1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 37 * $FreeBSD$ 38 */ 39 40 /* 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 */ 66 67 /* 68 * GENERAL RULES ON VM_PAGE MANIPULATION 69 * 70 * - a pageq mutex is required when adding or removing a page from a 71 * page queue (vm_page_queue[]), regardless of other mutexes or the 72 * busy state of a page. 73 * 74 * - a hash chain mutex is required when associating or disassociating 75 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 76 * regardless of other mutexes or the busy state of a page. 77 * 78 * - either a hash chain mutex OR a busied page is required in order 79 * to modify the page flags. A hash chain mutex must be obtained in 80 * order to busy a page. A page's flags cannot be modified by a 81 * hash chain mutex if the page is marked busy. 82 * 83 * - The object memq mutex is held when inserting or removing 84 * pages from an object (vm_page_insert() or vm_page_remove()). This 85 * is different from the object's main mutex. 86 * 87 * Generally speaking, you have to be aware of side effects when running 88 * vm_page ops. A vm_page_lookup() will return with the hash chain 89 * locked, whether it was able to lookup the page or not. vm_page_free(), 90 * vm_page_cache(), vm_page_activate(), and a number of other routines 91 * will release the hash chain mutex for you. Intermediate manipulation 92 * routines such as vm_page_flag_set() expect the hash chain to be held 93 * on entry and the hash chain will remain held on return. 94 * 95 * pageq scanning can only occur with the pageq in question locked. 96 * We have a known bottleneck with the active queue, but the cache 97 * and free queues are actually arrays already. 98 */ 99 100 /* 101 * Resident memory management module. 102 */ 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/lock.h> 107 #include <sys/malloc.h> 108 #include <sys/mutex.h> 109 #include <sys/proc.h> 110 #include <sys/vmmeter.h> 111 #include <sys/vnode.h> 112 113 #include <vm/vm.h> 114 #include <vm/vm_param.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_pager.h> 120 #include <vm/vm_extern.h> 121 #include <vm/uma.h> 122 #include <vm/uma_int.h> 123 124 /* 125 * Associated with page of user-allocatable memory is a 126 * page structure. 127 */ 128 129 struct mtx vm_page_queue_mtx; 130 struct mtx vm_page_queue_free_mtx; 131 132 vm_page_t vm_page_array = 0; 133 int vm_page_array_size = 0; 134 long first_page = 0; 135 int vm_page_zero_count = 0; 136 137 /* 138 * vm_set_page_size: 139 * 140 * Sets the page size, perhaps based upon the memory 141 * size. Must be called before any use of page-size 142 * dependent functions. 143 */ 144 void 145 vm_set_page_size(void) 146 { 147 if (cnt.v_page_size == 0) 148 cnt.v_page_size = PAGE_SIZE; 149 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 150 panic("vm_set_page_size: page size not a power of two"); 151 } 152 153 /* 154 * vm_page_startup: 155 * 156 * Initializes the resident memory module. 157 * 158 * Allocates memory for the page cells, and 159 * for the object/offset-to-page hash table headers. 160 * Each page cell is initialized and placed on the free list. 161 */ 162 vm_offset_t 163 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr) 164 { 165 vm_offset_t mapped; 166 vm_size_t npages, page_range; 167 vm_offset_t new_end; 168 int i; 169 vm_offset_t pa; 170 int nblocks; 171 vm_offset_t last_pa; 172 173 /* the biggest memory array is the second group of pages */ 174 vm_offset_t end; 175 vm_offset_t biggestone, biggestsize; 176 177 vm_offset_t total; 178 vm_size_t bootpages; 179 180 total = 0; 181 biggestsize = 0; 182 biggestone = 0; 183 nblocks = 0; 184 vaddr = round_page(vaddr); 185 186 for (i = 0; phys_avail[i + 1]; i += 2) { 187 phys_avail[i] = round_page(phys_avail[i]); 188 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 189 } 190 191 for (i = 0; phys_avail[i + 1]; i += 2) { 192 vm_size_t size = phys_avail[i + 1] - phys_avail[i]; 193 194 if (size > biggestsize) { 195 biggestone = i; 196 biggestsize = size; 197 } 198 ++nblocks; 199 total += size; 200 } 201 202 end = phys_avail[biggestone+1]; 203 204 /* 205 * Initialize the locks. 206 */ 207 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF); 208 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 209 MTX_SPIN); 210 211 /* 212 * Initialize the queue headers for the free queue, the active queue 213 * and the inactive queue. 214 */ 215 vm_pageq_init(); 216 217 /* 218 * Allocate memory for use when boot strapping the kernel memory 219 * allocator. 220 */ 221 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 222 new_end = end - bootpages; 223 new_end = trunc_page(new_end); 224 mapped = pmap_map(&vaddr, new_end, end, 225 VM_PROT_READ | VM_PROT_WRITE); 226 bzero((caddr_t) mapped, end - new_end); 227 uma_startup((caddr_t)mapped); 228 229 /* 230 * Compute the number of pages of memory that will be available for 231 * use (taking into account the overhead of a page structure per 232 * page). 233 */ 234 first_page = phys_avail[0] / PAGE_SIZE; 235 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 236 npages = (total - (page_range * sizeof(struct vm_page)) - 237 (end - new_end)) / PAGE_SIZE; 238 end = new_end; 239 240 /* 241 * Initialize the mem entry structures now, and put them in the free 242 * queue. 