xref: /freebsd/sys/vm/vm_page.c (revision edca4938f74db18d091868237592abbf7e718669)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Resident memory management module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_vm.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113 
114 #include <machine/md_var.h>
115 
116 extern int	uma_startup_count(int);
117 extern void	uma_startup(void *, int);
118 extern int	vmem_startup_count(void);
119 
120 struct vm_domain vm_dom[MAXMEMDOM];
121 
122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
123 
124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
125 
126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
127 /* The following fields are protected by the domainset lock. */
128 domainset_t __exclusive_cache_line vm_min_domains;
129 domainset_t __exclusive_cache_line vm_severe_domains;
130 static int vm_min_waiters;
131 static int vm_severe_waiters;
132 static int vm_pageproc_waiters;
133 
134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
135     "VM page statistics");
136 
137 static counter_u64_t queue_ops = EARLY_COUNTER;
138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
139     CTLFLAG_RD, &queue_ops,
140     "Number of batched queue operations");
141 
142 static counter_u64_t queue_nops = EARLY_COUNTER;
143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
144     CTLFLAG_RD, &queue_nops,
145     "Number of batched queue operations with no effects");
146 
147 static void
148 counter_startup(void)
149 {
150 
151 	queue_ops = counter_u64_alloc(M_WAITOK);
152 	queue_nops = counter_u64_alloc(M_WAITOK);
153 }
154 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
155 
156 /*
157  * bogus page -- for I/O to/from partially complete buffers,
158  * or for paging into sparsely invalid regions.
159  */
160 vm_page_t bogus_page;
161 
162 vm_page_t vm_page_array;
163 long vm_page_array_size;
164 long first_page;
165 
166 static int boot_pages;
167 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168     &boot_pages, 0,
169     "number of pages allocated for bootstrapping the VM system");
170 
171 static int pa_tryrelock_restart;
172 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
173     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
174 
175 static TAILQ_HEAD(, vm_page) blacklist_head;
176 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
177 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
178     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
179 
180 static uma_zone_t fakepg_zone;
181 
182 static void vm_page_alloc_check(vm_page_t m);
183 static void _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
184     const char *wmesg, bool nonshared, bool locked);
185 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
186 static void vm_page_dequeue_complete(vm_page_t m);
187 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
188 static void vm_page_init(void *dummy);
189 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
190     vm_pindex_t pindex, vm_page_t mpred);
191 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
192     vm_page_t mpred);
193 static void vm_page_mvqueue(vm_page_t m, uint8_t queue);
194 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
195     vm_page_t m_run, vm_paddr_t high);
196 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
197     int req);
198 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
199     int flags);
200 static void vm_page_zone_release(void *arg, void **store, int cnt);
201 
202 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
203 
204 static void
205 vm_page_init(void *dummy)
206 {
207 
208 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
209 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
210 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
211 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
212 }
213 
214 /*
215  * The cache page zone is initialized later since we need to be able to allocate
216  * pages before UMA is fully initialized.
217  */
218 static void
219 vm_page_init_cache_zones(void *dummy __unused)
220 {
221 	struct vm_domain *vmd;
222 	struct vm_pgcache *pgcache;
223 	int domain, pool;
224 
225 	for (domain = 0; domain < vm_ndomains; domain++) {
226 		vmd = VM_DOMAIN(domain);
227 
228 		/*
229 		 * Don't allow the page caches to take up more than .25% of
230 		 * memory.
231 		 */
232 		if (vmd->vmd_page_count / 400 < 256 * mp_ncpus * VM_NFREEPOOL)
233 			continue;
234 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
235 			pgcache = &vmd->vmd_pgcache[pool];
236 			pgcache->domain = domain;
237 			pgcache->pool = pool;
238 			pgcache->zone = uma_zcache_create("vm pgcache",
239 			    sizeof(struct vm_page), NULL, NULL, NULL, NULL,
240 			    vm_page_zone_import, vm_page_zone_release, pgcache,
241 			    UMA_ZONE_MAXBUCKET | UMA_ZONE_VM);
242 			(void)uma_zone_set_maxcache(pgcache->zone, 0);
243 		}
244 	}
245 }
246 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
247 
248 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
249 #if PAGE_SIZE == 32768
250 #ifdef CTASSERT
251 CTASSERT(sizeof(u_long) >= 8);
252 #endif
253 #endif
254 
255 /*
256  * Try to acquire a physical address lock while a pmap is locked.  If we
257  * fail to trylock we unlock and lock the pmap directly and cache the
258  * locked pa in *locked.  The caller should then restart their loop in case
259  * the virtual to physical mapping has changed.
260  */
261 int
262 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
263 {
264 	vm_paddr_t lockpa;
265 
266 	lockpa = *locked;
267 	*locked = pa;
268 	if (lockpa) {
269 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
270 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
271 			return (0);
272 		PA_UNLOCK(lockpa);
273 	}
274 	if (PA_TRYLOCK(pa))
275 		return (0);
276 	PMAP_UNLOCK(pmap);
277 	atomic_add_int(&pa_tryrelock_restart, 1);
278 	PA_LOCK(pa);
279 	PMAP_LOCK(pmap);
280 	return (EAGAIN);
281 }
282 
283 /*
284  *	vm_set_page_size:
285  *
286  *	Sets the page size, perhaps based upon the memory
287  *	size.  Must be called before any use of page-size
288  *	dependent functions.
289  */
290 void
291 vm_set_page_size(void)
292 {
293 	if (vm_cnt.v_page_size == 0)
294 		vm_cnt.v_page_size = PAGE_SIZE;
295 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
296 		panic("vm_set_page_size: page size not a power of two");
297 }
298 
299 /*
300  *	vm_page_blacklist_next:
301  *
302  *	Find the next entry in the provided string of blacklist
303  *	addresses.  Entries are separated by space, comma, or newline.
