1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Resident memory system definitions. 63 */ 64 65 #ifndef _VM_PAGE_ 66 #define _VM_PAGE_ 67 68 #include <vm/pmap.h> 69 #include <vm/_vm_phys.h> 70 71 /* 72 * Management of resident (logical) pages. 73 * 74 * A small structure is kept for each resident 75 * page, indexed by page number. Each structure 76 * is an element of several collections: 77 * 78 * A radix tree used to quickly 79 * perform object/offset lookups 80 * 81 * An ordered list of pages due for pageout. 82 * 83 * In addition, the structure contains the object 84 * and offset to which this page belongs (for pageout), 85 * and sundry status bits. 86 * 87 * In general, operations on this structure's mutable fields are 88 * synchronized using either one of or a combination of locks. If a 89 * field is annotated with two of these locks then holding either is 90 * sufficient for read access but both are required for write access. 91 * The queue lock for a page depends on the value of its queue field and is 92 * described in detail below. 93 * 94 * The following annotations are possible: 95 * (A) the field must be accessed using atomic(9) and may require 96 * additional synchronization. 97 * (B) the page busy lock. 98 * (C) the field is immutable. 99 * (F) the per-domain lock for the free queues. 100 * (M) Machine dependent, defined by pmap layer. 101 * (O) the object that the page belongs to. 102 * (Q) the page's queue lock. 103 * 104 * The busy lock is an embedded reader-writer lock that protects the 105 * page's contents and identity (i.e., its <object, pindex> tuple) as 106 * well as certain valid/dirty modifications. To avoid bloating the 107 * the page structure, the busy lock lacks some of the features available 108 * the kernel's general-purpose synchronization primitives. As a result, 109 * busy lock ordering rules are not verified, lock recursion is not 110 * detected, and an attempt to xbusy a busy page or sbusy an xbusy page 111 * results will trigger a panic rather than causing the thread to block. 112 * vm_page_sleep_if_busy() can be used to sleep until the page's busy 113 * state changes, after which the caller must re-lookup the page and 114 * re-evaluate its state. vm_page_busy_acquire() will block until 115 * the lock is acquired. 116 * 117 * The valid field is protected by the page busy lock (B) and object 118 * lock (O). Transitions from invalid to valid are generally done 119 * via I/O or zero filling and do not require the object lock. 120 * These must be protected with the busy lock to prevent page-in or 121 * creation races. Page invalidation generally happens as a result 122 * of truncate or msync. When invalidated, pages must not be present 123 * in pmap and must hold the object lock to prevent concurrent 124 * speculative read-only mappings that do not require busy. I/O 125 * routines may check for validity without a lock if they are prepared 126 * to handle invalidation races with higher level locks (vnode) or are 127 * unconcerned with races so long as they hold a reference to prevent 128 * recycling. When a valid bit is set while holding a shared busy 129 * lock (A) atomic operations are used to protect against concurrent 130 * modification. 131 * 132 * In contrast, the synchronization of accesses to the page's 133 * dirty field is a mix of machine dependent (M) and busy (B). In 134 * the machine-independent layer, the page busy must be held to 135 * operate on the field. However, the pmap layer is permitted to 136 * set all bits within the field without holding that lock. If the 137 * underlying architecture does not support atomic read-modify-write 138 * operations on the field's type, then the machine-independent 139 * layer uses a 32-bit atomic on the aligned 32-bit word that 140 * contains the dirty field. In the machine-independent layer, 141 * the implementation of read-modify-write operations on the 142 * field is encapsulated in vm_page_clear_dirty_mask(). An 143 * exclusive busy lock combined with pmap_remove_{write/all}() is the 144 * only way to ensure a page can not become dirty. I/O generally 145 * removes the page from pmap to ensure exclusive access and atomic 146 * writes. 147 * 148 * The ref_count field tracks references to the page. References that 149 * prevent the page from being reclaimable are called wirings and are 150 * counted in the low bits of ref_count. The containing object's 151 * reference, if one exists, is counted using the VPRC_OBJREF bit in the 152 * ref_count field. Additionally, the VPRC_BLOCKED bit is used to 153 * atomically check for wirings and prevent new wirings via 154 * pmap_extract_and_hold(). When a page belongs to an object, it may be 155 * wired only when the object is locked, or the page is busy, or by 156 * pmap_extract_and_hold(). As a result, if the object is locked and the 157 * page is not busy (or is exclusively busied by the current thread), and 158 * the page is unmapped, its wire count will not increase. The ref_count 159 * field is updated using atomic operations in most cases, except when it 160 * is known that no other references to the page exist, such as in the page 161 * allocator. A page may be present in the page queues, or even actively 162 * scanned by the page daemon, without an explicitly counted referenced. 