1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Resident memory management module. 65 */ 66 67 #include <sys/cdefs.h> 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/counter.h> 73 #include <sys/domainset.h> 74 #include <sys/kernel.h> 75 #include <sys/limits.h> 76 #include <sys/linker.h> 77 #include <sys/lock.h> 78 #include <sys/malloc.h> 79 #include <sys/mman.h> 80 #include <sys/msgbuf.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> 83 #include <sys/rwlock.h> 84 #include <sys/sleepqueue.h> 85 #include <sys/sbuf.h> 86 #include <sys/sched.h> 87 #include <sys/smp.h> 88 #include <sys/sysctl.h> 89 #include <sys/vmmeter.h> 90 #include <sys/vnode.h> 91 92 #include <vm/vm.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_param.h> 95 #include <vm/vm_domainset.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_object.h> 99 #include <vm/vm_page.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/vm_phys.h> 102 #include <vm/vm_pagequeue.h> 103 #include <vm/vm_pager.h> 104 #include <vm/vm_radix.h> 105 #include <vm/vm_reserv.h> 106 #include <vm/vm_extern.h> 107 #include <vm/vm_dumpset.h> 108 #include <vm/uma.h> 109 #include <vm/uma_int.h> 110 111 #include <machine/md_var.h> 112 113 struct vm_domain vm_dom[MAXMEMDOM]; 114 115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 116 117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 118 119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 120 /* The following fields are protected by the domainset lock. */ 121 domainset_t __exclusive_cache_line vm_min_domains; 122 domainset_t __exclusive_cache_line vm_severe_domains; 123 static int vm_min_waiters; 124 static int vm_severe_waiters; 125 static int vm_pageproc_waiters; 126 127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 128 "VM page statistics"); 129 130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries); 131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries, 132 CTLFLAG_RD, &pqstate_commit_retries, 133 "Number of failed per-page atomic queue state updates"); 134 135 static COUNTER_U64_DEFINE_EARLY(queue_ops); 136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops, 137 CTLFLAG_RD, &queue_ops, 138 "Number of batched queue operations"); 139 140 static COUNTER_U64_DEFINE_EARLY(queue_nops); 141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops, 142 CTLFLAG_RD, &queue_nops, 143 "Number of batched queue operations with no effects"); 144 145 /* 146 * bogus page -- for I/O to/from partially complete buffers, 147 * or for paging into sparsely invalid regions. 148 */ 149 vm_page_t bogus_page; 150 151 vm_page_t vm_page_array; 152 long vm_page_array_size; 153 long first_page; 154 155 struct bitset *vm_page_dump; 156 long vm_page_dump_pages; 157 158 static TAILQ_HEAD(, vm_page) blacklist_head; 159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 161 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 162 163 static uma_zone_t fakepg_zone; 164 165 static void vm_page_alloc_check(vm_page_t m); 166 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req); 167 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, 168 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked); 169 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 170 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 171 static bool vm_page_free_prep(vm_page_t m); 172 static void vm_page_free_toq(vm_page_t m); 173 static void vm_page_init(void *dummy); 174 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 175 vm_pindex_t pindex, vm_page_t mpred); 176 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 177 vm_page_t mpred); 178 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue, 179 const uint16_t nflag); 180 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 181 vm_page_t m_run, vm_paddr_t high); 182 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse); 183 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 184 int req); 185 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 186 int flags); 187 static void vm_page_zone_release(void *arg, void **store, int cnt); 188 189 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 190 191 static void 192 vm_page_init(void *dummy) 193 { 194 195 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 196 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 197 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED); 198 } 199 200 static int pgcache_zone_max_pcpu; 201 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu, 202 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0, 203 "Per-CPU page cache size"); 204 205 /* 206 * The cache page zone is initialized later since we need to be able to allocate 207 * pages before UMA is fully initialized. 208 */ 209 static void 210 vm_page_init_cache_zones(void *dummy __unused) 211 { 212 struct vm_domain *vmd; 213 struct vm_pgcache *pgcache; 214 int cache, domain, maxcache, pool; 215 216 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu); 217 maxcache = pgcache_zone_max_pcpu * mp_ncpus; 218 for (domain = 0; domain < vm_ndomains; domain++) { 219 vmd = VM_DOMAIN(domain); 220 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 221 pgcache = &vmd->vmd_pgcache[pool]; 222 pgcache->domain = domain; 223 pgcache->pool = pool; 224 pgcache->zone = uma_zcache_create("vm pgcache", 225 PAGE_SIZE, NULL, NULL, NULL, NULL, 226 vm_page_zone_import, vm_page_zone_release, pgcache, 227 UMA_ZONE_VM); 228 229 /* 230 * Limit each pool's zone to 0.1% of the pages in the 231 * domain. 232 */ 233 cache = maxcache != 0 ? maxcache : 234 vmd->vmd_page_count / 1000; 235 uma_zone_set_maxcache(pgcache->zone, cache); 236 } 237 } 238 } 239 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 240 241 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 242 #if PAGE_SIZE == 32768 243 #ifdef CTASSERT 244 CTASSERT(sizeof(u_long) >= 8); 245 #endif 246 #endif 247 248 /* 249 * vm_set_page_size: 250 * 251 * Sets the page size, perhaps based upon the memory 252 * size. Must be called before any use of page-size 253 * dependent functions. 254 */ 255 void 256 vm_set_page_size(void) 257 { 258 if (vm_cnt.v_page_size == 0) 259 vm_cnt.v_page_size = PAGE_SIZE; 260 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 261 panic("vm_set_page_size: page size not a power of two"); 262 } 263 264 /* 265 * vm_page_blacklist_next: 266 * 267 * Find the next entry in the provided string of blacklist 268 * addresses. Entries are separated by space, comma, or newline. 269 * If an invalid integer is encountered then the rest of the 270 * string is skipped. Updates the list pointer to the next 271 * character, or NULL if the string is exhausted or invalid. 272 */ 273 static vm_paddr_t 274 vm_page_blacklist_next(char **list, char *end) 275 { 276 vm_paddr_t bad; 277 char *cp, *pos; 278 279 if (list == NULL || *list == NULL) 280 return (0); 281 if (**list =='\0') { 282 *list = NULL; 283 return (0); 284 } 285 286 /* 287 * If there's no end pointer then the buffer is coming from 288 * the kenv and we know it's null-terminated. 289 */ 290 if (end == NULL) 291 end = *list + strlen(*list); 292 293 /* Ensure that strtoq() won't walk off the end */ 294 if (*end != '\0') { 295 if (*end == '\n' || *end == ' ' || *end == ',') 296 *end = '\0'; 297 else { 298 printf("Blacklist not terminated, skipping\n"); 299 *list = NULL; 300 return (0); 301 } 302 } 303 304 for (pos = *list; *pos != '\0'; pos = cp) { 305 bad = strtoq(pos, &cp, 0); 306 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 307 if (bad == 0) { 308 if (++cp < end) 309 continue; 310 else 311 break; 312 } 313 } else 314 break; 315 if (*cp == '\0' || ++cp >= end) 316 *list = NULL; 317 else 318 *list = cp; 319 return (trunc_page(bad)); 320 } 321 printf("Garbage in RAM blacklist, skipping\n"); 322 *list = NULL; 323 return (0); 324 } 325 326 bool 327 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 328 { 329 struct vm_domain *vmd; 330 vm_page_t m; 331 bool found; 332 333 m = vm_phys_paddr_to_vm_page(pa); 334 if (m == NULL) 335 return (true); /* page does not exist, no failure */ 336 337 vmd = VM_DOMAIN(vm_phys_domain(pa)); 338 vm_domain_free_lock(vmd); 339 found = vm_phys_unfree_page(pa); 340 vm_domain_free_unlock(vmd); 341 if (found) { 342 vm_domain_freecnt_inc(vmd, -1); 343 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 344 if (verbose) 345 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 346 } 347 return (found); 348 } 349 350 /* 351 * vm_page_blacklist_check: 352 * 353 * Iterate through the provided string of blacklist addresses, pulling 354 * each entry out of the physical allocator free list and putting it 355 * onto a list for reporting via the vm.page_blacklist sysctl. 356 */ 357 static void 358 vm_page_blacklist_check(char *list, char *end) 359 { 360 vm_paddr_t pa; 361 char *next; 362 363 next = list; 364 while (next != NULL) { 365 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 366 continue; 367 vm_page_blacklist_add(pa, bootverbose); 368 } 369 } 370 371 /* 372 * vm_page_blacklist_load: 373 * 374 * Search for a special module named "ram_blacklist". It'll be a 375 * plain text file provided by the user via the loader directive 376 * of the same name. 377 */ 378 static void 379 vm_page_blacklist_load(char **list, char **end) 380 { 381 void *mod; 382 u_char *ptr; 383 u_int len; 384 385 mod = NULL; 386 ptr = NULL; 387 388 mod = preload_search_by_type("ram_blacklist"); 389 if (mod != NULL) { 390 ptr = preload_fetch_addr(mod); 391 len = preload_fetch_size(mod); 392 } 393 *list = ptr; 394 if (ptr != NULL) 395 *end = ptr + len; 396 else 397 *end = NULL; 398 return; 399 } 400 401 static int 402 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 403 { 404 vm_page_t m; 405 struct sbuf sbuf; 406 int error, first; 407 408 first = 1; 409 error = sysctl_wire_old_buffer(req, 0); 410 if (error != 0) 411 return (error); 412 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 413 TAILQ_FOREACH(m, &blacklist_head, listq) { 414 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 415 (uintmax_t)m->phys_addr); 416 first = 0; 417 } 418 error = sbuf_finish(&sbuf); 419 sbuf_delete(&sbuf); 420 return (error); 421 } 422 423 /* 424 * Initialize a dummy page for use in scans of the specified paging queue. 425 * In principle, this function only needs to set the flag PG_MARKER. 426 * Nonetheless, it write busies the page as a safety precaution. 427 */ 428 void 429 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags) 430 { 431 432 bzero(marker, sizeof(*marker)); 433 marker->flags = PG_MARKER; 434 marker->a.flags = aflags; 435 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 436 marker->a.queue = queue; 437 } 438 439 static void 440 vm_page_domain_init(int domain) 441 { 442 struct vm_domain *vmd; 443 struct vm_pagequeue *pq; 444 int i; 445 446 vmd = VM_DOMAIN(domain); 447 bzero(vmd, sizeof(*vmd)); 448 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 449 "vm inactive pagequeue"; 450 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 451 "vm active pagequeue"; 452 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 453 "vm laundry pagequeue"; 454 *__DECONST(const char **, 455 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 456 "vm unswappable pagequeue"; 457 vmd->vmd_domain = domain; 458 vmd->vmd_page_count = 0; 459 vmd->vmd_free_count = 0; 460 vmd->vmd_segs = 0; 461 vmd->vmd_oom = FALSE; 462 for (i = 0; i < PQ_COUNT; i++) { 463 pq = &vmd->vmd_pagequeues[i]; 464 TAILQ_INIT(&pq->pq_pl); 465 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 466 MTX_DEF | MTX_DUPOK); 467 pq->pq_pdpages = 0; 468 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 469 } 470 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 471 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 472 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 473 474 /* 475 * inacthead is used to provide FIFO ordering for LRU-bypassing 476 * insertions. 477 */ 478 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 479 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 480 &vmd->vmd_inacthead, plinks.q); 481 482 /* 483 * The clock pages are used to implement active queue scanning without 484 * requeues. Scans start at clock[0], which is advanced after the scan 485 * ends. When the two clock hands meet, they are reset and scanning 486 * resumes from the head of the queue. 487 */ 488 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 489 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 490 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 491 &vmd->vmd_clock[0], plinks.q); 492 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 493 &vmd->vmd_clock[1], plinks.q); 494 } 495 496 /* 497 * Initialize a physical page in preparation for adding it to the free 498 * lists. 499 */ 500 void 501 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool) 502 { 503 m->object = NULL; 504 m->ref_count = 0; 505 m->busy_lock = VPB_FREED; 506 m->flags = m->a.flags = 0; 507 m->phys_addr = pa; 508 m->a.queue = PQ_NONE; 509 m->psind = 0; 510 m->segind = segind; 511 m->order = VM_NFREEORDER; 512 m->pool = pool; 513 m->valid = m->dirty = 0; 514 pmap_page_init(m); 515 } 516 517 #ifndef PMAP_HAS_PAGE_ARRAY 518 static vm_paddr_t 519 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) 520 { 521 vm_paddr_t new_end; 522 523 /* 524 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 525 * However, because this page is allocated from KVM, out-of-bounds 526 * accesses using the direct map will not be trapped. 527 */ 528 *vaddr += PAGE_SIZE; 529 530 /* 531 * Allocate physical memory for the page structures, and map it. 532 */ 533 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 534 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, 535 VM_PROT_READ | VM_PROT_WRITE); 536 vm_page_array_size = page_range; 537 538 return (new_end); 539 } 540 #endif 541 542 /* 543 * vm_page_startup: 544 * 545 * Initializes the resident memory module. Allocates physical memory for 546 * bootstrapping UMA and some data structures that are used to manage 547 * physical pages. Initializes these structures, and populates the free 548 * page queues. 549 */ 550 vm_offset_t 551 vm_page_startup(vm_offset_t vaddr) 552 { 553 struct vm_phys_seg *seg; 554 struct vm_domain *vmd; 555 vm_page_t m; 556 char *list, *listend; 557 vm_paddr_t end, high_avail, low_avail, new_end, size; 558 vm_paddr_t page_range __unused; 559 vm_paddr_t last_pa, pa, startp, endp; 560 u_long pagecount; 561 #if MINIDUMP_PAGE_TRACKING 562 u_long vm_page_dump_size; 563 #endif 564 int biggestone, i, segind; 565 #ifdef WITNESS 566 vm_offset_t mapped; 567 int witness_size; 568 #endif 569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 570 long ii; 571 #endif 572 #ifdef VM_FREEPOOL_LAZYINIT 573 int lazyinit; 574 #endif 575 576 vaddr = round_page(vaddr); 577 578 vm_phys_early_startup(); 579 biggestone = vm_phys_avail_largest(); 580 end = phys_avail[biggestone+1]; 581 582 /* 583 * Initialize the page and queue locks. 584 */ 585 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 586 for (i = 0; i < PA_LOCK_COUNT; i++) 587 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 588 for (i = 0; i < vm_ndomains; i++) 589 vm_page_domain_init(i); 590 591 new_end = end; 592 #ifdef WITNESS 593 witness_size = round_page(witness_startup_count()); 594 new_end -= witness_size; 595 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 596 VM_PROT_READ | VM_PROT_WRITE); 597 bzero((void *)mapped, witness_size); 598 witness_startup((void *)mapped); 599 #endif 600 601 #if MINIDUMP_PAGE_TRACKING 602 /* 603 * Allocate a bitmap to indicate that a random physical page 604 * needs to be included in a minidump. 605 * 606 * The amd64 port needs this to indicate which direct map pages 607 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 608 * 609 * However, i386 still needs this workspace internally within the 610 * minidump code. In theory, they are not needed on i386, but are 611 * included should the sf_buf code decide to use them. 612 */ 613 last_pa = 0; 614 vm_page_dump_pages = 0; 615 for (i = 0; dump_avail[i + 1] != 0; i += 2) { 616 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) - 617 dump_avail[i] / PAGE_SIZE; 618 if (dump_avail[i + 1] > last_pa) 619 last_pa = dump_avail[i + 1]; 620 } 621 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages)); 622 new_end -= vm_page_dump_size; 623 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 624 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 625 bzero((void *)vm_page_dump, vm_page_dump_size); 626 #if MINIDUMP_STARTUP_PAGE_TRACKING 627 /* 628 * Include the UMA bootstrap pages, witness pages and vm_page_dump 629 * in a crash dump. When pmap_map() uses the direct map, they are 630 * not automatically included. 631 */ 632 for (pa = new_end; pa < end; pa += PAGE_SIZE) 633 dump_add_page(pa); 634 #endif 635 #else 636 (void)last_pa; 637 #endif 638 phys_avail[biggestone + 1] = new_end; 639 #ifdef __amd64__ 640 /* 641 * Request that the physical pages underlying the message buffer be 642 * included in a crash dump. Since the message buffer is accessed 643 * through the direct map, they are not automatically included. 644 */ 645 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 646 last_pa = pa + round_page(msgbufsize); 647 while (pa < last_pa) { 648 dump_add_page(pa); 649 pa += PAGE_SIZE; 650 } 651 #endif 652 /* 653 * Compute the number of pages of memory that will be available for 654 * use, taking into account the overhead of a page structure per page. 655 * In other words, solve 656 * "available physical memory" - round_page(page_range * 657 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 658 * for page_range. 659 */ 660 low_avail = phys_avail[0]; 661 high_avail = phys_avail[1]; 662 for (i = 0; i < vm_phys_nsegs; i++) { 663 if (vm_phys_segs[i].start < low_avail) 664 low_avail = vm_phys_segs[i].start; 665 if (vm_phys_segs[i].end > high_avail) 666 high_avail = vm_phys_segs[i].end; 667 } 668 /* Skip the first chunk. It is already accounted for. */ 669 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 670 if (phys_avail[i] < low_avail) 671 low_avail = phys_avail[i]; 672 if (phys_avail[i + 1] > high_avail) 673 high_avail = phys_avail[i + 1]; 674 } 675 first_page = low_avail / PAGE_SIZE; 676 #ifdef VM_PHYSSEG_SPARSE 677 size = 0; 678 for (i = 0; i < vm_phys_nsegs; i++) 679 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 680 for (i = 0; phys_avail[i + 1] != 0; i += 2) 681 size += phys_avail[i + 1] - phys_avail[i]; 682 #elif defined(VM_PHYSSEG_DENSE) 683 size = high_avail - low_avail; 684 #else 685 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 686 #endif 687 688 #ifdef PMAP_HAS_PAGE_ARRAY 689 pmap_page_array_startup(size / PAGE_SIZE); 690 biggestone = vm_phys_avail_largest(); 691 end = new_end = phys_avail[biggestone + 1]; 692 #else 693 #ifdef VM_PHYSSEG_DENSE 694 /* 695 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 696 * the overhead of a page structure per page only if vm_page_array is 697 * allocated from the last physical memory chunk. Otherwise, we must 698 * allocate page structures representing the physical memory 699 * underlying vm_page_array, even though they will not be used. 700 */ 701 if (new_end != high_avail) 702 page_range = size / PAGE_SIZE; 703 else 704 #endif 705 { 706 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 707 708 /* 709 * If the partial bytes remaining are large enough for 710 * a page (PAGE_SIZE) without a corresponding 711 * 'struct vm_page', then new_end will contain an 712 * extra page after subtracting the length of the VM 713 * page array. Compensate by subtracting an extra 714 * page from new_end. 715 */ 716 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 717 if (new_end == high_avail) 718 high_avail -= PAGE_SIZE; 719 new_end -= PAGE_SIZE; 720 } 721 } 722 end = new_end; 723 new_end = vm_page_array_alloc(&vaddr, end, page_range); 724 #endif 725 726 #if VM_NRESERVLEVEL > 0 727 /* 728 * Allocate physical memory for the reservation management system's 729 * data structures, and map it. 730 */ 731 new_end = vm_reserv_startup(&vaddr, new_end); 732 #endif 733 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING 734 /* 735 * Include vm_page_array and vm_reserv_array in a crash dump. 736 */ 737 for (pa = new_end; pa < end; pa += PAGE_SIZE) 738 dump_add_page(pa); 739 #endif 740 phys_avail[biggestone + 1] = new_end; 741 742 /* 743 * Add physical memory segments corresponding to the available 744 * physical pages. 745 */ 746 for (i = 0; phys_avail[i + 1] != 0; i += 2) 747 if (vm_phys_avail_size(i) != 0) 748 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 749 750 /* 751 * Initialize the physical memory allocator. 752 */ 753 vm_phys_init(); 754 755 #ifdef VM_FREEPOOL_LAZYINIT 756 lazyinit = 1; 757 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit); 758 #endif 759 760 /* 761 * Initialize the page structures and add every available page to the 762 * physical memory allocator's free lists. 