304  *	If an invalid integer is encountered then the rest of the
305  *	string is skipped.  Updates the list pointer to the next
306  *	character, or NULL if the string is exhausted or invalid.
307  */
308 static vm_paddr_t
309 vm_page_blacklist_next(char **list, char *end)
310 {
311 	vm_paddr_t bad;
312 	char *cp, *pos;
313 
314 	if (list == NULL || *list == NULL)
315 		return (0);
316 	if (**list =='\0') {
317 		*list = NULL;
318 		return (0);
319 	}
320 
321 	/*
322 	 * If there's no end pointer then the buffer is coming from
323 	 * the kenv and we know it's null-terminated.
324 	 */
325 	if (end == NULL)
326 		end = *list + strlen(*list);
327 
328 	/* Ensure that strtoq() won't walk off the end */
329 	if (*end != '\0') {
330 		if (*end == '\n' || *end == ' ' || *end  == ',')
331 			*end = '\0';
332 		else {
333 			printf("Blacklist not terminated, skipping\n");
334 			*list = NULL;
335 			return (0);
336 		}
337 	}
338 
339 	for (pos = *list; *pos != '\0'; pos = cp) {
340 		bad = strtoq(pos, &cp, 0);
341 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
342 			if (bad == 0) {
343 				if (++cp < end)
344 					continue;
345 				else
346 					break;
347 			}
348 		} else
349 			break;
350 		if (*cp == '\0' || ++cp >= end)
351 			*list = NULL;
352 		else
353 			*list = cp;
354 		return (trunc_page(bad));
355 	}
356 	printf("Garbage in RAM blacklist, skipping\n");
357 	*list = NULL;
358 	return (0);
359 }
360 
361 bool
362 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
363 {
364 	struct vm_domain *vmd;
365 	vm_page_t m;
366 	int ret;
367 
368 	m = vm_phys_paddr_to_vm_page(pa);
369 	if (m == NULL)
370 		return (true); /* page does not exist, no failure */
371 
372 	vmd = vm_pagequeue_domain(m);
373 	vm_domain_free_lock(vmd);
374 	ret = vm_phys_unfree_page(m);
375 	vm_domain_free_unlock(vmd);
376 	if (ret != 0) {
377 		vm_domain_freecnt_inc(vmd, -1);
378 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
379 		if (verbose)
380 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
381 	}
382 	return (ret);
383 }
384 
385 /*
386  *	vm_page_blacklist_check:
387  *
388  *	Iterate through the provided string of blacklist addresses, pulling
389  *	each entry out of the physical allocator free list and putting it
390  *	onto a list for reporting via the vm.page_blacklist sysctl.
391  */
392 static void
393 vm_page_blacklist_check(char *list, char *end)
394 {
395 	vm_paddr_t pa;
396 	char *next;
397 
398 	next = list;
399 	while (next != NULL) {
400 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
401 			continue;
402 		vm_page_blacklist_add(pa, bootverbose);
403 	}
404 }
405 
406 /*
407  *	vm_page_blacklist_load:
408  *
409  *	Search for a special module named "ram_blacklist".  It'll be a
410  *	plain text file provided by the user via the loader directive
411  *	of the same name.
412  */
413 static void
414 vm_page_blacklist_load(char **list, char **end)
415 {
416 	void *mod;
417 	u_char *ptr;
418 	u_int len;
419 
420 	mod = NULL;
421 	ptr = NULL;
422 
423 	mod = preload_search_by_type("ram_blacklist");
424 	if (mod != NULL) {
425 		ptr = preload_fetch_addr(mod);
426 		len = preload_fetch_size(mod);
427         }
428 	*list = ptr;
429 	if (ptr != NULL)
430 		*end = ptr + len;
431 	else
432 		*end = NULL;
433 	return;
434 }
435 
436 static int
437 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
438 {
439 	vm_page_t m;
440 	struct sbuf sbuf;
441 	int error, first;
442 
443 	first = 1;
444 	error = sysctl_wire_old_buffer(req, 0);
445 	if (error != 0)
446 		return (error);
447 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
448 	TAILQ_FOREACH(m, &blacklist_head, listq) {
449 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
450 		    (uintmax_t)m->phys_addr);
451 		first = 0;
452 	}
453 	error = sbuf_finish(&sbuf);
454 	sbuf_delete(&sbuf);
455 	return (error);
456 }
457 
458 /*
459  * Initialize a dummy page for use in scans of the specified paging queue.
460  * In principle, this function only needs to set the flag PG_MARKER.
461  * Nonetheless, it write busies the page as a safety precaution.
462  */
463 static void
464 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags)
465 {
466 
467 	bzero(marker, sizeof(*marker));
468 	marker->flags = PG_MARKER;
469 	marker->aflags = aflags;
470 	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
471 	marker->queue = queue;
472 }
473 
474 static void
475 vm_page_domain_init(int domain)
476 {
477 	struct vm_domain *vmd;
478 	struct vm_pagequeue *pq;
479 	int i;
480 
481 	vmd = VM_DOMAIN(domain);
482 	bzero(vmd, sizeof(*vmd));
483 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
484 	    "vm inactive pagequeue";
485 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
486 	    "vm active pagequeue";
487 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
488 	    "vm laundry pagequeue";
489 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
490 	    "vm unswappable pagequeue";
491 	vmd->vmd_domain = domain;
492 	vmd->vmd_page_count = 0;
493 	vmd->vmd_free_count = 0;
494 	vmd->vmd_segs = 0;
495 	vmd->vmd_oom = FALSE;
496 	for (i = 0; i < PQ_COUNT; i++) {
497 		pq = &vmd->vmd_pagequeues[i];
498 		TAILQ_INIT(&pq->pq_pl);
499 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
500 		    MTX_DEF | MTX_DUPOK);
501 		pq->pq_pdpages = 0;
502 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
503 	}
504 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
505 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
506 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
507 
508 	/*
509 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
510 	 * insertions.