163 * The page daemon must therefore handle the possibility of a concurrent 164 * free of the page. 165 * 166 * The queue state of a page consists of the queue and act_count fields of 167 * its atomically updated state, and the subset of atomic flags specified 168 * by PGA_QUEUE_STATE_MASK. The queue field contains the page's page queue 169 * index, or PQ_NONE if it does not belong to a page queue. To modify the 170 * queue field, the page queue lock corresponding to the old value must be 171 * held, unless that value is PQ_NONE, in which case the queue index must 172 * be updated using an atomic RMW operation. There is one exception to 173 * this rule: the page daemon may transition the queue field from 174 * PQ_INACTIVE to PQ_NONE immediately prior to freeing the page during an 175 * inactive queue scan. At that point the page is already dequeued and no 176 * other references to that vm_page structure can exist. The PGA_ENQUEUED 177 * flag, when set, indicates that the page structure is physically inserted 178 * into the queue corresponding to the page's queue index, and may only be 179 * set or cleared with the corresponding page queue lock held. 180 * 181 * To avoid contention on page queue locks, page queue operations (enqueue, 182 * dequeue, requeue) are batched using fixed-size per-CPU queues. A 183 * deferred operation is requested by setting one of the flags in 184 * PGA_QUEUE_OP_MASK and inserting an entry into a batch queue. When a 185 * queue is full, an attempt to insert a new entry will lock the page 186 * queues and trigger processing of the pending entries. The 187 * type-stability of vm_page structures is crucial to this scheme since the 188 * processing of entries in a given batch queue may be deferred 189 * indefinitely. In particular, a page may be freed with pending batch 190 * queue entries. The page queue operation flags must be set using atomic 191 * RWM operations. 192 */ 193 194 #if PAGE_SIZE == 4096 195 #define VM_PAGE_BITS_ALL 0xffu 196 typedef uint8_t vm_page_bits_t; 197 #elif PAGE_SIZE == 8192 198 #define VM_PAGE_BITS_ALL 0xffffu 199 typedef uint16_t vm_page_bits_t; 200 #elif PAGE_SIZE == 16384 201 #define VM_PAGE_BITS_ALL 0xffffffffu 202 typedef uint32_t vm_page_bits_t; 203 #elif PAGE_SIZE == 32768 204 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu 205 typedef uint64_t vm_page_bits_t; 206 #endif 207 208 typedef union vm_page_astate { 209 struct { 210 uint16_t flags; 211 uint8_t queue; 212 uint8_t act_count; 213 }; 214 uint32_t _bits; 215 } vm_page_astate_t; 216 217 struct vm_page { 218 union { 219 TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */ 220 struct { 221 SLIST_ENTRY(vm_page) ss; /* private slists */ 222 } s; 223 struct { 224 u_long p; 225 u_long v; 226 } memguard; 227 struct { 228 void *slab; 229 void *zone; 230 } uma; 231 } plinks; 232 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ 233 vm_object_t object; /* which object am I in (O) */ 234 vm_pindex_t pindex; /* offset into object (O,P) */ 235 vm_paddr_t phys_addr; /* physical address of page (C) */ 236 struct md_page md; /* machine dependent stuff */ 237 u_int ref_count; /* page references (A) */ 238 u_int busy_lock; /* busy owners lock (A) */ 239 union vm_page_astate a; /* state accessed atomically (A) */ 240 uint8_t order; /* index of the buddy queue (F) */ 241 uint8_t pool; /* vm_phys freepool index (F) */ 242 uint8_t flags; /* page PG_* flags (P) */ 243 uint8_t oflags; /* page VPO_* flags (O) */ 244 int8_t psind; /* pagesizes[] index (O) */ 245 int8_t segind; /* vm_phys segment index (C) */ 246 /* NOTE that these must support one bit per DEV_BSIZE in a page */ 247 /* so, on normal X86 kernels, they must be at least 8 bits wide */ 248 vm_page_bits_t valid; /* valid DEV_BSIZE chunk map (O,B) */ 249 vm_page_bits_t dirty; /* dirty DEV_BSIZE chunk map (M,B) */ 250 }; 251 252 /* 253 * Special bits used in the ref_count field. 254 * 255 * ref_count is normally used to count wirings that prevent the page from being 256 * reclaimed, but also supports several special types of references that do not 257 * prevent reclamation. Accesses to the ref_count field must be atomic unless 258 * the page is unallocated. 