1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 * 62 * $FreeBSD$ 63 */ 64 65 /* 66 * Resident memory system definitions. 67 */ 68 69 #ifndef _VM_PAGE_ 70 #define _VM_PAGE_ 71 72 #include <vm/pmap.h> 73 74 /* 75 * Management of resident (logical) pages. 76 * 77 * A small structure is kept for each resident 78 * page, indexed by page number. Each structure 79 * is an element of several collections: 80 * 81 * A radix tree used to quickly 82 * perform object/offset lookups 83 * 84 * A list of all pages for a given object, 85 * so they can be quickly deactivated at 86 * time of deallocation. 87 * 88 * An ordered list of pages due for pageout. 89 * 90 * In addition, the structure contains the object 91 * and offset to which this page belongs (for pageout), 92 * and sundry status bits. 93 * 94 * In general, operations on this structure's mutable fields are 95 * synchronized using either one of or a combination of the lock on the 96 * object that the page belongs to (O), the pool lock for the page (P), 97 * or the lock for either the free or paging queue (Q). If a field is 98 * annotated below with two of these locks, then holding either lock is 99 * sufficient for read access, but both locks are required for write 100 * access. An annotation of (C) indicates that the field is immutable. 101 * 102 * In contrast, the synchronization of accesses to the page's 103 * dirty field is machine dependent (M). In the 104 * machine-independent layer, the lock on the object that the 105 * page belongs to must be held in order to operate on the field. 106 * However, the pmap layer is permitted to set all bits within 107 * the field without holding that lock. If the underlying 108 * architecture does not support atomic read-modify-write 109 * operations on the field's type, then the machine-independent 110 * layer uses a 32-bit atomic on the aligned 32-bit word that 111 * contains the dirty field. In the machine-independent layer, 112 * the implementation of read-modify-write operations on the 113 * field is encapsulated in vm_page_clear_dirty_mask(). 114 * 115 * The page structure contains two counters which prevent page reuse. 116 * Both counters are protected by the page lock (P). The hold 117 * counter counts transient references obtained via a pmap lookup, and 118 * is also used to prevent page reclamation in situations where it is 119 * undesirable to block other accesses to the page. The wire counter 120 * is used to implement mlock(2) and is non-zero for pages containing 121 * kernel memory. Pages that are wired or held will not be reclaimed 122 * or laundered by the page daemon, but are treated differently during 123 * a page queue scan: held pages remain at their position in the queue, 124 * while wired pages are removed from the queue and must later be 125 * re-enqueued appropriately by the unwiring thread. It is legal to 126 * call vm_page_free() on a held page; doing so causes it to be removed 127 * from its object and page queue, and the page is released to the 128 * allocator once the last hold reference is dropped. In contrast, 129 * wired pages may not be freed. 130 * 131 * In some pmap implementations, the wire count of a page table page is 132 * used to track the number of populated entries. 133 * 134 * The busy lock is an embedded reader-writer lock which protects the 135 * page's contents and identity (i.e., its <object, pindex> tuple) and 136 * interlocks with the object lock (O). In particular, a page may be 137 * busied or unbusied only with the object write lock held. To avoid 138 * bloating the page structure, the busy lock lacks some of the 139 * features available to the kernel's general-purpose synchronization 140 * primitives. As a result, busy lock ordering rules are not verified, 141 * lock recursion is not detected, and an attempt to xbusy a busy page 142 * or sbusy an xbusy page results will trigger a panic rather than 143 * causing the thread to block. vm_page_sleep_if_busy() can be used to 144 * sleep until the page's busy state changes, after which the caller 145 * must re-lookup the page and re-evaluate its state. 