511 	 */
512 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
513 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
514 	    &vmd->vmd_inacthead, plinks.q);
515 
516 	/*
517 	 * The clock pages are used to implement active queue scanning without
518 	 * requeues.  Scans start at clock[0], which is advanced after the scan
519 	 * ends.  When the two clock hands meet, they are reset and scanning
520 	 * resumes from the head of the queue.
521 	 */
522 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
523 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
524 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
525 	    &vmd->vmd_clock[0], plinks.q);
526 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
527 	    &vmd->vmd_clock[1], plinks.q);
528 }
529 
530 /*
531  * Initialize a physical page in preparation for adding it to the free
532  * lists.
533  */
534 static void
535 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
536 {
537 
538 	m->object = NULL;
539 	m->ref_count = 0;
540 	m->busy_lock = VPB_UNBUSIED;
541 	m->flags = m->aflags = 0;
542 	m->phys_addr = pa;
543 	m->queue = PQ_NONE;
544 	m->psind = 0;
545 	m->segind = segind;
546 	m->order = VM_NFREEORDER;
547 	m->pool = VM_FREEPOOL_DEFAULT;
548 	m->valid = m->dirty = 0;
549 	pmap_page_init(m);
550 }
551 
552 #ifndef PMAP_HAS_PAGE_ARRAY
553 static vm_paddr_t
554 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
555 {
556 	vm_paddr_t new_end;
557 
558 	/*
559 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
560 	 * However, because this page is allocated from KVM, out-of-bounds
561 	 * accesses using the direct map will not be trapped.
562 	 */
563 	*vaddr += PAGE_SIZE;
564 
565 	/*
566 	 * Allocate physical memory for the page structures, and map it.
567 	 */
568 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
569 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
570 	    VM_PROT_READ | VM_PROT_WRITE);
571 	vm_page_array_size = page_range;
572 
573 	return (new_end);
574 }
575 #endif
576 
577 /*
578  *	vm_page_startup:
579  *
580  *	Initializes the resident memory module.  Allocates physical memory for
581  *	bootstrapping UMA and some data structures that are used to manage
582  *	physical pages.  Initializes these structures, and populates the free
583  *	page queues.
584  */
585 vm_offset_t
586 vm_page_startup(vm_offset_t vaddr)
587 {
588 	struct vm_phys_seg *seg;
589 	vm_page_t m;
590 	char *list, *listend;
591 	vm_offset_t mapped;
592 	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
593 	vm_paddr_t last_pa, pa;
594 	u_long pagecount;
595 	int biggestone, i, segind;
596 #ifdef WITNESS
597 	int witness_size;
598 #endif
599 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
600 	long ii;
601 #endif
602 
603 	vaddr = round_page(vaddr);
604 
605 	vm_phys_early_startup();
606 	biggestone = vm_phys_avail_largest();
607 	end = phys_avail[biggestone+1];
608 
609 	/*
610 	 * Initialize the page and queue locks.
611 	 */
612 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
613 	for (i = 0; i < PA_LOCK_COUNT; i++)
614 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
615 	for (i = 0; i < vm_ndomains; i++)
616 		vm_page_domain_init(i);
617 
618 	/*
619 	 * Allocate memory for use when boot strapping the kernel memory
620 	 * allocator.  Tell UMA how many zones we are going to create
621 	 * before going fully functional.  UMA will add its zones.
622 	 *
623 	 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
624 	 * KMAP ENTRY, MAP ENTRY, VMSPACE.
625 	 */
626 	boot_pages = uma_startup_count(8);
627 
628 #ifndef UMA_MD_SMALL_ALLOC
629 	/* vmem_startup() calls uma_prealloc(). */
630 	boot_pages += vmem_startup_count();
631 	/* vm_map_startup() calls uma_prealloc(). */
632 	boot_pages += howmany(MAX_KMAP,
633 	    UMA_SLAB_SPACE / sizeof(struct vm_map));
634 
635 	/*
636 	 * Before going fully functional kmem_init() does allocation
637 	 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
638 	 */
639 	boot_pages += 2;
640 #endif
641 	/*
642 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
643 	 * manually fetch the value.
644 	 */
645 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
646 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
647 	new_end = trunc_page(new_end);
648 	mapped = pmap_map(&vaddr, new_end, end,
649 	    VM_PROT_READ | VM_PROT_WRITE);
650 	bzero((void *)mapped, end - new_end);
651 	uma_startup((void *)mapped, boot_pages);
652 
653 #ifdef WITNESS
654 	witness_size = round_page(witness_startup_count());
655 	new_end -= witness_size;
656 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
657 	    VM_PROT_READ | VM_PROT_WRITE);
658 	bzero((void *)mapped, witness_size);
659 	witness_startup((void *)mapped);
660 #endif
661 
662 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
663     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
664     defined(__powerpc64__)
665 	/*
666 	 * Allocate a bitmap to indicate that a random physical page
667 	 * needs to be included in a minidump.
668 	 *
669 	 * The amd64 port needs this to indicate which direct map pages
670 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
671 	 *
672 	 * However, i386 still needs this workspace internally within the
673 	 * minidump code.  In theory, they are not needed on i386, but are
674 	 * included should the sf_buf code decide to use them.