243 */ 244 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 245 mapped = pmap_map(&vaddr, new_end, end, 246 VM_PROT_READ | VM_PROT_WRITE); 247 vm_page_array = (vm_page_t) mapped; 248 249 /* 250 * Clear all of the page structures 251 */ 252 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 253 vm_page_array_size = page_range; 254 255 /* 256 * Construct the free queue(s) in descending order (by physical 257 * address) so that the first 16MB of physical memory is allocated 258 * last rather than first. On large-memory machines, this avoids 259 * the exhaustion of low physical memory before isa_dmainit has run. 260 */ 261 cnt.v_page_count = 0; 262 cnt.v_free_count = 0; 263 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 264 pa = phys_avail[i]; 265 if (i == biggestone) 266 last_pa = new_end; 267 else 268 last_pa = phys_avail[i + 1]; 269 while (pa < last_pa && npages-- > 0) { 270 vm_pageq_add_new_page(pa); 271 pa += PAGE_SIZE; 272 } 273 } 274 return (vaddr); 275 } 276 277 void 278 vm_page_flag_set(vm_page_t m, unsigned short bits) 279 { 280 281 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 282 m->flags |= bits; 283 } 284 285 void 286 vm_page_flag_clear(vm_page_t m, unsigned short bits) 287 { 288 289 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 290 m->flags &= ~bits; 291 } 292 293 void 294 vm_page_busy(vm_page_t m) 295 { 296 KASSERT((m->flags & PG_BUSY) == 0, 297 ("vm_page_busy: page already busy!!!")); 298 vm_page_flag_set(m, PG_BUSY); 299 } 300 301 /* 302 * vm_page_flash: 303 * 304 * wakeup anyone waiting for the page. 305 */ 306 void 307 vm_page_flash(vm_page_t m) 308 { 309 if (m->flags & PG_WANTED) { 310 vm_page_flag_clear(m, PG_WANTED); 311 wakeup(m); 312 } 313 } 314 315 /* 316 * vm_page_wakeup: 317 * 318 * clear the PG_BUSY flag and wakeup anyone waiting for the 319 * page. 320 * 321 */ 322 void 323 vm_page_wakeup(vm_page_t m) 324 { 325 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 326 vm_page_flag_clear(m, PG_BUSY); 327 vm_page_flash(m); 328 } 329 330 /* 331 * 332 * 333 */ 334 void 335 vm_page_io_start(vm_page_t m) 336 { 337 338 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 339 m->busy++; 340 } 341 342 void 343 vm_page_io_finish(vm_page_t m) 344 { 345 346 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 347 m->busy--; 348 if (m->busy == 0) 349 vm_page_flash(m); 350 } 351 352 /* 353 * Keep page from being freed by the page daemon 354 * much of the same effect as wiring, except much lower 355 * overhead and should be used only for *very* temporary 356 * holding ("wiring"). 357 */ 358 void 359 vm_page_hold(vm_page_t mem) 360 { 361 362 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 363 mem->hold_count++; 364 } 365 366 void 367 vm_page_unhold(vm_page_t mem) 368 { 369 370 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 371 --mem->hold_count; 372 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 373 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 374 vm_page_free_toq(mem); 375 } 376 377 /* 378 * vm_page_copy: 379 * 380 * Copy one page to another 381 */ 382 void 383 vm_page_copy(vm_page_t src_m, vm_page_t dest_m) 384 { 385 pmap_copy_page(src_m, dest_m); 386 dest_m->valid = VM_PAGE_BITS_ALL; 387 } 388 389 /* 390 * vm_page_free: 391 * 392 * Free a page 393 * 394 * The clearing of PG_ZERO is a temporary safety until the code can be 395 * reviewed to determine that PG_ZERO is being properly cleared on 396 * write faults or maps. PG_ZERO was previously cleared in 397 * vm_page_alloc(). 398 */ 399 void 400 vm_page_free(vm_page_t m) 401 { 402 vm_page_flag_clear(m, PG_ZERO); 403 vm_page_free_toq(m); 404 vm_page_zero_idle_wakeup(); 405 } 406 407 /* 408 * vm_page_free_zero: 409 * 410 * Free a page to the zerod-pages queue 411 */ 412 void 413 vm_page_free_zero(vm_page_t m) 414 { 415 vm_page_flag_set(m, PG_ZERO); 416 vm_page_free_toq(m); 417 } 418 419 /* 420 * vm_page_sleep_if_busy: 421 * 422 * Sleep and release the page queues lock if PG_BUSY is set or, 423 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 424 * thread slept and the page queues lock was released. 425 * Otherwise, retains the page queues lock and returns FALSE. 426 */ 427 int 428 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 429 { 430 int is_object_locked; 431 432 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 433 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 434 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 435 /* 436 * Remove mtx_owned() after vm_object locking is finished. 437 */ 438 if ((is_object_locked = m->object != NULL && 439 mtx_owned(&m->object->mtx))) 440 mtx_unlock(&m->object->mtx); 441 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 442 if (is_object_locked) 443 mtx_lock(&m->object->mtx); 444 return (TRUE); 445 } 446 return (FALSE); 447 } 448 449 /* 450 * vm_page_dirty: 451 * 452 * make page all dirty 453 */ 454 void 455 vm_page_dirty(vm_page_t m) 456 { 457 KASSERT(m->queue - m->pc != PQ_CACHE, 458 ("vm_page_dirty: page in cache!")); 459 KASSERT(m->queue - m->pc != PQ_FREE, 460 ("vm_page_dirty: page is free!")); 461 m->dirty = VM_PAGE_BITS_ALL; 462 } 463 464 /* 465 * vm_page_splay: 466 * 467 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 468 * the vm_page containing the given pindex. If, however, that 469 * pindex is not found in the vm_object, returns a vm_page that is 470 * adjacent to the pindex, coming before or after it. 471 */ 472 vm_page_t 473 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 474 { 475 struct vm_page dummy; 476 vm_page_t lefttreemax, righttreemin, y; 477 478 if (root == NULL) 479 return (root); 480 lefttreemax = righttreemin = &dummy; 481 for (;; root = y) { 482 if (pindex < root->pindex) { 483 if ((y = root->left) == NULL) 484 break; 485 if (pindex < y->pindex) { 486 /* Rotate right. */ 487 root->left = y->right; 488 y->right = root; 489 root = y; 490 if ((y = root->left) == NULL) 491 break; 492 } 493 /* Link into the new root's right tree. */ 494 righttreemin->left = root; 495 righttreemin = root; 496 } else if (pindex > root->pindex) { 497 if ((y = root->right) == NULL) 498 break; 499 if (pindex > y->pindex) { 500 /* Rotate left. */ 501 root->right = y->left; 502 y->left = root; 503 root = y; 504 if ((y = root->right) == NULL) 505 break; 506 } 507 /* Link into the new root's left tree. */ 508 lefttreemax->right = root; 509 lefttreemax = root; 510 } else 511 break; 512 } 513 /* Assemble the new root. */ 514 lefttreemax->right = root->left; 515 righttreemin->left = root->right; 516 root->left = dummy.right; 517 root->right = dummy.left; 518 return (root); 519 } 520 521 /* 522 * vm_page_insert: [ internal use only ] 523 * 524 * Inserts the given mem entry into the object and object list. 525 * 526 * The pagetables are not updated but will presumably fault the page 527 * in if necessary, or if a kernel page the caller will at some point 528 * enter the page into the kernel's pmap. We are not allowed to block 529 * here so we *can't* do this anyway. 