1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 * 60 * $FreeBSD$ 61 */ 62 63 /* 64 * Resident memory system definitions. 65 */ 66 67 #ifndef _VM_PAGE_ 68 #define _VM_PAGE_ 69 70 #include <vm/pmap.h> 71 72 /* 73 * Management of resident (logical) pages. 74 * 75 * A small structure is kept for each resident 76 * page, indexed by page number. Each structure 77 * is an element of several collections: 78 * 79 * A radix tree used to quickly 80 * perform object/offset lookups 81 * 82 * A list of all pages for a given object, 83 * so they can be quickly deactivated at 84 * time of deallocation. 85 * 86 * An ordered list of pages due for pageout. 87 * 88 * In addition, the structure contains the object 89 * and offset to which this page belongs (for pageout), 90 * and sundry status bits. 91 * 92 * In general, operations on this structure's mutable fields are 93 * synchronized using either one of or a combination of the lock on the 94 * object that the page belongs to (O), the pool lock for the page (P), 95 * or the lock for either the free or paging queue (Q). If a field is 96 * annotated below with two of these locks, then holding either lock is 97 * sufficient for read access, but both locks are required for write 98 * access. 99 * 100 * In contrast, the synchronization of accesses to the page's 101 * dirty field is machine dependent (M). In the 102 * machine-independent layer, the lock on the object that the 103 * page belongs to must be held in order to operate on the field. 104 * However, the pmap layer is permitted to set all bits within 105 * the field without holding that lock. If the underlying 106 * architecture does not support atomic read-modify-write 107 * operations on the field's type, then the machine-independent 108 * layer uses a 32-bit atomic on the aligned 32-bit word that 109 * contains the dirty field. In the machine-independent layer, 110 * the implementation of read-modify-write operations on the 111 * field is encapsulated in vm_page_clear_dirty_mask(). 112 */ 113 114 #if PAGE_SIZE == 4096 115 #define VM_PAGE_BITS_ALL 0xffu 116 typedef uint8_t vm_page_bits_t; 117 #elif PAGE_SIZE == 8192 118 #define VM_PAGE_BITS_ALL 0xffffu 119 typedef uint16_t vm_page_bits_t; 120 #elif PAGE_SIZE == 16384 121 #define VM_PAGE_BITS_ALL 0xffffffffu 122 typedef uint32_t vm_page_bits_t; 123 #elif PAGE_SIZE == 32768 124 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu 125 typedef uint64_t vm_page_bits_t; 126 #endif 127 128 struct vm_page { 129 union { 130 TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */ 131 struct { 132 SLIST_ENTRY(vm_page) ss; /* private slists */ 133 void *pv; 134 } s; 135 struct { 136 u_long p; 137 u_long v; 138 } memguard; 139 } plinks; 140 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ 141 vm_object_t object; /* which object am I in (O,P) */ 142 vm_pindex_t pindex; /* offset into object (O,P) */ 143 vm_paddr_t phys_addr; /* physical address of page */ 144 struct md_page md; /* machine dependant stuff */ 145 u_int wire_count; /* wired down maps refs (P) */ 146 volatile u_int busy_lock; /* busy owners lock */ 147 uint16_t hold_count; /* page hold count (P) */ 148 uint16_t flags; /* page PG_* flags (P) */ 149 uint8_t aflags; /* access is atomic */ 150 uint8_t oflags; /* page VPO_* flags (O) */ 151 uint8_t queue; /* page queue index (P,Q) */ 152 int8_t psind; /* pagesizes[] index (O) */ 153 int8_t segind; 154 uint8_t order; /* index of the buddy queue */ 155 uint8_t pool; 156 u_char act_count; /* page usage count (P) */ 157 /* NOTE that these must support one bit per DEV_BSIZE in a page */ 158 /* so, on normal X86 kernels, they must be at least 8 bits wide */ 159 vm_page_bits_t valid; /* map of valid DEV_BSIZE chunks (O) */ 160 vm_page_bits_t dirty; /* map of dirty DEV_BSIZE chunks (M) */ 161 }; 162 163 /* 164 * Page flags stored in oflags: 165 * 166 * Access to these page flags is synchronized by the lock on the object 167 * containing the page (O). 