675 	 */
676 	last_pa = 0;
677 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
678 		if (dump_avail[i + 1] > last_pa)
679 			last_pa = dump_avail[i + 1];
680 	page_range = last_pa / PAGE_SIZE;
681 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
682 	new_end -= vm_page_dump_size;
683 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
684 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
685 	bzero((void *)vm_page_dump, vm_page_dump_size);
686 #else
687 	(void)last_pa;
688 #endif
689 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
690     defined(__riscv) || defined(__powerpc64__)
691 	/*
692 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
693 	 * in a crash dump.  When pmap_map() uses the direct map, they are
694 	 * not automatically included.
695 	 */
696 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
697 		dump_add_page(pa);
698 #endif
699 	phys_avail[biggestone + 1] = new_end;
700 #ifdef __amd64__
701 	/*
702 	 * Request that the physical pages underlying the message buffer be
703 	 * included in a crash dump.  Since the message buffer is accessed
704 	 * through the direct map, they are not automatically included.
705 	 */
706 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
707 	last_pa = pa + round_page(msgbufsize);
708 	while (pa < last_pa) {
709 		dump_add_page(pa);
710 		pa += PAGE_SIZE;
711 	}
712 #endif
713 	/*
714 	 * Compute the number of pages of memory that will be available for
715 	 * use, taking into account the overhead of a page structure per page.
716 	 * In other words, solve
717 	 *	"available physical memory" - round_page(page_range *
718 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
719 	 * for page_range.
720 	 */
721 	low_avail = phys_avail[0];
722 	high_avail = phys_avail[1];
723 	for (i = 0; i < vm_phys_nsegs; i++) {
724 		if (vm_phys_segs[i].start < low_avail)
725 			low_avail = vm_phys_segs[i].start;
726 		if (vm_phys_segs[i].end > high_avail)
727 			high_avail = vm_phys_segs[i].end;
728 	}
729 	/* Skip the first chunk.  It is already accounted for. */
730 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
731 		if (phys_avail[i] < low_avail)
732 			low_avail = phys_avail[i];
733 		if (phys_avail[i + 1] > high_avail)
734 			high_avail = phys_avail[i + 1];
735 	}
736 	first_page = low_avail / PAGE_SIZE;
737 #ifdef VM_PHYSSEG_SPARSE
738 	size = 0;
739 	for (i = 0; i < vm_phys_nsegs; i++)
740 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
741 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
742 		size += phys_avail[i + 1] - phys_avail[i];
743 #elif defined(VM_PHYSSEG_DENSE)
744 	size = high_avail - low_avail;
745 #else
746 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
747 #endif
748 
749 #ifdef PMAP_HAS_PAGE_ARRAY
750 	pmap_page_array_startup(size / PAGE_SIZE);
751 	biggestone = vm_phys_avail_largest();
752 	end = new_end = phys_avail[biggestone + 1];
753 #else
754 #ifdef VM_PHYSSEG_DENSE
755 	/*
756 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
757 	 * the overhead of a page structure per page only if vm_page_array is
758 	 * allocated from the last physical memory chunk.  Otherwise, we must
759 	 * allocate page structures representing the physical memory
760 	 * underlying vm_page_array, even though they will not be used.
761 	 */
762 	if (new_end != high_avail)
763 		page_range = size / PAGE_SIZE;
764 	else
765 #endif
766 	{
767 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
768 
769 		/*
770 		 * If the partial bytes remaining are large enough for
771 		 * a page (PAGE_SIZE) without a corresponding
772 		 * 'struct vm_page', then new_end will contain an
773 		 * extra page after subtracting the length of the VM
774 		 * page array.  Compensate by subtracting an extra
775 		 * page from new_end.
776 		 */
777 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
778 			if (new_end == high_avail)
779 				high_avail -= PAGE_SIZE;
780 			new_end -= PAGE_SIZE;
781 		}
782 	}
783 	end = new_end;
784 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
785 #endif
786 
787 #if VM_NRESERVLEVEL > 0
788 	/*
789 	 * Allocate physical memory for the reservation management system's
790 	 * data structures, and map it.
791 	 */
792 	new_end = vm_reserv_startup(&vaddr, new_end);
793 #endif
794 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
795     defined(__riscv) || defined(__powerpc64__)
796 	/*
797 	 * Include vm_page_array and vm_reserv_array in a crash dump.
798 	 */
799 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
800 		dump_add_page(pa);
801 #endif
802 	phys_avail[biggestone + 1] = new_end;
803 
804 	/*
805 	 * Add physical memory segments corresponding to the available
806 	 * physical pages.
807 	 */
808 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
809 		if (vm_phys_avail_size(i) != 0)
810 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
811 
812 	/*
813 	 * Initialize the physical memory allocator.
814 	 */
815 	vm_phys_init();
816 
817 	/*
818 	 * Initialize the page structures and add every available page to the
819 	 * physical memory allocator's free lists.
820 	 */
821 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
822 	for (ii = 0; ii < vm_page_array_size; ii++) {
823 		m = &vm_page_array[ii];
824 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
825 		m->flags = PG_FICTITIOUS;
826 	}
827 #endif
828 	vm_cnt.v_page_count = 0;
829 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
830 		seg = &vm_phys_segs[segind];
831 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
832 		    m++, pa += PAGE_SIZE)
833 			vm_page_init_page(m, pa, segind);
834 
835 		/*
836 		 * Add the segment to the free lists only if it is covered by
837 		 * one of the ranges in phys_avail.  Because we've added the
838 		 * ranges to the vm_phys_segs array, we can assume that each
839 		 * segment is either entirely contained in one of the ranges,
840 		 * or doesn't overlap any of them.