530 * 531 * The object and page must be locked, and must be splhigh. 532 * This routine may not block. 533 */ 534 void 535 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 536 { 537 vm_page_t root; 538 539 if (m->object != NULL) 540 panic("vm_page_insert: already inserted"); 541 542 /* 543 * Record the object/offset pair in this page 544 */ 545 m->object = object; 546 m->pindex = pindex; 547 548 mtx_assert(object == kmem_object ? &object->mtx : &Giant, MA_OWNED); 549 /* 550 * Now link into the object's ordered list of backed pages. 551 */ 552 root = object->root; 553 if (root == NULL) { 554 m->left = NULL; 555 m->right = NULL; 556 TAILQ_INSERT_TAIL(&object->memq, m, listq); 557 } else { 558 root = vm_page_splay(pindex, root); 559 if (pindex < root->pindex) { 560 m->left = root->left; 561 m->right = root; 562 root->left = NULL; 563 TAILQ_INSERT_BEFORE(root, m, listq); 564 } else { 565 m->right = root->right; 566 m->left = root; 567 root->right = NULL; 568 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 569 } 570 } 571 object->root = m; 572 object->generation++; 573 574 /* 575 * show that the object has one more resident page. 576 */ 577 object->resident_page_count++; 578 579 /* 580 * Since we are inserting a new and possibly dirty page, 581 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 582 */ 583 if (m->flags & PG_WRITEABLE) 584 vm_object_set_writeable_dirty(object); 585 } 586 587 /* 588 * vm_page_remove: 589 * NOTE: used by device pager as well -wfj 590 * 591 * Removes the given mem entry from the object/offset-page 592 * table and the object page list, but do not invalidate/terminate 593 * the backing store. 594 * 595 * The object and page must be locked, and at splhigh. 596 * The underlying pmap entry (if any) is NOT removed here. 597 * This routine may not block. 598 */ 599 void 600 vm_page_remove(vm_page_t m) 601 { 602 vm_object_t object; 603 vm_page_t root; 604 605 GIANT_REQUIRED; 606 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 607 if (m->object == NULL) 608 return; 609 610 if ((m->flags & PG_BUSY) == 0) { 611 panic("vm_page_remove: page not busy"); 612 } 613 614 /* 615 * Basically destroy the page. 616 */ 617 vm_page_wakeup(m); 618 619 object = m->object; 620 621 /* 622 * Now remove from the object's list of backed pages. 623 */ 624 if (m != object->root) 625 vm_page_splay(m->pindex, object->root); 626 if (m->left == NULL) 627 root = m->right; 628 else { 629 root = vm_page_splay(m->pindex, m->left); 630 root->right = m->right; 631 } 632 object->root = root; 633 TAILQ_REMOVE(&object->memq, m, listq); 634 635 /* 636 * And show that the object has one fewer resident page. 637 */ 638 object->resident_page_count--; 639 object->generation++; 640 641 m->object = NULL; 642 } 643 644 /* 645 * vm_page_lookup: 646 * 647 * Returns the page associated with the object/offset 648 * pair specified; if none is found, NULL is returned. 649 * 650 * The object must be locked. 651 * This routine may not block. 652 * This is a critical path routine 653 */ 654 vm_page_t 655 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 656 { 657 vm_page_t m; 658 659 mtx_assert(object == kmem_object ? &object->mtx : &Giant, MA_OWNED); 660 m = vm_page_splay(pindex, object->root); 661 if ((object->root = m) != NULL && m->pindex != pindex) 662 m = NULL; 663 return (m); 664 } 665 666 /* 667 * vm_page_rename: 668 * 669 * Move the given memory entry from its 670 * current object to the specified target object/offset. 671 * 672 * The object must be locked. 673 * This routine may not block. 674 * 675 * Note: this routine will raise itself to splvm(), the caller need not. 676 * 677 * Note: swap associated with the page must be invalidated by the move. We 678 * have to do this for several reasons: (1) we aren't freeing the 679 * page, (2) we are dirtying the page, (3) the VM system is probably 680 * moving the page from object A to B, and will then later move 681 * the backing store from A to B and we can't have a conflict. 682 * 683 * Note: we *always* dirty the page. It is necessary both for the 684 * fact that we moved it, and because we may be invalidating 685 * swap. If the page is on the cache, we have to deactivate it 686 * or vm_page_dirty() will panic. Dirty pages are not allowed 687 * on the cache. 688 */ 689 void 690 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 691 { 692 int s; 693 694 s = splvm(); 695 vm_page_remove(m); 696 vm_page_insert(m, new_object, new_pindex); 697 if (m->queue - m->pc == PQ_CACHE) 698 vm_page_deactivate(m); 699 vm_page_dirty(m); 700 splx(s); 701 } 702 703 /* 704 * vm_page_select_cache: 705 * 706 * Find a page on the cache queue with color optimization. As pages 707 * might be found, but not applicable, they are deactivated. This 708 * keeps us from using potentially busy cached pages. 709 * 710 * This routine must be called at splvm(). 711 * This routine may not block. 712 */ 713 static vm_page_t 714 vm_page_select_cache(vm_pindex_t color) 715 { 716 vm_page_t m; 717 718 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 719 while (TRUE) { 720 m = vm_pageq_find(PQ_CACHE, color & PQ_L2_MASK, FALSE); 721 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 722 m->hold_count || m->wire_count)) { 723 vm_page_deactivate(m); 724 continue; 725 } 726 return m; 727 } 728 } 729 730 /* 731 * vm_page_select_free: 732 * 733 * Find a free or zero page, with specified preference. 734 * 735 * This routine must be called at splvm(). 