763 */ 764 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 765 for (ii = 0; ii < vm_page_array_size; ii++) { 766 m = &vm_page_array[ii]; 767 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0, 768 VM_FREEPOOL_DEFAULT); 769 m->flags = PG_FICTITIOUS; 770 } 771 #endif 772 vm_cnt.v_page_count = 0; 773 for (segind = 0; segind < vm_phys_nsegs; segind++) { 774 seg = &vm_phys_segs[segind]; 775 776 /* 777 * If lazy vm_page initialization is not enabled, simply 778 * initialize all of the pages in the segment. Otherwise, we 779 * only initialize: 780 * 1. Pages not covered by phys_avail[], since they might be 781 * freed to the allocator at some future point, e.g., by 782 * kmem_bootstrap_free(). 783 * 2. The first page of each run of free pages handed to the 784 * vm_phys allocator, which in turn defers initialization 785 * of pages until they are needed. 786 * This avoids blocking the boot process for long periods, which 787 * may be relevant for VMs (which ought to boot as quickly as 788 * possible) and/or systems with large amounts of physical 789 * memory. 790 */ 791 #ifdef VM_FREEPOOL_LAZYINIT 792 if (lazyinit) { 793 startp = seg->start; 794 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 795 if (startp >= seg->end) 796 break; 797 798 if (phys_avail[i + 1] < startp) 799 continue; 800 if (phys_avail[i] <= startp) { 801 startp = phys_avail[i + 1]; 802 continue; 803 } 804 805 m = vm_phys_seg_paddr_to_vm_page(seg, startp); 806 for (endp = MIN(phys_avail[i], seg->end); 807 startp < endp; startp += PAGE_SIZE, m++) { 808 vm_page_init_page(m, startp, segind, 809 VM_FREEPOOL_DEFAULT); 810 } 811 } 812 } else 813 #endif 814 for (m = seg->first_page, pa = seg->start; 815 pa < seg->end; m++, pa += PAGE_SIZE) { 816 vm_page_init_page(m, pa, segind, 817 VM_FREEPOOL_DEFAULT); 818 } 819 820 /* 821 * Add the segment's pages that are covered by one of 822 * phys_avail's ranges to the free lists. 823 */ 824 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 825 if (seg->end <= phys_avail[i] || 826 seg->start >= phys_avail[i + 1]) 827 continue; 828 829 startp = MAX(seg->start, phys_avail[i]); 830 endp = MIN(seg->end, phys_avail[i + 1]); 831 pagecount = (u_long)atop(endp - startp); 832 if (pagecount == 0) 833 continue; 834 835 m = vm_phys_seg_paddr_to_vm_page(seg, startp); 836 #ifdef VM_FREEPOOL_LAZYINIT 837 if (lazyinit) { 838 vm_page_init_page(m, startp, segind, 839 VM_FREEPOOL_LAZYINIT); 840 } 841 #endif 842 vmd = VM_DOMAIN(seg->domain); 843 vm_domain_free_lock(vmd); 844 vm_phys_enqueue_contig(m, pagecount); 845 vm_domain_free_unlock(vmd); 846 vm_domain_freecnt_inc(vmd, pagecount); 847 vm_cnt.v_page_count += (u_int)pagecount; 848 vmd->vmd_page_count += (u_int)pagecount; 849 vmd->vmd_segs |= 1UL << segind; 850 } 851 } 852 853 /* 854 * Remove blacklisted pages from the physical memory allocator. 855 */ 856 TAILQ_INIT(&blacklist_head); 857 vm_page_blacklist_load(&list, &listend); 858 vm_page_blacklist_check(list, listend); 859 860 list = kern_getenv("vm.blacklist"); 861 vm_page_blacklist_check(list, NULL); 862 863 freeenv(list); 864 #if VM_NRESERVLEVEL > 0 865 /* 866 * Initialize the reservation management system. 867 */ 868 vm_reserv_init(); 869 #endif 870 871 return (vaddr); 872 } 873 874 void 875 vm_page_reference(vm_page_t m) 876 { 877 878 vm_page_aflag_set(m, PGA_REFERENCED); 879 } 880 881 /* 882 * vm_page_trybusy 883 * 884 * Helper routine for grab functions to trylock busy. 885 * 886 * Returns true on success and false on failure. 887 */ 888 static bool 889 vm_page_trybusy(vm_page_t m, int allocflags) 890 { 891 892 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0) 893 return (vm_page_trysbusy(m)); 894 else 895 return (vm_page_tryxbusy(m)); 896 } 897 898 /* 899 * vm_page_tryacquire 900 * 901 * Helper routine for grab functions to trylock busy and wire. 902 * 903 * Returns true on success and false on failure. 904 */ 905 static inline bool 906 vm_page_tryacquire(vm_page_t m, int allocflags) 907 { 908 bool locked; 909 910 locked = vm_page_trybusy(m, allocflags); 911 if (locked && (allocflags & VM_ALLOC_WIRED) != 0) 912 vm_page_wire(m); 913 return (locked); 914 } 915 916 /* 917 * vm_page_busy_acquire: 918 * 919 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop 920 * and drop the object lock if necessary. 921 */ 922 bool 923 vm_page_busy_acquire(vm_page_t m, int allocflags) 924 { 925 vm_object_t obj; 926 bool locked; 927 928 /* 929 * The page-specific object must be cached because page 930 * identity can change during the sleep, causing the 931 * re-lock of a different object. 932 * It is assumed that a reference to the object is already 933 * held by the callers. 934 */ 935 obj = atomic_load_ptr(&m->object); 936 for (;;) { 937 if (vm_page_tryacquire(m, allocflags)) 938 return (true); 939 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 940 return (false); 941 if (obj != NULL) 942 locked = VM_OBJECT_WOWNED(obj); 943 else 944 locked = false; 945 MPASS(locked || vm_page_wired(m)); 946 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags, 947 locked) && locked) 948 VM_OBJECT_WLOCK(obj); 949 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 950 return (false); 951 KASSERT(m->object == obj || m->object == NULL, 952 ("vm_page_busy_acquire: page %p does not belong to %p", 953 m, obj)); 954 } 955 } 956 957 /* 958 * vm_page_busy_downgrade: 959 * 960 * Downgrade an exclusive busy page into a single shared busy page. 961 */ 962 void 963 vm_page_busy_downgrade(vm_page_t m) 964 { 965 u_int x; 966 967 vm_page_assert_xbusied(m); 968 969 x = vm_page_busy_fetch(m); 970 for (;;) { 971 if (atomic_fcmpset_rel_int(&m->busy_lock, 972 &x, VPB_SHARERS_WORD(1))) 973 break; 974 } 975 if ((x & VPB_BIT_WAITERS) != 0) 976 wakeup(m); 977 } 978 979 /* 980 * 981 * vm_page_busy_tryupgrade: 982 * 983 * Attempt to upgrade a single shared busy into an exclusive busy. 984 */ 985 int 986 vm_page_busy_tryupgrade(vm_page_t m) 987 { 988 u_int ce, x; 989 990 vm_page_assert_sbusied(m); 991 992 x = vm_page_busy_fetch(m); 993 ce = VPB_CURTHREAD_EXCLUSIVE; 994 for (;;) { 995 if (VPB_SHARERS(x) > 1) 996 return (0); 997 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 998 ("vm_page_busy_tryupgrade: invalid lock state")); 999 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x, 1000 ce | (x & VPB_BIT_WAITERS))) 1001 continue; 1002 return (1); 1003 } 1004 } 1005 1006 /* 1007 * vm_page_sbusied: 1008 * 1009 * Return a positive value if the page is shared busied, 0 otherwise. 1010 */ 1011 int 1012 vm_page_sbusied(vm_page_t m) 1013 { 1014 u_int x; 1015 1016 x = vm_page_busy_fetch(m); 1017 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 1018 } 1019 1020 /* 1021 * vm_page_sunbusy: 1022 * 1023 * Shared unbusy a page. 1024 */ 1025 void 1026 vm_page_sunbusy(vm_page_t m) 1027 { 1028 u_int x; 1029 1030 vm_page_assert_sbusied(m); 1031 1032 x = vm_page_busy_fetch(m); 1033 for (;;) { 1034 KASSERT(x != VPB_FREED, 1035 ("vm_page_sunbusy: Unlocking freed page.")); 1036 if (VPB_SHARERS(x) > 1) { 1037 if (atomic_fcmpset_int(&m->busy_lock, &x, 1038 x - VPB_ONE_SHARER)) 1039 break; 1040 continue; 1041 } 1042 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 1043 ("vm_page_sunbusy: invalid lock state")); 1044 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1045 continue; 1046 if ((x & VPB_BIT_WAITERS) == 0) 1047 break; 1048 wakeup(m); 1049 break; 1050 } 1051 } 1052 1053 /* 1054 * vm_page_busy_sleep: 1055 * 1056 * Sleep if the page is busy, using the page pointer as wchan. 1057 * This is used to implement the hard-path of the busying mechanism. 1058 * 1059 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1060 * will not sleep if the page is shared-busy. 1061 * 1062 * The object lock must be held on entry. 1063 * 1064 * Returns true if it slept and dropped the object lock, or false 1065 * if there was no sleep and the lock is still held. 1066 */ 1067 bool 1068 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags) 1069 { 1070 vm_object_t obj; 1071 1072 obj = m->object; 1073 VM_OBJECT_ASSERT_LOCKED(obj); 1074 1075 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags, 1076 true)); 1077 } 1078 1079 /* 1080 * vm_page_busy_sleep_unlocked: 1081 * 1082 * Sleep if the page is busy, using the page pointer as wchan. 1083 * This is used to implement the hard-path of busying mechanism. 1084 * 1085 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1086 * will not sleep if the page is shared-busy. 1087 * 1088 * The object lock must not be held on entry. The operation will 1089 * return if the page changes identity. 1090 */ 1091 void 1092 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1093 const char *wmesg, int allocflags) 1094 { 1095 VM_OBJECT_ASSERT_UNLOCKED(obj); 1096 1097 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false); 1098 } 1099 1100 /* 1101 * _vm_page_busy_sleep: 1102 * 1103 * Internal busy sleep function. Verifies the page identity and 1104 * lockstate against parameters. Returns true if it sleeps and 1105 * false otherwise. 1106 * 1107 * allocflags uses VM_ALLOC_* flags to specify the lock required. 1108 * 1109 * If locked is true the lock will be dropped for any true returns 1110 * and held for any false returns. 1111 */ 1112 static bool 1113 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1114 const char *wmesg, int allocflags, bool locked) 1115 { 1116 bool xsleep; 1117 u_int x; 1118 1119 /* 1120 * If the object is busy we must wait for that to drain to zero 1121 * before trying the page again. 1122 */ 1123 if (obj != NULL && vm_object_busied(obj)) { 1124 if (locked) 1125 VM_OBJECT_DROP(obj); 1126 vm_object_busy_wait(obj, wmesg); 1127 return (true); 1128 } 1129 1130 if (!vm_page_busied(m)) 1131 return (false); 1132 1133 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0; 1134 sleepq_lock(m); 1135 x = vm_page_busy_fetch(m); 1136 do { 1137 /* 1138 * If the page changes objects or becomes unlocked we can 1139 * simply return. 1140 */ 1141 if (x == VPB_UNBUSIED || 1142 (xsleep && (x & VPB_BIT_SHARED) != 0) || 1143 m->object != obj || m->pindex != pindex) { 1144 sleepq_release(m); 1145 return (false); 1146 } 1147 if ((x & VPB_BIT_WAITERS) != 0) 1148 break; 1149 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS)); 1150 if (locked) 1151 VM_OBJECT_DROP(obj); 1152 DROP_GIANT(); 1153 sleepq_add(m, NULL, wmesg, 0, 0); 1154 sleepq_wait(m, PVM); 1155 PICKUP_GIANT(); 1156 return (true); 1157 } 1158 1159 /* 1160 * vm_page_trysbusy: 1161 * 1162 * Try to shared busy a page. 1163 * If the operation succeeds 1 is returned otherwise 0. 1164 * The operation never sleeps. 1165 */ 1166 int 1167 vm_page_trysbusy(vm_page_t m) 1168 { 1169 vm_object_t obj; 1170 u_int x; 1171 1172 obj = m->object; 1173 x = vm_page_busy_fetch(m); 1174 for (;;) { 1175 if ((x & VPB_BIT_SHARED) == 0) 1176 return (0); 1177 /* 1178 * Reduce the window for transient busies that will trigger 1179 * false negatives in vm_page_ps_test(). 1180 */ 1181 if (obj != NULL && vm_object_busied(obj)) 1182 return (0); 1183 if (atomic_fcmpset_acq_int(&m->busy_lock, &x, 1184 x + VPB_ONE_SHARER)) 1185 break; 1186 } 1187 1188 /* Refetch the object now that we're guaranteed that it is stable. */ 1189 obj = m->object; 1190 if (obj != NULL && vm_object_busied(obj)) { 1191 vm_page_sunbusy(m); 1192 return (0); 1193 } 1194 return (1); 1195 } 1196 1197 /* 1198 * vm_page_tryxbusy: 1199 * 1200 * Try to exclusive busy a page. 1201 * If the operation succeeds 1 is returned otherwise 0. 1202 * The operation never sleeps. 1203 */ 1204 int 1205 vm_page_tryxbusy(vm_page_t m) 1206 { 1207 vm_object_t obj; 1208 1209 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, 1210 VPB_CURTHREAD_EXCLUSIVE) == 0) 1211 return (0); 1212 1213 obj = m->object; 1214 if (obj != NULL && vm_object_busied(obj)) { 1215 vm_page_xunbusy(m); 1216 return (0); 1217 } 1218 return (1); 1219 } 1220 1221 static void 1222 vm_page_xunbusy_hard_tail(vm_page_t m) 1223 { 1224 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1225 /* Wake the waiter. */ 1226 wakeup(m); 1227 } 1228 1229 /* 1230 * vm_page_xunbusy_hard: 1231 * 1232 * Called when unbusy has failed because there is a waiter. 1233 */ 1234 void 1235 vm_page_xunbusy_hard(vm_page_t m) 1236 { 1237 vm_page_assert_xbusied(m); 1238 vm_page_xunbusy_hard_tail(m); 1239 } 1240 1241 void 1242 vm_page_xunbusy_hard_unchecked(vm_page_t m) 1243 { 1244 vm_page_assert_xbusied_unchecked(m); 1245 vm_page_xunbusy_hard_tail(m); 1246 } 1247 1248 static void 1249 vm_page_busy_free(vm_page_t m) 1250 { 1251 u_int x; 1252 1253 atomic_thread_fence_rel(); 1254 x = atomic_swap_int(&m->busy_lock, VPB_FREED); 1255 if ((x & VPB_BIT_WAITERS) != 0) 1256 wakeup(m); 1257 } 1258 1259 /* 1260 * vm_page_unhold_pages: 1261 * 1262 * Unhold each of the pages that is referenced by the given array. 1263 */ 1264 void 1265 vm_page_unhold_pages(vm_page_t *ma, int count) 1266 { 1267 1268 for (; count != 0; count--) { 1269 vm_page_unwire(*ma, PQ_ACTIVE); 1270 ma++; 1271 } 1272 } 1273 1274 vm_page_t 1275 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1276 { 1277 vm_page_t m; 1278 1279 #ifdef VM_PHYSSEG_SPARSE 1280 m = vm_phys_paddr_to_vm_page(pa); 1281 if (m == NULL) 1282 m = vm_phys_fictitious_to_vm_page(pa); 1283 return (m); 1284 #elif defined(VM_PHYSSEG_DENSE) 1285 long pi; 1286 1287 pi = atop(pa); 1288 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1289 m = &vm_page_array[pi - first_page]; 1290 return (m); 1291 } 1292 return (vm_phys_fictitious_to_vm_page(pa)); 1293 #else 1294 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1295 #endif 1296 } 1297 1298 /* 1299 * vm_page_getfake: 1300 * 1301 * Create a fictitious page with the specified physical address and 1302 * memory attribute. The memory attribute is the only the machine- 1303 * dependent aspect of a fictitious page that must be initialized. 1304 */ 1305 vm_page_t 1306 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1307 { 1308 vm_page_t m; 1309 1310 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1311 vm_page_initfake(m, paddr, memattr); 1312 return (m); 1313 } 1314 1315 void 1316 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1317 { 1318 1319 if ((m->flags & PG_FICTITIOUS) != 0) { 1320 /* 1321 * The page's memattr might have changed since the 1322 * previous initialization. Update the pmap to the 1323 * new memattr. 1324 */ 1325 goto memattr; 1326 } 1327 m->phys_addr = paddr; 1328 m->a.queue = PQ_NONE; 1329 /* Fictitious pages don't use "segind". */ 1330 m->flags = PG_FICTITIOUS; 1331 /* Fictitious pages don't use "order" or "pool". */ 1332 m->oflags = VPO_UNMANAGED; 1333 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 1334 /* Fictitious pages are unevictable. */ 1335 m->ref_count = 1; 1336 pmap_page_init(m); 1337 memattr: 1338 pmap_page_set_memattr(m, memattr); 1339 } 1340 1341 /* 1342 * vm_page_putfake: 1343 * 1344 * Release a fictitious page. 1345 */ 1346 void 1347 vm_page_putfake(vm_page_t m) 1348 { 1349 1350 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1351 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1352 ("vm_page_putfake: bad page %p", m)); 1353 vm_page_assert_xbusied(m); 1354 vm_page_busy_free(m); 1355 uma_zfree(fakepg_zone, m); 1356 } 1357 1358 /* 1359 * vm_page_updatefake: 1360 * 1361 * Update the given fictitious page to the specified physical address and 1362 * memory attribute. 1363 */ 1364 void 1365 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1366 { 1367 1368 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1369 ("vm_page_updatefake: bad page %p", m)); 1370 m->phys_addr = paddr; 1371 pmap_page_set_memattr(m, memattr); 1372 } 1373 1374 /* 1375 * vm_page_free: 1376 * 1377 * Free a page. 1378 */ 1379 void 1380 vm_page_free(vm_page_t m) 1381 { 1382 1383 m->flags &= ~PG_ZERO; 1384 vm_page_free_toq(m); 1385 } 1386 1387 /* 1388 * vm_page_free_zero: 1389 * 1390 * Free a page to the zerod-pages queue 1391 */ 1392 void 1393 vm_page_free_zero(vm_page_t m) 1394 { 1395 1396 m->flags |= PG_ZERO; 1397 vm_page_free_toq(m); 1398 } 1399 1400 /* 1401 * Unbusy and handle the page queueing for a page from a getpages request that 1402 * was optionally read ahead or behind. 1403 */ 1404 void 1405 vm_page_readahead_finish(vm_page_t m) 1406 { 1407 1408 /* We shouldn't put invalid pages on queues. */ 1409 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m)); 1410 1411 /* 1412 * Since the page is not the actually needed one, whether it should 1413 * be activated or deactivated is not obvious. Empirical results 1414 * have shown that deactivating the page is usually the best choice, 1415 * unless the page is wanted by another thread. 1416 */ 1417 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0) 1418 vm_page_activate(m); 1419 else 1420 vm_page_deactivate(m); 1421 vm_page_xunbusy_unchecked(m); 1422 } 1423 1424 /* 1425 * Destroy the identity of an invalid page and free it if possible. 1426 * This is intended to be used when reading a page from backing store fails. 1427 */ 1428 void 1429 vm_page_free_invalid(vm_page_t m) 1430 { 1431 1432 KASSERT(vm_page_none_valid(m), ("page %p is valid", m)); 1433 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m)); 1434 KASSERT(m->object != NULL, ("page %p has no object", m)); 1435 VM_OBJECT_ASSERT_WLOCKED(m->object); 1436 1437 /* 1438 * We may be attempting to free the page as part of the handling for an 1439 * I/O error, in which case the page was xbusied by a different thread. 1440 */ 1441 vm_page_xbusy_claim(m); 1442 1443 /* 1444 * If someone has wired this page while the object lock 1445 * was not held, then the thread that unwires is responsible 1446 * for freeing the page. Otherwise just free the page now. 1447 * The wire count of this unmapped page cannot change while 1448 * we have the page xbusy and the page's object wlocked. 1449 */ 1450 if (vm_page_remove(m)) 1451 vm_page_free(m); 1452 } 1453 1454 /* 1455 * vm_page_dirty_KBI: [ internal use only ] 1456 * 1457 * Set all bits in the page's dirty field. 1458 * 1459 * The object containing the specified page must be locked if the 1460 * call is made from the machine-independent layer. 1461 * 1462 * See vm_page_clear_dirty_mask(). 1463 * 1464 * This function should only be called by vm_page_dirty(). 1465 */ 1466 void 1467 vm_page_dirty_KBI(vm_page_t m) 1468 { 1469 1470 /* Refer to this operation by its public name. */ 1471 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!")); 1472 m->dirty = VM_PAGE_BITS_ALL; 1473 } 1474 1475 /* 1476 * Insert the given page into the given object at the given pindex. mpred is 1477 * used for memq linkage. From vm_page_insert, lookup is true, mpred is 1478 * initially NULL, and this procedure looks it up. From vm_page_insert_after, 1479 * lookup is false and mpred is known to the caller to be valid, and may be 1480 * NULL if this will be the page with the lowest pindex. 1481 * 1482 * The procedure is marked __always_inline to suggest to the compiler to 1483 * eliminate the lookup parameter and the associated alternate branch. 1484 */ 1485 static __always_inline int 1486 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1487 vm_page_t mpred, bool lookup) 1488 { 1489 int error; 1490 1491 VM_OBJECT_ASSERT_WLOCKED(object); 1492 KASSERT(m->object == NULL, 1493 ("vm_page_insert: page %p already inserted", m)); 1494 1495 /* 1496 * Record the object/offset pair in this page. 1497 */ 1498 m->object = object; 1499 m->pindex = pindex; 1500 m->ref_count |= VPRC_OBJREF; 1501 1502 /* 1503 * Add this page to the object's radix tree, and look up mpred if 1504 * needed. 1505 */ 1506 if (lookup) 1507 error = vm_radix_insert_lookup_lt(&object->rtree, m, &mpred); 1508 else 1509 error = vm_radix_insert(&object->rtree, m); 1510 if (__predict_false(error != 0)) { 1511 m->object = NULL; 1512 m->pindex = 0; 1513 m->ref_count &= ~VPRC_OBJREF; 1514 return (1); 1515 } 1516 1517 /* 1518 * Now link into the object's ordered list of backed pages. 1519 */ 1520 vm_page_insert_radixdone(m, object, mpred); 1521 vm_pager_page_inserted(object, m); 1522 return (0); 1523 } 1524 1525 /* 1526 * vm_page_insert: [ internal use only ] 1527 * 1528 * Inserts the given mem entry into the object and object list. 1529 * 1530 * The object must be locked. 1531 */ 1532 int 1533 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1534 { 1535 return (vm_page_insert_lookup(m, object, pindex, NULL, true)); 1536 } 1537 1538 /* 1539 * vm_page_insert_after: 1540 * 1541 * Inserts the page "m" into the specified object at offset "pindex". 1542 * 1543 * The page "mpred" must immediately precede the offset "pindex" within 1544 * the specified object. 1545 * 1546 * The object must be locked. 1547 */ 1548 static int 1549 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1550 vm_page_t mpred) 1551 { 1552 return (vm_page_insert_lookup(m, object, pindex, mpred, false)); 1553 } 1554 1555 /* 1556 * vm_page_insert_radixdone: 1557 * 1558 * Complete page "m" insertion into the specified object after the 1559 * radix trie hooking. 1560 * 1561 * The page "mpred" must precede the offset "m->pindex" within the 1562 * specified object. 1563 * 1564 * The object must be locked. 