259 * 260 * VPRC_OBJREF is the reference held by the containing object. It can set or 261 * cleared only when the corresponding object's write lock is held. 262 * 263 * VPRC_BLOCKED is used to atomically block wirings via pmap lookups while 264 * attempting to tear down all mappings of a given page. The page busy lock and 265 * object write lock must both be held in order to set or clear this bit. 266 */ 267 #define VPRC_BLOCKED 0x40000000u /* mappings are being removed */ 268 #define VPRC_OBJREF 0x80000000u /* object reference, cleared with (O) */ 269 #define VPRC_WIRE_COUNT(c) ((c) & ~(VPRC_BLOCKED | VPRC_OBJREF)) 270 #define VPRC_WIRE_COUNT_MAX (~(VPRC_BLOCKED | VPRC_OBJREF)) 271 272 /* 273 * Page flags stored in oflags: 274 * 275 * Access to these page flags is synchronized by the lock on the object 276 * containing the page (O). 277 * 278 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG) 279 * indicates that the page is not under PV management but 280 * otherwise should be treated as a normal page. Pages not 281 * under PV management cannot be paged out via the 282 * object/vm_page_t because there is no knowledge of their pte 283 * mappings, and such pages are also not on any PQ queue. 284 * 285 */ 286 #define VPO_KMEM_EXEC 0x01 /* kmem mapping allows execution */ 287 #define VPO_SWAPSLEEP 0x02 /* waiting for swap to finish */ 288 #define VPO_UNMANAGED 0x04 /* no PV management for page */ 289 #define VPO_SWAPINPROG 0x08 /* swap I/O in progress on page */ 290 291 /* 292 * Busy page implementation details. 293 * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation, 294 * even if the support for owner identity is removed because of size 295 * constraints. Checks on lock recursion are then not possible, while the 296 * lock assertions effectiveness is someway reduced. 297 */ 298 #define VPB_BIT_SHARED 0x01 299 #define VPB_BIT_EXCLUSIVE 0x02 300 #define VPB_BIT_WAITERS 0x04 301 #define VPB_BIT_FLAGMASK \ 302 (VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS) 303 304 #define VPB_SHARERS_SHIFT 3 305 #define VPB_SHARERS(x) \ 306 (((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT) 307 #define VPB_SHARERS_WORD(x) ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED) 308 #define VPB_ONE_SHARER (1 << VPB_SHARERS_SHIFT) 309 310 #define VPB_SINGLE_EXCLUSIVE VPB_BIT_EXCLUSIVE 311 #ifdef INVARIANTS 312 #define VPB_CURTHREAD_EXCLUSIVE \ 313 (VPB_BIT_EXCLUSIVE | ((u_int)(uintptr_t)curthread & ~VPB_BIT_FLAGMASK)) 314 #else 315 #define VPB_CURTHREAD_EXCLUSIVE VPB_SINGLE_EXCLUSIVE 316 #endif 317 318 #define VPB_UNBUSIED VPB_SHARERS_WORD(0) 319 320 /* Freed lock blocks both shared and exclusive. */ 321 #define VPB_FREED (0xffffffff - VPB_BIT_SHARED) 322 323 #define PQ_NONE 255 324 #define PQ_INACTIVE 0 325 #define PQ_ACTIVE 1 326 #define PQ_LAUNDRY 2 327 #define PQ_UNSWAPPABLE 3 328 #define PQ_COUNT 4 329 330 #ifndef VM_PAGE_HAVE_PGLIST 331 TAILQ_HEAD(pglist, vm_page); 332 #define VM_PAGE_HAVE_PGLIST 333 #endif 334 SLIST_HEAD(spglist, vm_page); 335 336 #ifdef _KERNEL 337 extern vm_page_t bogus_page; 338 #endif /* _KERNEL */ 339 340 extern struct mtx_padalign pa_lock[]; 341 342 #if defined(__arm__) 343 #define PDRSHIFT PDR_SHIFT 344 #elif !defined(PDRSHIFT) 345 #define PDRSHIFT 21 346 #endif 347 348 #define pa_index(pa) ((pa) >> PDRSHIFT) 349 #define PA_LOCKPTR(pa) ((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT])) 350 #define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa))) 351 #define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa)) 352 #define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa)) 353 #define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa)) 354 #define PA_UNLOCK_COND(pa) \ 355 do { \ 356 if ((pa) != 0) { \ 357 PA_UNLOCK((pa)); \ 358 (pa) = 0; \ 359 } \ 360 } while (0) 361 362 #define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a)) 363 364 #if defined(KLD_MODULE) && !defined(KLD_TIED) 365 #define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE) 366 #define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE) 367 #define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE) 368 #else /* !KLD_MODULE */ 369 #define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m)))) 370 #define vm_page_lock(m) mtx_lock(vm_page_lockptr((m))) 371 #define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m))) 372 #define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m))) 373 #endif 374 #if defined(INVARIANTS) 375 #define vm_page_assert_locked(m) \ 376 vm_page_assert_locked_KBI((m), __FILE__, __LINE__) 377 #define vm_page_lock_assert(m, a) \ 378 vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__) 379 #else 380 #define vm_page_assert_locked(m) 381 #define vm_page_lock_assert(m, a) 382 #endif 383 384 /* 385 * The vm_page's aflags are updated using atomic operations. To set or clear 386 * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear() 387 * must be used. Neither these flags nor these functions are part of the KBI. 388 * 389 * PGA_REFERENCED may be cleared only if the page is locked. It is set by 390 * both the MI and MD VM layers. However, kernel loadable modules should not 391 * directly set this flag. They should call vm_page_reference() instead. 