *	clear the PG_BUSY flag and wakeup anyone waiting for the
341  *	page.
342  *
343  */
344 
345 static __inline void
346 vm_page_wakeup(vm_page_t m)
347 {
348 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
349 	vm_page_flag_clear(m, PG_BUSY);
350 	vm_page_flash(m);
351 }
352 
353 /*
354  *
355  *
356  */
357 
358 static __inline void
359 vm_page_io_start(vm_page_t m)
360 {
361 	atomic_add_char(&(m)->busy, 1);
362 }
363 
364 static __inline void
365 vm_page_io_finish(vm_page_t m)
366 {
367 	atomic_subtract_char(&m->busy, 1);
368 	if (m->busy == 0)
369 		vm_page_flash(m);
370 }
371 
372 
373 #if PAGE_SIZE == 4096
374 #define VM_PAGE_BITS_ALL 0xff
375 #endif
376 
377 #if PAGE_SIZE == 8192
378 #define VM_PAGE_BITS_ALL 0xffff
379 #endif
380 
381 #define VM_ALLOC_NORMAL		0
382 #define VM_ALLOC_INTERRUPT	1
383 #define VM_ALLOC_SYSTEM		2
384 #define	VM_ALLOC_ZERO		3
385 #define	VM_ALLOC_RETRY		0x80
386 
387 void vm_page_activate __P((vm_page_t));
388 vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int));
389 vm_page_t vm_page_grab __P((vm_object_t, vm_pindex_t, int));
390 void vm_page_cache __P((register vm_page_t));
391 void vm_page_dontneed __P((register vm_page_t));
392 static __inline void vm_page_copy __P((vm_page_t, vm_page_t));
393 static __inline void vm_page_free __P((vm_page_t));
394 static __inline void vm_page_free_zero __P((vm_page_t));
395 void vm_page_deactivate __P((vm_page_t));
396 void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t));
397 vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t));
398 void vm_page_remove __P((vm_page_t));
399 void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t));
400 vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t));
401 vm_page_t vm_add_new_page __P((vm_offset_t pa));
402 void vm_page_unwire __P((vm_page_t, int));
403 void vm_page_wire __P((vm_page_t));
404 void vm_page_unqueue __P((vm_page_t));
405 void vm_page_unqueue_nowakeup __P((vm_page_t));
406 void vm_page_set_validclean __P((vm_page_t, int, int));
407 void vm_page_set_dirty __P((vm_page_t, int, int));
408 void vm_page_clear_dirty __P((vm_page_t, int, int));
409 void vm_page_set_invalid __P((vm_page_t, int, int));
410 static __inline boolean_t vm_page_zero_fill __P((vm_page_t));
411 int vm_page_is_valid __P((vm_page_t, int, int));
412 void vm_page_test_dirty __P((vm_page_t));
413 int vm_page_bits __P((int, int));
414 vm_page_t _vm_page_list_find __P((int, int));
415 #if 0
416 int vm_page_sleep(vm_page_t m, char *msg, char *busy);
417 int vm_page_asleep(vm_page_t m, char *msg, char *busy);
418 #endif
419 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
420 void vm_page_free_toq(vm_page_t m);
421 
422 /*
423  * Keep page from being freed by the page daemon
424  * much of the same effect as wiring, except much lower
425  * overhead and should be used only for *very* temporary
426  * holding ("wiring").
427  */
428 static __inline void
429 vm_page_hold(vm_page_t mem)
430 {
431 	mem->hold_count++;
432 }
433 
434 static __inline void
435 vm_page_unhold(vm_page_t mem)
436 {
437 	--mem->hold_count;
438 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
439 }
440 
441 /*
442  * 	vm_page_protect:
443  *
444  *	Reduce the protection of a page.  This routine never raises the
445  *	protection and therefore can be safely called if the page is already
446  *	at VM_PROT_NONE (it will be a NOP effectively ).