168 * 169 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG) 170 * indicates that the page is not under PV management but 171 * otherwise should be treated as a normal page. Pages not 172 * under PV management cannot be paged out via the 173 * object/vm_page_t because there is no knowledge of their pte 174 * mappings, and such pages are also not on any PQ queue. 175 * 176 */ 177 #define VPO_UNUSED01 0x01 /* --available-- */ 178 #define VPO_SWAPSLEEP 0x02 /* waiting for swap to finish */ 179 #define VPO_UNMANAGED 0x04 /* no PV management for page */ 180 #define VPO_SWAPINPROG 0x08 /* swap I/O in progress on page */ 181 #define VPO_NOSYNC 0x10 /* do not collect for syncer */ 182 183 /* 184 * Busy page implementation details. 185 * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation, 186 * even if the support for owner identity is removed because of size 187 * constraints. Checks on lock recursion are then not possible, while the 188 * lock assertions effectiveness is someway reduced. 189 */ 190 #define VPB_BIT_SHARED 0x01 191 #define VPB_BIT_EXCLUSIVE 0x02 192 #define VPB_BIT_WAITERS 0x04 193 #define VPB_BIT_FLAGMASK \ 194 (VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS) 195 196 #define VPB_SHARERS_SHIFT 3 197 #define VPB_SHARERS(x) \ 198 (((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT) 199 #define VPB_SHARERS_WORD(x) ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED) 200 #define VPB_ONE_SHARER (1 << VPB_SHARERS_SHIFT) 201 202 #define VPB_SINGLE_EXCLUSIVER VPB_BIT_EXCLUSIVE 203 204 #define VPB_UNBUSIED VPB_SHARERS_WORD(0) 205 206 #define PQ_NONE 255 207 #define PQ_INACTIVE 0 208 #define PQ_ACTIVE 1 209 #define PQ_COUNT 2 210 211 TAILQ_HEAD(pglist, vm_page); 212 SLIST_HEAD(spglist, vm_page); 213 214 struct vm_pagequeue { 215 struct mtx pq_mutex; 216 struct pglist pq_pl; 217 int pq_cnt; 218 int * const pq_vcnt; 219 const char * const pq_name; 220 } __aligned(CACHE_LINE_SIZE); 221 222 223 struct vm_domain { 224 struct vm_pagequeue vmd_pagequeues[PQ_COUNT]; 225 u_int vmd_page_count; 226 u_int vmd_free_count; 227 long vmd_segs; /* bitmask of the segments */ 228 boolean_t vmd_oom; 229 int vmd_pass; /* local pagedaemon pass */ 230 int vmd_last_active_scan; 231 struct vm_page vmd_marker; /* marker for pagedaemon private use */ 232 struct vm_page vmd_inacthead; /* marker for LRU-defeating insertions */ 233 }; 234 235 extern struct vm_domain vm_dom[MAXMEMDOM]; 236 237 #define vm_pagequeue_assert_locked(pq) mtx_assert(&(pq)->pq_mutex, MA_OWNED) 238 #define vm_pagequeue_lock(pq) mtx_lock(&(pq)->pq_mutex) 239 #define vm_pagequeue_unlock(pq) mtx_unlock(&(pq)->pq_mutex) 240 241 #ifdef _KERNEL 242 static __inline void 243 vm_pagequeue_cnt_add(struct vm_pagequeue *pq, int addend) 244 { 245 246 #ifdef notyet 247 vm_pagequeue_assert_locked(pq); 248 #endif 249 pq->pq_cnt += addend; 250 atomic_add_int(pq->pq_vcnt, addend); 251 } 252 #define vm_pagequeue_cnt_inc(pq) vm_pagequeue_cnt_add((pq), 1) 253 #define vm_pagequeue_cnt_dec(pq) vm_pagequeue_cnt_add((pq), -1) 254 #endif /* _KERNEL */ 255 256 extern struct mtx_padalign vm_page_queue_free_mtx; 257 extern struct mtx_padalign pa_lock[]; 258 259 #if defined(__arm__) 260 #define PDRSHIFT PDR_SHIFT 261 #elif !defined(PDRSHIFT) 262 #define PDRSHIFT 21 263 #endif 264 265 #define pa_index(pa) ((pa) >> PDRSHIFT) 266 #define PA_LOCKPTR(pa) ((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT])) 267 #define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa))) 