392 * 393 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter(). 394 * When it does so, the object must be locked, or the page must be 395 * exclusive busied. The MI VM layer must never access this flag 396 * directly. Instead, it should call pmap_page_is_write_mapped(). 397 * 398 * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has 399 * at least one executable mapping. It is not consumed by the MI VM layer. 400 * 401 * PGA_NOSYNC must be set and cleared with the page busy lock held. 402 * 403 * PGA_ENQUEUED is set and cleared when a page is inserted into or removed 404 * from a page queue, respectively. It determines whether the plinks.q field 405 * of the page is valid. To set or clear this flag, page's "queue" field must 406 * be a valid queue index, and the corresponding page queue lock must be held. 407 * 408 * PGA_DEQUEUE is set when the page is scheduled to be dequeued from a page 409 * queue, and cleared when the dequeue request is processed. A page may 410 * have PGA_DEQUEUE set and PGA_ENQUEUED cleared, for instance if a dequeue 411 * is requested after the page is scheduled to be enqueued but before it is 412 * actually inserted into the page queue. 413 * 414 * PGA_REQUEUE is set when the page is scheduled to be enqueued or requeued 415 * in its page queue. 416 * 417 * PGA_REQUEUE_HEAD is a special flag for enqueuing pages near the head of 418 * the inactive queue, thus bypassing LRU. 419 * 420 * The PGA_DEQUEUE, PGA_REQUEUE and PGA_REQUEUE_HEAD flags must be set using an 421 * atomic RMW operation to ensure that the "queue" field is a valid queue index, 422 * and the corresponding page queue lock must be held when clearing any of the 423 * flags. 424 * 425 * PGA_SWAP_FREE is used to defer freeing swap space to the pageout daemon 426 * when the context that dirties the page does not have the object write lock 427 * held. 428 */ 429 #define PGA_WRITEABLE 0x0001 /* page may be mapped writeable */ 430 #define PGA_REFERENCED 0x0002 /* page has been referenced */ 431 #define PGA_EXECUTABLE 0x0004 /* page may be mapped executable */ 432 #define PGA_ENQUEUED 0x0008 /* page is enqueued in a page queue */ 433 #define PGA_DEQUEUE 0x0010 /* page is due to be dequeued */ 434 #define PGA_REQUEUE 0x0020 /* page is due to be requeued */ 435 #define PGA_REQUEUE_HEAD 0x0040 /* page requeue should bypass LRU */ 436 #define PGA_NOSYNC 0x0080 /* do not collect for syncer */ 437 #define PGA_SWAP_FREE 0x0100 /* page with swap space was dirtied */ 438 #define PGA_SWAP_SPACE 0x0200 /* page has allocated swap space */ 439 440 #define PGA_QUEUE_OP_MASK (PGA_DEQUEUE | PGA_REQUEUE | PGA_REQUEUE_HEAD) 441 #define PGA_QUEUE_STATE_MASK (PGA_ENQUEUED | PGA_QUEUE_OP_MASK) 442 443 /* 444 * Page flags. Updates to these flags are not synchronized, and thus they must 445 * be set during page allocation or free to avoid races. 446 * 447 * The PG_PCPU_CACHE flag is set at allocation time if the page was 448 * allocated from a per-CPU cache. It is cleared the next time that the 449 * page is allocated from the physical memory allocator. 450 */ 451 #define PG_PCPU_CACHE 0x01 /* was allocated from per-CPU caches */ 452 #define PG_FICTITIOUS 0x02 /* physical page doesn't exist */ 453 #define PG_ZERO 0x04 /* page is zeroed */ 454 #define PG_MARKER 0x08 /* special queue marker page */ 455 #define PG_NODUMP 0x10 /* don't include this page in a dump */ 456 #define PG_NOFREE 0x20 /* page should never be freed. */ 457 458 /* 459 * Misc constants. 460 */ 461 #define ACT_DECLINE 1 462 #define ACT_ADVANCE 3 463 #define ACT_INIT 5 464 #define ACT_MAX 64 465 466 #ifdef _KERNEL 467 468 #include <sys/kassert.h> 469 #include <machine/atomic.h> 470 struct pctrie_iter; 471 472 /* 473 * Each pageable resident page falls into one of five lists: 474 * 475 * free 476 * Available for allocation now. 477 * 478 * inactive 479 * Low activity, candidates for reclamation. 480 * This list is approximately LRU ordered. 481 * 482 * laundry 483 * This is the list of pages that should be 484 * paged out next. 485 * 486 * unswappable 487 * Dirty anonymous pages that cannot be paged 488 * out because no swap device is configured. 489 * 490 * active 491 * Pages that are "active", i.e., they have been 492 * recently referenced. 493 * 494 */ 495 496 extern vm_page_t vm_page_array; /* First resident page in table */ 497 extern long vm_page_array_size; /* number of vm_page_t's */ 498 extern long first_page; /* first physical page number */ 499 500 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) 501 502 /* 503 * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory 504 * page to which the given physical address belongs. The correct vm_page_t 505 * object is returned for addresses that are not page-aligned. 