736 * This routine may not block. 737 */ 738 static __inline vm_page_t 739 vm_page_select_free(vm_pindex_t color, boolean_t prefer_zero) 740 { 741 vm_page_t m; 742 743 m = vm_pageq_find(PQ_FREE, color & PQ_L2_MASK, prefer_zero); 744 return (m); 745 } 746 747 /* 748 * vm_page_alloc: 749 * 750 * Allocate and return a memory cell associated 751 * with this VM object/offset pair. 752 * 753 * page_req classes: 754 * VM_ALLOC_NORMAL normal process request 755 * VM_ALLOC_SYSTEM system *really* needs a page 756 * VM_ALLOC_INTERRUPT interrupt time request 757 * VM_ALLOC_ZERO zero page 758 * 759 * This routine may not block. 760 * 761 * Additional special handling is required when called from an 762 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 763 * the page cache in this case. 764 */ 765 vm_page_t 766 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 767 { 768 vm_page_t m = NULL; 769 vm_pindex_t color; 770 int flags, page_req, s; 771 772 page_req = req & VM_ALLOC_CLASS_MASK; 773 774 if ((req & VM_ALLOC_NOOBJ) == 0) { 775 KASSERT(object != NULL, 776 ("vm_page_alloc: NULL object.")); 777 mtx_assert(object == kmem_object ? &object->mtx : &Giant, 778 MA_OWNED); 779 KASSERT(!vm_page_lookup(object, pindex), 780 ("vm_page_alloc: page already allocated")); 781 color = pindex + object->pg_color; 782 } else 783 color = pindex; 784 785 /* 786 * The pager is allowed to eat deeper into the free page list. 787 */ 788 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 789 page_req = VM_ALLOC_SYSTEM; 790 }; 791 792 s = splvm(); 793 loop: 794 mtx_lock_spin(&vm_page_queue_free_mtx); 795 if (cnt.v_free_count > cnt.v_free_reserved || 796 (page_req == VM_ALLOC_SYSTEM && 797 cnt.v_cache_count == 0 && 798 cnt.v_free_count > cnt.v_interrupt_free_min) || 799 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 800 /* 801 * Allocate from the free queue if the number of free pages 802 * exceeds the minimum for the request class. 803 */ 804 m = vm_page_select_free(color, (req & VM_ALLOC_ZERO) != 0); 805 } else if (page_req != VM_ALLOC_INTERRUPT) { 806 mtx_unlock_spin(&vm_page_queue_free_mtx); 807 /* 808 * Allocatable from cache (non-interrupt only). On success, 809 * we must free the page and try again, thus ensuring that 810 * cnt.v_*_free_min counters are replenished. 811 */ 812 vm_page_lock_queues(); 813 if ((m = vm_page_select_cache(color)) == NULL) { 814 vm_page_unlock_queues(); 815 splx(s); 816 #if defined(DIAGNOSTIC) 817 if (cnt.v_cache_count > 0) 818 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 819 #endif 820 atomic_add_int(&vm_pageout_deficit, 1); 821 pagedaemon_wakeup(); 822 return (NULL); 823 } 824 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 825 vm_page_busy(m); 826 pmap_remove_all(m); 827 vm_page_free(m); 828 vm_page_unlock_queues(); 829 goto loop; 830 } else { 831 /* 832 * Not allocatable from cache from interrupt, give up. 833 */ 834 mtx_unlock_spin(&vm_page_queue_free_mtx); 835 splx(s); 836 atomic_add_int(&vm_pageout_deficit, 1); 837 pagedaemon_wakeup(); 838 return (NULL); 839 } 840 841 /* 842 * At this point we had better have found a good page. 843 */ 844 845 KASSERT( 846 m != NULL, 847 ("vm_page_alloc(): missing page on free queue\n") 848 ); 849 850 /* 851 * Remove from free queue 852 */ 853 854 vm_pageq_remove_nowakeup(m); 855 856 /* 857 * Initialize structure. Only the PG_ZERO flag is inherited. 858 */ 859 flags = PG_BUSY; 860 if (m->flags & PG_ZERO) { 861 vm_page_zero_count--; 862 if (req & VM_ALLOC_ZERO) 863 flags = PG_ZERO | PG_BUSY; 864 } 865 m->flags = flags; 866 if (req & VM_ALLOC_WIRED) { 867 atomic_add_int(&cnt.v_wire_count, 1); 868 m->wire_count = 1; 869 } else 870 m->wire_count = 0; 871 m->hold_count = 0; 872 m->act_count = 0; 873 m->busy = 0; 874 m->valid = 0; 875 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 876 mtx_unlock_spin(&vm_page_queue_free_mtx); 877 878 /* 879 * vm_page_insert() is safe prior to the splx(). Note also that 880 * inserting a page here does not insert it into the pmap (which 881 * could cause us to block allocating memory). We cannot block 882 * anywhere. 883 */ 884 if ((req & VM_ALLOC_NOOBJ) == 0) 885 vm_page_insert(m, object, pindex); 886 887 /* 888 * Don't wakeup too often - wakeup the pageout daemon when 889 * we would be nearly out of memory. 890 */ 891 if (vm_paging_needed()) 892 pagedaemon_wakeup(); 893 894 splx(s); 895 return (m); 896 } 897 898 /* 899 * vm_wait: (also see VM_WAIT macro) 900 * 901 * Block until free pages are available for allocation 902 * - Called in various places before memory allocations. 903 */ 904 void 905 vm_wait(void) 906 { 907 int s; 908 909 s = splvm(); 910 vm_page_lock_queues(); 911 if (curproc == pageproc) { 912 vm_pageout_pages_needed = 1; 913 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx, 914 PDROP | PSWP, "VMWait", 0); 915 } else { 916 if (!vm_pages_needed) { 917 vm_pages_needed = 1; 918 wakeup(&vm_pages_needed); 919 } 920 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM, 921 "vmwait", 0); 922 } 923 splx(s); 924 } 925 926 /* 927 * vm_waitpfault: (also see VM_WAITPFAULT macro) 928 * 929 * Block until free pages are available for allocation 930 * - Called only in vm_fault so that processes page faulting 931 * can be easily tracked. 932 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 933 * processes will be able to grab memory first. Do not change 934 * this balance without careful testing first. 935 */ 936 void 937 vm_waitpfault(void) 938 { 939 int s; 940 941 s = splvm(); 942 vm_page_lock_queues(); 943 if (!vm_pages_needed) { 944 vm_pages_needed = 1; 945 wakeup(&vm_pages_needed); 946 } 947 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER, 948 "pfault", 0); 949 splx(s); 950 } 951 952 /* 953 * vm_page_activate: 954 * 955 * Put the specified page on the active list (if appropriate). 956 * Ensure that act_count is at least ACT_INIT but do not otherwise 957 * mess with it. 958 * 959 * The page queues must be locked. 