146 */ 147 148 #if PAGE_SIZE == 4096 149 #define VM_PAGE_BITS_ALL 0xffu 150 typedef uint8_t vm_page_bits_t; 151 #elif PAGE_SIZE == 8192 152 #define VM_PAGE_BITS_ALL 0xffffu 153 typedef uint16_t vm_page_bits_t; 154 #elif PAGE_SIZE == 16384 155 #define VM_PAGE_BITS_ALL 0xffffffffu 156 typedef uint32_t vm_page_bits_t; 157 #elif PAGE_SIZE == 32768 158 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu 159 typedef uint64_t vm_page_bits_t; 160 #endif 161 162 struct vm_page { 163 union { 164 TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */ 165 struct { 166 SLIST_ENTRY(vm_page) ss; /* private slists */ 167 void *pv; 168 } s; 169 struct { 170 u_long p; 171 u_long v; 172 } memguard; 173 } plinks; 174 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ 175 vm_object_t object; /* which object am I in (O,P) */ 176 vm_pindex_t pindex; /* offset into object (O,P) */ 177 vm_paddr_t phys_addr; /* physical address of page */ 178 struct md_page md; /* machine dependent stuff */ 179 u_int wire_count; /* wired down maps refs (P) */ 180 volatile u_int busy_lock; /* busy owners lock */ 181 uint16_t hold_count; /* page hold count (P) */ 182 uint16_t flags; /* page PG_* flags (P) */ 183 uint8_t aflags; /* access is atomic */ 184 uint8_t oflags; /* page VPO_* flags (O) */ 185 uint8_t queue; /* page queue index (P,Q) */ 186 int8_t psind; /* pagesizes[] index (O) */ 187 int8_t segind; /* vm_phys segment index (C) */ 188 uint8_t order; /* index of the buddy queue */ 189 uint8_t pool; /* vm_phys freepool index (Q) */ 190 u_char act_count; /* page usage count (P) */ 191 /* NOTE that these must support one bit per DEV_BSIZE in a page */ 192 /* so, on normal X86 kernels, they must be at least 8 bits wide */ 193 vm_page_bits_t valid; /* map of valid DEV_BSIZE chunks (O) */ 194 vm_page_bits_t dirty; /* map of dirty DEV_BSIZE chunks (M) */ 195 }; 196 197 /* 198 * Page flags stored in oflags: 199 * 200 * Access to these page flags is synchronized by the lock on the object 201 * containing the page (O). 202 * 203 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG) 204 * indicates that the page is not under PV management but 205 * otherwise should be treated as a normal page. Pages not 206 * under PV management cannot be paged out via the 207 * object/vm_page_t because there is no knowledge of their pte 208 * mappings, and such pages are also not on any PQ queue. 209 * 210 */ 211 #define VPO_UNUSED01 0x01 /* --available-- */ 212 #define VPO_SWAPSLEEP 0x02 /* waiting for swap to finish */ 213 #define VPO_UNMANAGED 0x04 /* no PV management for page */ 214 #define VPO_SWAPINPROG 0x08 /* swap I/O in progress on page */ 215 #define VPO_NOSYNC 0x10 /* do not collect for syncer */ 216 217 /* 218 * Busy page implementation details. 219 * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation, 220 * even if the support for owner identity is removed because of size 221 * constraints. Checks on lock recursion are then not possible, while the 222 * lock assertions effectiveness is someway reduced. 