506 */ 507 vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa); 508 509 /* 510 * Page allocation parameters for vm_page for the functions 511 * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and 512 * vm_page_alloc_freelist(). Some functions support only a subset 513 * of the flags, and ignore others, see the flags legend. 514 * 515 * The meaning of VM_ALLOC_ZERO differs slightly between the vm_page_alloc*() 516 * and the vm_page_grab*() functions. See these functions for details. 517 * 518 * Bits 0 - 1 define class. 519 * Bits 2 - 15 dedicated for flags. 520 * Legend: 521 * (a) - vm_page_alloc() supports the flag. 522 * (c) - vm_page_alloc_contig() supports the flag. 523 * (g) - vm_page_grab() supports the flag. 524 * (n) - vm_page_alloc_noobj() and vm_page_alloc_freelist() support the flag. 525 * (p) - vm_page_grab_pages() supports the flag. 526 * Bits above 15 define the count of additional pages that the caller 527 * intends to allocate. 528 */ 529 #define VM_ALLOC_NORMAL 0 530 #define VM_ALLOC_INTERRUPT 1 531 #define VM_ALLOC_SYSTEM 2 532 #define VM_ALLOC_CLASS_MASK 3 533 #define VM_ALLOC_WAITOK 0x0008 /* (acn) Sleep and retry */ 534 #define VM_ALLOC_WAITFAIL 0x0010 /* (acn) Sleep and return error */ 535 #define VM_ALLOC_WIRED 0x0020 /* (acgnp) Allocate a wired page */ 536 #define VM_ALLOC_ZERO 0x0040 /* (acgnp) Allocate a zeroed page */ 537 #define VM_ALLOC_NORECLAIM 0x0080 /* (c) Do not reclaim after failure */ 538 #define VM_ALLOC_NOFREE 0x0100 /* (an) Page will never be released */ 539 #define VM_ALLOC_NOBUSY 0x0200 /* (acgp) Do not excl busy the page */ 540 #define VM_ALLOC_NOCREAT 0x0400 /* (gp) Don't create a page */ 541 #define VM_ALLOC_AVAIL1 0x0800 542 #define VM_ALLOC_IGN_SBUSY 0x1000 /* (gp) Ignore shared busy flag */ 543 #define VM_ALLOC_NODUMP 0x2000 /* (ag) don't include in dump */ 544 #define VM_ALLOC_SBUSY 0x4000 /* (acgp) Shared busy the page */ 545 #define VM_ALLOC_NOWAIT 0x8000 /* (acgnp) Do not sleep */ 546 #define VM_ALLOC_COUNT_MAX 0xffff 547 #define VM_ALLOC_COUNT_SHIFT 16 548 #define VM_ALLOC_COUNT_MASK (VM_ALLOC_COUNT(VM_ALLOC_COUNT_MAX)) 549 #define VM_ALLOC_COUNT(count) ({ \ 550 KASSERT((count) <= VM_ALLOC_COUNT_MAX, \ 551 ("%s: invalid VM_ALLOC_COUNT value", __func__)); \ 552 (count) << VM_ALLOC_COUNT_SHIFT; \ 553 }) 554 555 #ifdef M_NOWAIT 556 static inline int 557 malloc2vm_flags(int malloc_flags) 558 { 559 int pflags; 560 561 KASSERT((malloc_flags & M_USE_RESERVE) == 0 || 562 (malloc_flags & M_NOWAIT) != 0, 563 ("M_USE_RESERVE requires M_NOWAIT")); 564 pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT : 565 VM_ALLOC_SYSTEM; 566 if ((malloc_flags & M_ZERO) != 0) 567 pflags |= VM_ALLOC_ZERO; 568 if ((malloc_flags & M_NODUMP) != 0) 569 pflags |= VM_ALLOC_NODUMP; 570 if ((malloc_flags & M_NOWAIT)) 571 pflags |= VM_ALLOC_NOWAIT; 572 if ((malloc_flags & M_WAITOK)) 573 pflags |= VM_ALLOC_WAITOK; 574 if ((malloc_flags & M_NORECLAIM)) 575 pflags |= VM_ALLOC_NORECLAIM; 576 if ((malloc_flags & M_NEVERFREED)) 577 pflags |= VM_ALLOC_NOFREE; 578 return (pflags); 579 } 580 #endif 581 582 /* 583 * Predicates supported by vm_page_ps_test(): 584 * 585 * PS_ALL_DIRTY is true only if the entire (super)page is dirty. 586 * However, it can be spuriously false when the (super)page has become 587 * dirty in the pmap but that information has not been propagated to the 588 * machine-independent layer. 589 */ 590 #define PS_ALL_DIRTY 0x1 591 #define PS_ALL_VALID 0x2 592 #define PS_NONE_BUSY 0x4 593 594 void vm_page_activate (vm_page_t); 595 void vm_page_advise(vm_page_t m, int advice); 596 vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int); 597 vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 598 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 599 vm_paddr_t boundary, vm_memattr_t memattr); 600 vm_page_t vm_page_alloc_contig_domain(vm_object_t object, 601 vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low, 602 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 603 vm_memattr_t memattr); 604 vm_page_t vm_page_alloc_domain_iter(vm_object_t object, vm_pindex_t pindex, 605 int domain, int req, struct pctrie_iter *pages); 606 vm_page_t vm_page_alloc_iter(vm_object_t object, vm_pindex_t pindex, int req, 607 struct pctrie_iter *pages); 608 vm_page_t vm_page_alloc_noobj(int); 609 vm_page_t vm_page_alloc_noobj_domain(int, int); 610 vm_page_t vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low, 611 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 612 vm_memattr_t memattr); 613 vm_page_t vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages, 614 