960 * This routine may not block. 961 */ 962 void 963 vm_page_activate(vm_page_t m) 964 { 965 int s; 966 967 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 968 s = splvm(); 969 if (m->queue != PQ_ACTIVE) { 970 if ((m->queue - m->pc) == PQ_CACHE) 971 cnt.v_reactivated++; 972 vm_pageq_remove(m); 973 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 974 if (m->act_count < ACT_INIT) 975 m->act_count = ACT_INIT; 976 vm_pageq_enqueue(PQ_ACTIVE, m); 977 } 978 } else { 979 if (m->act_count < ACT_INIT) 980 m->act_count = ACT_INIT; 981 } 982 splx(s); 983 } 984 985 /* 986 * vm_page_free_wakeup: 987 * 988 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 989 * routine is called when a page has been added to the cache or free 990 * queues. 991 * 992 * This routine may not block. 993 * This routine must be called at splvm() 994 */ 995 static __inline void 996 vm_page_free_wakeup(void) 997 { 998 999 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1000 /* 1001 * if pageout daemon needs pages, then tell it that there are 1002 * some free. 1003 */ 1004 if (vm_pageout_pages_needed && 1005 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1006 wakeup(&vm_pageout_pages_needed); 1007 vm_pageout_pages_needed = 0; 1008 } 1009 /* 1010 * wakeup processes that are waiting on memory if we hit a 1011 * high water mark. And wakeup scheduler process if we have 1012 * lots of memory. this process will swapin processes. 1013 */ 1014 if (vm_pages_needed && !vm_page_count_min()) { 1015 vm_pages_needed = 0; 1016 wakeup(&cnt.v_free_count); 1017 } 1018 } 1019 1020 /* 1021 * vm_page_free_toq: 1022 * 1023 * Returns the given page to the PQ_FREE list, 1024 * disassociating it with any VM object. 1025 * 1026 * Object and page must be locked prior to entry. 1027 * This routine may not block. 1028 */ 1029 1030 void 1031 vm_page_free_toq(vm_page_t m) 1032 { 1033 int s; 1034 struct vpgqueues *pq; 1035 vm_object_t object = m->object; 1036 1037 GIANT_REQUIRED; 1038 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1039 s = splvm(); 1040 cnt.v_tfree++; 1041 1042 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1043 printf( 1044 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1045 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1046 m->hold_count); 1047 if ((m->queue - m->pc) == PQ_FREE) 1048 panic("vm_page_free: freeing free page"); 1049 else 1050 panic("vm_page_free: freeing busy page"); 1051 } 1052 1053 /* 1054 * unqueue, then remove page. Note that we cannot destroy 1055 * the page here because we do not want to call the pager's 1056 * callback routine until after we've put the page on the 1057 * appropriate free queue. 1058 */ 1059 vm_pageq_remove_nowakeup(m); 1060 vm_page_remove(m); 1061 1062 /* 1063 * If fictitious remove object association and 1064 * return, otherwise delay object association removal. 1065 */ 1066 if ((m->flags & PG_FICTITIOUS) != 0) { 1067 splx(s); 1068 return; 1069 } 1070 1071 m->valid = 0; 1072 vm_page_undirty(m); 1073 1074 if (m->wire_count != 0) { 1075 if (m->wire_count > 1) { 1076 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1077 m->wire_count, (long)m->pindex); 1078 } 1079 panic("vm_page_free: freeing wired page\n"); 1080 } 1081 1082 /* 1083 * If we've exhausted the object's resident pages we want to free 1084 * it up. 1085 */ 1086 if (object && 1087 (object->type == OBJT_VNODE) && 1088 ((object->flags & OBJ_DEAD) == 0) 1089 ) { 1090 struct vnode *vp = (struct vnode *)object->handle; 1091 1092 if (vp) { 1093 VI_LOCK(vp); 1094 if (VSHOULDFREE(vp)) 1095 vfree(vp); 1096 VI_UNLOCK(vp); 1097 } 1098 } 1099 1100 /* 1101 * Clear the UNMANAGED flag when freeing an unmanaged page. 1102 */ 1103 if (m->flags & PG_UNMANAGED) { 1104 m->flags &= ~PG_UNMANAGED; 1105 } else { 1106 #ifdef __alpha__ 1107 pmap_page_is_free(m); 1108 #endif 1109 } 1110 1111 if (m->hold_count != 0) { 1112 m->flags &= ~PG_ZERO; 1113 m->queue = PQ_HOLD; 1114 } else 1115 m->queue = PQ_FREE + m->pc; 1116 pq = &vm_page_queues[m->queue]; 1117 mtx_lock_spin(&vm_page_queue_free_mtx); 1118 pq->lcnt++; 1119 ++(*pq->cnt); 1120 1121 /* 1122 * Put zero'd pages on the end ( where we look for zero'd pages 1123 * first ) and non-zerod pages at the head. 1124 */ 1125 if (m->flags & PG_ZERO) { 1126 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1127 ++vm_page_zero_count; 1128 } else { 1129 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1130 } 1131 mtx_unlock_spin(&vm_page_queue_free_mtx); 1132 vm_page_free_wakeup(); 1133 splx(s); 1134 } 1135 1136 /* 1137 * vm_page_unmanage: 1138 * 1139 * Prevent PV management from being done on the page. The page is 1140 * removed from the paging queues as if it were wired, and as a 1141 * consequence of no longer being managed the pageout daemon will not 1142 * touch it (since there is no way to locate the pte mappings for the 1143 * page). madvise() calls that mess with the pmap will also no longer 1144 * operate on the page. 1145 * 1146 * Beyond that the page is still reasonably 'normal'. Freeing the page 1147 * will clear the flag. 1148 * 1149 * This routine is used by OBJT_PHYS objects - objects using unswappable 1150 * physical memory as backing store rather then swap-backed memory and 1151 * will eventually be extended to support 4MB unmanaged physical 1152 * mappings. 1153 */ 1154 void 1155 vm_page_unmanage(vm_page_t m) 1156 { 1157 int s; 1158 1159 s = splvm(); 1160 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1161 if ((m->flags & PG_UNMANAGED) == 0) { 1162 if (m->wire_count == 0) 1163 vm_pageq_remove(m); 1164 } 1165 vm_page_flag_set(m, PG_UNMANAGED); 1166 splx(s); 1167 } 1168 1169 /* 1170 * vm_page_wire: 1171 * 1172 * Mark this page as wired down by yet 1173 * another map, removing it from paging queues 1174 * as necessary. 1175 * 1176 * The page queues must be locked. 1177 * This routine may not block. 