1565 */ 1566 static void 1567 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1568 { 1569 1570 VM_OBJECT_ASSERT_WLOCKED(object); 1571 KASSERT(object != NULL && m->object == object, 1572 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1573 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1574 ("vm_page_insert_radixdone: page %p is missing object ref", m)); 1575 if (mpred != NULL) { 1576 KASSERT(mpred->object == object, 1577 ("vm_page_insert_radixdone: object doesn't contain mpred")); 1578 KASSERT(mpred->pindex < m->pindex, 1579 ("vm_page_insert_radixdone: mpred doesn't precede pindex")); 1580 KASSERT(TAILQ_NEXT(mpred, listq) == NULL || 1581 m->pindex < TAILQ_NEXT(mpred, listq)->pindex, 1582 ("vm_page_insert_radixdone: pindex doesn't precede msucc")); 1583 } else { 1584 KASSERT(TAILQ_EMPTY(&object->memq) || 1585 m->pindex < TAILQ_FIRST(&object->memq)->pindex, 1586 ("vm_page_insert_radixdone: no mpred but not first page")); 1587 } 1588 1589 if (mpred != NULL) 1590 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1591 else 1592 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1593 1594 /* 1595 * Show that the object has one more resident page. 1596 */ 1597 object->resident_page_count++; 1598 1599 /* 1600 * Hold the vnode until the last page is released. 1601 */ 1602 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1603 vhold(object->handle); 1604 1605 /* 1606 * Since we are inserting a new and possibly dirty page, 1607 * update the object's generation count. 1608 */ 1609 if (pmap_page_is_write_mapped(m)) 1610 vm_object_set_writeable_dirty(object); 1611 } 1612 1613 /* 1614 * Do the work to remove a page from its object. The caller is responsible for 1615 * updating the page's fields to reflect this removal. 1616 */ 1617 static void 1618 vm_page_object_remove(vm_page_t m) 1619 { 1620 vm_object_t object; 1621 vm_page_t mrem __diagused; 1622 1623 vm_page_assert_xbusied(m); 1624 object = m->object; 1625 VM_OBJECT_ASSERT_WLOCKED(object); 1626 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1627 ("page %p is missing its object ref", m)); 1628 1629 /* Deferred free of swap space. */ 1630 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1631 vm_pager_page_unswapped(m); 1632 1633 vm_pager_page_removed(object, m); 1634 1635 m->object = NULL; 1636 mrem = vm_radix_remove(&object->rtree, m->pindex); 1637 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1638 1639 /* 1640 * Now remove from the object's list of backed pages. 1641 */ 1642 TAILQ_REMOVE(&object->memq, m, listq); 1643 1644 /* 1645 * And show that the object has one fewer resident page. 1646 */ 1647 object->resident_page_count--; 1648 1649 /* 1650 * The vnode may now be recycled. 1651 */ 1652 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1653 vdrop(object->handle); 1654 } 1655 1656 /* 1657 * vm_page_remove: 1658 * 1659 * Removes the specified page from its containing object, but does not 1660 * invalidate any backing storage. Returns true if the object's reference 1661 * was the last reference to the page, and false otherwise. 1662 * 1663 * The object must be locked and the page must be exclusively busied. 1664 * The exclusive busy will be released on return. If this is not the 1665 * final ref and the caller does not hold a wire reference it may not 1666 * continue to access the page. 1667 */ 1668 bool 1669 vm_page_remove(vm_page_t m) 1670 { 1671 bool dropped; 1672 1673 dropped = vm_page_remove_xbusy(m); 1674 vm_page_xunbusy(m); 1675 1676 return (dropped); 1677 } 1678 1679 /* 1680 * vm_page_remove_xbusy 1681 * 1682 * Removes the page but leaves the xbusy held. Returns true if this 1683 * removed the final ref and false otherwise. 1684 */ 1685 bool 1686 vm_page_remove_xbusy(vm_page_t m) 1687 { 1688 1689 vm_page_object_remove(m); 1690 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1691 } 1692 1693 /* 1694 * vm_page_lookup: 1695 * 1696 * Returns the page associated with the object/offset 1697 * pair specified; if none is found, NULL is returned. 1698 * 1699 * The object must be locked. 1700 */ 1701 vm_page_t 1702 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1703 { 1704 1705 VM_OBJECT_ASSERT_LOCKED(object); 1706 return (vm_radix_lookup(&object->rtree, pindex)); 1707 } 1708 1709 /* 1710 * vm_page_lookup_unlocked: 1711 * 1712 * Returns the page associated with the object/offset pair specified; 1713 * if none is found, NULL is returned. The page may be no longer be 1714 * present in the object at the time that this function returns. Only 1715 * useful for opportunistic checks such as inmem(). 1716 */ 1717 vm_page_t 1718 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex) 1719 { 1720 1721 return (vm_radix_lookup_unlocked(&object->rtree, pindex)); 1722 } 1723 1724 /* 1725 * vm_page_relookup: 1726 * 1727 * Returns a page that must already have been busied by 1728 * the caller. Used for bogus page replacement. 1729 */ 1730 vm_page_t 1731 vm_page_relookup(vm_object_t object, vm_pindex_t pindex) 1732 { 1733 vm_page_t m; 1734 1735 m = vm_radix_lookup_unlocked(&object->rtree, pindex); 1736 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) && 1737 m->object == object && m->pindex == pindex, 1738 ("vm_page_relookup: Invalid page %p", m)); 1739 return (m); 1740 } 1741 1742 /* 1743 * This should only be used by lockless functions for releasing transient 1744 * incorrect acquires. The page may have been freed after we acquired a 1745 * busy lock. In this case busy_lock == VPB_FREED and we have nothing 1746 * further to do. 1747 */ 1748 static void 1749 vm_page_busy_release(vm_page_t m) 1750 { 1751 u_int x; 1752 1753 x = vm_page_busy_fetch(m); 1754 for (;;) { 1755 if (x == VPB_FREED) 1756 break; 1757 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) { 1758 if (atomic_fcmpset_int(&m->busy_lock, &x, 1759 x - VPB_ONE_SHARER)) 1760 break; 1761 continue; 1762 } 1763 KASSERT((x & VPB_BIT_SHARED) != 0 || 1764 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE, 1765 ("vm_page_busy_release: %p xbusy not owned.", m)); 1766 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1767 continue; 1768 if ((x & VPB_BIT_WAITERS) != 0) 1769 wakeup(m); 1770 break; 1771 } 1772 } 1773 1774 /* 1775 * vm_page_find_least: 1776 * 1777 * Returns the page associated with the object with least pindex 1778 * greater than or equal to the parameter pindex, or NULL. 1779 * 1780 * The object must be locked. 1781 */ 1782 vm_page_t 1783 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1784 { 1785 vm_page_t m; 1786 1787 VM_OBJECT_ASSERT_LOCKED(object); 1788 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1789 m = vm_radix_lookup_ge(&object->rtree, pindex); 1790 return (m); 1791 } 1792 1793 /* 1794 * Returns the given page's successor (by pindex) within the object if it is 1795 * resident; if none is found, NULL is returned. 1796 * 1797 * The object must be locked. 1798 */ 1799 vm_page_t 1800 vm_page_next(vm_page_t m) 1801 { 1802 vm_page_t next; 1803 1804 VM_OBJECT_ASSERT_LOCKED(m->object); 1805 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1806 MPASS(next->object == m->object); 1807 if (next->pindex != m->pindex + 1) 1808 next = NULL; 1809 } 1810 return (next); 1811 } 1812 1813 /* 1814 * Returns the given page's predecessor (by pindex) within the object if it is 1815 * resident; if none is found, NULL is returned. 1816 * 1817 * The object must be locked. 1818 */ 1819 vm_page_t 1820 vm_page_prev(vm_page_t m) 1821 { 1822 vm_page_t prev; 1823 1824 VM_OBJECT_ASSERT_LOCKED(m->object); 1825 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1826 MPASS(prev->object == m->object); 1827 if (prev->pindex != m->pindex - 1) 1828 prev = NULL; 1829 } 1830 return (prev); 1831 } 1832 1833 /* 1834 * Uses the page mnew as a replacement for an existing page at index 1835 * pindex which must be already present in the object. 1836 * 1837 * Both pages must be exclusively busied on enter. The old page is 1838 * unbusied on exit. 1839 * 1840 * A return value of true means mold is now free. If this is not the 1841 * final ref and the caller does not hold a wire reference it may not 1842 * continue to access the page. 1843 */ 1844 static bool 1845 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1846 vm_page_t mold) 1847 { 1848 vm_page_t mret __diagused; 1849 bool dropped; 1850 1851 VM_OBJECT_ASSERT_WLOCKED(object); 1852 vm_page_assert_xbusied(mold); 1853 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0, 1854 ("vm_page_replace: page %p already in object", mnew)); 1855 1856 /* 1857 * This function mostly follows vm_page_insert() and 1858 * vm_page_remove() without the radix, object count and vnode 1859 * dance. Double check such functions for more comments. 1860 */ 1861 1862 mnew->object = object; 1863 mnew->pindex = pindex; 1864 atomic_set_int(&mnew->ref_count, VPRC_OBJREF); 1865 mret = vm_radix_replace(&object->rtree, mnew); 1866 KASSERT(mret == mold, 1867 ("invalid page replacement, mold=%p, mret=%p", mold, mret)); 1868 KASSERT((mold->oflags & VPO_UNMANAGED) == 1869 (mnew->oflags & VPO_UNMANAGED), 1870 ("vm_page_replace: mismatched VPO_UNMANAGED")); 1871 1872 /* Keep the resident page list in sorted order. */ 1873 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1874 TAILQ_REMOVE(&object->memq, mold, listq); 1875 mold->object = NULL; 1876 1877 /* 1878 * The object's resident_page_count does not change because we have 1879 * swapped one page for another, but the generation count should 1880 * change if the page is dirty. 1881 */ 1882 if (pmap_page_is_write_mapped(mnew)) 1883 vm_object_set_writeable_dirty(object); 1884 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF; 1885 vm_page_xunbusy(mold); 1886 1887 return (dropped); 1888 } 1889 1890 void 1891 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1892 vm_page_t mold) 1893 { 1894 1895 vm_page_assert_xbusied(mnew); 1896 1897 if (vm_page_replace_hold(mnew, object, pindex, mold)) 1898 vm_page_free(mold); 1899 } 1900 1901 /* 1902 * vm_page_rename: 1903 * 1904 * Move the given memory entry from its 1905 * current object to the specified target object/offset. 1906 * 1907 * Note: swap associated with the page must be invalidated by the move. We 1908 * have to do this for several reasons: (1) we aren't freeing the 1909 * page, (2) we are dirtying the page, (3) the VM system is probably 1910 * moving the page from object A to B, and will then later move 1911 * the backing store from A to B and we can't have a conflict. 1912 * 1913 * Note: we *always* dirty the page. It is necessary both for the 1914 * fact that we moved it, and because we may be invalidating 1915 * swap. 1916 * 1917 * The objects must be locked. 1918 */ 1919 int 1920 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1921 { 1922 vm_page_t mpred; 1923 vm_pindex_t opidx; 1924 1925 VM_OBJECT_ASSERT_WLOCKED(new_object); 1926 1927 KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m)); 1928 1929 /* 1930 * Create a custom version of vm_page_insert() which does not depend 1931 * by m_prev and can cheat on the implementation aspects of the 1932 * function. 1933 */ 1934 opidx = m->pindex; 1935 m->pindex = new_pindex; 1936 if (vm_radix_insert_lookup_lt(&new_object->rtree, m, &mpred) != 0) { 1937 m->pindex = opidx; 1938 return (1); 1939 } 1940 1941 /* 1942 * The operation cannot fail anymore. The removal must happen before 1943 * the listq iterator is tainted. 1944 */ 1945 m->pindex = opidx; 1946 vm_page_object_remove(m); 1947 1948 /* Return back to the new pindex to complete vm_page_insert(). */ 1949 m->pindex = new_pindex; 1950 m->object = new_object; 1951 1952 vm_page_insert_radixdone(m, new_object, mpred); 1953 vm_page_dirty(m); 1954 vm_pager_page_inserted(new_object, m); 1955 return (0); 1956 } 1957 1958 /* 1959 * vm_page_alloc: 1960 * 1961 * Allocate and return a page that is associated with the specified 1962 * object and offset pair. By default, this page is exclusive busied. 1963 * 1964 * The caller must always specify an allocation class. 1965 * 1966 * allocation classes: 1967 * VM_ALLOC_NORMAL normal process request 1968 * VM_ALLOC_SYSTEM system *really* needs a page 1969 * VM_ALLOC_INTERRUPT interrupt time request 1970 * 1971 * optional allocation flags: 1972 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1973 * intends to allocate 1974 * VM_ALLOC_NOBUSY do not exclusive busy the page 1975 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1976 * VM_ALLOC_SBUSY shared busy the allocated page 1977 * VM_ALLOC_WIRED wire the allocated page 1978 * VM_ALLOC_ZERO prefer a zeroed page 1979 */ 1980 vm_page_t 1981 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1982 { 1983 1984 return (vm_page_alloc_after(object, pindex, req, 1985 vm_radix_lookup_le(&object->rtree, pindex))); 1986 } 1987 1988 vm_page_t 1989 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1990 int req) 1991 { 1992 1993 return (vm_page_alloc_domain_after(object, pindex, domain, req, 1994 vm_radix_lookup_le(&object->rtree, pindex))); 1995 } 1996 1997 /* 1998 * Allocate a page in the specified object with the given page index. To 1999 * optimize insertion of the page into the object, the caller must also specify 2000 * the resident page in the object with largest index smaller than the given 2001 * page index, or NULL if no such page exists. 2002 */ 2003 vm_page_t 2004 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 2005 int req, vm_page_t mpred) 2006 { 2007 struct vm_domainset_iter di; 2008 vm_page_t m; 2009 int domain; 2010 2011 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2012 do { 2013 m = vm_page_alloc_domain_after(object, pindex, domain, req, 2014 mpred); 2015 if (m != NULL) 2016 break; 2017 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2018 2019 return (m); 2020 } 2021 2022 /* 2023 * Returns true if the number of free pages exceeds the minimum 2024 * for the request class and false otherwise. 2025 */ 2026 static int 2027 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages) 2028 { 2029 u_int limit, old, new; 2030 2031 if (req_class == VM_ALLOC_INTERRUPT) 2032 limit = 0; 2033 else if (req_class == VM_ALLOC_SYSTEM) 2034 limit = vmd->vmd_interrupt_free_min; 2035 else 2036 limit = vmd->vmd_free_reserved; 2037 2038 /* 2039 * Attempt to reserve the pages. Fail if we're below the limit. 2040 */ 2041 limit += npages; 2042 old = vmd->vmd_free_count; 2043 do { 2044 if (old < limit) 2045 return (0); 2046 new = old - npages; 2047 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 2048 2049 /* Wake the page daemon if we've crossed the threshold. */ 2050 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 2051 pagedaemon_wakeup(vmd->vmd_domain); 2052 2053 /* Only update bitsets on transitions. */ 2054 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 2055 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 2056 vm_domain_set(vmd); 2057 2058 return (1); 2059 } 2060 2061 int 2062 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 2063 { 2064 int req_class; 2065 2066 /* 2067 * The page daemon is allowed to dig deeper into the free page list. 2068 */ 2069 req_class = req & VM_ALLOC_CLASS_MASK; 2070 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2071 req_class = VM_ALLOC_SYSTEM; 2072 return (_vm_domain_allocate(vmd, req_class, npages)); 2073 } 2074 2075 vm_page_t 2076 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 2077 int req, vm_page_t mpred) 2078 { 2079 struct vm_domain *vmd; 2080 vm_page_t m; 2081 int flags; 2082 2083 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2084 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \ 2085 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \ 2086 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \ 2087 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK) 2088 KASSERT((req & ~VPA_FLAGS) == 0, 2089 ("invalid request %#x", req)); 2090 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2091 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2092 ("invalid request %#x", req)); 2093 KASSERT(mpred == NULL || mpred->pindex < pindex, 2094 ("mpred %p doesn't precede pindex 0x%jx", mpred, 2095 (uintmax_t)pindex)); 2096 VM_OBJECT_ASSERT_WLOCKED(object); 2097 2098 flags = 0; 2099 m = NULL; 2100 if (!vm_pager_can_alloc_page(object, pindex)) 2101 return (NULL); 2102 again: 2103 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) { 2104 m = vm_page_alloc_nofree_domain(domain, req); 2105 if (m != NULL) 2106 goto found; 2107 } 2108 #if VM_NRESERVLEVEL > 0 2109 /* 2110 * Can we allocate the page from a reservation? 2111 */ 2112 if (vm_object_reserv(object) && 2113 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != 2114 NULL) { 2115 goto found; 2116 } 2117 #endif 2118 vmd = VM_DOMAIN(domain); 2119 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) { 2120 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone, 2121 M_NOWAIT | M_NOVM); 2122 if (m != NULL) { 2123 flags |= PG_PCPU_CACHE; 2124 goto found; 2125 } 2126 } 2127 if (vm_domain_allocate(vmd, req, 1)) { 2128 /* 2129 * If not, allocate it from the free page queues. 2130 */ 2131 vm_domain_free_lock(vmd); 2132 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0); 2133 vm_domain_free_unlock(vmd); 2134 if (m == NULL) { 2135 vm_domain_freecnt_inc(vmd, 1); 2136 #if VM_NRESERVLEVEL > 0 2137 if (vm_reserv_reclaim_inactive(domain)) 2138 goto again; 2139 #endif 2140 } 2141 } 2142 if (m == NULL) { 2143 /* 2144 * Not allocatable, give up. 2145 */ 2146 if (vm_domain_alloc_fail(vmd, object, req)) 2147 goto again; 2148 return (NULL); 2149 } 2150 2151 /* 2152 * At this point we had better have found a good page. 2153 */ 2154 found: 2155 vm_page_dequeue(m); 2156 vm_page_alloc_check(m); 2157 2158 /* 2159 * Initialize the page. Only the PG_ZERO flag is inherited. 2160 */ 2161 flags |= m->flags & PG_ZERO; 2162 if ((req & VM_ALLOC_NODUMP) != 0) 2163 flags |= PG_NODUMP; 2164 if ((req & VM_ALLOC_NOFREE) != 0) 2165 flags |= PG_NOFREE; 2166 m->flags = flags; 2167 m->a.flags = 0; 2168 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2169 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2170 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2171 else if ((req & VM_ALLOC_SBUSY) != 0) 2172 m->busy_lock = VPB_SHARERS_WORD(1); 2173 else 2174 m->busy_lock = VPB_UNBUSIED; 2175 if (req & VM_ALLOC_WIRED) { 2176 vm_wire_add(1); 2177 m->ref_count = 1; 2178 } 2179 m->a.act_count = 0; 2180 2181 if (vm_page_insert_after(m, object, pindex, mpred)) { 2182 if (req & VM_ALLOC_WIRED) { 2183 vm_wire_sub(1); 2184 m->ref_count = 0; 2185 } 2186 KASSERT(m->object == NULL, ("page %p has object", m)); 2187 m->oflags = VPO_UNMANAGED; 2188 m->busy_lock = VPB_UNBUSIED; 2189 /* Don't change PG_ZERO. */ 2190 vm_page_free_toq(m); 2191 if (req & VM_ALLOC_WAITFAIL) { 2192 VM_OBJECT_WUNLOCK(object); 2193 vm_radix_wait(); 2194 VM_OBJECT_WLOCK(object); 2195 } 2196 return (NULL); 2197 } 2198 2199 /* Ignore device objects; the pager sets "memattr" for them. */ 2200 if (object->memattr != VM_MEMATTR_DEFAULT && 2201 (object->flags & OBJ_FICTITIOUS) == 0) 2202 pmap_page_set_memattr(m, object->memattr); 2203 2204 return (m); 2205 } 2206 2207 /* 2208 * vm_page_alloc_contig: 2209 * 2210 * Allocate a contiguous set of physical pages of the given size "npages" 2211 * from the free lists. All of the physical pages must be at or above 2212 * the given physical address "low" and below the given physical address 2213 * "high". The given value "alignment" determines the alignment of the 2214 * first physical page in the set. If the given value "boundary" is 2215 * non-zero, then the set of physical pages cannot cross any physical 2216 * address boundary that is a multiple of that value. Both "alignment" 2217 * and "boundary" must be a power of two. 2218 * 2219 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 2220 * then the memory attribute setting for the physical pages is configured 2221 * to the object's memory attribute setting. Otherwise, the memory 2222 * attribute setting for the physical pages is configured to "memattr", 2223 * overriding the object's memory attribute setting. However, if the 2224 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 2225 * memory attribute setting for the physical pages cannot be configured 2226 * to VM_MEMATTR_DEFAULT. 2227 * 2228 * The specified object may not contain fictitious pages. 2229 * 2230 * The caller must always specify an allocation class. 2231 * 2232 * allocation classes: 2233 * VM_ALLOC_NORMAL normal process request 2234 * VM_ALLOC_SYSTEM system *really* needs a page 2235 * VM_ALLOC_INTERRUPT interrupt time request 2236 * 2237 * optional allocation flags: 2238 * VM_ALLOC_NOBUSY do not exclusive busy the page 2239 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2240 * VM_ALLOC_SBUSY shared busy the allocated page 2241 * VM_ALLOC_WIRED wire the allocated page 2242 * VM_ALLOC_ZERO prefer a zeroed page 2243 */ 2244 vm_page_t 2245 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 2246 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2247 vm_paddr_t boundary, vm_memattr_t memattr) 2248 { 2249 struct vm_domainset_iter di; 2250 vm_page_t bounds[2]; 2251 vm_page_t m; 2252 int domain; 2253 int start_segind; 2254 2255 start_segind = -1; 2256 2257 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2258 do { 2259 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 2260 npages, low, high, alignment, boundary, memattr); 2261 if (m != NULL) 2262 break; 2263 if (start_segind == -1) 2264 start_segind = vm_phys_lookup_segind(low); 2265 if (vm_phys_find_range(bounds, start_segind, domain, 2266 npages, low, high) == -1) { 2267 vm_domainset_iter_ignore(&di, domain); 2268 } 2269 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2270 2271 return (m); 2272 } 2273 2274 static vm_page_t 2275 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low, 2276 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2277 { 2278 struct vm_domain *vmd; 2279 vm_page_t m_ret; 2280 2281 /* 2282 * Can we allocate the pages without the number of free pages falling 2283 * below the lower bound for the allocation class? 