1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id$ 65 */ 66 67 /* 68 * Resident memory system definitions. 69 */ 70 71 #ifndef _VM_PAGE_ 72 #define _VM_PAGE_ 73 74 #include <vm/pmap.h> 75 /* 76 * Management of resident (logical) pages. 77 * 78 * A small structure is kept for each resident 79 * page, indexed by page number. Each structure 80 * is an element of several lists: 81 * 82 * A hash table bucket used to quickly 83 * perform object/offset lookups 84 * 85 * A list of all pages for a given object, 86 * so they can be quickly deactivated at 87 * time of deallocation. 88 * 89 * An ordered list of pages due for pageout. 90 * 91 * In addition, the structure contains the object 92 * and offset to which this page belongs (for pageout), 93 * and sundry status bits. 94 * 95 * Fields in this structure are locked either by the lock on the 96 * object that the page belongs to (O) or by the lock on the page 97 * queues (P). 98 */ 99 100 TAILQ_HEAD(pglist, vm_page); 101 102 struct vm_page { 103 TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO queue or free list (P) */ 104 TAILQ_ENTRY(vm_page) hashq; /* hash table links (O) */ 105 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ 106 107 vm_object_t object; /* which object am I in (O,P) */ 108 vm_pindex_t pindex; /* offset into object (O,P) */ 109 vm_offset_t phys_addr; /* physical address of page */ 110 u_short queue; /* page queue index */ 111 u_short flags, /* see below */ 112 pc; /* page color */ 113 u_short wire_count; /* wired down maps refs (P) */ 114 short hold_count; /* page hold count */ 115 u_char act_count; /* page usage count */ 116 u_char busy; /* page busy count */ 117 /* NOTE that these must support one bit per DEV_BSIZE in a page!!! */ 118 /* so, on normal X86 kernels, they must be at least 8 bits wide */ 119 u_char valid; /* map of valid DEV_BSIZE chunks */ 120 u_char dirty; /* map of dirty DEV_BSIZE chunks */ 121 }; 122 123 /* 124 * Page coloring parameters 125 */ 126 /* Each of PQ_FREE, PQ_ZERO and PQ_CACHE have PQ_HASH_SIZE entries */ 127 128 /* Define one of the following */ 129 #if defined(PQ_LARGECACHE) 130 #define PQ_PRIME1 31 /* Prime number somewhat less than PQ_HASH_SIZE */ 131 #define PQ_PRIME2 23 /* Prime number somewhat less than PQ_HASH_SIZE */ 132 #define PQ_PRIME3 17 /* Prime number somewhat less than PQ_HASH_SIZE */ 133 #define PQ_L2_SIZE 128 /* A number of colors opt for 512K cache */ 134 #define PQ_L1_SIZE 2 /* Two page L1 cache */ 135 #endif 136 137 138 /* 139 * Use 'options PQ_NOOPT' to disable page coloring 140 */ 141 #if defined(PQ_NOOPT) 142 #define PQ_PRIME1 1 143 #define PQ_PRIME2 1 144 #define PQ_PRIME3 1 145 #define PQ_L2_SIZE 1 146 #define PQ_L1_SIZE 1 147 #endif 148 149 #if defined(PQ_NORMALCACHE) 150 #define PQ_PRIME1 5 /* Prime number somewhat less than PQ_HASH_SIZE */ 151 #define PQ_PRIME2 3 /* Prime number somewhat less than PQ_HASH_SIZE */ 152 #define PQ_PRIME3 11 /* Prime number somewhat less than PQ_HASH_SIZE */ 153 #define PQ_L2_SIZE 16 /* A reasonable number of colors (opt for 64K cache) */ 154 #define PQ_L1_SIZE 2 /* Two page L1 cache */ 155 #endif 156 157 #if defined(PQ_MEDIUMCACHE) || !defined(PQ_L2_SIZE) 158 #define PQ_PRIME1 13 /* Prime number somewhat less than PQ_HASH_SIZE */ 159 #define PQ_PRIME2 7 /* Prime number somewhat less than PQ_HASH_SIZE */ 160 #define PQ_PRIME3 5 /* Prime number somewhat less than PQ_HASH_SIZE */ 161 #define PQ_L2_SIZE 64 /* A number of colors