268 #define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa)) 269 #define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa)) 270 #define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa)) 271 #define PA_UNLOCK_COND(pa) \ 272 do { \ 273 if ((pa) != 0) { \ 274 PA_UNLOCK((pa)); \ 275 (pa) = 0; \ 276 } \ 277 } while (0) 278 279 #define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a)) 280 281 #ifdef KLD_MODULE 282 #define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE) 283 #define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE) 284 #define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE) 285 #else /* !KLD_MODULE */ 286 #define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m)))) 287 #define vm_page_lock(m) mtx_lock(vm_page_lockptr((m))) 288 #define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m))) 289 #define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m))) 290 #endif 291 #if defined(INVARIANTS) 292 #define vm_page_assert_locked(m) \ 293 vm_page_assert_locked_KBI((m), __FILE__, __LINE__) 294 #define vm_page_lock_assert(m, a) \ 295 vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__) 296 #else 297 #define vm_page_assert_locked(m) 298 #define vm_page_lock_assert(m, a) 299 #endif 300 301 /* 302 * The vm_page's aflags are updated using atomic operations. To set or clear 303 * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear() 304 * must be used. Neither these flags nor these functions are part of the KBI. 305 * 306 * PGA_REFERENCED may be cleared only if the page is locked. It is set by 307 * both the MI and MD VM layers. However, kernel loadable modules should not 308 * directly set this flag. They should call vm_page_reference() instead. 309 * 310 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter(). 311 * When it does so, the object must be locked, or the page must be 312 * exclusive busied. The MI VM layer must never access this flag 313 * directly. Instead, it should call pmap_page_is_write_mapped(). 314 * 315 * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has 316 * at least one executable mapping. It is not consumed by the MI VM layer. 317 */ 318 #define PGA_WRITEABLE 0x01 /* page may be mapped writeable */ 319 #define PGA_REFERENCED 0x02 /* page has been referenced */ 320 #define PGA_EXECUTABLE 0x04 /* page may be mapped executable */ 321 322 /* 323 * Page flags. If changed at any other time than page allocation or 324 * freeing, the modification must be protected by the vm_page lock. 325 */ 326 #define PG_CACHED 0x0001 /* page is cached */ 327 #define PG_FICTITIOUS 0x0004 /* physical page doesn't exist */ 328 #define PG_ZERO 0x0008 /* page is zeroed */ 329 #define PG_MARKER 0x0010 /* special queue marker page */ 330 #define PG_WINATCFLS 0x0040 /* flush dirty page on inactive q */ 331 #define PG_NODUMP 0x0080 /* don't include this page in a dump */ 332 #define PG_UNHOLDFREE 0x0100 /* delayed free of a held page */ 333 334 /* 335 * Misc constants. 336 */ 337 #define ACT_DECLINE 1 338 #define ACT_ADVANCE 3 339 #define ACT_INIT 5 340 #define ACT_MAX 64 341 342 #ifdef _KERNEL 343 344 #include <sys/systm.h> 345 346 #include <machine/atomic.h> 347 348 /* 349 * Each pageable resident page falls into one of four lists: 350 * 351 * free 352 * Available for allocation now. 353 * 354 * cache 355 * Almost available for allocation. Still associated with 356 * an object, but clean and immediately freeable. 357 * 358 * The following lists are LRU sorted: 359 * 360 * inactive 361 * Low activity, candidates for reclamation. 362 * This is the list of pages that should be 363 * paged out next. 364 * 365 * active 366 * Pages that are "active" i.e. they have been 367 * recently referenced. 