2284 */ 2285 vmd = VM_DOMAIN(domain); 2286 if (!vm_domain_allocate(vmd, req, npages)) 2287 return (NULL); 2288 /* 2289 * Try to allocate the pages from the free page queues. 2290 */ 2291 vm_domain_free_lock(vmd); 2292 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2293 alignment, boundary); 2294 vm_domain_free_unlock(vmd); 2295 if (m_ret != NULL) 2296 return (m_ret); 2297 #if VM_NRESERVLEVEL > 0 2298 /* 2299 * Try to break a reservation to allocate the pages. 2300 */ 2301 if ((req & VM_ALLOC_NORECLAIM) == 0) { 2302 m_ret = vm_reserv_reclaim_contig(domain, npages, low, 2303 high, alignment, boundary); 2304 if (m_ret != NULL) 2305 return (m_ret); 2306 } 2307 #endif 2308 vm_domain_freecnt_inc(vmd, npages); 2309 return (NULL); 2310 } 2311 2312 vm_page_t 2313 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 2314 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2315 vm_paddr_t boundary, vm_memattr_t memattr) 2316 { 2317 vm_page_t m, m_ret, mpred; 2318 u_int busy_lock, flags, oflags; 2319 2320 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM) 2321 KASSERT((req & ~VPAC_FLAGS) == 0, 2322 ("invalid request %#x", req)); 2323 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2324 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2325 ("invalid request %#x", req)); 2326 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2327 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2328 ("invalid request %#x", req)); 2329 VM_OBJECT_ASSERT_WLOCKED(object); 2330 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 2331 ("vm_page_alloc_contig: object %p has fictitious pages", 2332 object)); 2333 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2334 2335 mpred = vm_radix_lookup_le(&object->rtree, pindex); 2336 KASSERT(mpred == NULL || mpred->pindex != pindex, 2337 ("vm_page_alloc_contig: pindex already allocated")); 2338 for (;;) { 2339 #if VM_NRESERVLEVEL > 0 2340 /* 2341 * Can we allocate the pages from a reservation? 2342 */ 2343 if (vm_object_reserv(object) && 2344 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, 2345 mpred, npages, low, high, alignment, boundary)) != NULL) { 2346 break; 2347 } 2348 #endif 2349 if ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2350 low, high, alignment, boundary)) != NULL) 2351 break; 2352 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req)) 2353 return (NULL); 2354 } 2355 2356 /* 2357 * Initialize the pages. Only the PG_ZERO flag is inherited. 2358 */ 2359 flags = PG_ZERO; 2360 if ((req & VM_ALLOC_NODUMP) != 0) 2361 flags |= PG_NODUMP; 2362 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2363 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2364 busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2365 else if ((req & VM_ALLOC_SBUSY) != 0) 2366 busy_lock = VPB_SHARERS_WORD(1); 2367 else 2368 busy_lock = VPB_UNBUSIED; 2369 if ((req & VM_ALLOC_WIRED) != 0) 2370 vm_wire_add(npages); 2371 if (object->memattr != VM_MEMATTR_DEFAULT && 2372 memattr == VM_MEMATTR_DEFAULT) 2373 memattr = object->memattr; 2374 for (m = m_ret; m < &m_ret[npages]; m++) { 2375 vm_page_dequeue(m); 2376 vm_page_alloc_check(m); 2377 m->a.flags = 0; 2378 m->flags = (m->flags | PG_NODUMP) & flags; 2379 m->busy_lock = busy_lock; 2380 if ((req & VM_ALLOC_WIRED) != 0) 2381 m->ref_count = 1; 2382 m->a.act_count = 0; 2383 m->oflags = oflags; 2384 if (vm_page_insert_after(m, object, pindex, mpred)) { 2385 if ((req & VM_ALLOC_WIRED) != 0) 2386 vm_wire_sub(npages); 2387 KASSERT(m->object == NULL, 2388 ("page %p has object", m)); 2389 mpred = m; 2390 for (m = m_ret; m < &m_ret[npages]; m++) { 2391 if (m <= mpred && 2392 (req & VM_ALLOC_WIRED) != 0) 2393 m->ref_count = 0; 2394 m->oflags = VPO_UNMANAGED; 2395 m->busy_lock = VPB_UNBUSIED; 2396 /* Don't change PG_ZERO. */ 2397 vm_page_free_toq(m); 2398 } 2399 if (req & VM_ALLOC_WAITFAIL) { 2400 VM_OBJECT_WUNLOCK(object); 2401 vm_radix_wait(); 2402 VM_OBJECT_WLOCK(object); 2403 } 2404 return (NULL); 2405 } 2406 mpred = m; 2407 if (memattr != VM_MEMATTR_DEFAULT) 2408 pmap_page_set_memattr(m, memattr); 2409 pindex++; 2410 } 2411 return (m_ret); 2412 } 2413 2414 /* 2415 * Allocate a physical page that is not intended to be inserted into a VM 2416 * object. 2417 */ 2418 vm_page_t 2419 vm_page_alloc_noobj_domain(int domain, int req) 2420 { 2421 struct vm_domain *vmd; 2422 vm_page_t m; 2423 int flags; 2424 2425 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2426 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \ 2427 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \ 2428 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \ 2429 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK) 2430 KASSERT((req & ~VPAN_FLAGS) == 0, 2431 ("invalid request %#x", req)); 2432 2433 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) | 2434 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0); 2435 vmd = VM_DOMAIN(domain); 2436 again: 2437 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) { 2438 m = vm_page_alloc_nofree_domain(domain, req); 2439 if (m != NULL) 2440 goto found; 2441 } 2442 2443 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) { 2444 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone, 2445 M_NOWAIT | M_NOVM); 2446 if (m != NULL) { 2447 flags |= PG_PCPU_CACHE; 2448 goto found; 2449 } 2450 } 2451 2452 if (vm_domain_allocate(vmd, req, 1)) { 2453 vm_domain_free_lock(vmd); 2454 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0); 2455 vm_domain_free_unlock(vmd); 2456 if (m == NULL) { 2457 vm_domain_freecnt_inc(vmd, 1); 2458 #if VM_NRESERVLEVEL > 0 2459 if (vm_reserv_reclaim_inactive(domain)) 2460 goto again; 2461 #endif 2462 } 2463 } 2464 if (m == NULL) { 2465 if (vm_domain_alloc_fail(vmd, NULL, req)) 2466 goto again; 2467 return (NULL); 2468 } 2469 2470 found: 2471 vm_page_dequeue(m); 2472 vm_page_alloc_check(m); 2473 2474 /* 2475 * Consumers should not rely on a useful default pindex value. 2476 */ 2477 m->pindex = 0xdeadc0dedeadc0de; 2478 m->flags = (m->flags & PG_ZERO) | flags; 2479 m->a.flags = 0; 2480 m->oflags = VPO_UNMANAGED; 2481 m->busy_lock = VPB_UNBUSIED; 2482 if ((req & VM_ALLOC_WIRED) != 0) { 2483 vm_wire_add(1); 2484 m->ref_count = 1; 2485 } 2486 2487 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2488 pmap_zero_page(m); 2489 2490 return (m); 2491 } 2492 2493 #if VM_NRESERVLEVEL > 1 2494 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER) 2495 #elif VM_NRESERVLEVEL > 0 2496 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER 2497 #else 2498 #define VM_NOFREE_IMPORT_ORDER 8 2499 #endif 2500 2501 /* 2502 * Allocate a single NOFREE page. 2503 * 2504 * This routine hands out NOFREE pages from higher-order 2505 * physical memory blocks in order to reduce memory fragmentation. 2506 * When a NOFREE for a given domain chunk is used up, 2507 * the routine will try to fetch a new one from the freelists 2508 * and discard the old one. 2509 */ 2510 static vm_page_t 2511 vm_page_alloc_nofree_domain(int domain, int req) 2512 { 2513 vm_page_t m; 2514 struct vm_domain *vmd; 2515 struct vm_nofreeq *nqp; 2516 2517 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req)); 2518 2519 vmd = VM_DOMAIN(domain); 2520 nqp = &vmd->vmd_nofreeq; 2521 vm_domain_free_lock(vmd); 2522 if (nqp->offs >= (1 << VM_NOFREE_IMPORT_ORDER) || nqp->ma == NULL) { 2523 if (!vm_domain_allocate(vmd, req, 2524 1 << VM_NOFREE_IMPORT_ORDER)) { 2525 vm_domain_free_unlock(vmd); 2526 return (NULL); 2527 } 2528 nqp->ma = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 2529 VM_NOFREE_IMPORT_ORDER); 2530 if (nqp->ma == NULL) { 2531 vm_domain_freecnt_inc(vmd, 1 << VM_NOFREE_IMPORT_ORDER); 2532 vm_domain_free_unlock(vmd); 2533 return (NULL); 2534 } 2535 nqp->offs = 0; 2536 } 2537 m = &nqp->ma[nqp->offs++]; 2538 vm_domain_free_unlock(vmd); 2539 2540 return (m); 2541 } 2542 2543 vm_page_t 2544 vm_page_alloc_noobj(int req) 2545 { 2546 struct vm_domainset_iter di; 2547 vm_page_t m; 2548 int domain; 2549 2550 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2551 do { 2552 m = vm_page_alloc_noobj_domain(domain, req); 2553 if (m != NULL) 2554 break; 2555 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2556 2557 return (m); 2558 } 2559 2560 vm_page_t 2561 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low, 2562 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2563 vm_memattr_t memattr) 2564 { 2565 struct vm_domainset_iter di; 2566 vm_page_t m; 2567 int domain; 2568 2569 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2570 do { 2571 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low, 2572 high, alignment, boundary, memattr); 2573 if (m != NULL) 2574 break; 2575 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2576 2577 return (m); 2578 } 2579 2580 vm_page_t 2581 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages, 2582 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2583 vm_memattr_t memattr) 2584 { 2585 vm_page_t m, m_ret; 2586 u_int flags; 2587 2588 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM) 2589 KASSERT((req & ~VPANC_FLAGS) == 0, 2590 ("invalid request %#x", req)); 2591 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2592 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2593 ("invalid request %#x", req)); 2594 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2595 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2596 ("invalid request %#x", req)); 2597 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2598 2599 while ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2600 low, high, alignment, boundary)) == NULL) { 2601 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req)) 2602 return (NULL); 2603 } 2604 2605 /* 2606 * Initialize the pages. Only the PG_ZERO flag is inherited. 2607 */ 2608 flags = PG_ZERO; 2609 if ((req & VM_ALLOC_NODUMP) != 0) 2610 flags |= PG_NODUMP; 2611 if ((req & VM_ALLOC_WIRED) != 0) 2612 vm_wire_add(npages); 2613 for (m = m_ret; m < &m_ret[npages]; m++) { 2614 vm_page_dequeue(m); 2615 vm_page_alloc_check(m); 2616 2617 /* 2618 * Consumers should not rely on a useful default pindex value. 2619 */ 2620 m->pindex = 0xdeadc0dedeadc0de; 2621 m->a.flags = 0; 2622 m->flags = (m->flags | PG_NODUMP) & flags; 2623 m->busy_lock = VPB_UNBUSIED; 2624 if ((req & VM_ALLOC_WIRED) != 0) 2625 m->ref_count = 1; 2626 m->a.act_count = 0; 2627 m->oflags = VPO_UNMANAGED; 2628 2629 /* 2630 * Zero the page before updating any mappings since the page is 2631 * not yet shared with any devices which might require the 2632 * non-default memory attribute. pmap_page_set_memattr() 2633 * flushes data caches before returning. 2634 */ 2635 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2636 pmap_zero_page(m); 2637 if (memattr != VM_MEMATTR_DEFAULT) 2638 pmap_page_set_memattr(m, memattr); 2639 } 2640 return (m_ret); 2641 } 2642 2643 /* 2644 * Check a page that has been freshly dequeued from a freelist. 2645 */ 2646 static void 2647 vm_page_alloc_check(vm_page_t m) 2648 { 2649 2650 KASSERT(m->object == NULL, ("page %p has object", m)); 2651 KASSERT(m->a.queue == PQ_NONE && 2652 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 2653 ("page %p has unexpected queue %d, flags %#x", 2654 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK))); 2655 KASSERT(m->ref_count == 0, ("page %p has references", m)); 2656 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m)); 2657 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2658 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2659 ("page %p has unexpected memattr %d", 2660 m, pmap_page_get_memattr(m))); 2661 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m)); 2662 pmap_vm_page_alloc_check(m); 2663 } 2664 2665 static int 2666 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2667 { 2668 struct vm_domain *vmd; 2669 struct vm_pgcache *pgcache; 2670 int i; 2671 2672 pgcache = arg; 2673 vmd = VM_DOMAIN(pgcache->domain); 2674 2675 /* 2676 * The page daemon should avoid creating extra memory pressure since its 2677 * main purpose is to replenish the store of free pages. 2678 */ 2679 if (vmd->vmd_severeset || curproc == pageproc || 2680 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2681 return (0); 2682 domain = vmd->vmd_domain; 2683 vm_domain_free_lock(vmd); 2684 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2685 (vm_page_t *)store); 2686 vm_domain_free_unlock(vmd); 2687 if (cnt != i) 2688 vm_domain_freecnt_inc(vmd, cnt - i); 2689 2690 return (i); 2691 } 2692 2693 static void 2694 vm_page_zone_release(void *arg, void **store, int cnt) 2695 { 2696 struct vm_domain *vmd; 2697 struct vm_pgcache *pgcache; 2698 vm_page_t m; 2699 int i; 2700 2701 pgcache = arg; 2702 vmd = VM_DOMAIN(pgcache->domain); 2703 vm_domain_free_lock(vmd); 2704 for (i = 0; i < cnt; i++) { 2705 m = (vm_page_t)store[i]; 2706 vm_phys_free_pages(m, 0); 2707 } 2708 vm_domain_free_unlock(vmd); 2709 vm_domain_freecnt_inc(vmd, cnt); 2710 } 2711 2712 #define VPSC_ANY 0 /* No restrictions. */ 2713 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2714 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2715 2716 /* 2717 * vm_page_scan_contig: 2718 * 2719 * Scan vm_page_array[] between the specified entries "m_start" and 2720 * "m_end" for a run of contiguous physical pages that satisfy the 2721 * specified conditions, and return the lowest page in the run. The 2722 * specified "alignment" determines the alignment of the lowest physical 2723 * page in the run. If the specified "boundary" is non-zero, then the 2724 * run of physical pages cannot span a physical address that is a 2725 * multiple of "boundary". 2726 * 2727 * "m_end" is never dereferenced, so it need not point to a vm_page 2728 * structure within vm_page_array[]. 2729 * 2730 * "npages" must be greater than zero. "m_start" and "m_end" must not 2731 * span a hole (or discontiguity) in the physical address space. Both 2732 * "alignment" and "boundary" must be a power of two. 2733 */ 2734 static vm_page_t 2735 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2736 u_long alignment, vm_paddr_t boundary, int options) 2737 { 2738 vm_object_t object; 2739 vm_paddr_t pa; 2740 vm_page_t m, m_run; 2741 #if VM_NRESERVLEVEL > 0 2742 int level; 2743 #endif 2744 int m_inc, order, run_ext, run_len; 2745 2746 KASSERT(npages > 0, ("npages is 0")); 2747 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2748 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2749 m_run = NULL; 2750 run_len = 0; 2751 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2752 KASSERT((m->flags & PG_MARKER) == 0, 2753 ("page %p is PG_MARKER", m)); 2754 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1, 2755 ("fictitious page %p has invalid ref count", m)); 2756 2757 /* 2758 * If the current page would be the start of a run, check its 2759 * physical address against the end, alignment, and boundary 2760 * conditions. If it doesn't satisfy these conditions, either 2761 * terminate the scan or advance to the next page that 2762 * satisfies the failed condition. 2763 */ 2764 if (run_len == 0) { 2765 KASSERT(m_run == NULL, ("m_run != NULL")); 2766 if (m + npages > m_end) 2767 break; 2768 pa = VM_PAGE_TO_PHYS(m); 2769 if (!vm_addr_align_ok(pa, alignment)) { 2770 m_inc = atop(roundup2(pa, alignment) - pa); 2771 continue; 2772 } 2773 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) { 2774 m_inc = atop(roundup2(pa, boundary) - pa); 2775 continue; 2776 } 2777 } else 2778 KASSERT(m_run != NULL, ("m_run == NULL")); 2779 2780 retry: 2781 m_inc = 1; 2782 if (vm_page_wired(m)) 2783 run_ext = 0; 2784 #if VM_NRESERVLEVEL > 0 2785 else if ((level = vm_reserv_level(m)) >= 0 && 2786 (options & VPSC_NORESERV) != 0) { 2787 run_ext = 0; 2788 /* Advance to the end of the reservation. */ 2789 pa = VM_PAGE_TO_PHYS(m); 2790 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2791 pa); 2792 } 2793 #endif 2794 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 2795 /* 2796 * The page is considered eligible for relocation if 2797 * and only if it could be laundered or reclaimed by 2798 * the page daemon. 2799 */ 2800 VM_OBJECT_RLOCK(object); 2801 if (object != m->object) { 2802 VM_OBJECT_RUNLOCK(object); 2803 goto retry; 2804 } 2805 /* Don't care: PG_NODUMP, PG_ZERO. */ 2806 if ((object->flags & OBJ_SWAP) == 0 && 2807 object->type != OBJT_VNODE) { 2808 run_ext = 0; 2809 #if VM_NRESERVLEVEL > 0 2810 } else if ((options & VPSC_NOSUPER) != 0 && 2811 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2812 run_ext = 0; 2813 /* Advance to the end of the superpage. */ 2814 pa = VM_PAGE_TO_PHYS(m); 2815 m_inc = atop(roundup2(pa + 1, 2816 vm_reserv_size(level)) - pa); 2817 #endif 2818 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2819 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) { 2820 /* 2821 * The page is allocated but eligible for 2822 * relocation. Extend the current run by one 2823 * page. 2824 */ 2825 KASSERT(pmap_page_get_memattr(m) == 2826 VM_MEMATTR_DEFAULT, 2827 ("page %p has an unexpected memattr", m)); 2828 KASSERT((m->oflags & (VPO_SWAPINPROG | 2829 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2830 ("page %p has unexpected oflags", m)); 2831 /* Don't care: PGA_NOSYNC. */ 2832 run_ext = 1; 2833 } else 2834 run_ext = 0; 2835 VM_OBJECT_RUNLOCK(object); 2836 #if VM_NRESERVLEVEL > 0 2837 } else if (level >= 0) { 2838 /* 2839 * The page is reserved but not yet allocated. In 2840 * other words, it is still free. Extend the current 2841 * run by one page. 2842 */ 2843 run_ext = 1; 2844 #endif 2845 } else if ((order = m->order) < VM_NFREEORDER) { 2846 /* 2847 * The page is enqueued in the physical memory 2848 * allocator's free page queues. Moreover, it is the 2849 * first page in a power-of-two-sized run of 2850 * contiguous free pages. Add these pages to the end 2851 * of the current run, and jump ahead. 2852 */ 2853 run_ext = 1 << order; 2854 m_inc = 1 << order; 2855 } else { 2856 /* 2857 * Skip the page for one of the following reasons: (1) 2858 * It is enqueued in the physical memory allocator's 2859 * free page queues. However, it is not the first 2860 * page in a run of contiguous free pages. (This case 2861 * rarely occurs because the scan is performed in 2862 * ascending order.) (2) It is not reserved, and it is 2863 * transitioning from free to allocated. (Conversely, 2864 * the transition from allocated to free for managed 2865 * pages is blocked by the page busy lock.) (3) It is 2866 * allocated but not contained by an object and not 2867 * wired, e.g., allocated by Xen's balloon driver. 2868 */ 2869 run_ext = 0; 2870 } 2871 2872 /* 2873 * Extend or reset the current run of pages. 2874 */ 2875 if (run_ext > 0) { 2876 if (run_len == 0) 2877 m_run = m; 2878 run_len += run_ext; 2879 } else { 2880 if (run_len > 0) { 2881 m_run = NULL; 2882 run_len = 0; 2883 } 2884 } 2885 } 2886 if (run_len >= npages) 2887 return (m_run); 2888 return (NULL); 2889 } 2890 2891 /* 2892 * vm_page_reclaim_run: 2893 * 2894 * Try to relocate each of the allocated virtual pages within the 2895 * specified run of physical pages to a new physical address. Free the 2896 * physical pages underlying the relocated virtual pages. A virtual page 2897 * is relocatable if and only if it could be laundered or reclaimed by 2898 * the page daemon. Whenever possible, a virtual page is relocated to a 2899 * physical address above "high". 2900 * 2901 * Returns 0 if every physical page within the run was already free or 2902 * just freed by a successful relocation. Otherwise, returns a non-zero 2903 * value indicating why the last attempt to relocate a virtual page was 2904 * unsuccessful. 2905 * 2906 * "req_class" must be an allocation class. 2907 */ 2908 static int 2909 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2910 vm_paddr_t high) 2911 { 2912 struct vm_domain *vmd; 2913 struct spglist free; 2914 vm_object_t object; 2915 vm_paddr_t pa; 2916 vm_page_t m, m_end, m_new; 2917 int error, order, req; 2918 2919 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2920 ("req_class is not an allocation class")); 2921 SLIST_INIT(&free); 2922 error = 0; 2923 m = m_run; 2924 m_end = m_run + npages; 2925 for (; error == 0 && m < m_end; m++) { 2926 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2927 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2928 2929 /* 2930 * Racily check for wirings. Races are handled once the object 2931 * lock is held and the page is unmapped. 