223 */ 224 #define VPB_BIT_SHARED 0x01 225 #define VPB_BIT_EXCLUSIVE 0x02 226 #define VPB_BIT_WAITERS 0x04 227 #define VPB_BIT_FLAGMASK \ 228 (VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS) 229 230 #define VPB_SHARERS_SHIFT 3 231 #define VPB_SHARERS(x) \ 232 (((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT) 233 #define VPB_SHARERS_WORD(x) ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED) 234 #define VPB_ONE_SHARER (1 << VPB_SHARERS_SHIFT) 235 236 #define VPB_SINGLE_EXCLUSIVER VPB_BIT_EXCLUSIVE 237 238 #define VPB_UNBUSIED VPB_SHARERS_WORD(0) 239 240 #define PQ_NONE 255 241 #define PQ_INACTIVE 0 242 #define PQ_ACTIVE 1 243 #define PQ_LAUNDRY 2 244 #define PQ_UNSWAPPABLE 3 245 #define PQ_COUNT 4 246 247 #ifndef VM_PAGE_HAVE_PGLIST 248 TAILQ_HEAD(pglist, vm_page); 249 #define VM_PAGE_HAVE_PGLIST 250 #endif 251 SLIST_HEAD(spglist, vm_page); 252 253 #ifdef _KERNEL 254 extern vm_page_t bogus_page; 255 #endif /* _KERNEL */ 256 257 extern struct mtx_padalign pa_lock[]; 258 259 #if defined(__arm__) 260 #define PDRSHIFT PDR_SHIFT 261 #elif !defined(PDRSHIFT) 262 #define PDRSHIFT 21 263 #endif 264 265 #define pa_index(pa) ((pa) >> PDRSHIFT) 266 #define PA_LOCKPTR(pa) ((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT])) 267 #define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa))) 268 #define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa)) 269 #define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa)) 270 #define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa)) 271 #define PA_UNLOCK_COND(pa) \ 272 do { \ 273 if ((pa) != 0) { \ 274 PA_UNLOCK((pa)); \ 275 (pa) = 0; \ 276 } \ 277 } while (0) 278 279 #define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a)) 280 281 #ifdef KLD_MODULE 282 #define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE) 283 #define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE) 284 #define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE) 285 #else /* !KLD_MODULE */ 286 #define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m)))) 287 #define vm_page_lock(m) mtx_lock(vm_page_lockptr((m))) 288 #define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m))) 289 #define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m))) 290 #endif 291 #if defined(INVARIANTS) 292 #define vm_page_assert_locked(m) \ 293 vm_page_assert_locked_KBI((m), __FILE__, __LINE__) 294 #define vm_page_lock_assert(m, a) \ 295 vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__) 296 #else 297 #define vm_page_assert_locked(m) 298 #define vm_page_lock_assert(m, a) 299 #endif 300 301 /* 302 * The vm_page's aflags are updated using atomic operations. To set or clear 303 * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear() 304 * must be used. Neither these flags nor these functions are part of the KBI. 305 * 306 * PGA_REFERENCED may be cleared only if the page is locked. It is set by 307 * both the MI and MD VM layers. However, kernel loadable modules should not 308 * directly set this flag. They should call vm_page_reference() instead. 309 * 310 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter(). 311 * When it does so, the object must be locked, or the page must be 312 * exclusive busied. The MI VM layer must never access this flag 313 * directly. Instead, it should call pmap_page_is_write_mapped(). 314 * 315 * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has 316 * at least one executable mapping. It is not consumed by the MI VM layer. 317 */ 318 #define PGA_WRITEABLE 0x01 /* page may be mapped writeable */ 319 #define PGA_REFERENCED 0x02 /* page has been referenced */ 320 #define PGA_EXECUTABLE 0x04 /* page may be mapped executable */ 321 322 /* 323 * Page flags. If changed at any other time than page allocation or 324 * freeing, the modification must be protected by the vm_page lock. 325 */ 326 #define PG_FICTITIOUS 0x0004 /* physical page doesn't exist */ 327 #define PG_ZERO 0x0008 /* page is zeroed */ 328 #define PG_MARKER 0x0010 /* special queue marker page */ 329 #define PG_NODUMP 0x0080 /* don't include this page in a dump */ 330 #define PG_UNHOLDFREE 0x0100 /* delayed free of a held page */ 331 332 /* 333 * Misc constants. 