368 * 369 */ 370 371 extern int vm_page_zero_count; 372 373 extern vm_page_t vm_page_array; /* First resident page in table */ 374 extern long vm_page_array_size; /* number of vm_page_t's */ 375 extern long first_page; /* first physical page number */ 376 377 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) 378 379 /* 380 * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory 381 * page to which the given physical address belongs. The correct vm_page_t 382 * object is returned for addresses that are not page-aligned. 383 */ 384 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa); 385 386 /* 387 * Page allocation parameters for vm_page for the functions 388 * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and 389 * vm_page_alloc_freelist(). Some functions support only a subset 390 * of the flags, and ignore others, see the flags legend. 391 * 392 * Bits 0 - 1 define class. 393 * Bits 2 - 15 dedicated for flags. 394 * Legend: 395 * (a) - vm_page_alloc() supports the flag. 396 * (c) - vm_page_alloc_contig() supports the flag. 397 * (f) - vm_page_alloc_freelist() supports the flag. 398 * (g) - vm_page_grab() supports the flag. 399 * Bits above 15 define the count of additional pages that the caller 400 * intends to allocate. 401 */ 402 #define VM_ALLOC_NORMAL 0 403 #define VM_ALLOC_INTERRUPT 1 404 #define VM_ALLOC_SYSTEM 2 405 #define VM_ALLOC_CLASS_MASK 3 406 #define VM_ALLOC_WIRED 0x0020 /* (acfg) Allocate non pageable page */ 407 #define VM_ALLOC_ZERO 0x0040 /* (acfg) Try to obtain a zeroed page */ 408 #define VM_ALLOC_NOOBJ 0x0100 /* (acg) No associated object */ 409 #define VM_ALLOC_NOBUSY 0x0200 /* (acg) Do not busy the page */ 410 #define VM_ALLOC_IFCACHED 0x0400 /* (ag) Fail if page is not cached */ 411 #define VM_ALLOC_IFNOTCACHED 0x0800 /* (ag) Fail if page is cached */ 412 #define VM_ALLOC_IGN_SBUSY 0x1000 /* (g) Ignore shared busy flag */ 413 #define VM_ALLOC_NODUMP 0x2000 /* (ag) don't include in dump */ 414 #define VM_ALLOC_SBUSY 0x4000 /* (acg) Shared busy the page */ 415 #define VM_ALLOC_NOWAIT 0x8000 /* (g) Do not sleep, return NULL */ 416 #define VM_ALLOC_COUNT_SHIFT 16 417 #define VM_ALLOC_COUNT(count) ((count) << VM_ALLOC_COUNT_SHIFT) 418 419 #ifdef M_NOWAIT 420 static inline int 421 malloc2vm_flags(int malloc_flags) 422 { 423 int pflags; 424 425 KASSERT((malloc_flags & M_USE_RESERVE) == 0 || 426 (malloc_flags & M_NOWAIT) != 0, 427 ("M_USE_RESERVE requires M_NOWAIT")); 428 pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT : 429 VM_ALLOC_SYSTEM; 430 if ((malloc_flags & M_ZERO) != 0) 431 pflags |= VM_ALLOC_ZERO; 432 if ((malloc_flags & M_NODUMP) != 0) 433 pflags |= VM_ALLOC_NODUMP; 434 return (pflags); 435 } 436 #endif 437 438 void vm_page_busy_downgrade(vm_page_t m); 439 void vm_page_busy_sleep(vm_page_t m, const char *msg); 440 void vm_page_flash(vm_page_t m); 441 void vm_page_hold(vm_page_t mem); 442 void vm_page_unhold(vm_page_t mem); 443 void vm_page_free(vm_page_t m); 444 void vm_page_free_zero(vm_page_t m); 445 446 void vm_page_activate (vm_page_t); 447 void vm_page_advise(vm_page_t m, int advice); 448 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int); 449 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 450 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 451 vm_paddr_t boundary, vm_memattr_t memattr); 452 vm_page_t vm_page_alloc_freelist(int, int); 453 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int); 454 void vm_page_cache(vm_page_t); 455 void vm_page_cache_free(vm_object_t, vm_pindex_t, vm_pindex_t); 456 void vm_page_cache_transfer(vm_object_t, vm_pindex_t, vm_object_t); 457 int vm_page_try_to_cache (vm_page_t); 458 int vm_page_try_to_free (vm_page_t); 459 void