841 		 */
842 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
843 			struct vm_domain *vmd;
844 
845 			if (seg->start < phys_avail[i] ||
846 			    seg->end > phys_avail[i + 1])
847 				continue;
848 
849 			m = seg->first_page;
850 			pagecount = (u_long)atop(seg->end - seg->start);
851 
852 			vmd = VM_DOMAIN(seg->domain);
853 			vm_domain_free_lock(vmd);
854 			vm_phys_enqueue_contig(m, pagecount);
855 			vm_domain_free_unlock(vmd);
856 			vm_domain_freecnt_inc(vmd, pagecount);
857 			vm_cnt.v_page_count += (u_int)pagecount;
858 
859 			vmd = VM_DOMAIN(seg->domain);
860 			vmd->vmd_page_count += (u_int)pagecount;
861 			vmd->vmd_segs |= 1UL << m->segind;
862 			break;
863 		}
864 	}
865 
866 	/*
867 	 * Remove blacklisted pages from the physical memory allocator.
868 	 */
869 	TAILQ_INIT(&blacklist_head);
870 	vm_page_blacklist_load(&list, &listend);
871 	vm_page_blacklist_check(list, listend);
872 
873 	list = kern_getenv("vm.blacklist");
874 	vm_page_blacklist_check(list, NULL);
875 
876 	freeenv(list);
877 #if VM_NRESERVLEVEL > 0
878 	/*
879 	 * Initialize the reservation management system.
880 	 */
881 	vm_reserv_init();
882 #endif
883 
884 	return (vaddr);
885 }
886 
887 void
888 vm_page_reference(vm_page_t m)
889 {
890 
891 	vm_page_aflag_set(m, PGA_REFERENCED);
892 }
893 
894 /*
895  *	vm_page_busy_acquire:
896  *
897  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
898  *	and drop the object lock if necessary.
899  */
900 int
901 vm_page_busy_acquire(vm_page_t m, int allocflags)
902 {
903 	vm_object_t obj;
904 	bool locked;
905 
906 	/*
907 	 * The page-specific object must be cached because page
908 	 * identity can change during the sleep, causing the
909 	 * re-lock of a different object.
910 	 * It is assumed that a reference to the object is already
911 	 * held by the callers.
912 	 */
913 	obj = m->object;
914 	for (;;) {
915 		if ((allocflags & VM_ALLOC_SBUSY) == 0) {
916 			if (vm_page_tryxbusy(m))
917 				return (TRUE);
918 		} else {
919 			if (vm_page_trysbusy(m))
920 				return (TRUE);
921 		}
922 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
923 			return (FALSE);
924 		if (obj != NULL)
925 			locked = VM_OBJECT_WOWNED(obj);
926 		else
927 			locked = FALSE;
928 		MPASS(locked || vm_page_wired(m));
929 		_vm_page_busy_sleep(obj, m, "vmpba",
930 		    (allocflags & VM_ALLOC_SBUSY) != 0, locked);
931 		if (locked)
932 			VM_OBJECT_WLOCK(obj);
933 		MPASS(m->object == obj || m->object == NULL);
934 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
935 			return (FALSE);
936 	}
937 }
938 
939 /*
940  *	vm_page_busy_downgrade:
941  *
942  *	Downgrade an exclusive busy page into a single shared busy page.
943  */
944 void
945 vm_page_busy_downgrade(vm_page_t m)
946 {
947 	u_int x;
948 
949 	vm_page_assert_xbusied(m);
950 
951 	x = m->busy_lock;
952 	for (;;) {
953 		if (atomic_fcmpset_rel_int(&m->busy_lock,
954 		    &x, VPB_SHARERS_WORD(1)))
955 			break;
956 	}
957 	if ((x & VPB_BIT_WAITERS) != 0)
958 		wakeup(m);
959 }
960 
961 /*
962  *
963  *	vm_page_busy_tryupgrade:
964  *
965  *	Attempt to upgrade a single shared busy into an exclusive busy.
966  */
967 int
968 vm_page_busy_tryupgrade(vm_page_t m)
969 {
970 	u_int x;
971 
972 	vm_page_assert_sbusied(m);
973 
974 	x = m->busy_lock;
975 	for (;;) {
976 		if (VPB_SHARERS(x) > 1)
977 			return (0);
978 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
979 		    ("vm_page_busy_tryupgrade: invalid lock state"));
980 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
981 		    VPB_SINGLE_EXCLUSIVER | (x & VPB_BIT_WAITERS)))
982 			continue;
983 		return (1);
984 	}
985 }
986 
987 /*
988  *	vm_page_sbusied:
989  *
990  *	Return a positive value if the page is shared busied, 0 otherwise.
991  */
992 int
993 vm_page_sbusied(vm_page_t m)
994 {
995 	u_int x;
996 
997 	x = m->busy_lock;
998 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
999 }
1000 
1001 /*
1002  *	vm_page_sunbusy:
1003  *
1004  *	Shared unbusy a page.
1005  */
1006 void
1007 vm_page_sunbusy(vm_page_t m)
1008 {
1009 	u_int x;
1010 
1011 	vm_page_assert_sbusied(m);
1012 
1013 	x = m->busy_lock;
1014 	for (;;) {
1015 		if (VPB_SHARERS(x) > 1) {
1016 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1017 			    x - VPB_ONE_SHARER))
1018 				break;
1019 			continue;
1020 		}
1021 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1022 		    ("vm_page_sunbusy: invalid lock state"));
1023 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1024 			continue;
1025 		if ((x & VPB_BIT_WAITERS) == 0)
1026 			break;
1027 		wakeup(m);
1028 		break;
1029 	}
1030 }
1031 
1032 /*
1033  *	vm_page_busy_sleep:
1034  *
1035  *	Sleep if the page is busy, using the page pointer as wchan.