334 */ 335 #define ACT_DECLINE 1 336 #define ACT_ADVANCE 3 337 #define ACT_INIT 5 338 #define ACT_MAX 64 339 340 #ifdef _KERNEL 341 342 #include <sys/systm.h> 343 344 #include <machine/atomic.h> 345 346 /* 347 * Each pageable resident page falls into one of five lists: 348 * 349 * free 350 * Available for allocation now. 351 * 352 * inactive 353 * Low activity, candidates for reclamation. 354 * This list is approximately LRU ordered. 355 * 356 * laundry 357 * This is the list of pages that should be 358 * paged out next. 359 * 360 * unswappable 361 * Dirty anonymous pages that cannot be paged 362 * out because no swap device is configured. 363 * 364 * active 365 * Pages that are "active", i.e., they have been 366 * recently referenced. 367 * 368 */ 369 370 extern vm_page_t vm_page_array; /* First resident page in table */ 371 extern long vm_page_array_size; /* number of vm_page_t's */ 372 extern long first_page; /* first physical page number */ 373 374 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) 375 376 /* 377 * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory 378 * page to which the given physical address belongs. The correct vm_page_t 379 * object is returned for addresses that are not page-aligned. 380 */ 381 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa); 382 383 /* 384 * Page allocation parameters for vm_page for the functions 385 * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and 386 * vm_page_alloc_freelist(). Some functions support only a subset 387 * of the flags, and ignore others, see the flags legend. 388 * 389 * The meaning of VM_ALLOC_ZERO differs slightly between the vm_page_alloc*() 390 * and the vm_page_grab*() functions. See these functions for details. 391 * 392 * Bits 0 - 1 define class. 393 * Bits 2 - 15 dedicated for flags. 394 * Legend: 395 * (a) - vm_page_alloc() supports the flag. 396 * (c) - vm_page_alloc_contig() supports the flag. 397 * (f) - vm_page_alloc_freelist() supports the flag. 398 * (g) - vm_page_grab() supports the flag. 399 * (p) - vm_page_grab_pages() supports the flag. 400 * Bits above 15 define the count of additional pages that the caller 401 * intends to allocate. 402 */ 403 #define VM_ALLOC_NORMAL 0 404 #define VM_ALLOC_INTERRUPT 1 405 #define VM_ALLOC_SYSTEM 2 406 #define VM_ALLOC_CLASS_MASK 3 407 #define VM_ALLOC_WAITOK 0x0008 /* (acf) Sleep and retry */ 408 #define VM_ALLOC_WAITFAIL 0x0010 /* (acf) Sleep and return error */ 409 #define VM_ALLOC_WIRED 0x0020 /* (acfgp) Allocate a wired page */ 410 #define VM_ALLOC_ZERO 0x0040 /* (acfgp) Allocate a prezeroed page */ 411 #define VM_ALLOC_NOOBJ 0x0100 /* (acg) No associated object */ 412 #define VM_ALLOC_NOBUSY 0x0200 /* (acgp) Do not excl busy the page */ 413 #define VM_ALLOC_IGN_SBUSY 0x1000 /* (gp) Ignore shared busy flag */ 414 #define VM_ALLOC_NODUMP 0x2000 /* (ag) don't include in dump */ 415 #define VM_ALLOC_SBUSY 0x4000 /* (acgp) Shared busy the page */ 416 #define VM_ALLOC_NOWAIT 0x8000 /* (acfgp) Do not sleep */ 417 #define VM_ALLOC_COUNT_SHIFT 16 418 #define VM_ALLOC_COUNT(count) ((count) << VM_ALLOC_COUNT_SHIFT) 419 420 #ifdef M_NOWAIT 421 static inline int 422 malloc2vm_flags(int malloc_flags) 423 { 424 int pflags; 425 426 KASSERT((malloc_flags & M_USE_RESERVE) == 0 || 427 (malloc_flags & M_NOWAIT) != 0, 428 ("M_USE_RESERVE requires M_NOWAIT")); 429 pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT : 430 VM_ALLOC_SYSTEM; 431 if ((malloc_flags & M_ZERO) != 0) 432 pflags |= VM_ALLOC_ZERO; 433 if ((malloc_flags & M_NODUMP) != 0) 434 pflags |= VM_ALLOC_NODUMP; 435 if ((malloc_flags & M_NOWAIT)) 436 pflags |= VM_ALLOC_NOWAIT; 437 if ((malloc_flags & M_WAITOK)) 438 pflags |= VM_ALLOC_WAITOK; 439 return (pflags); 440 } 441 #endif 442 443 /* 444 * Predicates supported by vm_page_ps_test(): 445 * 446 * PS_ALL_DIRTY is true only if the entire (super)page is dirty. 