vm_page_deactivate (vm_page_t); 460 void vm_page_deactivate_noreuse(vm_page_t); 461 void vm_page_dequeue(vm_page_t m); 462 void vm_page_dequeue_locked(vm_page_t m); 463 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t); 464 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr); 465 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 466 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t); 467 boolean_t vm_page_is_cached(vm_object_t object, vm_pindex_t pindex); 468 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t); 469 vm_page_t vm_page_next(vm_page_t m); 470 int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *); 471 struct vm_pagequeue *vm_page_pagequeue(vm_page_t m); 472 vm_page_t vm_page_prev(vm_page_t m); 473 boolean_t vm_page_ps_is_valid(vm_page_t m); 474 void vm_page_putfake(vm_page_t m); 475 void vm_page_readahead_finish(vm_page_t m); 476 void vm_page_reference(vm_page_t m); 477 void vm_page_remove (vm_page_t); 478 int vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t); 479 vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object, 480 vm_pindex_t pindex); 481 void vm_page_requeue(vm_page_t m); 482 void vm_page_requeue_locked(vm_page_t m); 483 int vm_page_sbusied(vm_page_t m); 484 void vm_page_set_valid_range(vm_page_t m, int base, int size); 485 int vm_page_sleep_if_busy(vm_page_t m, const char *msg); 486 vm_offset_t vm_page_startup(vm_offset_t vaddr); 487 void vm_page_sunbusy(vm_page_t m); 488 int vm_page_trysbusy(vm_page_t m); 489 void vm_page_unhold_pages(vm_page_t *ma, int count); 490 boolean_t vm_page_unwire(vm_page_t m, uint8_t queue); 491 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 492 void vm_page_wire (vm_page_t); 493 void vm_page_xunbusy_hard(vm_page_t m); 494 void vm_page_set_validclean (vm_page_t, int, int); 495 void vm_page_clear_dirty (vm_page_t, int, int); 496 void vm_page_set_invalid (vm_page_t, int, int); 497 int vm_page_is_valid (vm_page_t, int, int); 498 void vm_page_test_dirty (vm_page_t); 499 vm_page_bits_t vm_page_bits(int base, int size); 500 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid); 501 void vm_page_free_toq(vm_page_t m); 502 void vm_page_zero_idle_wakeup(void); 503 504 void vm_page_dirty_KBI(vm_page_t m); 505 void vm_page_lock_KBI(vm_page_t m, const char *file, int line); 506 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line); 507 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line); 508 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 509 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line); 510 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line); 511 #endif 512 513 #define vm_page_assert_sbusied(m) \ 514 KASSERT(vm_page_sbusied(m), \ 515 ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \ 516 (void *)m, __FILE__, __LINE__)); 517 518 #define vm_page_assert_unbusied(m) \ 519 KASSERT(!vm_page_busied(m), \ 520 ("vm_page_assert_unbusied: page %p busy @ %s:%d", \ 521 (void *)m, __FILE__, __LINE__)); 522 523 #define vm_page_assert_xbusied(m) \ 524 KASSERT(vm_page_xbusied(m), \ 525 ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \ 526 (void *)m, __FILE__, __LINE__)); 527 528 #define vm_page_busied(m) \ 529 ((m)->busy_lock != VPB_UNBUSIED) 530 531 #define vm_page_sbusy(m) do { \ 532 if (!vm_page_trysbusy(m)) \ 533 panic("%s: page %p failed shared busing", __func__, m); \ 534 } while (0) 535 536 #define vm_page_tryxbusy(m) \ 537 (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, \ 538 VPB_SINGLE_EXCLUSIVER)) 539 540 #define vm_page_xbusied(m) \ 541 ((m->busy_lock & VPB_SINGLE_EXCLUSIVER) != 0) 542 543 #define vm_page_xbusy(m) do { \ 544 if (!vm_page_tryxbusy(m)) \ 545 panic("%s: page %p failed exclusive busing", __func__, \ 