1036  *	This is used to implement the hard-path of busying mechanism.
1037  *
1038  *	If nonshared is true, sleep only if the page is xbusy.
1039  *
1040  *	The object lock must be held on entry and will be released on exit.
1041  */
1042 void
1043 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1044 {
1045 	vm_object_t obj;
1046 
1047 	obj = m->object;
1048 	VM_OBJECT_ASSERT_LOCKED(obj);
1049 	vm_page_lock_assert(m, MA_NOTOWNED);
1050 
1051 	_vm_page_busy_sleep(obj, m, wmesg, nonshared, true);
1052 }
1053 
1054 static void
1055 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1056     bool nonshared, bool locked)
1057 {
1058 	u_int x;
1059 
1060 	/*
1061 	 * If the object is busy we must wait for that to drain to zero
1062 	 * before trying the page again.
1063 	 */
1064 	if (obj != NULL && vm_object_busied(obj)) {
1065 		if (locked)
1066 			VM_OBJECT_DROP(obj);
1067 		vm_object_busy_wait(obj, wmesg);
1068 		return;
1069 	}
1070 	sleepq_lock(m);
1071 	x = m->busy_lock;
1072 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1073 	    ((x & VPB_BIT_WAITERS) == 0 &&
1074 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1075 		if (locked)
1076 			VM_OBJECT_DROP(obj);
1077 		sleepq_release(m);
1078 		return;
1079 	}
1080 	if (locked)
1081 		VM_OBJECT_DROP(obj);
1082 	sleepq_add(m, NULL, wmesg, 0, 0);
1083 	sleepq_wait(m, PVM);
1084 }
1085 
1086 /*
1087  *	vm_page_trysbusy:
1088  *
1089  *	Try to shared busy a page.
1090  *	If the operation succeeds 1 is returned otherwise 0.
1091  *	The operation never sleeps.
1092  */
1093 int
1094 vm_page_trysbusy(vm_page_t m)
1095 {
1096 	vm_object_t obj;
1097 	u_int x;
1098 
1099 	obj = m->object;
1100 	x = m->busy_lock;
1101 	for (;;) {
1102 		if ((x & VPB_BIT_SHARED) == 0)
1103 			return (0);
1104 		/*
1105 		 * Reduce the window for transient busies that will trigger
1106 		 * false negatives in vm_page_ps_test().
1107 		 */
1108 		if (obj != NULL && vm_object_busied(obj))
1109 			return (0);
1110 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1111 		    x + VPB_ONE_SHARER))
1112 			break;
1113 	}
1114 
1115 	/* Refetch the object now that we're guaranteed that it is stable. */
1116 	obj = m->object;
1117 	if (obj != NULL && vm_object_busied(obj)) {
1118 		vm_page_sunbusy(m);
1119 		return (0);
1120 	}
1121 	return (1);
1122 }
1123 
1124 /*
1125  *	vm_page_tryxbusy:
1126  *
1127  *	Try to exclusive busy a page.
1128  *	If the operation succeeds 1 is returned otherwise 0.
1129  *	The operation never sleeps.
1130  */
1131 int
1132 vm_page_tryxbusy(vm_page_t m)
1133 {
1134 	vm_object_t obj;
1135 
1136         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1137             VPB_SINGLE_EXCLUSIVER) == 0)
1138 		return (0);
1139 
1140 	obj = m->object;
1141 	if (obj != NULL && vm_object_busied(obj)) {
1142 		vm_page_xunbusy(m);
1143 		return (0);
1144 	}
1145 	return (1);
1146 }
1147 
1148 /*
1149  *	vm_page_xunbusy_hard:
1150  *
1151  *	Called when unbusy has failed because there is a waiter.
1152  */
1153 void
1154 vm_page_xunbusy_hard(vm_page_t m)
1155 {
1156 
1157 	vm_page_assert_xbusied(m);
1158 
1159 	/*
1160 	 * Wake the waiter.
1161 	 */
1162 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1163 	wakeup(m);
1164 }
1165 
1166 /*
1167  * Avoid releasing and reacquiring the same page lock.
1168  */
1169 void
1170 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1171 {
1172 	struct mtx *mtx1;
1173 
1174 	mtx1 = vm_page_lockptr(m);
1175 	if (*mtx == mtx1)
1176 		return;
1177 	if (*mtx != NULL)
1178 		mtx_unlock(*mtx);
1179 	*mtx = mtx1;
1180 	mtx_lock(mtx1);
1181 }
1182 
1183 /*
1184  *	vm_page_unhold_pages:
1185  *
1186  *	Unhold each of the pages that is referenced by the given array.
1187  */
1188 void
1189 vm_page_unhold_pages(vm_page_t *ma, int count)
1190 {
1191 
1192 	for (; count != 0; count--) {
1193 		vm_page_unwire(*ma, PQ_ACTIVE);
1194 		ma++;
1195 	}
1196 }
1197 
1198 vm_page_t
1199 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1200 {
1201 	vm_page_t m;
1202 
1203 #ifdef VM_PHYSSEG_SPARSE
1204 	m = vm_phys_paddr_to_vm_page(pa);
1205 	if (m == NULL)
1206 		m = vm_phys_fictitious_to_vm_page(pa);
1207 	return (m);
1208 #elif defined(VM_PHYSSEG_DENSE)
1209 	long pi;
1210 
1211 	pi = atop(pa);
1212 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1213 		m = &vm_page_array[pi - first_page];
1214 		return (m);
1215 	}
1216 	return (vm_phys_fictitious_to_vm_page(pa));
1217 #else
1218 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1219 #endif
1220 }
1221 
1222 /*
1223  *	vm_page_getfake:
1224  *
1225  *	Create a fictitious page with the specified physical address and
1226  *	memory attribute.  The memory attribute is the only the machine-
1227  *	dependent aspect of a fictitious page that must be initialized.