opt for 256K cache */ 162 #define PQ_L1_SIZE 2 /* Two page L1 cache */ 163 #endif 164 165 #define PQ_L2_MASK (PQ_L2_SIZE - 1) 166 167 #define PQ_NONE 0 168 #define PQ_FREE 1 169 #define PQ_ZERO (1 + PQ_L2_SIZE) 170 #define PQ_INACTIVE (1 + 2*PQ_L2_SIZE) 171 #define PQ_ACTIVE (2 + 2*PQ_L2_SIZE) 172 #define PQ_CACHE (3 + 2*PQ_L2_SIZE) 173 #define PQ_COUNT (3 + 3*PQ_L2_SIZE) 174 175 extern struct vpgqueues { 176 struct pglist *pl; 177 int *cnt; 178 int *lcnt; 179 } vm_page_queues[PQ_COUNT]; 180 181 /* 182 * These are the flags defined for vm_page. 183 * 184 * Note: PG_FILLED and PG_DIRTY are added for the filesystems. 185 */ 186 #define PG_BUSY 0x01 /* page is in transit (O) */ 187 #define PG_WANTED 0x02 /* someone is waiting for page (O) */ 188 #define PG_TABLED 0x04 /* page is in VP table (O) */ 189 #define PG_FICTITIOUS 0x08 /* physical page doesn't exist (O) */ 190 #define PG_WRITEABLE 0x10 /* page is mapped writeable */ 191 #define PG_MAPPED 0x20 /* page is mapped */ 192 #define PG_ZERO 0x40 /* page is zeroed */ 193 #define PG_REFERENCED 0x80 /* page has been referenced */ 194 #define PG_CLEANCHK 0x100 /* page has been checked for cleaning */ 195 196 /* 197 * Misc constants. 198 */ 199 200 #define ACT_DECLINE 1 201 #define ACT_ADVANCE 3 202 #define ACT_INIT 5 203 #define ACT_MAX 64 204 #define PFCLUSTER_BEHIND 3 205 #define PFCLUSTER_AHEAD 3 206 207 #ifdef KERNEL 208 /* 209 * Each pageable resident page falls into one of four lists: 210 * 211 * free 212 * Available for allocation now. 213 * 214 * The following are all LRU sorted: 215 * 216 * cache 217 * Almost available for allocation. Still in an 218 * object, but clean and immediately freeable at 219 * non-interrupt times. 220 * 221 * inactive 222 * Low activity, candidates for reclamation. 223 * This is the list of pages that should be 224 * paged out next. 225 * 226 * active 227 * Pages that are "active" i.e. they have been 228 * recently referenced. 229 * 230 * zero 231 * Pages that are really free and have been pre-zeroed 232 * 233 */ 234 235 extern struct pglist vm_page_queue_free[PQ_L2_SIZE];/* memory free queue */ 236 extern struct pglist vm_page_queue_zero[PQ_L2_SIZE];/* zeroed memory free queue */ 237 extern struct pglist vm_page_queue_active; /* active memory queue */ 238 extern struct pglist vm_page_queue_inactive; /* inactive memory queue */ 239 extern struct pglist vm_page_queue_cache[PQ_L2_SIZE];/* cache memory queue */ 240 241 extern int vm_page_zero_count; 242 243 extern vm_page_t vm_page_array; /* First resident page in table */ 244 extern long first_page; /* first physical page number */ 245 246 /* ... represented in vm_page_array */ 247 extern long last_page; /* last physical page number */ 248 249 /* ... represented in vm_page_array */ 250 /* [INCLUSIVE] */ 251 extern vm_offset_t first_phys_addr; /* physical address for first_page */ 252 extern vm_offset_t last_phys_addr; /* physical address for last_page */ 253 254 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) 255 256 #define IS_VM_PHYSADDR(pa) \ 257 ((pa) >= first_phys_addr && (pa) <= last_phys_addr) 258 259 #define PHYS_TO_VM_PAGE(pa) \ 260 (&vm_page_array[atop(pa) - first_page ]) 261 262 /* 263 * Functions implemented as macros 264 */ 265 266 #define PAGE_ASSERT_WAIT(m, interruptible) { \ 267 (m)->flags |= PG_WANTED; \ 268 assert_wait((int) (m), (interruptible)); \ 269 } 270 271 #define PAGE_WAKEUP(m) { \ 272 (m)->flags &= ~PG_BUSY; \ 273 if ((m)->flags & PG_WANTED) { \ 274 (m)->flags &= ~PG_WANTED; \ 275 wakeup((caddr_t) (m)); \ 276 } \ 277 } 278 279 #if PAGE_SIZE == 4096 280 #define VM_PAGE_BITS_ALL 0xff 281 #endif 282 283 #if PAGE_SIZE == 8192 284 #define VM_PAGE_BITS_ALL 0xffff 285 #endif 286 287 #define VM_ALLOC_NORMAL 0 288 #define VM_ALLOC_INTERRUPT 1 289 #define VM_ALLOC_SYSTEM 2 290 #define VM_ALLOC_ZERO 3 291 292 void vm_page_activate __P((vm_page_t)); 293 vm_page_t vm_page_alloc __P((vm_object_t, vm_pindex_t, int)); 294 void vm_page_cache __P((register vm_page_t)); 295 static __inline void vm_page_copy __P((vm_page_t, vm_page_t)); 296 void vm_page_deactivate __P((vm_page_t)); 297 void vm_page_free __P((vm_page_t)); 298 void vm_page_free_zero __P((vm_page_t)); 299 void vm_page_insert __P((vm_page_t, vm_object_t, vm_pindex_t)); 300 vm_page_t vm_page_lookup __P((vm_object_t, vm_pindex_t)); 301 void vm_page_remove __P((vm_page_t)); 302 void vm_page_rename __P((vm_page_t, vm_object_t, vm_pindex_t)); 303 vm_offset_t vm_page_startup __P((vm_offset_t, vm_offset_t, vm_offset_t)); 304 void vm_page_unwire __P((vm_page_t)); 305 void vm_page_wire __P((vm_page_t)); 306 void vm_page_unqueue __P((vm_page_t)); 307 void vm_page_unqueue_nowakeup __P((vm_page_t)); 308 void vm_page_set_validclean __P((vm_page_t, int, int)); 309 void vm_page_set_invalid __P((vm_page_t, int, int)); 310 static __inline boolean_t vm_page_zero_fill __P((vm_page_t)); 311 int vm_page_is_valid __P((vm_page_t, int, int)); 312 void vm_page_test_dirty __P((vm_page_t)); 313 int vm_page_bits __P((int, int)); 314 vm_page_t vm_page_list_find __P((int, int)); 315 int vm_page_queue_index __P((vm_offset_t, int)); 316 vm_page_t vm_page_select __P((vm_object_t, vm_pindex_t, int)); 317 318 /* 319 * Keep page from being freed by the page daemon 320 * much of the same effect as wiring, except much lower 321 * overhead and should be used only for *very* temporary 322 * holding ("wiring"). 323 */ 324 static __inline void 325 vm_page_hold(vm_page_t mem) 326 { 327 mem->hold_count++; 328 } 329 330 #ifdef DIAGNOSTIC 331 #include <sys/systm.h> /* make GCC shut up */ 332 #endif 333 334 static __inline void 335 vm_page_unhold(vm_page_t mem) 336 { 337 #ifdef DIAGNOSTIC 338 if (--mem->hold_count < 0) 339 panic("vm_page_unhold: hold count < 0!!!"); 340 #else 341 --mem->hold_count; 342 #endif 343 } 344 345 static __inline void 346 vm_page_protect(vm_page_t mem, int prot) 347 { 348 if (prot == VM_PROT_NONE) { 349 if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) { 350 pmap_page_protect(VM_PAGE_TO_PHYS(mem), prot); 351 mem->flags &= ~(PG_WRITEABLE|PG_MAPPED); 352 } 353 } else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) { 354 pmap_page_protect(VM_PAGE_TO_PHYS(mem), prot); 355 mem->flags &= ~PG_WRITEABLE; 356 } 357 } 358 359 /* 360 * vm_page_zero_fill: 361 * 362 * Zero-fill the specified page. 363 * Written as a standard pagein routine, to 364 * be used by the zero-fill object. 365 */ 366 static __inline boolean_t 367 vm_page_zero_fill(m) 368 vm_page_t m; 369 { 370 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 371 return (TRUE); 372 } 373 374 /* 375 * vm_page_copy: 376 * 377 * Copy one page to another 378 */ 379 static __inline void 380 vm_page_copy(src_m, dest_m) 381 vm_page_t src_m; 382 vm_page_t dest_m; 383 { 384 pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m)); 385 dest_m->valid = VM_PAGE_BITS_ALL; 386 } 387 388 #endif /* KERNEL */ 389 #endif /* !_VM_PAGE_ */ 390