1178 */ 1179 void 1180 vm_page_wire(vm_page_t m) 1181 { 1182 int s; 1183 1184 /* 1185 * Only bump the wire statistics if the page is not already wired, 1186 * and only unqueue the page if it is on some queue (if it is unmanaged 1187 * it is already off the queues). 1188 */ 1189 s = splvm(); 1190 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1191 if (m->wire_count == 0) { 1192 if ((m->flags & PG_UNMANAGED) == 0) 1193 vm_pageq_remove(m); 1194 atomic_add_int(&cnt.v_wire_count, 1); 1195 } 1196 m->wire_count++; 1197 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1198 splx(s); 1199 } 1200 1201 /* 1202 * vm_page_unwire: 1203 * 1204 * Release one wiring of this page, potentially 1205 * enabling it to be paged again. 1206 * 1207 * Many pages placed on the inactive queue should actually go 1208 * into the cache, but it is difficult to figure out which. What 1209 * we do instead, if the inactive target is well met, is to put 1210 * clean pages at the head of the inactive queue instead of the tail. 1211 * This will cause them to be moved to the cache more quickly and 1212 * if not actively re-referenced, freed more quickly. If we just 1213 * stick these pages at the end of the inactive queue, heavy filesystem 1214 * meta-data accesses can cause an unnecessary paging load on memory bound 1215 * processes. This optimization causes one-time-use metadata to be 1216 * reused more quickly. 1217 * 1218 * BUT, if we are in a low-memory situation we have no choice but to 1219 * put clean pages on the cache queue. 1220 * 1221 * A number of routines use vm_page_unwire() to guarantee that the page 1222 * will go into either the inactive or active queues, and will NEVER 1223 * be placed in the cache - for example, just after dirtying a page. 1224 * dirty pages in the cache are not allowed. 1225 * 1226 * The page queues must be locked. 1227 * This routine may not block. 1228 */ 1229 void 1230 vm_page_unwire(vm_page_t m, int activate) 1231 { 1232 int s; 1233 1234 s = splvm(); 1235 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1236 if (m->wire_count > 0) { 1237 m->wire_count--; 1238 if (m->wire_count == 0) { 1239 atomic_subtract_int(&cnt.v_wire_count, 1); 1240 if (m->flags & PG_UNMANAGED) { 1241 ; 1242 } else if (activate) 1243 vm_pageq_enqueue(PQ_ACTIVE, m); 1244 else { 1245 vm_page_flag_clear(m, PG_WINATCFLS); 1246 vm_pageq_enqueue(PQ_INACTIVE, m); 1247 } 1248 } 1249 } else { 1250 panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count); 1251 } 1252 splx(s); 1253 } 1254 1255 1256 /* 1257 * Move the specified page to the inactive queue. If the page has 1258 * any associated swap, the swap is deallocated. 1259 * 1260 * Normally athead is 0 resulting in LRU operation. athead is set 1261 * to 1 if we want this page to be 'as if it were placed in the cache', 1262 * except without unmapping it from the process address space. 1263 * 1264 * This routine may not block. 1265 */ 1266 static __inline void 1267 _vm_page_deactivate(vm_page_t m, int athead) 1268 { 1269 int s; 1270 1271 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1272 /* 1273 * Ignore if already inactive. 1274 */ 1275 if (m->queue == PQ_INACTIVE) 1276 return; 1277 1278 s = splvm(); 1279 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1280 if ((m->queue - m->pc) == PQ_CACHE) 1281 cnt.v_reactivated++; 1282 vm_page_flag_clear(m, PG_WINATCFLS); 1283 vm_pageq_remove(m); 1284 if (athead) 1285 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1286 else 1287 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1288 m->queue = PQ_INACTIVE; 1289 vm_page_queues[PQ_INACTIVE].lcnt++; 1290 cnt.v_inactive_count++; 1291 } 1292 splx(s); 1293 } 1294 1295 void 1296 vm_page_deactivate(vm_page_t m) 1297 { 1298 _vm_page_deactivate(m, 0); 1299 } 1300 1301 /* 1302 * vm_page_try_to_cache: 1303 * 1304 * Returns 0 on failure, 1 on success 1305 */ 1306 int 1307 vm_page_try_to_cache(vm_page_t m) 1308 { 1309 1310 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1311 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1312 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1313 return (0); 1314 } 1315 vm_page_test_dirty(m); 1316 if (m->dirty) 1317 return (0); 1318 vm_page_cache(m); 1319 return (1); 1320 } 1321 1322 /* 1323 * vm_page_try_to_free() 1324 * 1325 * Attempt to free the page. If we cannot free it, we do nothing. 1326 * 1 is returned on success, 0 on failure. 1327 */ 1328 int 1329 vm_page_try_to_free(vm_page_t m) 1330 { 1331 1332 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1333 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1334 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1335 return (0); 1336 } 1337 vm_page_test_dirty(m); 1338 if (m->dirty) 1339 return (0); 1340 vm_page_busy(m); 1341 pmap_remove_all(m); 1342 vm_page_free(m); 1343 return (1); 1344 } 1345 1346 /* 1347 * vm_page_cache 1348 * 1349 * Put the specified page onto the page cache queue (if appropriate). 1350 * 1351 * This routine may not block. 1352 */ 1353 void 1354 vm_page_cache(vm_page_t m) 1355 { 1356 int s; 1357 1358 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1359 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) { 1360 printf("vm_page_cache: attempting to cache busy page\n"); 1361 return; 1362 } 1363 if ((m->queue - m->pc) == PQ_CACHE) 1364 return; 1365 1366 /* 1367 * Remove all pmaps and indicate that the page is not 1368 * writeable or mapped. 1369 */ 1370 pmap_remove_all(m); 1371 if (m->dirty != 0) { 1372 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1373 (long)m->pindex); 1374 } 1375 s = splvm(); 1376 vm_pageq_remove_nowakeup(m); 1377 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1378 vm_page_free_wakeup(); 1379 splx(s); 1380 } 1381 1382 /* 1383 * vm_page_dontneed 1384 * 1385 * Cache, deactivate, or do nothing as appropriate. This routine 1386 * is typically used by madvise() MADV_DONTNEED. 