1228  */
1229 vm_page_t
1230 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1231 {
1232 	vm_page_t m;
1233 
1234 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1235 	vm_page_initfake(m, paddr, memattr);
1236 	return (m);
1237 }
1238 
1239 void
1240 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1241 {
1242 
1243 	if ((m->flags & PG_FICTITIOUS) != 0) {
1244 		/*
1245 		 * The page's memattr might have changed since the
1246 		 * previous initialization.  Update the pmap to the
1247 		 * new memattr.
1248 		 */
1249 		goto memattr;
1250 	}
1251 	m->phys_addr = paddr;
1252 	m->queue = PQ_NONE;
1253 	/* Fictitious pages don't use "segind". */
1254 	m->flags = PG_FICTITIOUS;
1255 	/* Fictitious pages don't use "order" or "pool". */
1256 	m->oflags = VPO_UNMANAGED;
1257 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1258 	/* Fictitious pages are unevictable. */
1259 	m->ref_count = 1;
1260 	pmap_page_init(m);
1261 memattr:
1262 	pmap_page_set_memattr(m, memattr);
1263 }
1264 
1265 /*
1266  *	vm_page_putfake:
1267  *
1268  *	Release a fictitious page.
1269  */
1270 void
1271 vm_page_putfake(vm_page_t m)
1272 {
1273 
1274 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1275 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1276 	    ("vm_page_putfake: bad page %p", m));
1277 	if (vm_page_xbusied(m))
1278 		vm_page_xunbusy(m);
1279 	uma_zfree(fakepg_zone, m);
1280 }
1281 
1282 /*
1283  *	vm_page_updatefake:
1284  *
1285  *	Update the given fictitious page to the specified physical address and
1286  *	memory attribute.
1287  */
1288 void
1289 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1290 {
1291 
1292 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1293 	    ("vm_page_updatefake: bad page %p", m));
1294 	m->phys_addr = paddr;
1295 	pmap_page_set_memattr(m, memattr);
1296 }
1297 
1298 /*
1299  *	vm_page_free:
1300  *
1301  *	Free a page.
1302  */
1303 void
1304 vm_page_free(vm_page_t m)
1305 {
1306 
1307 	m->flags &= ~PG_ZERO;
1308 	vm_page_free_toq(m);
1309 }
1310 
1311 /*
1312  *	vm_page_free_zero:
1313  *
1314  *	Free a page to the zerod-pages queue
1315  */
1316 void
1317 vm_page_free_zero(vm_page_t m)
1318 {
1319 
1320 	m->flags |= PG_ZERO;
1321 	vm_page_free_toq(m);
1322 }
1323 
1324 /*
1325  * Unbusy and handle the page queueing for a page from a getpages request that
1326  * was optionally read ahead or behind.
1327  */
1328 void
1329 vm_page_readahead_finish(vm_page_t m)
1330 {
1331 
1332 	/* We shouldn't put invalid pages on queues. */
1333 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1334 
1335 	/*
1336 	 * Since the page is not the actually needed one, whether it should
1337 	 * be activated or deactivated is not obvious.  Empirical results
1338 	 * have shown that deactivating the page is usually the best choice,
1339 	 * unless the page is wanted by another thread.
1340 	 */
1341 	vm_page_lock(m);
1342 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1343 		vm_page_activate(m);
1344 	else
1345 		vm_page_deactivate(m);
1346 	vm_page_unlock(m);
1347 	vm_page_xunbusy(m);
1348 }
1349 
1350 /*
1351  *	vm_page_sleep_if_busy:
1352  *
1353  *	Sleep and release the object lock if the page is busied.
1354  *	Returns TRUE if the thread slept.
1355  *
1356  *	The given page must be unlocked and object containing it must
1357  *	be locked.
1358  */
1359 int
1360 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1361 {
1362 	vm_object_t obj;
1363 
1364 	vm_page_lock_assert(m, MA_NOTOWNED);
1365 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1366 
1367 	/*
1368 	 * The page-specific object must be cached because page
1369 	 * identity can change during the sleep, causing the
1370 	 * re-lock of a different object.
1371 	 * It is assumed that a reference to the object is already
1372 	 * held by the callers.
1373 	 */
1374 	obj = m->object;
1375 	if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1376 		vm_page_busy_sleep(m, msg, false);
1377 		VM_OBJECT_WLOCK(obj);
1378 		return (TRUE);
1379 	}
1380 	return (FALSE);
1381 }
1382 
1383 /*
1384  *	vm_page_sleep_if_xbusy:
1385  *
1386  *	Sleep and release the object lock if the page is xbusied.
1387  *	Returns TRUE if the thread slept.
1388  *
1389  *	The given page must be unlocked and object containing it must
1390  *	be locked.
1391  */
1392 int
1393 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1394 {
1395 	vm_object_t obj;
1396 
1397 	vm_page_lock_assert(m, MA_NOTOWNED);
1398 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1399 
1400 	/*
1401 	 * The page-specific object must be cached because page
1402 	 * identity can change during the sleep, causing the
1403 	 * re-lock of a different object.
1404 	 * It is assumed that a reference to the object is already
1405 	 * held by the callers.
1406 	 */
1407 	obj = m->object;
1408 	if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1409 		vm_page_busy_sleep(m, msg, true);
1410 		VM_OBJECT_WLOCK(obj);
1411 		return (TRUE);
1412 	}
1413 	return (FALSE);
1414 }
1415 
1416 /*
1417  *	vm_page_dirty_KBI:		[ internal use only ]
1418  *
1419  *	Set all bits in the page's dirty field.