2932 */ 2933 if (vm_page_wired(m)) 2934 error = EBUSY; 2935 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 2936 /* 2937 * The page is relocated if and only if it could be 2938 * laundered or reclaimed by the page daemon. 2939 */ 2940 VM_OBJECT_WLOCK(object); 2941 /* Don't care: PG_NODUMP, PG_ZERO. */ 2942 if (m->object != object || 2943 ((object->flags & OBJ_SWAP) == 0 && 2944 object->type != OBJT_VNODE)) 2945 error = EINVAL; 2946 else if (object->memattr != VM_MEMATTR_DEFAULT) 2947 error = EINVAL; 2948 else if (vm_page_queue(m) != PQ_NONE && 2949 vm_page_tryxbusy(m) != 0) { 2950 if (vm_page_wired(m)) { 2951 vm_page_xunbusy(m); 2952 error = EBUSY; 2953 goto unlock; 2954 } 2955 KASSERT(pmap_page_get_memattr(m) == 2956 VM_MEMATTR_DEFAULT, 2957 ("page %p has an unexpected memattr", m)); 2958 KASSERT(m->oflags == 0, 2959 ("page %p has unexpected oflags", m)); 2960 /* Don't care: PGA_NOSYNC. */ 2961 if (!vm_page_none_valid(m)) { 2962 /* 2963 * First, try to allocate a new page 2964 * that is above "high". Failing 2965 * that, try to allocate a new page 2966 * that is below "m_run". Allocate 2967 * the new page between the end of 2968 * "m_run" and "high" only as a last 2969 * resort. 2970 */ 2971 req = req_class; 2972 if ((m->flags & PG_NODUMP) != 0) 2973 req |= VM_ALLOC_NODUMP; 2974 if (trunc_page(high) != 2975 ~(vm_paddr_t)PAGE_MASK) { 2976 m_new = 2977 vm_page_alloc_noobj_contig( 2978 req, 1, round_page(high), 2979 ~(vm_paddr_t)0, PAGE_SIZE, 2980 0, VM_MEMATTR_DEFAULT); 2981 } else 2982 m_new = NULL; 2983 if (m_new == NULL) { 2984 pa = VM_PAGE_TO_PHYS(m_run); 2985 m_new = 2986 vm_page_alloc_noobj_contig( 2987 req, 1, 0, pa - 1, 2988 PAGE_SIZE, 0, 2989 VM_MEMATTR_DEFAULT); 2990 } 2991 if (m_new == NULL) { 2992 pa += ptoa(npages); 2993 m_new = 2994 vm_page_alloc_noobj_contig( 2995 req, 1, pa, high, PAGE_SIZE, 2996 0, VM_MEMATTR_DEFAULT); 2997 } 2998 if (m_new == NULL) { 2999 vm_page_xunbusy(m); 3000 error = ENOMEM; 3001 goto unlock; 3002 } 3003 3004 /* 3005 * Unmap the page and check for new 3006 * wirings that may have been acquired 3007 * through a pmap lookup. 3008 */ 3009 if (object->ref_count != 0 && 3010 !vm_page_try_remove_all(m)) { 3011 vm_page_xunbusy(m); 3012 vm_page_free(m_new); 3013 error = EBUSY; 3014 goto unlock; 3015 } 3016 3017 /* 3018 * Replace "m" with the new page. For 3019 * vm_page_replace(), "m" must be busy 3020 * and dequeued. Finally, change "m" 3021 * as if vm_page_free() was called. 3022 */ 3023 m_new->a.flags = m->a.flags & 3024 ~PGA_QUEUE_STATE_MASK; 3025 KASSERT(m_new->oflags == VPO_UNMANAGED, 3026 ("page %p is managed", m_new)); 3027 m_new->oflags = 0; 3028 pmap_copy_page(m, m_new); 3029 m_new->valid = m->valid; 3030 m_new->dirty = m->dirty; 3031 m->flags &= ~PG_ZERO; 3032 vm_page_dequeue(m); 3033 if (vm_page_replace_hold(m_new, object, 3034 m->pindex, m) && 3035 vm_page_free_prep(m)) 3036 SLIST_INSERT_HEAD(&free, m, 3037 plinks.s.ss); 3038 3039 /* 3040 * The new page must be deactivated 3041 * before the object is unlocked. 3042 */ 3043 vm_page_deactivate(m_new); 3044 } else { 3045 m->flags &= ~PG_ZERO; 3046 vm_page_dequeue(m); 3047 if (vm_page_free_prep(m)) 3048 SLIST_INSERT_HEAD(&free, m, 3049 plinks.s.ss); 3050 KASSERT(m->dirty == 0, 3051 ("page %p is dirty", m)); 3052 } 3053 } else 3054 error = EBUSY; 3055 unlock: 3056 VM_OBJECT_WUNLOCK(object); 3057 } else { 3058 MPASS(vm_page_domain(m) == domain); 3059 vmd = VM_DOMAIN(domain); 3060 vm_domain_free_lock(vmd); 3061 order = m->order; 3062 if (order < VM_NFREEORDER) { 3063 /* 3064 * The page is enqueued in the physical memory 3065 * allocator's free page queues. Moreover, it 3066 * is the first page in a power-of-two-sized 3067 * run of contiguous free pages. Jump ahead 3068 * to the last page within that run, and 3069 * continue from there. 3070 */ 3071 m += (1 << order) - 1; 3072 } 3073 #if VM_NRESERVLEVEL > 0 3074 else if (vm_reserv_is_page_free(m)) 3075 order = 0; 3076 #endif 3077 vm_domain_free_unlock(vmd); 3078 if (order == VM_NFREEORDER) 3079 error = EINVAL; 3080 } 3081 } 3082 if ((m = SLIST_FIRST(&free)) != NULL) { 3083 int cnt; 3084 3085 vmd = VM_DOMAIN(domain); 3086 cnt = 0; 3087 vm_domain_free_lock(vmd); 3088 do { 3089 MPASS(vm_page_domain(m) == domain); 3090 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 3091 vm_phys_free_pages(m, 0); 3092 cnt++; 3093 } while ((m = SLIST_FIRST(&free)) != NULL); 3094 vm_domain_free_unlock(vmd); 3095 vm_domain_freecnt_inc(vmd, cnt); 3096 } 3097 return (error); 3098 } 3099 3100 #define NRUNS 16 3101 3102 #define RUN_INDEX(count, nruns) ((count) % (nruns)) 3103 3104 #define MIN_RECLAIM 8 3105 3106 /* 3107 * vm_page_reclaim_contig: 3108 * 3109 * Reclaim allocated, contiguous physical memory satisfying the specified 3110 * conditions by relocating the virtual pages using that physical memory. 3111 * Returns 0 if reclamation is successful, ERANGE if the specified domain 3112 * can't possibly satisfy the reclamation request, or ENOMEM if not 3113 * currently able to reclaim the requested number of pages. Since 3114 * relocation requires the allocation of physical pages, reclamation may 3115 * fail with ENOMEM due to a shortage of free pages. When reclamation 3116 * fails in this manner, callers are expected to perform vm_wait() before 3117 * retrying a failed allocation operation, e.g., vm_page_alloc_contig(). 3118 * 3119 * The caller must always specify an allocation class through "req". 3120 * 3121 * allocation classes: 3122 * VM_ALLOC_NORMAL normal process request 3123 * VM_ALLOC_SYSTEM system *really* needs a page 3124 * VM_ALLOC_INTERRUPT interrupt time request 3125 * 3126 * The optional allocation flags are ignored. 3127 * 3128 * "npages" must be greater than zero. Both "alignment" and "boundary" 3129 * must be a power of two. 3130 */ 3131 int 3132 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages, 3133 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 3134 int desired_runs) 3135 { 3136 struct vm_domain *vmd; 3137 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs; 3138 u_long count, minalign, reclaimed; 3139 int error, i, min_reclaim, nruns, options, req_class; 3140 int segind, start_segind; 3141 int ret; 3142 3143 KASSERT(npages > 0, ("npages is 0")); 3144 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 3145 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 3146 3147 ret = ENOMEM; 3148 3149 /* 3150 * If the caller wants to reclaim multiple runs, try to allocate 3151 * space to store the runs. If that fails, fall back to the old 3152 * behavior of just reclaiming MIN_RECLAIM pages. 3153 */ 3154 if (desired_runs > 1) 3155 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs), 3156 M_TEMP, M_NOWAIT); 3157 else 3158 m_runs = NULL; 3159 3160 if (m_runs == NULL) { 3161 m_runs = _m_runs; 3162 nruns = NRUNS; 3163 } else { 3164 nruns = NRUNS + desired_runs - 1; 3165 } 3166 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM); 3167 3168 /* 3169 * The caller will attempt an allocation after some runs have been 3170 * reclaimed and added to the vm_phys buddy lists. Due to limitations 3171 * of vm_phys_alloc_contig(), round up the requested length to the next 3172 * power of two or maximum chunk size, and ensure that each run is 3173 * suitably aligned. 3174 */ 3175 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1); 3176 npages = roundup2(npages, minalign); 3177 if (alignment < ptoa(minalign)) 3178 alignment = ptoa(minalign); 3179 3180 /* 3181 * The page daemon is allowed to dig deeper into the free page list. 3182 */ 3183 req_class = req & VM_ALLOC_CLASS_MASK; 3184 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 3185 req_class = VM_ALLOC_SYSTEM; 3186 3187 start_segind = vm_phys_lookup_segind(low); 3188 3189 /* 3190 * Return if the number of free pages cannot satisfy the requested 3191 * allocation. 3192 */ 3193 vmd = VM_DOMAIN(domain); 3194 count = vmd->vmd_free_count; 3195 if (count < npages + vmd->vmd_free_reserved || (count < npages + 3196 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 3197 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 3198 goto done; 3199 3200 /* 3201 * Scan up to three times, relaxing the restrictions ("options") on 3202 * the reclamation of reservations and superpages each time. 3203 */ 3204 for (options = VPSC_NORESERV;;) { 3205 bool phys_range_exists = false; 3206 3207 /* 3208 * Find the highest runs that satisfy the given constraints 3209 * and restrictions, and record them in "m_runs". 3210 */ 3211 count = 0; 3212 segind = start_segind; 3213 while ((segind = vm_phys_find_range(bounds, segind, domain, 3214 npages, low, high)) != -1) { 3215 phys_range_exists = true; 3216 while ((m_run = vm_page_scan_contig(npages, bounds[0], 3217 bounds[1], alignment, boundary, options))) { 3218 bounds[0] = m_run + npages; 3219 m_runs[RUN_INDEX(count, nruns)] = m_run; 3220 count++; 3221 } 3222 segind++; 3223 } 3224 3225 if (!phys_range_exists) { 3226 ret = ERANGE; 3227 goto done; 3228 } 3229 3230 /* 3231 * Reclaim the highest runs in LIFO (descending) order until 3232 * the number of reclaimed pages, "reclaimed", is at least 3233 * "min_reclaim". Reset "reclaimed" each time because each 3234 * reclamation is idempotent, and runs will (likely) recur 3235 * from one scan to the next as restrictions are relaxed. 3236 */ 3237 reclaimed = 0; 3238 for (i = 0; count > 0 && i < nruns; i++) { 3239 count--; 3240 m_run = m_runs[RUN_INDEX(count, nruns)]; 3241 error = vm_page_reclaim_run(req_class, domain, npages, 3242 m_run, high); 3243 if (error == 0) { 3244 reclaimed += npages; 3245 if (reclaimed >= min_reclaim) { 3246 ret = 0; 3247 goto done; 3248 } 3249 } 3250 } 3251 3252 /* 3253 * Either relax the restrictions on the next scan or return if 3254 * the last scan had no restrictions. 3255 */ 3256 if (options == VPSC_NORESERV) 3257 options = VPSC_NOSUPER; 3258 else if (options == VPSC_NOSUPER) 3259 options = VPSC_ANY; 3260 else if (options == VPSC_ANY) { 3261 if (reclaimed != 0) 3262 ret = 0; 3263 goto done; 3264 } 3265 } 3266 done: 3267 if (m_runs != _m_runs) 3268 free(m_runs, M_TEMP); 3269 return (ret); 3270 } 3271 3272 int 3273 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 3274 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 3275 { 3276 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high, 3277 alignment, boundary, 1)); 3278 } 3279 3280 int 3281 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 3282 u_long alignment, vm_paddr_t boundary) 3283 { 3284 struct vm_domainset_iter di; 3285 int domain, ret, status; 3286 3287 ret = ERANGE; 3288 3289 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 3290 do { 3291 status = vm_page_reclaim_contig_domain(domain, req, npages, low, 3292 high, alignment, boundary); 3293 if (status == 0) 3294 return (0); 3295 else if (status == ERANGE) 3296 vm_domainset_iter_ignore(&di, domain); 3297 else { 3298 KASSERT(status == ENOMEM, ("Unrecognized error %d " 3299 "from vm_page_reclaim_contig_domain()", status)); 3300 ret = ENOMEM; 3301 } 3302 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 3303 3304 return (ret); 3305 } 3306 3307 /* 3308 * Set the domain in the appropriate page level domainset. 3309 */ 3310 void 3311 vm_domain_set(struct vm_domain *vmd) 3312 { 3313 3314 mtx_lock(&vm_domainset_lock); 3315 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 3316 vmd->vmd_minset = 1; 3317 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 3318 } 3319 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 3320 vmd->vmd_severeset = 1; 3321 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 3322 } 3323 mtx_unlock(&vm_domainset_lock); 3324 } 3325 3326 /* 3327 * Clear the domain from the appropriate page level domainset. 3328 */ 3329 void 3330 vm_domain_clear(struct vm_domain *vmd) 3331 { 3332 3333 mtx_lock(&vm_domainset_lock); 3334 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 3335 vmd->vmd_minset = 0; 3336 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 3337 if (vm_min_waiters != 0) { 3338 vm_min_waiters = 0; 3339 wakeup(&vm_min_domains); 3340 } 3341 } 3342 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 3343 vmd->vmd_severeset = 0; 3344 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 3345 if (vm_severe_waiters != 0) { 3346 vm_severe_waiters = 0; 3347 wakeup(&vm_severe_domains); 3348 } 3349 } 3350 3351 /* 3352 * If pageout daemon needs pages, then tell it that there are 3353 * some free. 3354 */ 3355 if (vmd->vmd_pageout_pages_needed && 3356 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 3357 wakeup(&vmd->vmd_pageout_pages_needed); 3358 vmd->vmd_pageout_pages_needed = 0; 3359 } 3360 3361 /* See comments in vm_wait_doms(). */ 3362 if (vm_pageproc_waiters) { 3363 vm_pageproc_waiters = 0; 3364 wakeup(&vm_pageproc_waiters); 3365 } 3366 mtx_unlock(&vm_domainset_lock); 3367 } 3368 3369 /* 3370 * Wait for free pages to exceed the min threshold globally. 3371 */ 3372 void 3373 vm_wait_min(void) 3374 { 3375 3376 mtx_lock(&vm_domainset_lock); 3377 while (vm_page_count_min()) { 3378 vm_min_waiters++; 3379 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 3380 } 3381 mtx_unlock(&vm_domainset_lock); 3382 } 3383 3384 /* 3385 * Wait for free pages to exceed the severe threshold globally. 3386 */ 3387 void 3388 vm_wait_severe(void) 3389 { 3390 3391 mtx_lock(&vm_domainset_lock); 3392 while (vm_page_count_severe()) { 3393 vm_severe_waiters++; 3394 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 3395 "vmwait", 0); 3396 } 3397 mtx_unlock(&vm_domainset_lock); 3398 } 3399 3400 u_int 3401 vm_wait_count(void) 3402 { 3403 3404 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 3405 } 3406 3407 int 3408 vm_wait_doms(const domainset_t *wdoms, int mflags) 3409 { 3410 int error; 3411 3412 error = 0; 3413 3414 /* 3415 * We use racey wakeup synchronization to avoid expensive global 3416 * locking for the pageproc when sleeping with a non-specific vm_wait. 3417 * To handle this, we only sleep for one tick in this instance. It 3418 * is expected that most allocations for the pageproc will come from 3419 * kmem or vm_page_grab* which will use the more specific and 3420 * race-free vm_wait_domain(). 3421 */ 3422 if (curproc == pageproc) { 3423 mtx_lock(&vm_domainset_lock); 3424 vm_pageproc_waiters++; 3425 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock, 3426 PVM | PDROP | mflags, "pageprocwait", 1); 3427 } else { 3428 /* 3429 * XXX Ideally we would wait only until the allocation could 3430 * be satisfied. This condition can cause new allocators to 3431 * consume all freed pages while old allocators wait. 3432 */ 3433 mtx_lock(&vm_domainset_lock); 3434 if (vm_page_count_min_set(wdoms)) { 3435 if (pageproc == NULL) 3436 panic("vm_wait in early boot"); 3437 vm_min_waiters++; 3438 error = msleep(&vm_min_domains, &vm_domainset_lock, 3439 PVM | PDROP | mflags, "vmwait", 0); 3440 } else 3441 mtx_unlock(&vm_domainset_lock); 3442 } 3443 return (error); 3444 } 3445 3446 /* 3447 * vm_wait_domain: 3448 * 3449 * Sleep until free pages are available for allocation. 3450 * - Called in various places after failed memory allocations. 3451 */ 3452 void 3453 vm_wait_domain(int domain) 3454 { 3455 struct vm_domain *vmd; 3456 domainset_t wdom; 3457 3458 vmd = VM_DOMAIN(domain); 3459 vm_domain_free_assert_unlocked(vmd); 3460 3461 if (curproc == pageproc) { 3462 mtx_lock(&vm_domainset_lock); 3463 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 3464 vmd->vmd_pageout_pages_needed = 1; 3465 msleep(&vmd->vmd_pageout_pages_needed, 3466 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 3467 } else 3468 mtx_unlock(&vm_domainset_lock); 3469 } else { 3470 DOMAINSET_ZERO(&wdom); 3471 DOMAINSET_SET(vmd->vmd_domain, &wdom); 3472 vm_wait_doms(&wdom, 0); 3473 } 3474 } 3475 3476 static int 3477 vm_wait_flags(vm_object_t obj, int mflags) 3478 { 3479 struct domainset *d; 3480 3481 d = NULL; 3482 3483 /* 3484 * Carefully fetch pointers only once: the struct domainset 3485 * itself is ummutable but the pointer might change. 3486 */ 3487 if (obj != NULL) 3488 d = obj->domain.dr_policy; 3489 if (d == NULL) 3490 d = curthread->td_domain.dr_policy; 3491 3492 return (vm_wait_doms(&d->ds_mask, mflags)); 3493 } 3494 3495 /* 3496 * vm_wait: 3497 * 3498 * Sleep until free pages are available for allocation in the 3499 * affinity domains of the obj. If obj is NULL, the domain set 3500 * for the calling thread is used. 3501 * Called in various places after failed memory allocations. 3502 */ 3503 void 3504 vm_wait(vm_object_t obj) 3505 { 3506 (void)vm_wait_flags(obj, 0); 3507 } 3508 3509 int 3510 vm_wait_intr(vm_object_t obj) 3511 { 3512 return (vm_wait_flags(obj, PCATCH)); 3513 } 3514 3515 /* 3516 * vm_domain_alloc_fail: 3517 * 3518 * Called when a page allocation function fails. Informs the 3519 * pagedaemon and performs the requested wait. Requires the 3520 * domain_free and object lock on entry. Returns with the 3521 * object lock held and free lock released. Returns an error when 3522 * retry is necessary. 3523 * 3524 */ 3525 static int 3526 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3527 { 3528 3529 vm_domain_free_assert_unlocked(vmd); 3530 3531 atomic_add_int(&vmd->vmd_pageout_deficit, 3532 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3533 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3534 if (object != NULL) 3535 VM_OBJECT_WUNLOCK(object); 3536 vm_wait_domain(vmd->vmd_domain); 3537 if (object != NULL) 3538 VM_OBJECT_WLOCK(object); 3539 if (req & VM_ALLOC_WAITOK) 3540 return (EAGAIN); 3541 } 3542 3543 return (0); 3544 } 3545 3546 /* 3547 * vm_waitpfault: 3548 * 3549 * Sleep until free pages are available for allocation. 3550 * - Called only in vm_fault so that processes page faulting 3551 * can be easily tracked. 3552 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3553 * processes will be able to grab memory first. Do not change 3554 * this balance without careful testing first. 3555 */ 3556 void 3557 vm_waitpfault(struct domainset *dset, int timo) 3558 { 3559 3560 /* 3561 * XXX Ideally we would wait only until the allocation could 3562 * be satisfied. This condition can cause new allocators to 3563 * consume all freed pages while old allocators wait. 3564 */ 3565 mtx_lock(&vm_domainset_lock); 3566 if (vm_page_count_min_set(&dset->ds_mask)) { 3567 vm_min_waiters++; 3568 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3569 "pfault", timo); 3570 } else 3571 mtx_unlock(&vm_domainset_lock); 3572 } 3573 3574 static struct vm_pagequeue * 3575 _vm_page_pagequeue(vm_page_t m, uint8_t queue) 3576 { 3577 3578 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); 3579 } 3580 3581 #ifdef INVARIANTS 3582 static struct vm_pagequeue * 3583 vm_page_pagequeue(vm_page_t m) 3584 { 3585 3586 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue)); 3587 } 3588 #endif 3589 3590 static __always_inline bool 3591 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3592 { 3593 vm_page_astate_t tmp; 3594 3595 tmp = *old; 3596 do { 3597 if (__predict_true(vm_page_astate_fcmpset(m, old, new))) 3598 return (true); 3599 counter_u64_add(pqstate_commit_retries, 1); 3600 } while (old->_bits == tmp._bits); 3601 3602 return (false); 3603 } 3604 3605 /* 3606 * Do the work of committing a queue state update that moves the page out of 3607 * its current queue. 3608 */ 3609 static bool 3610 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m, 3611 vm_page_astate_t *old, vm_page_astate_t new) 3612 { 3613 vm_page_t next; 3614 3615 vm_pagequeue_assert_locked(pq); 3616 KASSERT(vm_page_pagequeue(m) == pq, 3617 ("%s: queue %p does not match page %p", __func__, pq, m)); 3618 KASSERT(old->queue != PQ_NONE && new.queue != old->queue, 3619 ("%s: invalid queue indices %d %d", 3620 __func__, old->queue, new.queue)); 3621 3622 /* 3623 * Once the queue index of the page changes there is nothing 3624 * synchronizing with further updates to the page's physical 3625 * queue state. Therefore we must speculatively remove the page 3626 * from the queue now and be prepared to roll back if the queue 3627 * state update fails. If the page is not physically enqueued then 3628 * we just update its queue index. 