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 615 vm_memattr_t memattr); 616 void vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set); 617 bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose); 618 bool vm_page_busy_acquire(vm_page_t m, int allocflags); 619 void vm_page_busy_downgrade(vm_page_t m); 620 int vm_page_busy_tryupgrade(vm_page_t m); 621 bool vm_page_busy_sleep(vm_page_t m, const char *msg, int allocflags); 622 void vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, 623 vm_pindex_t pindex, const char *wmesg, int allocflags); 624 void vm_page_deactivate(vm_page_t m); 625 void vm_page_deactivate_noreuse(vm_page_t m); 626 void vm_page_dequeue(vm_page_t m); 627 void vm_page_dequeue_deferred(vm_page_t m); 628 void vm_page_free(vm_page_t m); 629 void vm_page_free_invalid(vm_page_t m); 630 int vm_page_free_pages_toq(struct spglist *free, bool update_wire_count); 631 void vm_page_free_zero(vm_page_t m); 632 vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr); 633 int vm_page_grab_zero_partial(vm_object_t object, vm_pindex_t pindex, int base, 634 int end); 635 vm_page_t vm_page_grab(vm_object_t, vm_pindex_t, int); 636 vm_page_t vm_page_grab_iter(vm_object_t object, vm_pindex_t pindex, 637 int allocflags, struct pctrie_iter *pages); 638 vm_page_t vm_page_grab_unlocked(vm_object_t, vm_pindex_t, int); 639 int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 640 vm_page_t *ma, int count); 641 int vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex, 642 int allocflags, vm_page_t *ma, int count); 643 int vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, 644 int allocflags); 645 int vm_page_grab_valid_iter(vm_page_t *mp, vm_object_t object, 646 vm_pindex_t pindex, int allocflags, struct pctrie_iter *pages); 647 int vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object, 648 vm_pindex_t pindex, int allocflags); 649 void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 650 void vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags); 651 void vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool); 652 int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t); 653 void vm_page_invalid(vm_page_t m); 654 void vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m); 655 void vm_page_iter_init(struct pctrie_iter *, vm_object_t); 656 int vm_page_iter_insert(vm_page_t m, vm_object_t, vm_pindex_t, 657 struct pctrie_iter *); 658 void vm_page_iter_limit_init(struct pctrie_iter *, vm_object_t, vm_pindex_t); 659 bool vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m); 660 bool vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m, 661 vm_object_t new_object, vm_pindex_t new_pindex); 662 void vm_page_launder(vm_page_t m); 663 vm_page_t vm_page_lookup(vm_object_t, vm_pindex_t); 664 vm_page_t vm_page_lookup_unlocked(vm_object_t, vm_pindex_t); 665 void vm_page_pqbatch_drain(void); 666 void vm_page_pqbatch_submit(vm_page_t m, uint8_t queue); 667 bool vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, 668 vm_page_astate_t new); 669 bool vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m); 670 void vm_page_putfake(vm_page_t m); 671 void vm_page_readahead_finish(vm_page_t m); 672 int vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, 673 vm_paddr_t high, u_long alignment, vm_paddr_t boundary); 674 int vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 675 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary); 676 int vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages, 677 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 678 int desired_runs); 679 void vm_page_reference(vm_page_t m); 680 #define VPR_TRYFREE 0x01 681 #define VPR_NOREUSE 0x02 682 void vm_page_release(vm_page_t m, int flags); 683 void vm_page_release_locked(vm_page_t m, int flags); 684 vm_page_t vm_page_relookup(vm_object_t, vm_pindex_t); 685 bool vm_page_remove(vm_page_t); 686 bool vm_page_remove_xbusy(vm_page_t); 687 void vm_page_replace(vm_page_t mnew, vm_object_t object, 688 vm_pindex_t pindex, vm_page_t mold); 689 int vm_page_sbusied(vm_page_t m); 690 vm_page_bits_t vm_page_set_dirty(vm_page_t m); 691 void vm_page_set_valid_range(vm_page_t m, int base, int size); 692 vm_offset_t vm_page_startup(vm_offset_t vaddr); 693 void vm_page_sunbusy(vm_page_t m); 694 bool vm_page_try_remove_all(vm_page_t m); 695 bool vm_page_try_remove_write(vm_page_t m); 696 int vm_page_trysbusy(vm_page_t m); 697 int vm_page_tryxbusy(vm_page_t m); 698 void vm_page_unhold_pages(vm_page_t *ma, int count); 699 void vm_page_unswappable(vm_page_t m); 700 void vm_page_unwire(vm_page_t m, uint8_t queue); 701 bool vm_page_unwire_noq(vm_page_t m); 702 void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); 703 void vm_page_wire(vm_page_t); 704 bool vm_page_wire_mapped(vm_page_t m); 705 void vm_page_xunbusy_hard(vm_page_t m); 706 void