1387 * 1388 * Generally speaking we want to move the page into the cache so 1389 * it gets reused quickly. However, this can result in a silly syndrome 1390 * due to the page recycling too quickly. Small objects will not be 1391 * fully cached. On the otherhand, if we move the page to the inactive 1392 * queue we wind up with a problem whereby very large objects 1393 * unnecessarily blow away our inactive and cache queues. 1394 * 1395 * The solution is to move the pages based on a fixed weighting. We 1396 * either leave them alone, deactivate them, or move them to the cache, 1397 * where moving them to the cache has the highest weighting. 1398 * By forcing some pages into other queues we eventually force the 1399 * system to balance the queues, potentially recovering other unrelated 1400 * space from active. The idea is to not force this to happen too 1401 * often. 1402 */ 1403 void 1404 vm_page_dontneed(vm_page_t m) 1405 { 1406 static int dnweight; 1407 int dnw; 1408 int head; 1409 1410 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1411 dnw = ++dnweight; 1412 1413 /* 1414 * occassionally leave the page alone 1415 */ 1416 if ((dnw & 0x01F0) == 0 || 1417 m->queue == PQ_INACTIVE || 1418 m->queue - m->pc == PQ_CACHE 1419 ) { 1420 if (m->act_count >= ACT_INIT) 1421 --m->act_count; 1422 return; 1423 } 1424 1425 if (m->dirty == 0) 1426 vm_page_test_dirty(m); 1427 1428 if (m->dirty || (dnw & 0x0070) == 0) { 1429 /* 1430 * Deactivate the page 3 times out of 32. 1431 */ 1432 head = 0; 1433 } else { 1434 /* 1435 * Cache the page 28 times out of every 32. Note that 1436 * the page is deactivated instead of cached, but placed 1437 * at the head of the queue instead of the tail. 1438 */ 1439 head = 1; 1440 } 1441 _vm_page_deactivate(m, head); 1442 } 1443 1444 /* 1445 * Grab a page, waiting until we are waken up due to the page 1446 * changing state. We keep on waiting, if the page continues 1447 * to be in the object. If the page doesn't exist, allocate it. 1448 * 1449 * This routine may block. 1450 */ 1451 vm_page_t 1452 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1453 { 1454 vm_page_t m; 1455 int s, generation; 1456 1457 GIANT_REQUIRED; 1458 retrylookup: 1459 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1460 vm_page_lock_queues(); 1461 if (m->busy || (m->flags & PG_BUSY)) { 1462 generation = object->generation; 1463 1464 s = splvm(); 1465 while ((object->generation == generation) && 1466 (m->busy || (m->flags & PG_BUSY))) { 1467 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1468 msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0); 1469 if ((allocflags & VM_ALLOC_RETRY) == 0) { 1470 vm_page_unlock_queues(); 1471 splx(s); 1472 return NULL; 1473 } 1474 } 1475 vm_page_unlock_queues(); 1476 splx(s); 1477 goto retrylookup; 1478 } else { 1479 if (allocflags & VM_ALLOC_WIRED) 1480 vm_page_wire(m); 1481 vm_page_busy(m); 1482 vm_page_unlock_queues(); 1483 return m; 1484 } 1485 } 1486 1487 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1488 if (m == NULL) { 1489 VM_WAIT; 1490 if ((allocflags & VM_ALLOC_RETRY) == 0) 1491 return NULL; 1492 goto retrylookup; 1493 } 1494 1495 return m; 1496 } 1497 1498 /* 1499 * Mapping function for valid bits or for dirty bits in 1500 * a page. May not block. 1501 * 1502 * Inputs are required to range within a page. 1503 */ 1504 __inline int 1505 vm_page_bits(int base, int size) 1506 { 1507 int first_bit; 1508 int last_bit; 1509 1510 KASSERT( 1511 base + size <= PAGE_SIZE, 1512 ("vm_page_bits: illegal base/size %d/%d", base, size) 1513 ); 1514 1515 if (size == 0) /* handle degenerate case */ 1516 return (0); 1517 1518 first_bit = base >> DEV_BSHIFT; 1519 last_bit = (base + size - 1) >> DEV_BSHIFT; 1520 1521 return ((2 << last_bit) - (1 << first_bit)); 1522 } 1523 1524 /* 1525 * vm_page_set_validclean: 1526 * 1527 * Sets portions of a page valid and clean. The arguments are expected 1528 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1529 * of any partial chunks touched by the range. The invalid portion of 1530 * such chunks will be zero'd. 1531 * 1532 * This routine may not block. 1533 * 1534 * (base + size) must be less then or equal to PAGE_SIZE. 1535 */ 1536 void 1537 vm_page_set_validclean(vm_page_t m, int base, int size) 1538 { 1539 int pagebits; 1540 int frag; 1541 int endoff; 1542 1543 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1544 if (size == 0) /* handle degenerate case */ 1545 return; 1546 1547 /* 1548 * If the base is not DEV_BSIZE aligned and the valid 1549 * bit is clear, we have to zero out a portion of the 1550 * first block. 1551 */ 1552 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1553 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1554 pmap_zero_page_area(m, frag, base - frag); 1555 1556 /* 1557 * If the ending offset is not DEV_BSIZE aligned and the 1558 * valid bit is clear, we have to zero out a portion of 1559 * the last block. 1560 */ 1561 endoff = base + size; 1562 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1563 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1564 pmap_zero_page_area(m, endoff, 1565 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1566 1567 /* 1568 * Set valid, clear dirty bits. If validating the entire 1569 * page we can safely clear the pmap modify bit. We also 1570 * use this opportunity to clear the PG_NOSYNC flag. If a process 1571 * takes a write fault on a MAP_NOSYNC memory area the flag will 1572 * be set again. 1573 * 1574 * We set valid bits inclusive of any overlap, but we can only 1575 * clear dirty bits for DEV_BSIZE chunks that are fully within 1576 * the range. 