447 * However, it can be spuriously false when the (super)page has become 448 * dirty in the pmap but that information has not been propagated to the 449 * machine-independent layer. 450 */ 451 #define PS_ALL_DIRTY 0x1 452 #define PS_ALL_VALID 0x2 453 #define PS_NONE_BUSY 0x4 454 455 void vm_page_busy_downgrade(vm_page_t m); 456 void vm_page_busy_sleep(vm_page_t m, const char *msg, bool nonshared); 457 void vm_page_flash(vm_page_t m); 458 void vm_page_hold(vm_page_t mem); 459 void vm_page_unhold(vm_page_t mem); 460 void vm_page_free(vm_page_t m); 461 void vm_page_free_zero(vm_page_t m); 462 463 void vm_page_activate (vm_page_t); 464 void vm_page_advise(vm_page_t m, int advice); 465 vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int); 466 vm_page_t vm_page_alloc_domain(vm_object_t, vm_pindex_t, int, int); 467 vm_page_t vm_page_alloc_after(vm_object_t, vm_pindex_t, int, vm_page_t); 468 vm_page_t vm_page_alloc_domain_after(vm_object_t, vm_pindex_t, int, int, 469 vm_page_t); 470 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 471 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 472 vm_paddr_t boundary, vm_memattr_t memattr); 473 vm_page_t vm_page_alloc_contig_domain(vm_object_t object, 474 vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low, 475 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 476 vm_memattr_t memattr); 477 vm_page_t vm_page_alloc_freelist(int, int); 478 vm_page_t vm_page_alloc_freelist_domain(int, int, int); 479 void vm_page_change_lock(vm_page_t m, struct mtx **mtx); 480 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int); 481 int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 482 vm_page_t *ma, int count); 483 void vm_page_deactivate(vm_page_t); 484 void vm_page_deactivate_noreuse(vm_page_t); 485 void vm_page_dequeue(vm_page_t m); 486 void vm_page_dequeue_locked(vm_page_t m); 487 vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t); 488 void vm_page_free_phys_pglist(struct pglist *tq); 489 bool vm_page_free_prep(vm_page_t m, bool pagequeue_locked); 490 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr); 491 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 492 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t); 493 void vm_page_launder(vm_page_t m); 494 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t); 495 vm_page_t vm_page_next(vm_page_t m); 496 int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *); 497 struct vm_pagequeue *vm_page_pagequeue(vm_page_t m); 498 vm_page_t vm_page_prev(vm_page_t m); 499 bool vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m); 500 void vm_page_putfake(vm_page_t m); 501 void vm_page_readahead_finish(vm_page_t m); 502 bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, 503 vm_paddr_t high, u_long alignment, vm_paddr_t boundary); 504 bool vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 505 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary); 506 void vm_page_reference(vm_page_t m); 507 void vm_page_remove (vm_page_t); 508 int vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t); 509 vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object, 510 vm_pindex_t pindex); 511 void vm_page_requeue(vm_page_t m); 512 void vm_page_requeue_locked(vm_page_t m); 513 int vm_page_sbusied(vm_page_t m); 514 vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start, 515 vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options); 