vm_page_xunbusy_hard_unchecked(vm_page_t m); 707 void vm_page_set_validclean (vm_page_t, int, int); 708 void vm_page_clear_dirty(vm_page_t, int, int); 709 void vm_page_set_invalid(vm_page_t, int, int); 710 void vm_page_valid(vm_page_t m); 711 int vm_page_is_valid(vm_page_t, int, int); 712 void vm_page_test_dirty(vm_page_t); 713 vm_page_bits_t vm_page_bits(int base, int size); 714 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid); 715 716 void vm_page_dirty_KBI(vm_page_t m); 717 void vm_page_lock_KBI(vm_page_t m, const char *file, int line); 718 void vm_page_unlock_KBI(vm_page_t m, const char *file, int line); 719 int vm_page_trylock_KBI(vm_page_t m, const char *file, int line); 720 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 721 void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line); 722 void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line); 723 #endif 724 725 #define vm_page_busy_fetch(m) atomic_load_int(&(m)->busy_lock) 726 727 #define vm_page_assert_busied(m) \ 728 KASSERT(vm_page_busied(m), \ 729 ("vm_page_assert_busied: page %p not busy @ %s:%d", \ 730 (m), __FILE__, __LINE__)) 731 732 #define vm_page_assert_sbusied(m) \ 733 KASSERT(vm_page_sbusied(m), \ 734 ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \ 735 (m), __FILE__, __LINE__)) 736 737 #define vm_page_assert_unbusied(m) \ 738 KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) != \ 739 VPB_CURTHREAD_EXCLUSIVE, \ 740 ("vm_page_assert_unbusied: page %p busy_lock %#x owned" \ 741 " by me (%p) @ %s:%d", \ 742 (m), (m)->busy_lock, curthread, __FILE__, __LINE__)); \ 743 744 #define vm_page_assert_xbusied_unchecked(m) do { \ 745 KASSERT(vm_page_xbusied(m), \ 746 ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \ 747 (m), __FILE__, __LINE__)); \ 748 } while (0) 749 #define vm_page_assert_xbusied(m) do { \ 750 vm_page_assert_xbusied_unchecked(m); \ 751 KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) == \ 752 VPB_CURTHREAD_EXCLUSIVE, \ 753 ("vm_page_assert_xbusied: page %p busy_lock %#x not owned" \ 754 " by me (%p) @ %s:%d", \ 755 (m), (m)->busy_lock, curthread, __FILE__, __LINE__)); \ 756 } while (0) 757 758 #define vm_page_busied(m) \ 759 (vm_page_busy_fetch(m) != VPB_UNBUSIED) 760 761 #define vm_page_xbusied(m) \ 762 ((vm_page_busy_fetch(m) & VPB_SINGLE_EXCLUSIVE) != 0) 763 764 #define vm_page_busy_freed(m) \ 765 (vm_page_busy_fetch(m) == VPB_FREED) 766 767 /* Note: page m's lock must not be owned by the caller. */ 768 #define vm_page_xunbusy(m) do { \ 769 if (!atomic_cmpset_rel_int(&(m)->busy_lock, \ 770 VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED)) \ 771 vm_page_xunbusy_hard(m); \ 772 } while (0) 773 #define vm_page_xunbusy_unchecked(m) do { \ 774 if (!atomic_cmpset_rel_int(&(m)->busy_lock, \ 775 VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED)) \ 776 vm_page_xunbusy_hard_unchecked(m); \ 777 } while (0) 778 779 #ifdef INVARIANTS 780 void vm_page_object_busy_assert(vm_page_t m); 781 #define VM_PAGE_OBJECT_BUSY_ASSERT(m) vm_page_object_busy_assert(m) 782 void vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits); 783 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) \ 784 vm_page_assert_pga_writeable(m, bits) 785 /* 786 * Claim ownership of a page's xbusy state. In non-INVARIANTS kernels this 787 * operation is a no-op since ownership is not tracked. In particular 788 * this macro does not provide any synchronization with the previous owner. 789 */ 790 #define vm_page_xbusy_claim(m) do { \ 791 u_int _busy_lock; \ 792 \ 793 vm_page_assert_xbusied_unchecked((m)); \ 794 do { \ 795 _busy_lock = vm_page_busy_fetch(m); \ 796 } while (!atomic_cmpset_int(&(m)->busy_lock, _busy_lock, \ 797 (_busy_lock & VPB_BIT_FLAGMASK) | VPB_CURTHREAD_EXCLUSIVE)); \ 798 } while (0) 799 #else 800 #define VM_PAGE_OBJECT_BUSY_ASSERT(m) (void)0 801 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) (void)0 802 #define vm_page_xbusy_claim(m) 803 #endif 804 805 #if BYTE_ORDER == BIG_ENDIAN 806 #define VM_PAGE_AFLAG_SHIFT 16 807 #else 808 #define VM_PAGE_AFLAG_SHIFT 0 809 #endif 810 811 /* 812 * Load a snapshot of a page's 32-bit atomic state. 813 */ 814 static inline vm_page_astate_t 815 vm_page_astate_load(vm_page_t m) 816 { 817 vm_page_astate_t a; 818 819 a._bits = atomic_load_32(&m->a._bits); 820 return (a); 821 } 822 823 /* 824 * Atomically compare and set a page's atomic state. 