1577 */ 1578 pagebits = vm_page_bits(base, size); 1579 m->valid |= pagebits; 1580 #if 0 /* NOT YET */ 1581 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1582 frag = DEV_BSIZE - frag; 1583 base += frag; 1584 size -= frag; 1585 if (size < 0) 1586 size = 0; 1587 } 1588 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1589 #endif 1590 m->dirty &= ~pagebits; 1591 if (base == 0 && size == PAGE_SIZE) { 1592 pmap_clear_modify(m); 1593 vm_page_flag_clear(m, PG_NOSYNC); 1594 } 1595 } 1596 1597 #if 0 1598 1599 void 1600 vm_page_set_dirty(vm_page_t m, int base, int size) 1601 { 1602 m->dirty |= vm_page_bits(base, size); 1603 } 1604 1605 #endif 1606 1607 void 1608 vm_page_clear_dirty(vm_page_t m, int base, int size) 1609 { 1610 GIANT_REQUIRED; 1611 m->dirty &= ~vm_page_bits(base, size); 1612 } 1613 1614 /* 1615 * vm_page_set_invalid: 1616 * 1617 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1618 * valid and dirty bits for the effected areas are cleared. 1619 * 1620 * May not block. 1621 */ 1622 void 1623 vm_page_set_invalid(vm_page_t m, int base, int size) 1624 { 1625 int bits; 1626 1627 GIANT_REQUIRED; 1628 bits = vm_page_bits(base, size); 1629 m->valid &= ~bits; 1630 m->dirty &= ~bits; 1631 m->object->generation++; 1632 } 1633 1634 /* 1635 * vm_page_zero_invalid() 1636 * 1637 * The kernel assumes that the invalid portions of a page contain 1638 * garbage, but such pages can be mapped into memory by user code. 1639 * When this occurs, we must zero out the non-valid portions of the 1640 * page so user code sees what it expects. 1641 * 1642 * Pages are most often semi-valid when the end of a file is mapped 1643 * into memory and the file's size is not page aligned. 1644 */ 1645 void 1646 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1647 { 1648 int b; 1649 int i; 1650 1651 /* 1652 * Scan the valid bits looking for invalid sections that 1653 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1654 * valid bit may be set ) have already been zerod by 1655 * vm_page_set_validclean(). 1656 */ 1657 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1658 if (i == (PAGE_SIZE / DEV_BSIZE) || 1659 (m->valid & (1 << i)) 1660 ) { 1661 if (i > b) { 1662 pmap_zero_page_area(m, 1663 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1664 } 1665 b = i + 1; 1666 } 1667 } 1668 1669 /* 1670 * setvalid is TRUE when we can safely set the zero'd areas 1671 * as being valid. We can do this if there are no cache consistancy 1672 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1673 */ 1674 if (setvalid) 1675 m->valid = VM_PAGE_BITS_ALL; 1676 } 1677 1678 /* 1679 * vm_page_is_valid: 1680 * 1681 * Is (partial) page valid? Note that the case where size == 0 1682 * will return FALSE in the degenerate case where the page is 1683 * entirely invalid, and TRUE otherwise. 1684 * 1685 * May not block. 1686 */ 1687 int 1688 vm_page_is_valid(vm_page_t m, int base, int size) 1689 { 1690 int bits = vm_page_bits(base, size); 1691 1692 if (m->valid && ((m->valid & bits) == bits)) 1693 return 1; 1694 else 1695 return 0; 1696 } 1697 1698 /* 1699 * update dirty bits from pmap/mmu. May not block. 1700 */ 1701 void 1702 vm_page_test_dirty(vm_page_t m) 1703 { 1704 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1705 vm_page_dirty(m); 1706 } 1707 } 1708 1709 int so_zerocp_fullpage = 0; 1710 1711 void 1712 vm_page_cowfault(vm_page_t m) 1713 { 1714 vm_page_t mnew; 1715 vm_object_t object; 1716 vm_pindex_t pindex; 1717 1718 object = m->object; 1719 pindex = m->pindex; 1720 vm_page_busy(m); 1721 1722 retry_alloc: 1723 vm_page_remove(m); 1724 /* 1725 * An interrupt allocation is requested because the page 1726 * queues lock is held. 1727 */ 1728 mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT); 1729 if (mnew == NULL) { 1730 vm_page_insert(m, object, pindex); 1731 vm_page_unlock_queues(); 1732 VM_WAIT; 1733 vm_page_lock_queues(); 1734 goto retry_alloc; 1735 } 1736 1737 if (m->cow == 0) { 1738 /* 1739 * check to see if we raced with an xmit complete when 1740 * waiting to allocate a page. If so, put things back 1741 * the way they were 1742 */ 1743 vm_page_busy(mnew); 1744 vm_page_free(mnew); 1745 vm_page_insert(m, object, pindex); 1746 } else { /* clear COW & copy page */ 1747 if (so_zerocp_fullpage) { 1748 mnew->valid = VM_PAGE_BITS_ALL; 1749 } else { 1750 vm_page_copy(m, mnew); 1751 } 1752 vm_page_dirty(mnew); 1753 vm_page_flag_clear(mnew, PG_BUSY); 1754 } 1755 } 1756 1757 void 1758 vm_page_cowclear(vm_page_t m) 1759 { 1760 1761 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1762 if (m->cow) { 1763 m->cow--; 1764 /* 1765 * let vm_fault add back write permission lazily 1766 */ 1767 } 1768 /* 1769 * sf_buf_free() will free the page, so we needn't do it here 1770 */ 1771 } 1772 1773 void 1774 vm_page_cowsetup(vm_page_t m) 1775 { 1776 1777 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1778 m->cow++; 1779 pmap_page_protect(m, VM_PROT_READ); 1780 } 1781 1782 #include "opt_ddb.h" 1783 #ifdef DDB 1784 #include <sys/kernel.h> 1785 1786 #include <ddb/ddb.h> 1787 1788 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1789 { 1790 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1791 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1792 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1793 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1794 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1795 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1796 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1797 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1798 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1799 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1800 } 1801 1802 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1803 { 1804 int i; 1805 db_printf("PQ_FREE:"); 1806 for (i = 0; i < PQ_L2_SIZE; i++) { 1807 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1808 } 1809 db_printf("\n"); 1810 1811 db_printf("PQ_CACHE:"); 1812 for (i = 0; i < PQ_L2_SIZE; i++) { 1813 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1814 } 1815 db_printf("\n"); 1816 1817 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1818 vm_page_queues[PQ_ACTIVE].lcnt, 1819 vm_page_queues[PQ_INACTIVE].lcnt); 1820 } 1821 #endif /* DDB */ 1822