3629 */ 3630 if ((old->flags & PGA_ENQUEUED) != 0) { 3631 new.flags &= ~PGA_ENQUEUED; 3632 next = TAILQ_NEXT(m, plinks.q); 3633 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3634 vm_pagequeue_cnt_dec(pq); 3635 if (!vm_page_pqstate_fcmpset(m, old, new)) { 3636 if (next == NULL) 3637 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3638 else 3639 TAILQ_INSERT_BEFORE(next, m, plinks.q); 3640 vm_pagequeue_cnt_inc(pq); 3641 return (false); 3642 } else { 3643 return (true); 3644 } 3645 } else { 3646 return (vm_page_pqstate_fcmpset(m, old, new)); 3647 } 3648 } 3649 3650 static bool 3651 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old, 3652 vm_page_astate_t new) 3653 { 3654 struct vm_pagequeue *pq; 3655 vm_page_astate_t as; 3656 bool ret; 3657 3658 pq = _vm_page_pagequeue(m, old->queue); 3659 3660 /* 3661 * The queue field and PGA_ENQUEUED flag are stable only so long as the 3662 * corresponding page queue lock is held. 3663 */ 3664 vm_pagequeue_lock(pq); 3665 as = vm_page_astate_load(m); 3666 if (__predict_false(as._bits != old->_bits)) { 3667 *old = as; 3668 ret = false; 3669 } else { 3670 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new); 3671 } 3672 vm_pagequeue_unlock(pq); 3673 return (ret); 3674 } 3675 3676 /* 3677 * Commit a queue state update that enqueues or requeues a page. 3678 */ 3679 static bool 3680 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m, 3681 vm_page_astate_t *old, vm_page_astate_t new) 3682 { 3683 struct vm_domain *vmd; 3684 3685 vm_pagequeue_assert_locked(pq); 3686 KASSERT(old->queue != PQ_NONE && new.queue == old->queue, 3687 ("%s: invalid queue indices %d %d", 3688 __func__, old->queue, new.queue)); 3689 3690 new.flags |= PGA_ENQUEUED; 3691 if (!vm_page_pqstate_fcmpset(m, old, new)) 3692 return (false); 3693 3694 if ((old->flags & PGA_ENQUEUED) != 0) 3695 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3696 else 3697 vm_pagequeue_cnt_inc(pq); 3698 3699 /* 3700 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if 3701 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be 3702 * applied, even if it was set first. 3703 */ 3704 if ((old->flags & PGA_REQUEUE_HEAD) != 0) { 3705 vmd = vm_pagequeue_domain(m); 3706 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE], 3707 ("%s: invalid page queue for page %p", __func__, m)); 3708 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3709 } else { 3710 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3711 } 3712 return (true); 3713 } 3714 3715 /* 3716 * Commit a queue state update that encodes a request for a deferred queue 3717 * operation. 3718 */ 3719 static bool 3720 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old, 3721 vm_page_astate_t new) 3722 { 3723 3724 KASSERT(old->queue == new.queue || new.queue != PQ_NONE, 3725 ("%s: invalid state, queue %d flags %x", 3726 __func__, new.queue, new.flags)); 3727 3728 if (old->_bits != new._bits && 3729 !vm_page_pqstate_fcmpset(m, old, new)) 3730 return (false); 3731 vm_page_pqbatch_submit(m, new.queue); 3732 return (true); 3733 } 3734 3735 /* 3736 * A generic queue state update function. This handles more cases than the 3737 * specialized functions above. 3738 */ 3739 bool 3740 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3741 { 3742 3743 if (old->_bits == new._bits) 3744 return (true); 3745 3746 if (old->queue != PQ_NONE && new.queue != old->queue) { 3747 if (!vm_page_pqstate_commit_dequeue(m, old, new)) 3748 return (false); 3749 if (new.queue != PQ_NONE) 3750 vm_page_pqbatch_submit(m, new.queue); 3751 } else { 3752 if (!vm_page_pqstate_fcmpset(m, old, new)) 3753 return (false); 3754 if (new.queue != PQ_NONE && 3755 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0) 3756 vm_page_pqbatch_submit(m, new.queue); 3757 } 3758 return (true); 3759 } 3760 3761 /* 3762 * Apply deferred queue state updates to a page. 3763 */ 3764 static inline void 3765 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue) 3766 { 3767 vm_page_astate_t new, old; 3768 3769 CRITICAL_ASSERT(curthread); 3770 vm_pagequeue_assert_locked(pq); 3771 KASSERT(queue < PQ_COUNT, 3772 ("%s: invalid queue index %d", __func__, queue)); 3773 KASSERT(pq == _vm_page_pagequeue(m, queue), 3774 ("%s: page %p does not belong to queue %p", __func__, m, pq)); 3775 3776 for (old = vm_page_astate_load(m);;) { 3777 if (__predict_false(old.queue != queue || 3778 (old.flags & PGA_QUEUE_OP_MASK) == 0)) { 3779 counter_u64_add(queue_nops, 1); 3780 break; 3781 } 3782 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3783 ("%s: page %p is unmanaged", __func__, m)); 3784 3785 new = old; 3786 if ((old.flags & PGA_DEQUEUE) != 0) { 3787 new.flags &= ~PGA_QUEUE_OP_MASK; 3788 new.queue = PQ_NONE; 3789 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq, 3790 m, &old, new))) { 3791 counter_u64_add(queue_ops, 1); 3792 break; 3793 } 3794 } else { 3795 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD); 3796 if (__predict_true(_vm_page_pqstate_commit_requeue(pq, 3797 m, &old, new))) { 3798 counter_u64_add(queue_ops, 1); 3799 break; 3800 } 3801 } 3802 } 3803 } 3804 3805 static void 3806 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3807 uint8_t queue) 3808 { 3809 int i; 3810 3811 for (i = 0; i < bq->bq_cnt; i++) 3812 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue); 3813 vm_batchqueue_init(bq); 3814 } 3815 3816 /* 3817 * vm_page_pqbatch_submit: [ internal use only ] 3818 * 3819 * Enqueue a page in the specified page queue's batched work queue. 3820 * The caller must have encoded the requested operation in the page 3821 * structure's a.flags field. 3822 */ 3823 void 3824 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) 3825 { 3826 struct vm_batchqueue *bq; 3827 struct vm_pagequeue *pq; 3828 int domain, slots_remaining; 3829 3830 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 3831 3832 domain = vm_page_domain(m); 3833 critical_enter(); 3834 bq = DPCPU_PTR(pqbatch[domain][queue]); 3835 slots_remaining = vm_batchqueue_insert(bq, m); 3836 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) { 3837 /* keep building the bq */ 3838 critical_exit(); 3839 return; 3840 } else if (slots_remaining > 0 ) { 3841 /* Try to process the bq if we can get the lock */ 3842 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 3843 if (vm_pagequeue_trylock(pq)) { 3844 vm_pqbatch_process(pq, bq, queue); 3845 vm_pagequeue_unlock(pq); 3846 } 3847 critical_exit(); 3848 return; 3849 } 3850 critical_exit(); 3851 3852 /* if we make it here, the bq is full so wait for the lock */ 3853 3854 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 3855 vm_pagequeue_lock(pq); 3856 critical_enter(); 3857 bq = DPCPU_PTR(pqbatch[domain][queue]); 3858 vm_pqbatch_process(pq, bq, queue); 3859 vm_pqbatch_process_page(pq, m, queue); 3860 vm_pagequeue_unlock(pq); 3861 critical_exit(); 3862 } 3863 3864 /* 3865 * vm_page_pqbatch_drain: [ internal use only ] 3866 * 3867 * Force all per-CPU page queue batch queues to be drained. This is 3868 * intended for use in severe memory shortages, to ensure that pages 3869 * do not remain stuck in the batch queues. 3870 */ 3871 void 3872 vm_page_pqbatch_drain(void) 3873 { 3874 struct thread *td; 3875 struct vm_domain *vmd; 3876 struct vm_pagequeue *pq; 3877 int cpu, domain, queue; 3878 3879 td = curthread; 3880 CPU_FOREACH(cpu) { 3881 thread_lock(td); 3882 sched_bind(td, cpu); 3883 thread_unlock(td); 3884 3885 for (domain = 0; domain < vm_ndomains; domain++) { 3886 vmd = VM_DOMAIN(domain); 3887 for (queue = 0; queue < PQ_COUNT; queue++) { 3888 pq = &vmd->vmd_pagequeues[queue]; 3889 vm_pagequeue_lock(pq); 3890 critical_enter(); 3891 vm_pqbatch_process(pq, 3892 DPCPU_PTR(pqbatch[domain][queue]), queue); 3893 critical_exit(); 3894 vm_pagequeue_unlock(pq); 3895 } 3896 } 3897 } 3898 thread_lock(td); 3899 sched_unbind(td); 3900 thread_unlock(td); 3901 } 3902 3903 /* 3904 * vm_page_dequeue_deferred: [ internal use only ] 3905 * 3906 * Request removal of the given page from its current page 3907 * queue. Physical removal from the queue may be deferred 3908 * indefinitely. 3909 */ 3910 void 3911 vm_page_dequeue_deferred(vm_page_t m) 3912 { 3913 vm_page_astate_t new, old; 3914 3915 old = vm_page_astate_load(m); 3916 do { 3917 if (old.queue == PQ_NONE) { 3918 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3919 ("%s: page %p has unexpected queue state", 3920 __func__, m)); 3921 break; 3922 } 3923 new = old; 3924 new.flags |= PGA_DEQUEUE; 3925 } while (!vm_page_pqstate_commit_request(m, &old, new)); 3926 } 3927 3928 /* 3929 * vm_page_dequeue: 3930 * 3931 * Remove the page from whichever page queue it's in, if any, before 3932 * returning. 3933 */ 3934 void 3935 vm_page_dequeue(vm_page_t m) 3936 { 3937 vm_page_astate_t new, old; 3938 3939 old = vm_page_astate_load(m); 3940 do { 3941 if (old.queue == PQ_NONE) { 3942 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3943 ("%s: page %p has unexpected queue state", 3944 __func__, m)); 3945 break; 3946 } 3947 new = old; 3948 new.flags &= ~PGA_QUEUE_OP_MASK; 3949 new.queue = PQ_NONE; 3950 } while (!vm_page_pqstate_commit_dequeue(m, &old, new)); 3951 3952 } 3953 3954 /* 3955 * Schedule the given page for insertion into the specified page queue. 3956 * Physical insertion of the page may be deferred indefinitely. 3957 */ 3958 static void 3959 vm_page_enqueue(vm_page_t m, uint8_t queue) 3960 { 3961 3962 KASSERT(m->a.queue == PQ_NONE && 3963 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 3964 ("%s: page %p is already enqueued", __func__, m)); 3965 KASSERT(m->ref_count > 0, 3966 ("%s: page %p does not carry any references", __func__, m)); 3967 3968 m->a.queue = queue; 3969 if ((m->a.flags & PGA_REQUEUE) == 0) 3970 vm_page_aflag_set(m, PGA_REQUEUE); 3971 vm_page_pqbatch_submit(m, queue); 3972 } 3973 3974 /* 3975 * vm_page_free_prep: 3976 * 3977 * Prepares the given page to be put on the free list, 3978 * disassociating it from any VM object. The caller may return 3979 * the page to the free list only if this function returns true. 3980 * 3981 * The object, if it exists, must be locked, and then the page must 3982 * be xbusy. Otherwise the page must be not busied. A managed 3983 * page must be unmapped. 3984 */ 3985 static bool 3986 vm_page_free_prep(vm_page_t m) 3987 { 3988 3989 /* 3990 * Synchronize with threads that have dropped a reference to this 3991 * page. 3992 */ 3993 atomic_thread_fence_acq(); 3994 3995 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 3996 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 3997 uint64_t *p; 3998 int i; 3999 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 4000 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 4001 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 4002 m, i, (uintmax_t)*p)); 4003 } 4004 #endif 4005 KASSERT((m->flags & PG_NOFREE) == 0, 4006 ("%s: attempting to free a PG_NOFREE page", __func__)); 4007 if ((m->oflags & VPO_UNMANAGED) == 0) { 4008 KASSERT(!pmap_page_is_mapped(m), 4009 ("vm_page_free_prep: freeing mapped page %p", m)); 4010 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0, 4011 ("vm_page_free_prep: mapping flags set in page %p", m)); 4012 } else { 4013 KASSERT(m->a.queue == PQ_NONE, 4014 ("vm_page_free_prep: unmanaged page %p is queued", m)); 4015 } 4016 VM_CNT_INC(v_tfree); 4017 4018 if (m->object != NULL) { 4019 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) == 4020 ((m->object->flags & OBJ_UNMANAGED) != 0), 4021 ("vm_page_free_prep: managed flag mismatch for page %p", 4022 m)); 4023 vm_page_assert_xbusied(m); 4024 4025 /* 4026 * The object reference can be released without an atomic 4027 * operation. 4028 */ 4029 KASSERT((m->flags & PG_FICTITIOUS) != 0 || 4030 m->ref_count == VPRC_OBJREF, 4031 ("vm_page_free_prep: page %p has unexpected ref_count %u", 4032 m, m->ref_count)); 4033 vm_page_object_remove(m); 4034 m->ref_count -= VPRC_OBJREF; 4035 } else 4036 vm_page_assert_unbusied(m); 4037 4038 vm_page_busy_free(m); 4039 4040 /* 4041 * If fictitious remove object association and 4042 * return. 4043 */ 4044 if ((m->flags & PG_FICTITIOUS) != 0) { 4045 KASSERT(m->ref_count == 1, 4046 ("fictitious page %p is referenced", m)); 4047 KASSERT(m->a.queue == PQ_NONE, 4048 ("fictitious page %p is queued", m)); 4049 return (false); 4050 } 4051 4052 /* 4053 * Pages need not be dequeued before they are returned to the physical 4054 * memory allocator, but they must at least be marked for a deferred 4055 * dequeue. 4056 */ 4057 if ((m->oflags & VPO_UNMANAGED) == 0) 4058 vm_page_dequeue_deferred(m); 4059 4060 m->valid = 0; 4061 vm_page_undirty(m); 4062 4063 if (m->ref_count != 0) 4064 panic("vm_page_free_prep: page %p has references", m); 4065 4066 /* 4067 * Restore the default memory attribute to the page. 4068 */ 4069 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 4070 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 4071 4072 #if VM_NRESERVLEVEL > 0 4073 /* 4074 * Determine whether the page belongs to a reservation. If the page was 4075 * allocated from a per-CPU cache, it cannot belong to a reservation, so 4076 * as an optimization, we avoid the check in that case. 4077 */ 4078 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 4079 return (false); 4080 #endif 4081 4082 return (true); 4083 } 4084 4085 /* 4086 * vm_page_free_toq: 4087 * 4088 * Returns the given page to the free list, disassociating it 4089 * from any VM object. 4090 * 4091 * The object must be locked. The page must be exclusively busied if it 4092 * belongs to an object. 4093 */ 4094 static void 4095 vm_page_free_toq(vm_page_t m) 4096 { 4097 struct vm_domain *vmd; 4098 uma_zone_t zone; 4099 4100 if (!vm_page_free_prep(m)) 4101 return; 4102 4103 vmd = vm_pagequeue_domain(m); 4104 zone = vmd->vmd_pgcache[m->pool].zone; 4105 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 4106 uma_zfree(zone, m); 4107 return; 4108 } 4109 vm_domain_free_lock(vmd); 4110 vm_phys_free_pages(m, 0); 4111 vm_domain_free_unlock(vmd); 4112 vm_domain_freecnt_inc(vmd, 1); 4113 } 4114 4115 /* 4116 * vm_page_free_pages_toq: 4117 * 4118 * Returns a list of pages to the free list, disassociating it 4119 * from any VM object. In other words, this is equivalent to 4120 * calling vm_page_free_toq() for each page of a list of VM objects. 4121 */ 4122 void 4123 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 4124 { 4125 vm_page_t m; 4126 int count; 4127 4128 if (SLIST_EMPTY(free)) 4129 return; 4130 4131 count = 0; 4132 while ((m = SLIST_FIRST(free)) != NULL) { 4133 count++; 4134 SLIST_REMOVE_HEAD(free, plinks.s.ss); 4135 vm_page_free_toq(m); 4136 } 4137 4138 if (update_wire_count) 4139 vm_wire_sub(count); 4140 } 4141 4142 /* 4143 * Mark this page as wired down. For managed pages, this prevents reclamation 4144 * by the page daemon, or when the containing object, if any, is destroyed. 4145 */ 4146 void 4147 vm_page_wire(vm_page_t m) 4148 { 4149 u_int old; 4150 4151 #ifdef INVARIANTS 4152 if (m->object != NULL && !vm_page_busied(m) && 4153 !vm_object_busied(m->object)) 4154 VM_OBJECT_ASSERT_LOCKED(m->object); 4155 #endif 4156 KASSERT((m->flags & PG_FICTITIOUS) == 0 || 4157 VPRC_WIRE_COUNT(m->ref_count) >= 1, 4158 ("vm_page_wire: fictitious page %p has zero wirings", m)); 4159 4160 old = atomic_fetchadd_int(&m->ref_count, 1); 4161 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX, 4162 ("vm_page_wire: counter overflow for page %p", m)); 4163 if (VPRC_WIRE_COUNT(old) == 0) { 4164 if ((m->oflags & VPO_UNMANAGED) == 0) 4165 vm_page_aflag_set(m, PGA_DEQUEUE); 4166 vm_wire_add(1); 4167 } 4168 } 4169 4170 /* 4171 * Attempt to wire a mapped page following a pmap lookup of that page. 4172 * This may fail if a thread is concurrently tearing down mappings of the page. 4173 * The transient failure is acceptable because it translates to the 4174 * failure of the caller pmap_extract_and_hold(), which should be then 4175 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages(). 4176 */ 4177 bool 4178 vm_page_wire_mapped(vm_page_t m) 4179 { 4180 u_int old; 4181 4182 old = m->ref_count; 4183 do { 4184 KASSERT(old > 0, 4185 ("vm_page_wire_mapped: wiring unreferenced page %p", m)); 4186 if ((old & VPRC_BLOCKED) != 0) 4187 return (false); 4188 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1)); 4189 4190 if (VPRC_WIRE_COUNT(old) == 0) { 4191 if ((m->oflags & VPO_UNMANAGED) == 0) 4192 vm_page_aflag_set(m, PGA_DEQUEUE); 4193 vm_wire_add(1); 4194 } 4195 return (true); 4196 } 4197 4198 /* 4199 * Release a wiring reference to a managed page. If the page still belongs to 4200 * an object, update its position in the page queues to reflect the reference. 4201 * If the wiring was the last reference to the page, free the page. 4202 */ 4203 static void 4204 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse) 4205 { 4206 u_int old; 4207 4208 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4209 ("%s: page %p is unmanaged", __func__, m)); 4210 4211 /* 4212 * Update LRU state before releasing the wiring reference. 4213 * Use a release store when updating the reference count to 4214 * synchronize with vm_page_free_prep(). 4215 */ 4216 old = m->ref_count; 4217 do { 4218 KASSERT(VPRC_WIRE_COUNT(old) > 0, 4219 ("vm_page_unwire: wire count underflow for page %p", m)); 4220 4221 if (old > VPRC_OBJREF + 1) { 4222 /* 4223 * The page has at least one other wiring reference. An 4224 * earlier iteration of this loop may have called 4225 * vm_page_release_toq() and cleared PGA_DEQUEUE, so 4226 * re-set it if necessary. 4227 */ 4228 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0) 4229 vm_page_aflag_set(m, PGA_DEQUEUE); 4230 } else if (old == VPRC_OBJREF + 1) { 4231 /* 4232 * This is the last wiring. Clear PGA_DEQUEUE and 4233 * update the page's queue state to reflect the 4234 * reference. If the page does not belong to an object 4235 * (i.e., the VPRC_OBJREF bit is clear), we only need to 4236 * clear leftover queue state. 4237 */ 4238 vm_page_release_toq(m, nqueue, noreuse); 4239 } else if (old == 1) { 4240 vm_page_aflag_clear(m, PGA_DEQUEUE); 4241 } 4242 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1)); 4243 4244 if (VPRC_WIRE_COUNT(old) == 1) { 4245 vm_wire_sub(1); 4246 if (old == 1) 4247 vm_page_free(m); 4248 } 4249 } 4250 4251 /* 4252 * Release one wiring of the specified page, potentially allowing it to be 4253 * paged out. 4254 * 4255 * Only managed pages belonging to an object can be paged out. If the number 4256 * of wirings transitions to zero and the page is eligible for page out, then 4257 * the page is added to the specified paging queue. If the released wiring 4258 * represented the last reference to the page, the page is freed. 4259 */ 4260 void 4261 vm_page_unwire(vm_page_t m, uint8_t nqueue) 4262 { 4263 4264 KASSERT(nqueue < PQ_COUNT, 4265 ("vm_page_unwire: invalid queue %u request for page %p", 4266 nqueue, m)); 4267 4268 if ((m->oflags & VPO_UNMANAGED) != 0) { 4269 if (vm_page_unwire_noq(m) && m->ref_count == 0) 4270 vm_page_free(m); 4271 return; 4272 } 4273 vm_page_unwire_managed(m, nqueue, false); 4274 } 4275 4276 /* 4277 * Unwire a page without (re-)inserting it into a page queue. It is up 4278 * to the caller to enqueue, requeue, or free the page as appropriate. 4279 * In most cases involving managed pages, vm_page_unwire() should be used 4280 * instead. 4281 */ 4282 bool 4283 vm_page_unwire_noq(vm_page_t m) 4284 { 4285 u_int old; 4286 4287 old = vm_page_drop(m, 1); 4288 KASSERT(VPRC_WIRE_COUNT(old) != 0, 4289 ("%s: counter underflow for page %p", __func__, m)); 4290 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1, 4291 ("%s: missing ref on fictitious page %p", __func__, m)); 4292 4293 if (VPRC_WIRE_COUNT(old) > 1) 4294 return (false); 4295 if ((m->oflags & VPO_UNMANAGED) == 0) 4296 vm_page_aflag_clear(m, PGA_DEQUEUE); 4297 vm_wire_sub(1); 4298 return (true); 4299 } 4300 4301 /* 4302 * Ensure that the page ends up in the specified page queue. If the page is 4303 * active or being moved to the active queue, ensure that its act_count is 4304 * at least ACT_INIT but do not otherwise mess with it. 4305 */ 4306 static __always_inline void 4307 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag) 4308 { 4309 vm_page_astate_t old, new; 4310 4311 KASSERT(m->ref_count > 0, 4312 ("%s: page %p does not carry any references", __func__, m)); 4313 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD, 4314 ("%s: invalid flags %x", __func__, nflag)); 4315 4316 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) 4317 return; 4318 4319 old = vm_page_astate_load(m); 4320 do { 4321 if ((old.flags & PGA_DEQUEUE) != 0) 4322 break; 4323 new = old; 4324 new.flags &= ~PGA_QUEUE_OP_MASK; 4325 if (nqueue == PQ_ACTIVE) 4326 new.act_count = max(old.act_count, ACT_INIT); 4327 if (old.queue == nqueue) { 4328 /* 4329 * There is no need to requeue pages already in the 4330 * active queue. 4331 */ 4332 if (nqueue != PQ_ACTIVE || 4333 (old.flags & PGA_ENQUEUED) == 0) 4334 new.flags |= nflag; 4335 } else { 4336 new.flags |= nflag; 4337 new.queue = nqueue; 4338 } 4339 } while (!vm_page_pqstate_commit(m, &old, new)); 4340 } 4341 4342 /* 4343 * Put the specified page on the active list (if appropriate). 4344 */ 4345 void 4346 vm_page_activate(vm_page_t m) 4347 { 4348 4349 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE); 4350 } 4351 4352 /* 4353 * Move the specified page to the tail of the inactive queue, or requeue 4354 * the page if it is already in the inactive queue. 4355 */ 4356 void 4357 vm_page_deactivate(vm_page_t m) 4358 { 4359 4360 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE); 4361 } 4362 4363 void 4364 vm_page_deactivate_noreuse(vm_page_t m) 4365 { 4366 4367 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD); 4368 } 4369 4370 /* 4371 * Put a page in the laundry, or requeue it if it is already there. 4372 */ 4373 void 4374 vm_page_launder(vm_page_t m) 4375 { 4376 4377 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE); 4378 } 4379 4380 /* 4381 * Put a page in the PQ_UNSWAPPABLE holding queue. 