825 */ 826 static inline bool 827 vm_page_astate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 828 { 829 830 KASSERT(new.queue == PQ_INACTIVE || (new.flags & PGA_REQUEUE_HEAD) == 0, 831 ("%s: invalid head requeue request for page %p", __func__, m)); 832 KASSERT((new.flags & PGA_ENQUEUED) == 0 || new.queue != PQ_NONE, 833 ("%s: setting PGA_ENQUEUED with PQ_NONE in page %p", __func__, m)); 834 KASSERT(new._bits != old->_bits, 835 ("%s: bits are unchanged", __func__)); 836 837 return (atomic_fcmpset_32(&m->a._bits, &old->_bits, new._bits) != 0); 838 } 839 840 /* 841 * Clear the given bits in the specified page. 842 */ 843 static inline void 844 vm_page_aflag_clear(vm_page_t m, uint16_t bits) 845 { 846 uint32_t *addr, val; 847 848 /* 849 * Access the whole 32-bit word containing the aflags field with an 850 * atomic update. Parallel non-atomic updates to the other fields 851 * within this word are handled properly by the atomic update. 852 */ 853 addr = (void *)&m->a; 854 val = bits << VM_PAGE_AFLAG_SHIFT; 855 atomic_clear_32(addr, val); 856 } 857 858 /* 859 * Set the given bits in the specified page. 860 */ 861 static inline void 862 vm_page_aflag_set(vm_page_t m, uint16_t bits) 863 { 864 uint32_t *addr, val; 865 866 VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits); 867 868 /* 869 * Access the whole 32-bit word containing the aflags field with an 870 * atomic update. Parallel non-atomic updates to the other fields 871 * within this word are handled properly by the atomic update. 872 */ 873 addr = (void *)&m->a; 874 val = bits << VM_PAGE_AFLAG_SHIFT; 875 atomic_set_32(addr, val); 876 } 877 878 /* 879 * vm_page_dirty: 880 * 881 * Set all bits in the page's dirty field. 882 * 883 * The object containing the specified page must be locked if the 884 * call is made from the machine-independent layer. 885 * 886 * See vm_page_clear_dirty_mask(). 887 */ 888 static __inline void 889 vm_page_dirty(vm_page_t m) 890 { 891 892 /* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */ 893 #if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(INVARIANTS) 894 vm_page_dirty_KBI(m); 895 #else 896 m->dirty = VM_PAGE_BITS_ALL; 897 #endif 898 } 899 900 /* 901 * vm_page_undirty: 902 * 903 * Set page to not be dirty. Note: does not clear pmap modify bits 904 */ 905 static __inline void 906 vm_page_undirty(vm_page_t m) 907 { 908 909 VM_PAGE_OBJECT_BUSY_ASSERT(m); 910 m->dirty = 0; 911 } 912 913 static inline uint8_t 914 _vm_page_queue(vm_page_astate_t as) 915 { 916 917 if ((as.flags & PGA_DEQUEUE) != 0) 918 return (PQ_NONE); 919 return (as.queue); 920 } 921 922 /* 923 * vm_page_queue: 924 * 925 * Return the index of the queue containing m. 926 */ 927 static inline uint8_t 928 vm_page_queue(vm_page_t m) 929 { 930 931 return (_vm_page_queue(vm_page_astate_load(m))); 932 } 933 934 static inline bool 935 vm_page_active(vm_page_t m) 936 { 937 938 return (vm_page_queue(m) == PQ_ACTIVE); 939 } 940 941 static inline bool 942 vm_page_inactive(vm_page_t m) 943 { 944 945 return (vm_page_queue(m) == PQ_INACTIVE); 946 } 947 948 static inline bool 949 vm_page_in_laundry(vm_page_t m) 950 { 951 uint8_t queue; 952 953 queue = vm_page_queue(m); 954 return (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE); 955 } 956 957 static inline void 958 vm_page_clearref(vm_page_t m) 959 { 960 u_int r; 961 962 r = m->ref_count; 963 while (atomic_fcmpset_int(&m->ref_count, &r, r & (VPRC_BLOCKED | 964 VPRC_OBJREF)) == 0) 965 ; 966 } 967 968 /* 969 * vm_page_drop: 970 * 971 * Release a reference to a page and return the old reference count. 972 */ 973 static inline u_int 974 vm_page_drop(vm_page_t m, u_int val) 975 { 976 u_int old; 977 978 /* 979 * Synchronize with vm_page_free_prep(): ensure that all updates to the 980 * page structure are visible before it is freed. 981 */ 982 atomic_thread_fence_rel(); 983 old = atomic_fetchadd_int(&m->ref_count, -val); 984 KASSERT(old != VPRC_BLOCKED, 985 ("vm_page_drop: page %p has an invalid refcount value", m)); 986 return (old); 987 } 988 989 /* 990 * vm_page_wired: 991 * 992 * Perform a racy check to determine whether a reference prevents the page 993 * from being reclaimable. If the page's object is locked, and the page is 994 * unmapped and exclusively busied by the current thread, no new wirings 995 * may be created. 996 */ 997 static inline bool 998 vm_page_wired(vm_page_t m) 999 { 1000 1001 return (VPRC_WIRE_COUNT(m->ref_count) > 0); 1002 } 1003 1004 static inline bool 1005 vm_page_all_valid(vm_page_t m) 1006 { 1007 1008 return (m->valid == VM_PAGE_BITS_ALL); 1009 } 1010 1011 static inline bool 1012 vm_page_any_valid(vm_page_t m) 1013 { 1014 1015 return (m->valid != 0); 1016 } 1017 1018 static inline bool 1019 vm_page_none_valid(vm_page_t m) 1020 { 1021 1022 return (m->valid == 0); 1023 } 1024 1025 static inline int 1026 vm_page_domain(vm_page_t m __numa_used) 1027 { 1028 #ifdef NUMA 1029 int domn, segind; 1030 1031 segind = m->segind; 1032 KASSERT(segind < vm_phys_nsegs, ("segind %d m %p", segind, m)); 1033 domn = vm_phys_segs[segind].domain; 1034 KASSERT(domn >= 0 && domn < vm_ndomains, ("domain %d m %p", domn, m)); 1035 return (domn); 1036 #else 1037 return (0); 1038 #endif 1039 } 1040 1041 #endif /* _KERNEL */ 1042 #endif /* !_VM_PAGE_ */ 1043