516 void vm_page_set_valid_range(vm_page_t m, int base, int size); 517 int vm_page_sleep_if_busy(vm_page_t m, const char *msg); 518 vm_offset_t vm_page_startup(vm_offset_t vaddr); 519 void vm_page_sunbusy(vm_page_t m); 520 bool vm_page_try_to_free(vm_page_t m); 521 int vm_page_trysbusy(vm_page_t m); 522 void vm_page_unhold_pages(vm_page_t *ma, int count); 523 void vm_page_unswappable(vm_page_t m); 524 bool vm_page_unwire(vm_page_t m, uint8_t queue); 525 bool vm_page_unwire_noq(vm_page_t m); 526 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 527 void vm_page_wire (vm_page_t); 528 void vm_page_xunbusy_hard(vm_page_t m); 529 void vm_page_xunbusy_maybelocked(vm_page_t m); 530 void vm_page_set_validclean (vm_page_t, int, int); 531 void vm_page_clear_dirty (vm_page_t, int, int); 532 void vm_page_set_invalid (vm_page_t, int, int); 533 int vm_page_is_valid (vm_page_t, int, int); 534 void vm_page_test_dirty (vm_page_t); 535 vm_page_bits_t vm_page_bits(int base, int size); 536 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid); 537 void vm_page_free_toq(vm_page_t m); 538 void vm_page_free_pages_toq(struct spglist *free, bool update_wire_count); 539 540 void vm_page_dirty_KBI(vm_page_t m); 541 void vm_page_lock_KBI(vm_page_t m, const char *file, int line); 542 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line); 543 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line); 544 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 545 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line); 546 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line); 547 #endif 548 549 #define vm_page_assert_sbusied(m) \ 550 KASSERT(vm_page_sbusied(m), \ 551 ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \ 552 (m), __FILE__, __LINE__)) 553 554 #define vm_page_assert_unbusied(m) \ 555 KASSERT(!vm_page_busied(m), \ 556 ("vm_page_assert_unbusied: page %p busy @ %s:%d", \ 557 (m), __FILE__, __LINE__)) 558 559 #define vm_page_assert_xbusied(m) \ 560 KASSERT(vm_page_xbusied(m), \ 561 ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \ 562 (m), __FILE__, __LINE__)) 563 564 #define vm_page_busied(m) \ 565 ((m)->busy_lock != VPB_UNBUSIED) 566 567 #define vm_page_sbusy(m) do { \ 568 if (!vm_page_trysbusy(m)) \ 569 panic("%s: page %p failed shared busying", __func__, \ 570 (m)); \ 571 } while (0) 572 573 #define vm_page_tryxbusy(m) \ 574 (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED, \ 575 VPB_SINGLE_EXCLUSIVER)) 576 577 #define vm_page_xbusied(m) \ 578 (((m)->busy_lock & VPB_SINGLE_EXCLUSIVER) != 0) 579 580 #define vm_page_xbusy(m) do { \ 581 if (!vm_page_tryxbusy(m)) \ 582 panic("%s: page %p failed exclusive busying", __func__, \ 583 (m)); \ 584 } while (0) 585 586 /* Note: page m's lock must not be owned by the caller. */ 587 #define vm_page_xunbusy(m) do { \ 588 if (!atomic_cmpset_rel_int(&(m)->busy_lock, \ 589 VPB_SINGLE_EXCLUSIVER, VPB_UNBUSIED)) \ 590 vm_page_xunbusy_hard(m); \ 591 } while (0) 592 593 #ifdef INVARIANTS 594 void vm_page_object_lock_assert(vm_page_t m); 595 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) vm_page_object_lock_assert(m) 596 void vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits); 597 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) \ 598 vm_page_assert_pga_writeable(m, bits) 599 #else 600 #define VM_PAGE_OBJECT_LOCK_ASSERT(m) (void)0 601 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) (void)0 602 #endif 603 604 /* 605 * We want to use atomic updates for the aflags field, which is 8 bits wide. 606 * However, not all architectures support atomic operations on 8-bit 607 * destinations. In order that we can easily use a 32-bit operation, we 608 * require that the aflags field be 32-bit aligned. 