4382 */ 4383 void 4384 vm_page_unswappable(vm_page_t m) 4385 { 4386 4387 VM_OBJECT_ASSERT_LOCKED(m->object); 4388 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4389 ("page %p already unswappable", m)); 4390 4391 vm_page_dequeue(m); 4392 vm_page_enqueue(m, PQ_UNSWAPPABLE); 4393 } 4394 4395 /* 4396 * Release a page back to the page queues in preparation for unwiring. 4397 */ 4398 static void 4399 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse) 4400 { 4401 vm_page_astate_t old, new; 4402 uint16_t nflag; 4403 4404 /* 4405 * Use a check of the valid bits to determine whether we should 4406 * accelerate reclamation of the page. The object lock might not be 4407 * held here, in which case the check is racy. At worst we will either 4408 * accelerate reclamation of a valid page and violate LRU, or 4409 * unnecessarily defer reclamation of an invalid page. 4410 * 4411 * If we were asked to not cache the page, place it near the head of the 4412 * inactive queue so that is reclaimed sooner. 4413 */ 4414 if (noreuse || vm_page_none_valid(m)) { 4415 nqueue = PQ_INACTIVE; 4416 nflag = PGA_REQUEUE_HEAD; 4417 } else { 4418 nflag = PGA_REQUEUE; 4419 } 4420 4421 old = vm_page_astate_load(m); 4422 do { 4423 new = old; 4424 4425 /* 4426 * If the page is already in the active queue and we are not 4427 * trying to accelerate reclamation, simply mark it as 4428 * referenced and avoid any queue operations. 4429 */ 4430 new.flags &= ~PGA_QUEUE_OP_MASK; 4431 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE && 4432 (old.flags & PGA_ENQUEUED) != 0) 4433 new.flags |= PGA_REFERENCED; 4434 else { 4435 new.flags |= nflag; 4436 new.queue = nqueue; 4437 } 4438 } while (!vm_page_pqstate_commit(m, &old, new)); 4439 } 4440 4441 /* 4442 * Unwire a page and either attempt to free it or re-add it to the page queues. 4443 */ 4444 void 4445 vm_page_release(vm_page_t m, int flags) 4446 { 4447 vm_object_t object; 4448 4449 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4450 ("vm_page_release: page %p is unmanaged", m)); 4451 4452 if ((flags & VPR_TRYFREE) != 0) { 4453 for (;;) { 4454 object = atomic_load_ptr(&m->object); 4455 if (object == NULL) 4456 break; 4457 /* Depends on type-stability. */ 4458 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) 4459 break; 4460 if (object == m->object) { 4461 vm_page_release_locked(m, flags); 4462 VM_OBJECT_WUNLOCK(object); 4463 return; 4464 } 4465 VM_OBJECT_WUNLOCK(object); 4466 } 4467 } 4468 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0); 4469 } 4470 4471 /* See vm_page_release(). */ 4472 void 4473 vm_page_release_locked(vm_page_t m, int flags) 4474 { 4475 4476 VM_OBJECT_ASSERT_WLOCKED(m->object); 4477 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4478 ("vm_page_release_locked: page %p is unmanaged", m)); 4479 4480 if (vm_page_unwire_noq(m)) { 4481 if ((flags & VPR_TRYFREE) != 0 && 4482 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 4483 m->dirty == 0 && vm_page_tryxbusy(m)) { 4484 /* 4485 * An unlocked lookup may have wired the page before the 4486 * busy lock was acquired, in which case the page must 4487 * not be freed. 4488 */ 4489 if (__predict_true(!vm_page_wired(m))) { 4490 vm_page_free(m); 4491 return; 4492 } 4493 vm_page_xunbusy(m); 4494 } else { 4495 vm_page_release_toq(m, PQ_INACTIVE, flags != 0); 4496 } 4497 } 4498 } 4499 4500 static bool 4501 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t)) 4502 { 4503 u_int old; 4504 4505 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0, 4506 ("vm_page_try_blocked_op: page %p has no object", m)); 4507 KASSERT(vm_page_busied(m), 4508 ("vm_page_try_blocked_op: page %p is not busy", m)); 4509 VM_OBJECT_ASSERT_LOCKED(m->object); 4510 4511 old = m->ref_count; 4512 do { 4513 KASSERT(old != 0, 4514 ("vm_page_try_blocked_op: page %p has no references", m)); 4515 if (VPRC_WIRE_COUNT(old) != 0) 4516 return (false); 4517 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED)); 4518 4519 (op)(m); 4520 4521 /* 4522 * If the object is read-locked, new wirings may be created via an 4523 * object lookup. 4524 */ 4525 old = vm_page_drop(m, VPRC_BLOCKED); 4526 KASSERT(!VM_OBJECT_WOWNED(m->object) || 4527 old == (VPRC_BLOCKED | VPRC_OBJREF), 4528 ("vm_page_try_blocked_op: unexpected refcount value %u for %p", 4529 old, m)); 4530 return (true); 4531 } 4532 4533 /* 4534 * Atomically check for wirings and remove all mappings of the page. 4535 */ 4536 bool 4537 vm_page_try_remove_all(vm_page_t m) 4538 { 4539 4540 return (vm_page_try_blocked_op(m, pmap_remove_all)); 4541 } 4542 4543 /* 4544 * Atomically check for wirings and remove all writeable mappings of the page. 4545 */ 4546 bool 4547 vm_page_try_remove_write(vm_page_t m) 4548 { 4549 4550 return (vm_page_try_blocked_op(m, pmap_remove_write)); 4551 } 4552 4553 /* 4554 * vm_page_advise 4555 * 4556 * Apply the specified advice to the given page. 4557 */ 4558 void 4559 vm_page_advise(vm_page_t m, int advice) 4560 { 4561 4562 VM_OBJECT_ASSERT_WLOCKED(m->object); 4563 vm_page_assert_xbusied(m); 4564 4565 if (advice == MADV_FREE) 4566 /* 4567 * Mark the page clean. This will allow the page to be freed 4568 * without first paging it out. MADV_FREE pages are often 4569 * quickly reused by malloc(3), so we do not do anything that 4570 * would result in a page fault on a later access. 4571 */ 4572 vm_page_undirty(m); 4573 else if (advice != MADV_DONTNEED) { 4574 if (advice == MADV_WILLNEED) 4575 vm_page_activate(m); 4576 return; 4577 } 4578 4579 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 4580 vm_page_dirty(m); 4581 4582 /* 4583 * Clear any references to the page. Otherwise, the page daemon will 4584 * immediately reactivate the page. 4585 */ 4586 vm_page_aflag_clear(m, PGA_REFERENCED); 4587 4588 /* 4589 * Place clean pages near the head of the inactive queue rather than 4590 * the tail, thus defeating the queue's LRU operation and ensuring that 4591 * the page will be reused quickly. Dirty pages not already in the 4592 * laundry are moved there. 4593 */ 4594 if (m->dirty == 0) 4595 vm_page_deactivate_noreuse(m); 4596 else if (!vm_page_in_laundry(m)) 4597 vm_page_launder(m); 4598 } 4599 4600 /* 4601 * vm_page_grab_release 4602 * 4603 * Helper routine for grab functions to release busy on return. 4604 */ 4605 static inline void 4606 vm_page_grab_release(vm_page_t m, int allocflags) 4607 { 4608 4609 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4610 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4611 vm_page_sunbusy(m); 4612 else 4613 vm_page_xunbusy(m); 4614 } 4615 } 4616 4617 /* 4618 * vm_page_grab_sleep 4619 * 4620 * Sleep for busy according to VM_ALLOC_ parameters. Returns true 4621 * if the caller should retry and false otherwise. 4622 * 4623 * If the object is locked on entry the object will be unlocked with 4624 * false returns and still locked but possibly having been dropped 4625 * with true returns. 4626 */ 4627 static bool 4628 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex, 4629 const char *wmesg, int allocflags, bool locked) 4630 { 4631 4632 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4633 return (false); 4634 4635 /* 4636 * Reference the page before unlocking and sleeping so that 4637 * the page daemon is less likely to reclaim it. 4638 */ 4639 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0) 4640 vm_page_reference(m); 4641 4642 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) && 4643 locked) 4644 VM_OBJECT_WLOCK(object); 4645 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 4646 return (false); 4647 4648 return (true); 4649 } 4650 4651 /* 4652 * Assert that the grab flags are valid. 4653 */ 4654 static inline void 4655 vm_page_grab_check(int allocflags) 4656 { 4657 4658 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 4659 (allocflags & VM_ALLOC_WIRED) != 0, 4660 ("vm_page_grab*: the pages must be busied or wired")); 4661 4662 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4663 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4664 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4665 } 4666 4667 /* 4668 * Calculate the page allocation flags for grab. 4669 */ 4670 static inline int 4671 vm_page_grab_pflags(int allocflags) 4672 { 4673 int pflags; 4674 4675 pflags = allocflags & 4676 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL | 4677 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY); 4678 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4679 pflags |= VM_ALLOC_WAITFAIL; 4680 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4681 pflags |= VM_ALLOC_SBUSY; 4682 4683 return (pflags); 4684 } 4685 4686 /* 4687 * Grab a page, waiting until we are waken up due to the page 4688 * changing state. We keep on waiting, if the page continues 4689 * to be in the object. If the page doesn't exist, first allocate it 4690 * and then conditionally zero it. 4691 * 4692 * This routine may sleep. 4693 * 4694 * The object must be locked on entry. The lock will, however, be released 4695 * and reacquired if the routine sleeps. 4696 */ 4697 vm_page_t 4698 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 4699 { 4700 vm_page_t m; 4701 4702 VM_OBJECT_ASSERT_WLOCKED(object); 4703 vm_page_grab_check(allocflags); 4704 4705 retrylookup: 4706 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4707 if (!vm_page_tryacquire(m, allocflags)) { 4708 if (vm_page_grab_sleep(object, m, pindex, "pgrbwt", 4709 allocflags, true)) 4710 goto retrylookup; 4711 return (NULL); 4712 } 4713 goto out; 4714 } 4715 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4716 return (NULL); 4717 m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags)); 4718 if (m == NULL) { 4719 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0) 4720 return (NULL); 4721 goto retrylookup; 4722 } 4723 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 4724 pmap_zero_page(m); 4725 4726 out: 4727 vm_page_grab_release(m, allocflags); 4728 4729 return (m); 4730 } 4731 4732 /* 4733 * Locklessly attempt to acquire a page given a (object, pindex) tuple 4734 * and an optional previous page to avoid the radix lookup. The resulting 4735 * page will be validated against the identity tuple and busied or wired 4736 * as requested. A NULL *mp return guarantees that the page was not in 4737 * radix at the time of the call but callers must perform higher level 4738 * synchronization or retry the operation under a lock if they require 4739 * an atomic answer. This is the only lock free validation routine, 4740 * other routines can depend on the resulting page state. 4741 * 4742 * The return value indicates whether the operation failed due to caller 4743 * flags. The return is tri-state with mp: 4744 * 4745 * (true, *mp != NULL) - The operation was successful. 4746 * (true, *mp == NULL) - The page was not found in tree. 4747 * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition. 4748 */ 4749 static bool 4750 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, 4751 vm_page_t prev, vm_page_t *mp, int allocflags) 4752 { 4753 vm_page_t m; 4754 4755 vm_page_grab_check(allocflags); 4756 MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev)); 4757 4758 *mp = NULL; 4759 for (;;) { 4760 /* 4761 * We may see a false NULL here because the previous page 4762 * has been removed or just inserted and the list is loaded 4763 * without barriers. Switch to radix to verify. 4764 */ 4765 if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL || 4766 QMD_IS_TRASHED(m) || m->pindex != pindex || 4767 atomic_load_ptr(&m->object) != object) { 4768 prev = NULL; 4769 /* 4770 * This guarantees the result is instantaneously 4771 * correct. 4772 */ 4773 m = vm_radix_lookup_unlocked(&object->rtree, pindex); 4774 } 4775 if (m == NULL) 4776 return (true); 4777 if (vm_page_trybusy(m, allocflags)) { 4778 if (m->object == object && m->pindex == pindex) 4779 break; 4780 /* relookup. */ 4781 vm_page_busy_release(m); 4782 cpu_spinwait(); 4783 continue; 4784 } 4785 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp", 4786 allocflags, false)) 4787 return (false); 4788 } 4789 if ((allocflags & VM_ALLOC_WIRED) != 0) 4790 vm_page_wire(m); 4791 vm_page_grab_release(m, allocflags); 4792 *mp = m; 4793 return (true); 4794 } 4795 4796 /* 4797 * Try to locklessly grab a page and fall back to the object lock if NOCREAT 4798 * is not set. 4799 */ 4800 vm_page_t 4801 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags) 4802 { 4803 vm_page_t m; 4804 4805 vm_page_grab_check(allocflags); 4806 4807 if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags)) 4808 return (NULL); 4809 if (m != NULL) 4810 return (m); 4811 4812 /* 4813 * The radix lockless lookup should never return a false negative 4814 * errors. If the user specifies NOCREAT they are guaranteed there 4815 * was no page present at the instant of the call. A NOCREAT caller 4816 * must handle create races gracefully. 4817 */ 4818 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4819 return (NULL); 4820 4821 VM_OBJECT_WLOCK(object); 4822 m = vm_page_grab(object, pindex, allocflags); 4823 VM_OBJECT_WUNLOCK(object); 4824 4825 return (m); 4826 } 4827 4828 /* 4829 * Grab a page and make it valid, paging in if necessary. Pages missing from 4830 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied 4831 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought 4832 * in simultaneously. Additional pages will be left on a paging queue but 4833 * will neither be wired nor busy regardless of allocflags. 4834 */ 4835 int 4836 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags) 4837 { 4838 vm_page_t m; 4839 vm_page_t ma[VM_INITIAL_PAGEIN]; 4840 int after, i, pflags, rv; 4841 4842 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4843 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4844 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4845 KASSERT((allocflags & 4846 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4847 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags)); 4848 VM_OBJECT_ASSERT_WLOCKED(object); 4849 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY | 4850 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY); 4851 pflags |= VM_ALLOC_WAITFAIL; 4852 4853 retrylookup: 4854 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4855 /* 4856 * If the page is fully valid it can only become invalid 4857 * with the object lock held. If it is not valid it can 4858 * become valid with the busy lock held. Therefore, we 4859 * may unnecessarily lock the exclusive busy here if we 4860 * race with I/O completion not using the object lock. 4861 * However, we will not end up with an invalid page and a 4862 * shared lock. 4863 */ 4864 if (!vm_page_trybusy(m, 4865 vm_page_all_valid(m) ? allocflags : 0)) { 4866 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt", 4867 allocflags, true); 4868 goto retrylookup; 4869 } 4870 if (vm_page_all_valid(m)) 4871 goto out; 4872 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4873 vm_page_busy_release(m); 4874 *mp = NULL; 4875 return (VM_PAGER_FAIL); 4876 } 4877 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4878 *mp = NULL; 4879 return (VM_PAGER_FAIL); 4880 } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) { 4881 if (!vm_pager_can_alloc_page(object, pindex)) { 4882 *mp = NULL; 4883 return (VM_PAGER_AGAIN); 4884 } 4885 goto retrylookup; 4886 } 4887 4888 vm_page_assert_xbusied(m); 4889 if (vm_pager_has_page(object, pindex, NULL, &after)) { 4890 after = MIN(after, VM_INITIAL_PAGEIN); 4891 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT); 4892 after = MAX(after, 1); 4893 ma[0] = m; 4894 for (i = 1; i < after; i++) { 4895 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { 4896 if (vm_page_any_valid(ma[i]) || 4897 !vm_page_tryxbusy(ma[i])) 4898 break; 4899 } else { 4900 ma[i] = vm_page_alloc(object, m->pindex + i, 4901 VM_ALLOC_NORMAL); 4902 if (ma[i] == NULL) 4903 break; 4904 } 4905 } 4906 after = i; 4907 vm_object_pip_add(object, after); 4908 VM_OBJECT_WUNLOCK(object); 4909 rv = vm_pager_get_pages(object, ma, after, NULL, NULL); 4910 VM_OBJECT_WLOCK(object); 4911 vm_object_pip_wakeupn(object, after); 4912 /* Pager may have replaced a page. */ 4913 m = ma[0]; 4914 if (rv != VM_PAGER_OK) { 4915 for (i = 0; i < after; i++) { 4916 if (!vm_page_wired(ma[i])) 4917 vm_page_free(ma[i]); 4918 else 4919 vm_page_xunbusy(ma[i]); 4920 } 4921 *mp = NULL; 4922 return (rv); 4923 } 4924 for (i = 1; i < after; i++) 4925 vm_page_readahead_finish(ma[i]); 4926 MPASS(vm_page_all_valid(m)); 4927 } else { 4928 vm_page_zero_invalid(m, TRUE); 4929 } 4930 out: 4931 if ((allocflags & VM_ALLOC_WIRED) != 0) 4932 vm_page_wire(m); 4933 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m)) 4934 vm_page_busy_downgrade(m); 4935 else if ((allocflags & VM_ALLOC_NOBUSY) != 0) 4936 vm_page_busy_release(m); 4937 *mp = m; 4938 return (VM_PAGER_OK); 4939 } 4940 4941 /* 4942 * Locklessly grab a valid page. If the page is not valid or not yet 4943 * allocated this will fall back to the object lock method. 4944 */ 4945 int 4946 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object, 4947 vm_pindex_t pindex, int allocflags) 4948 { 4949 vm_page_t m; 4950 int flags; 4951 int error; 4952 4953 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4954 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4955 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY " 4956 "mismatch")); 4957 KASSERT((allocflags & 4958 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4959 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags)); 4960 4961 /* 4962 * Attempt a lockless lookup and busy. We need at least an sbusy 4963 * before we can inspect the valid field and return a wired page. 4964 */ 4965 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); 4966 if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags)) 4967 return (VM_PAGER_FAIL); 4968 if ((m = *mp) != NULL) { 4969 if (vm_page_all_valid(m)) { 4970 if ((allocflags & VM_ALLOC_WIRED) != 0) 4971 vm_page_wire(m); 4972 vm_page_grab_release(m, allocflags); 4973 return (VM_PAGER_OK); 4974 } 4975 vm_page_busy_release(m); 4976 } 4977 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4978 *mp = NULL; 4979 return (VM_PAGER_FAIL); 4980 } 4981 VM_OBJECT_WLOCK(object); 4982 error = vm_page_grab_valid(mp, object, pindex, allocflags); 4983 VM_OBJECT_WUNLOCK(object); 4984 4985 return (error); 4986 } 4987 4988 /* 4989 * Return the specified range of pages from the given object. For each 4990 * page offset within the range, if a page already exists within the object 4991 * at that offset and it is busy, then wait for it to change state. If, 4992 * instead, the page doesn't exist, then allocate it. 4993 * 4994 * The caller must always specify an allocation class. 4995 * 4996 * allocation classes: 4997 * VM_ALLOC_NORMAL normal process request 4998 * VM_ALLOC_SYSTEM system *really* needs the pages 4999 * 5000 * The caller must always specify that the pages are to be busied and/or 5001 * wired. 5002 * 5003 * optional allocation flags: 5004 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 5005 * VM_ALLOC_NOBUSY do not exclusive busy the page 5006 * VM_ALLOC_NOWAIT do not sleep 5007 * VM_ALLOC_SBUSY set page to sbusy state 5008 * VM_ALLOC_WIRED wire the pages 5009 * VM_ALLOC_ZERO zero and validate any invalid pages 5010 * 5011 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 5012 * may return a partial prefix of the requested range. 5013 */ 5014 int 5015 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 5016 vm_page_t *ma, int count) 5017 { 5018 vm_page_t m, mpred; 5019 int pflags; 5020 int i; 5021 5022 VM_OBJECT_ASSERT_WLOCKED(object); 5023 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 5024 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 5025 KASSERT(count > 0, 5026 ("vm_page_grab_pages: invalid page count %d", count)); 5027 vm_page_grab_check(allocflags); 5028 5029 pflags = vm_page_grab_pflags(allocflags); 5030 i = 0; 5031 retrylookup: 5032 m = vm_radix_lookup_le(&object->rtree, pindex + i); 5033 if (m == NULL || m->pindex != pindex + i) { 5034 mpred = m; 5035 m = NULL; 5036 } else 5037 mpred = TAILQ_PREV(m, pglist, listq); 5038 for (; i < count; i++) { 5039 if (m != NULL) { 5040 if (!vm_page_tryacquire(m, allocflags)) { 5041 if (vm_page_grab_sleep(object, m, pindex + i, 5042 "grbmaw", allocflags, true)) 5043 goto retrylookup; 5044 break; 5045 } 5046 } else { 5047 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 5048 break; 5049 m = vm_page_alloc_after(object, pindex + i, 5050 pflags | VM_ALLOC_COUNT(count - i), mpred); 5051 if (m == NULL) { 5052 if ((allocflags & (VM_ALLOC_NOWAIT | 5053 VM_ALLOC_WAITFAIL)) != 0) 5054 break; 5055 goto retrylookup; 5056 } 5057 } 5058 if (vm_page_none_valid(m) && 5059 (allocflags & VM_ALLOC_ZERO) != 0) { 5060 if ((m->flags & PG_ZERO) == 0) 5061 pmap_zero_page(m); 5062 vm_page_valid(m); 5063 } 5064 vm_page_grab_release(m, allocflags); 5065 ma[i] = mpred = m; 5066 m = vm_page_next(m); 5067 } 5068 return (i); 5069 } 5070 5071 /* 5072 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags 5073 * and will fall back to the locked variant to handle allocation. 