447  */
448 
449 static __inline void
450 vm_page_protect(vm_page_t mem, int prot)
451 {
452 	if (prot == VM_PROT_NONE) {
453 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
454 			pmap_page_protect(mem, VM_PROT_NONE);
455 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
456 		}
457 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
458 		pmap_page_protect(mem, VM_PROT_READ);
459 		vm_page_flag_clear(mem, PG_WRITEABLE);
460 	}
461 }
462 
463 /*
464  *	vm_page_zero_fill:
465  *
466  *	Zero-fill the specified page.
467  *	Written as a standard pagein routine, to
468  *	be used by the zero-fill object.
469  */
470 static __inline boolean_t
471 vm_page_zero_fill(m)
472 	vm_page_t m;
473 {
474 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
475 	return (TRUE);
476 }
477 
478 /*
479  *	vm_page_copy:
480  *
481  *	Copy one page to another
482  */
483 static __inline void
484 vm_page_copy(src_m, dest_m)
485 	vm_page_t src_m;
486 	vm_page_t dest_m;
487 {
488 	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
489 	dest_m->valid = VM_PAGE_BITS_ALL;
490 }
491 
492 /*
493  *	vm_page_free:
494  *
495  *	Free a page
496  *
497  *	The clearing of PG_ZERO is a temporary safety until the code can be
498  *	reviewed to determine that PG_ZERO is being properly cleared on
499  *	write faults or maps.  PG_ZERO was previously cleared in
500  *	vm_page_alloc().
501  */
502 static __inline void
503 vm_page_free(m)
504 	vm_page_t m;
505 {
506 	vm_page_flag_clear(m, PG_ZERO);
507 	vm_page_free_toq(m);
508 }
509 
510 /*
511  *	vm_page_free_zero:
512  *
513  *	Free a page to the zerod-pages queue
514  */
515 static __inline void
516 vm_page_free_zero(m)
517 	vm_page_t m;
518 {
519 	vm_page_flag_set(m, PG_ZERO);
520 	vm_page_free_toq(m);
521 }
522 
523 /*
524  *	vm_page_sleep_busy:
525  *
526  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
527  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
528  *	it almost had to sleep and made temporary spl*() mods), FALSE
529  *	otherwise.
530  *
531  *	This routine assumes that interrupts can only remove the busy
532  *	status from a page, not set the busy status or change it from
533  *	PG_BUSY to m->busy or vise versa (which would create a timing
534  *	window).
535  *
536  *	Note that being an inline, this code will be well optimized.
537  */
538 
539 static __inline int
540 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
541 {
542 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
543 		int s = splvm();
544 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
545 			/*
546 			 * Page is busy. Wait and retry.
547 			 */
548 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
549 			tsleep(m, PVM, msg, 0);
550 		}
551 		splx(s);
552 		return(TRUE);
553 		/* not reached */
554 	}
555 	return(FALSE);
556 }
557 
558 /*
559  *	vm_page_dirty:
560  *
561  *	make page all dirty
562  */
563 
564 static __inline void
565 vm_page_dirty(vm_page_t m)
566 {
567 #if !defined(KLD_MODULE)
568 	KASSERT(m->queue - m->pc != PQ_CACHE, ("vm_page_dirty: page in cache!"));
569 #endif
570 	m->dirty = VM_PAGE_BITS_ALL;
571 }
572 
573 /*
574  *	vm_page_undirty:
575  *
576  *	Set page to not be dirty.  Note: does not clear pmap modify bits
577  */
578 
579 static __inline void
580 vm_page_undirty(vm_page_t m)
581 {
582 	m->dirty = 0;
583 }
584 
585 #if !defined(KLD_MODULE)
586 
587 static __inline vm_page_t
588 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
589 {
590 	vm_page_t m;
591 
592 #if PQ_L2_SIZE > 1
593 	if (prefer_zero) {
594 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
595 	} else {
596 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
597 	}
598 	if (m == NULL)
599 		m = _vm_page_list_find(basequeue, index);
600 #else
601 	if (prefer_zero) {
602 		m = TAILQ_LAST(&vm_page_queues[basequeue].pl, pglist);
603 	} else {
604 		m = TAILQ_FIRST(&vm_page_queues[basequeue].pl);
605 	}
606 #endif
607 	return(m);
608 }
609 
610 #endif
611 
612 #endif				/* _KERNEL */
613 #endif				/* !_VM_PAGE_ */
614