546 m); \ 547 } while (0) 548 549 #define vm_page_xunbusy(m) do { \ 550 if (!atomic_cmpset_rel_int(&(m)->busy_lock, \ 551 VPB_SINGLE_EXCLUSIVER, VPB_UNBUSIED)) \ 552 vm_page_xunbusy_hard(m); \ 553 } while (0) 554 555 #ifdef INVARIANTS 556 void vm_page_object_lock_assert(vm_page_t m); 557 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) vm_page_object_lock_assert(m) 558 void vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits); 559 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) \ 560 vm_page_assert_pga_writeable(m, bits) 561 #else 562 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) (void)0 563 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) (void)0 564 #endif 565 566 /* 567 * We want to use atomic updates for the aflags field, which is 8 bits wide. 568 * However, not all architectures support atomic operations on 8-bit 569 * destinations. In order that we can easily use a 32-bit operation, we 570 * require that the aflags field be 32-bit aligned. 571 */ 572 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0); 573 574 /* 575 * Clear the given bits in the specified page. 576 */ 577 static inline void 578 vm_page_aflag_clear(vm_page_t m, uint8_t bits) 579 { 580 uint32_t *addr, val; 581 582 /* 583 * The PGA_REFERENCED flag can only be cleared if the page is locked. 584 */ 585 if ((bits & PGA_REFERENCED) != 0) 586 vm_page_assert_locked(m); 587 588 /* 589 * Access the whole 32-bit word containing the aflags field with an 590 * atomic update. Parallel non-atomic updates to the other fields 591 * within this word are handled properly by the atomic update. 592 */ 593 addr = (void *)&m->aflags; 594 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0, 595 ("vm_page_aflag_clear: aflags is misaligned")); 596 val = bits; 597 #if BYTE_ORDER == BIG_ENDIAN 598 val <<= 24; 599 #endif 600 atomic_clear_32(addr, val); 601 } 602 603 /* 604 * Set the given bits in the specified page. 605 */ 606 static inline void 607 vm_page_aflag_set(vm_page_t m, uint8_t bits) 608 { 609 uint32_t *addr, val; 610 611 VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits); 612 613 /* 614 * Access the whole 32-bit word containing the aflags field with an 615 * atomic update. Parallel non-atomic updates to the other fields 616 * within this word are handled properly by the atomic update. 617 */ 618 addr = (void *)&m->aflags; 619 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0, 620 ("vm_page_aflag_set: aflags is misaligned")); 621 val = bits; 622 #if BYTE_ORDER == BIG_ENDIAN 623 val <<= 24; 624 #endif 625 atomic_set_32(addr, val); 626 } 627 628 /* 629 * vm_page_dirty: 630 * 631 * Set all bits in the page's dirty field. 632 * 633 * The object containing the specified page must be locked if the 634 * call is made from the machine-independent layer. 635 * 636 * See vm_page_clear_dirty_mask(). 637 */ 638 static __inline void 639 vm_page_dirty(vm_page_t m) 640 { 641 642 /* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */ 643 #if defined(KLD_MODULE) || defined(INVARIANTS) 644 vm_page_dirty_KBI(m); 645 #else 646 m->dirty = VM_PAGE_BITS_ALL; 647 #endif 648 } 649 650 /* 651 * vm_page_remque: 652 * 653 * If the given page is in a page queue, then remove it from that page 654 * queue. 655 * 656 * The page must be locked. 657 */ 658 static inline void 659 vm_page_remque(vm_page_t m) 660 { 661 662 if (m->queue != PQ_NONE) 663 vm_page_dequeue(m); 664 } 665 666 /* 667 * vm_page_undirty: 668 * 669 * Set page to not be dirty. Note: does not clear pmap modify bits 670 */ 671 static __inline void 672 vm_page_undirty(vm_page_t m) 673 { 674 675 VM_PAGE_OBJECT_LOCK_ASSERT(m); 676 m->dirty = 0; 677 } 678 679 #endif /* _KERNEL */ 680 #endif /* !_VM_PAGE_ */ 681