5074 */ 5075 int 5076 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex, 5077 int allocflags, vm_page_t *ma, int count) 5078 { 5079 vm_page_t m, pred; 5080 int flags; 5081 int i; 5082 5083 KASSERT(count > 0, 5084 ("vm_page_grab_pages_unlocked: invalid page count %d", count)); 5085 vm_page_grab_check(allocflags); 5086 5087 /* 5088 * Modify flags for lockless acquire to hold the page until we 5089 * set it valid if necessary. 5090 */ 5091 flags = allocflags & ~VM_ALLOC_NOBUSY; 5092 pred = NULL; 5093 for (i = 0; i < count; i++, pindex++) { 5094 if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags)) 5095 return (i); 5096 if (m == NULL) 5097 break; 5098 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) { 5099 if ((m->flags & PG_ZERO) == 0) 5100 pmap_zero_page(m); 5101 vm_page_valid(m); 5102 } 5103 /* m will still be wired or busy according to flags. */ 5104 vm_page_grab_release(m, allocflags); 5105 pred = ma[i] = m; 5106 } 5107 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0) 5108 return (i); 5109 count -= i; 5110 VM_OBJECT_WLOCK(object); 5111 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count); 5112 VM_OBJECT_WUNLOCK(object); 5113 5114 return (i); 5115 } 5116 5117 /* 5118 * Mapping function for valid or dirty bits in a page. 5119 * 5120 * Inputs are required to range within a page. 5121 */ 5122 vm_page_bits_t 5123 vm_page_bits(int base, int size) 5124 { 5125 int first_bit; 5126 int last_bit; 5127 5128 KASSERT( 5129 base + size <= PAGE_SIZE, 5130 ("vm_page_bits: illegal base/size %d/%d", base, size) 5131 ); 5132 5133 if (size == 0) /* handle degenerate case */ 5134 return (0); 5135 5136 first_bit = base >> DEV_BSHIFT; 5137 last_bit = (base + size - 1) >> DEV_BSHIFT; 5138 5139 return (((vm_page_bits_t)2 << last_bit) - 5140 ((vm_page_bits_t)1 << first_bit)); 5141 } 5142 5143 void 5144 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set) 5145 { 5146 5147 #if PAGE_SIZE == 32768 5148 atomic_set_64((uint64_t *)bits, set); 5149 #elif PAGE_SIZE == 16384 5150 atomic_set_32((uint32_t *)bits, set); 5151 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16) 5152 atomic_set_16((uint16_t *)bits, set); 5153 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8) 5154 atomic_set_8((uint8_t *)bits, set); 5155 #else /* PAGE_SIZE <= 8192 */ 5156 uintptr_t addr; 5157 int shift; 5158 5159 addr = (uintptr_t)bits; 5160 /* 5161 * Use a trick to perform a 32-bit atomic on the 5162 * containing aligned word, to not depend on the existence 5163 * of atomic_{set, clear}_{8, 16}. 5164 */ 5165 shift = addr & (sizeof(uint32_t) - 1); 5166 #if BYTE_ORDER == BIG_ENDIAN 5167 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5168 #else 5169 shift *= NBBY; 5170 #endif 5171 addr &= ~(sizeof(uint32_t) - 1); 5172 atomic_set_32((uint32_t *)addr, set << shift); 5173 #endif /* PAGE_SIZE */ 5174 } 5175 5176 static inline void 5177 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear) 5178 { 5179 5180 #if PAGE_SIZE == 32768 5181 atomic_clear_64((uint64_t *)bits, clear); 5182 #elif PAGE_SIZE == 16384 5183 atomic_clear_32((uint32_t *)bits, clear); 5184 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16) 5185 atomic_clear_16((uint16_t *)bits, clear); 5186 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8) 5187 atomic_clear_8((uint8_t *)bits, clear); 5188 #else /* PAGE_SIZE <= 8192 */ 5189 uintptr_t addr; 5190 int shift; 5191 5192 addr = (uintptr_t)bits; 5193 /* 5194 * Use a trick to perform a 32-bit atomic on the 5195 * containing aligned word, to not depend on the existence 5196 * of atomic_{set, clear}_{8, 16}. 5197 */ 5198 shift = addr & (sizeof(uint32_t) - 1); 5199 #if BYTE_ORDER == BIG_ENDIAN 5200 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5201 #else 5202 shift *= NBBY; 5203 #endif 5204 addr &= ~(sizeof(uint32_t) - 1); 5205 atomic_clear_32((uint32_t *)addr, clear << shift); 5206 #endif /* PAGE_SIZE */ 5207 } 5208 5209 static inline vm_page_bits_t 5210 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits) 5211 { 5212 #if PAGE_SIZE == 32768 5213 uint64_t old; 5214 5215 old = *bits; 5216 while (atomic_fcmpset_64(bits, &old, newbits) == 0); 5217 return (old); 5218 #elif PAGE_SIZE == 16384 5219 uint32_t old; 5220 5221 old = *bits; 5222 while (atomic_fcmpset_32(bits, &old, newbits) == 0); 5223 return (old); 5224 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16) 5225 uint16_t old; 5226 5227 old = *bits; 5228 while (atomic_fcmpset_16(bits, &old, newbits) == 0); 5229 return (old); 5230 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8) 5231 uint8_t old; 5232 5233 old = *bits; 5234 while (atomic_fcmpset_8(bits, &old, newbits) == 0); 5235 return (old); 5236 #else /* PAGE_SIZE <= 4096*/ 5237 uintptr_t addr; 5238 uint32_t old, new, mask; 5239 int shift; 5240 5241 addr = (uintptr_t)bits; 5242 /* 5243 * Use a trick to perform a 32-bit atomic on the 5244 * containing aligned word, to not depend on the existence 5245 * of atomic_{set, swap, clear}_{8, 16}. 5246 */ 5247 shift = addr & (sizeof(uint32_t) - 1); 5248 #if BYTE_ORDER == BIG_ENDIAN 5249 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5250 #else 5251 shift *= NBBY; 5252 #endif 5253 addr &= ~(sizeof(uint32_t) - 1); 5254 mask = VM_PAGE_BITS_ALL << shift; 5255 5256 old = *bits; 5257 do { 5258 new = old & ~mask; 5259 new |= newbits << shift; 5260 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0); 5261 return (old >> shift); 5262 #endif /* PAGE_SIZE */ 5263 } 5264 5265 /* 5266 * vm_page_set_valid_range: 5267 * 5268 * Sets portions of a page valid. The arguments are expected 5269 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5270 * of any partial chunks touched by the range. The invalid portion of 5271 * such chunks will be zeroed. 5272 * 5273 * (base + size) must be less then or equal to PAGE_SIZE. 5274 */ 5275 void 5276 vm_page_set_valid_range(vm_page_t m, int base, int size) 5277 { 5278 int endoff, frag; 5279 vm_page_bits_t pagebits; 5280 5281 vm_page_assert_busied(m); 5282 if (size == 0) /* handle degenerate case */ 5283 return; 5284 5285 /* 5286 * If the base is not DEV_BSIZE aligned and the valid 5287 * bit is clear, we have to zero out a portion of the 5288 * first block. 5289 */ 5290 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5291 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 5292 pmap_zero_page_area(m, frag, base - frag); 5293 5294 /* 5295 * If the ending offset is not DEV_BSIZE aligned and the 5296 * valid bit is clear, we have to zero out a portion of 5297 * the last block. 5298 */ 5299 endoff = base + size; 5300 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5301 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 5302 pmap_zero_page_area(m, endoff, 5303 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5304 5305 /* 5306 * Assert that no previously invalid block that is now being validated 5307 * is already dirty. 5308 */ 5309 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 5310 ("vm_page_set_valid_range: page %p is dirty", m)); 5311 5312 /* 5313 * Set valid bits inclusive of any overlap. 5314 */ 5315 pagebits = vm_page_bits(base, size); 5316 if (vm_page_xbusied(m)) 5317 m->valid |= pagebits; 5318 else 5319 vm_page_bits_set(m, &m->valid, pagebits); 5320 } 5321 5322 /* 5323 * Set the page dirty bits and free the invalid swap space if 5324 * present. Returns the previous dirty bits. 5325 */ 5326 vm_page_bits_t 5327 vm_page_set_dirty(vm_page_t m) 5328 { 5329 vm_page_bits_t old; 5330 5331 VM_PAGE_OBJECT_BUSY_ASSERT(m); 5332 5333 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) { 5334 old = m->dirty; 5335 m->dirty = VM_PAGE_BITS_ALL; 5336 } else 5337 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL); 5338 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0) 5339 vm_pager_page_unswapped(m); 5340 5341 return (old); 5342 } 5343 5344 /* 5345 * Clear the given bits from the specified page's dirty field. 5346 */ 5347 static __inline void 5348 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 5349 { 5350 5351 vm_page_assert_busied(m); 5352 5353 /* 5354 * If the page is xbusied and not write mapped we are the 5355 * only thread that can modify dirty bits. Otherwise, The pmap 5356 * layer can call vm_page_dirty() without holding a distinguished 5357 * lock. The combination of page busy and atomic operations 5358 * suffice to guarantee consistency of the page dirty field. 5359 */ 5360 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 5361 m->dirty &= ~pagebits; 5362 else 5363 vm_page_bits_clear(m, &m->dirty, pagebits); 5364 } 5365 5366 /* 5367 * vm_page_set_validclean: 5368 * 5369 * Sets portions of a page valid and clean. The arguments are expected 5370 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5371 * of any partial chunks touched by the range. The invalid portion of 5372 * such chunks will be zero'd. 5373 * 5374 * (base + size) must be less then or equal to PAGE_SIZE. 5375 */ 5376 void 5377 vm_page_set_validclean(vm_page_t m, int base, int size) 5378 { 5379 vm_page_bits_t oldvalid, pagebits; 5380 int endoff, frag; 5381 5382 vm_page_assert_busied(m); 5383 if (size == 0) /* handle degenerate case */ 5384 return; 5385 5386 /* 5387 * If the base is not DEV_BSIZE aligned and the valid 5388 * bit is clear, we have to zero out a portion of the 5389 * first block. 5390 */ 5391 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5392 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 5393 pmap_zero_page_area(m, frag, base - frag); 5394 5395 /* 5396 * If the ending offset is not DEV_BSIZE aligned and the 5397 * valid bit is clear, we have to zero out a portion of 5398 * the last block. 5399 */ 5400 endoff = base + size; 5401 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5402 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 5403 pmap_zero_page_area(m, endoff, 5404 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5405 5406 /* 5407 * Set valid, clear dirty bits. If validating the entire 5408 * page we can safely clear the pmap modify bit. We also 5409 * use this opportunity to clear the PGA_NOSYNC flag. If a process 5410 * takes a write fault on a MAP_NOSYNC memory area the flag will 5411 * be set again. 5412 * 5413 * We set valid bits inclusive of any overlap, but we can only 5414 * clear dirty bits for DEV_BSIZE chunks that are fully within 5415 * the range. 5416 */ 5417 oldvalid = m->valid; 5418 pagebits = vm_page_bits(base, size); 5419 if (vm_page_xbusied(m)) 5420 m->valid |= pagebits; 5421 else 5422 vm_page_bits_set(m, &m->valid, pagebits); 5423 #if 0 /* NOT YET */ 5424 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 5425 frag = DEV_BSIZE - frag; 5426 base += frag; 5427 size -= frag; 5428 if (size < 0) 5429 size = 0; 5430 } 5431 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 5432 #endif 5433 if (base == 0 && size == PAGE_SIZE) { 5434 /* 5435 * The page can only be modified within the pmap if it is 5436 * mapped, and it can only be mapped if it was previously 5437 * fully valid. 5438 */ 5439 if (oldvalid == VM_PAGE_BITS_ALL) 5440 /* 5441 * Perform the pmap_clear_modify() first. Otherwise, 5442 * a concurrent pmap operation, such as 5443 * pmap_protect(), could clear a modification in the 5444 * pmap and set the dirty field on the page before 5445 * pmap_clear_modify() had begun and after the dirty 5446 * field was cleared here. 5447 */ 5448 pmap_clear_modify(m); 5449 m->dirty = 0; 5450 vm_page_aflag_clear(m, PGA_NOSYNC); 5451 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m)) 5452 m->dirty &= ~pagebits; 5453 else 5454 vm_page_clear_dirty_mask(m, pagebits); 5455 } 5456 5457 void 5458 vm_page_clear_dirty(vm_page_t m, int base, int size) 5459 { 5460 5461 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 5462 } 5463 5464 /* 5465 * vm_page_set_invalid: 5466 * 5467 * Invalidates DEV_BSIZE'd chunks within a page. Both the 5468 * valid and dirty bits for the effected areas are cleared. 5469 */ 5470 void 5471 vm_page_set_invalid(vm_page_t m, int base, int size) 5472 { 5473 vm_page_bits_t bits; 5474 vm_object_t object; 5475 5476 /* 5477 * The object lock is required so that pages can't be mapped 5478 * read-only while we're in the process of invalidating them. 5479 */ 5480 object = m->object; 5481 VM_OBJECT_ASSERT_WLOCKED(object); 5482 vm_page_assert_busied(m); 5483 5484 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 5485 size >= object->un_pager.vnp.vnp_size) 5486 bits = VM_PAGE_BITS_ALL; 5487 else 5488 bits = vm_page_bits(base, size); 5489 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0) 5490 pmap_remove_all(m); 5491 KASSERT((bits == 0 && vm_page_all_valid(m)) || 5492 !pmap_page_is_mapped(m), 5493 ("vm_page_set_invalid: page %p is mapped", m)); 5494 if (vm_page_xbusied(m)) { 5495 m->valid &= ~bits; 5496 m->dirty &= ~bits; 5497 } else { 5498 vm_page_bits_clear(m, &m->valid, bits); 5499 vm_page_bits_clear(m, &m->dirty, bits); 5500 } 5501 } 5502 5503 /* 5504 * vm_page_invalid: 5505 * 5506 * Invalidates the entire page. The page must be busy, unmapped, and 5507 * the enclosing object must be locked. The object locks protects 5508 * against concurrent read-only pmap enter which is done without 5509 * busy. 5510 */ 5511 void 5512 vm_page_invalid(vm_page_t m) 5513 { 5514 5515 vm_page_assert_busied(m); 5516 VM_OBJECT_ASSERT_WLOCKED(m->object); 5517 MPASS(!pmap_page_is_mapped(m)); 5518 5519 if (vm_page_xbusied(m)) 5520 m->valid = 0; 5521 else 5522 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL); 5523 } 5524 5525 /* 5526 * vm_page_zero_invalid() 5527 * 5528 * The kernel assumes that the invalid portions of a page contain 5529 * garbage, but such pages can be mapped into memory by user code. 5530 * When this occurs, we must zero out the non-valid portions of the 5531 * page so user code sees what it expects. 5532 * 5533 * Pages are most often semi-valid when the end of a file is mapped 5534 * into memory and the file's size is not page aligned. 5535 */ 5536 void 5537 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 5538 { 5539 int b; 5540 int i; 5541 5542 /* 5543 * Scan the valid bits looking for invalid sections that 5544 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 5545 * valid bit may be set ) have already been zeroed by 5546 * vm_page_set_validclean(). 5547 */ 5548 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 5549 if (i == (PAGE_SIZE / DEV_BSIZE) || 5550 (m->valid & ((vm_page_bits_t)1 << i))) { 5551 if (i > b) { 5552 pmap_zero_page_area(m, 5553 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 5554 } 5555 b = i + 1; 5556 } 5557 } 5558 5559 /* 5560 * setvalid is TRUE when we can safely set the zero'd areas 5561 * as being valid. We can do this if there are no cache consistency 5562 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 5563 */ 5564 if (setvalid) 5565 vm_page_valid(m); 5566 } 5567 5568 /* 5569 * vm_page_is_valid: 5570 * 5571 * Is (partial) page valid? Note that the case where size == 0 5572 * will return FALSE in the degenerate case where the page is 5573 * entirely invalid, and TRUE otherwise. 5574 * 5575 * Some callers envoke this routine without the busy lock held and 5576 * handle races via higher level locks. Typical callers should 5577 * hold a busy lock to prevent invalidation. 5578 */ 5579 int 5580 vm_page_is_valid(vm_page_t m, int base, int size) 5581 { 5582 vm_page_bits_t bits; 5583 5584 bits = vm_page_bits(base, size); 5585 return (vm_page_any_valid(m) && (m->valid & bits) == bits); 5586 } 5587 5588 /* 5589 * Returns true if all of the specified predicates are true for the entire 5590 * (super)page and false otherwise. 5591 */ 5592 bool 5593 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m) 5594 { 5595 vm_object_t object; 5596 int i, npages; 5597 5598 object = m->object; 5599 if (skip_m != NULL && skip_m->object != object) 5600 return (false); 5601 VM_OBJECT_ASSERT_LOCKED(object); 5602 KASSERT(psind <= m->psind, 5603 ("psind %d > psind %d of m %p", psind, m->psind, m)); 5604 npages = atop(pagesizes[psind]); 5605 5606 /* 5607 * The physically contiguous pages that make up a superpage, i.e., a 5608 * page with a page size index ("psind") greater than zero, will 5609 * occupy adjacent entries in vm_page_array[]. 5610 */ 5611 for (i = 0; i < npages; i++) { 5612 /* Always test object consistency, including "skip_m". */ 5613 if (m[i].object != object) 5614 return (false); 5615 if (&m[i] == skip_m) 5616 continue; 5617 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 5618 return (false); 5619 if ((flags & PS_ALL_DIRTY) != 0) { 5620 /* 5621 * Calling vm_page_test_dirty() or pmap_is_modified() 5622 * might stop this case from spuriously returning 5623 * "false". However, that would require a write lock 5624 * on the object containing "m[i]". 5625 */ 5626 if (m[i].dirty != VM_PAGE_BITS_ALL) 5627 return (false); 5628 } 5629 if ((flags & PS_ALL_VALID) != 0 && 5630 m[i].valid != VM_PAGE_BITS_ALL) 5631 return (false); 5632 } 5633 return (true); 5634 } 5635 5636 /* 5637 * Set the page's dirty bits if the page is modified. 5638 */ 5639 void 5640 vm_page_test_dirty(vm_page_t m) 5641 { 5642 5643 vm_page_assert_busied(m); 5644 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 5645 vm_page_dirty(m); 5646 } 5647 5648 void 5649 vm_page_valid(vm_page_t m) 5650 { 5651 5652 vm_page_assert_busied(m); 5653 if (vm_page_xbusied(m)) 5654 m->valid = VM_PAGE_BITS_ALL; 5655 else 5656 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL); 5657 } 5658 5659 void 5660 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 5661 { 5662 5663 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 5664 } 5665 5666 void 5667 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 5668 { 5669 5670 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 5671 } 5672 5673 int 5674 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 5675 { 5676 5677 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 5678 } 5679 5680 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 5681 void 5682 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 5683 { 5684 5685 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 5686 } 5687 5688 void 5689 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 5690 { 5691 5692 mtx_assert_(vm_page_lockptr(m), a, file, line); 5693 } 5694 #endif 5695 5696 #ifdef INVARIANTS 5697 void 5698 vm_page_object_busy_assert(vm_page_t m) 5699 { 5700 5701 /* 5702 * Certain of the page's fields may only be modified by the 5703 * holder of a page or object busy. 5704 */ 5705 if (m->object != NULL && !vm_page_busied(m)) 5706 VM_OBJECT_ASSERT_BUSY(m->object); 5707 } 5708 5709 void 5710 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits) 5711 { 5712 5713 if ((bits & PGA_WRITEABLE) == 0) 5714 return; 5715 5716 /* 5717 * The PGA_WRITEABLE flag can only be set if the page is 5718 * managed, is exclusively busied or the object is locked. 5719 * Currently, this flag is only set by pmap_enter(). 5720 */ 5721 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 5722 ("PGA_WRITEABLE on unmanaged page")); 5723 if (!vm_page_xbusied(m)) 5724 VM_OBJECT_ASSERT_BUSY(m->object); 5725 } 5726 #endif 5727 5728 #include "opt_ddb.h" 5729 #ifdef DDB 5730 #include <sys/kernel.h> 5731 5732 #include <ddb/ddb.h> 5733 5734 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE) 5735 { 5736 5737 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 5738 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 5739 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 5740 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 5741 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 5742 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 5743 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 5744 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 5745 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 5746 } 5747 5748 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE) 5749 { 5750 int dom; 5751 5752 db_printf("pq_free %d\n", vm_free_count()); 5753 for (dom = 0; dom < vm_ndomains; dom++) { 5754 db_printf( 5755 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 5756 dom, 5757 vm_dom[dom].vmd_page_count, 5758 vm_dom[dom].vmd_free_count, 5759 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 5760 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 5761 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 5762 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 5763 } 5764 } 5765 5766 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 5767 { 5768 vm_page_t m; 5769 boolean_t phys, virt; 5770 5771 if (!have_addr) { 5772 db_printf("show pginfo addr\n"); 5773 return; 5774 } 5775 5776 phys = strchr(modif, 'p') != NULL; 5777 virt = strchr(modif, 'v') != NULL; 5778 if (virt) 5779 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 5780 else if (phys) 5781 m = PHYS_TO_VM_PAGE(addr); 5782 else 5783 m = (vm_page_t)addr; 5784 db_printf( 5785 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n" 5786 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 5787 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 5788 m->a.queue, m->ref_count, m->a.flags, m->oflags, 5789 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty); 5790 } 5791 #endif /* DDB */ 5792