609 */ 610 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0); 611 612 /* 613 * Clear the given bits in the specified page. 614 */ 615 static inline void 616 vm_page_aflag_clear(vm_page_t m, uint8_t bits) 617 { 618 uint32_t *addr, val; 619 620 /* 621 * The PGA_REFERENCED flag can only be cleared if the page is locked. 622 */ 623 if ((bits & PGA_REFERENCED) != 0) 624 vm_page_assert_locked(m); 625 626 /* 627 * Access the whole 32-bit word containing the aflags field with an 628 * atomic update. Parallel non-atomic updates to the other fields 629 * within this word are handled properly by the atomic update. 630 */ 631 addr = (void *)&m->aflags; 632 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0, 633 ("vm_page_aflag_clear: aflags is misaligned")); 634 val = bits; 635 #if BYTE_ORDER == BIG_ENDIAN 636 val <<= 24; 637 #endif 638 atomic_clear_32(addr, val); 639 } 640 641 /* 642 * Set the given bits in the specified page. 643 */ 644 static inline void 645 vm_page_aflag_set(vm_page_t m, uint8_t bits) 646 { 647 uint32_t *addr, val; 648 649 VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits); 650 651 /* 652 * Access the whole 32-bit word containing the aflags field with an 653 * atomic update. Parallel non-atomic updates to the other fields 654 * within this word are handled properly by the atomic update. 655 */ 656 addr = (void *)&m->aflags; 657 KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0, 658 ("vm_page_aflag_set: aflags is misaligned")); 659 val = bits; 660 #if BYTE_ORDER == BIG_ENDIAN 661 val <<= 24; 662 #endif 663 atomic_set_32(addr, val); 664 } 665 666 /* 667 * vm_page_dirty: 668 * 669 * Set all bits in the page's dirty field. 670 * 671 * The object containing the specified page must be locked if the 672 * call is made from the machine-independent layer. 673 * 674 * See vm_page_clear_dirty_mask(). 675 */ 676 static __inline void 677 vm_page_dirty(vm_page_t m) 678 { 679 680 /* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */ 681 #if defined(KLD_MODULE) || defined(INVARIANTS) 682 vm_page_dirty_KBI(m); 683 #else 684 m->dirty = VM_PAGE_BITS_ALL; 685 #endif 686 } 687 688 /* 689 * vm_page_remque: 690 * 691 * If the given page is in a page queue, then remove it from that page 692 * queue. 693 * 694 * The page must be locked. 695 */ 696 static inline void 697 vm_page_remque(vm_page_t m) 698 { 699 700 if (m->queue != PQ_NONE) 701 vm_page_dequeue(m); 702 } 703 704 /* 705 * vm_page_undirty: 706 * 707 * Set page to not be dirty. Note: does not clear pmap modify bits 708 */ 709 static __inline void 710 vm_page_undirty(vm_page_t m) 711 { 712 713 VM_PAGE_OBJECT_LOCK_ASSERT(m); 714 m->dirty = 0; 715 } 716 717 static inline void 718 vm_page_replace_checked(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 719 vm_page_t mold) 720 { 721 vm_page_t mret; 722 723 mret = vm_page_replace(mnew, object, pindex); 724 KASSERT(mret == mold, 725 ("invalid page replacement, mold=%p, mret=%p", mold, mret)); 726 727 /* Unused if !INVARIANTS. */ 728 (void)mold; 729 (void)mret; 730 } 731 732 static inline bool 733 vm_page_active(vm_page_t m) 734 { 735 736 return (m->queue == PQ_ACTIVE); 737 } 738 739 static inline bool 740 vm_page_inactive(vm_page_t m) 741 { 742 743 return (m->queue == PQ_INACTIVE); 744 } 745 746 static inline bool 747 vm_page_in_laundry(vm_page_t m) 748 { 749 750 return (m->queue == PQ_LAUNDRY || m->queue == PQ_UNSWAPPABLE); 751 } 752 753 /* 754 * vm_page_held: 755 * 756 * Return true if a reference prevents the page from being reclaimable. 757 */ 758 static inline bool 759 vm_page_held(vm_page_t m) 760 { 761 762 return (m->hold_count > 0 || m->wire_count > 0); 763 } 764 765 #endif /* _KERNEL */ 766 #endif /* !_VM_PAGE_ */ 767