1420  *
1421  *	The object containing the specified page must be locked if the
1422  *	call is made from the machine-independent layer.
1423  *
1424  *	See vm_page_clear_dirty_mask().
1425  *
1426  *	This function should only be called by vm_page_dirty().
1427  */
1428 void
1429 vm_page_dirty_KBI(vm_page_t m)
1430 {
1431 
1432 	/* Refer to this operation by its public name. */
1433 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1434 	m->dirty = VM_PAGE_BITS_ALL;
1435 }
1436 
1437 /*
1438  *	vm_page_insert:		[ internal use only ]
1439  *
1440  *	Inserts the given mem entry into the object and object list.
1441  *
1442  *	The object must be locked.
1443  */
1444 int
1445 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1446 {
1447 	vm_page_t mpred;
1448 
1449 	VM_OBJECT_ASSERT_WLOCKED(object);
1450 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1451 	return (vm_page_insert_after(m, object, pindex, mpred));
1452 }
1453 
1454 /*
1455  *	vm_page_insert_after:
1456  *
1457  *	Inserts the page "m" into the specified object at offset "pindex".
1458  *
1459  *	The page "mpred" must immediately precede the offset "pindex" within
1460  *	the specified object.
1461  *
1462  *	The object must be locked.
1463  */
1464 static int
1465 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1466     vm_page_t mpred)
1467 {
1468 	vm_page_t msucc;
1469 
1470 	VM_OBJECT_ASSERT_WLOCKED(object);
1471 	KASSERT(m->object == NULL,
1472 	    ("vm_page_insert_after: page already inserted"));
1473 	if (mpred != NULL) {
1474 		KASSERT(mpred->object == object,
1475 		    ("vm_page_insert_after: object doesn't contain mpred"));
1476 		KASSERT(mpred->pindex < pindex,
1477 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1478 		msucc = TAILQ_NEXT(mpred, listq);
1479 	} else
1480 		msucc = TAILQ_FIRST(&object->memq);
1481 	if (msucc != NULL)
1482 		KASSERT(msucc->pindex > pindex,
1483 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1484 
1485 	/*
1486 	 * Record the object/offset pair in this page.
1487 	 */
1488 	m->object = object;
1489 	m->pindex = pindex;
1490 	m->ref_count |= VPRC_OBJREF;
1491 
1492 	/*
1493 	 * Now link into the object's ordered list of backed pages.
1494 	 */
1495 	if (vm_radix_insert(&object->rtree, m)) {
1496 		m->object = NULL;
1497 		m->pindex = 0;
1498 		m->ref_count &= ~VPRC_OBJREF;
1499 		return (1);
1500 	}
1501 	vm_page_insert_radixdone(m, object, mpred);
1502 	return (0);
1503 }
1504 
1505 /*
1506  *	vm_page_insert_radixdone:
1507  *
1508  *	Complete page "m" insertion into the specified object after the
1509  *	radix trie hooking.
1510  *
1511  *	The page "mpred" must precede the offset "m->pindex" within the
1512  *	specified object.
1513  *
1514  *	The object must be locked.
1515  */
1516 static void
1517 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1518 {
1519 
1520 	VM_OBJECT_ASSERT_WLOCKED(object);
1521 	KASSERT(object != NULL && m->object == object,
1522 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1523 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1524 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1525 	if (mpred != NULL) {
1526 		KASSERT(mpred->object == object,
1527 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1528 		KASSERT(mpred->pindex < m->pindex,
1529 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1530 	}
1531 
1532 	if (mpred != NULL)
1533 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1534 	else
1535 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1536 
1537 	/*
1538 	 * Show that the object has one more resident page.
1539 	 */
1540 	object->resident_page_count++;
1541 
1542 	/*
1543 	 * Hold the vnode until the last page is released.
1544 	 */
1545 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1546 		vhold(object->handle);
1547 
1548 	/*
1549 	 * Since we are inserting a new and possibly dirty page,
1550 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1551 	 */
1552 	if (pmap_page_is_write_mapped(m))
1553 		vm_object_set_writeable_dirty(object);
1554 }
1555 
1556 /*
1557  * Do the work to remove a page from its object.  The caller is responsible for
1558  * updating the page's fields to reflect this removal.
1559  */
1560 static void
1561 vm_page_object_remove(vm_page_t m)
1562 {
1563 	vm_object_t object;
1564 	vm_page_t mrem;
1565 
1566 	object = m->object;
1567 	VM_OBJECT_ASSERT_WLOCKED(object);
1568 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1569 	    ("page %p is missing its object ref", m));
1570 
1571 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1572 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1573 
1574 	/*
1575 	 * Now remove from the object's list of backed pages.
1576 	 */
1577 	TAILQ_REMOVE(&object->memq, m, listq);
1578 
1579 	/*
1580 	 * And show that the object has one fewer resident page.
1581 	 */
1582 	object->resident_page_count--;
1583 
1584 	/*
1585 	 * The vnode may now be recycled.
1586 	 */
1587 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1588 		vdrop(object->handle);
1589 }
1590 
1591 /*
1592  *	vm_page_remove:
1593  *
1594  *	Removes the specified page from its containing object, but does not
1595  *	invalidate any backing storage.  Returns true if the object's reference
1596  *	was the last reference to the page, and false otherwise.
1597  *
1598  *	The object must be locked.
1599  */
1600 bool
1601 vm_page_remove(vm_page_t m)
1602 {
1603 
1604 	vm_page_object_remove(m);
1605 	m->object = NULL;
1606 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1607 }
1608 
1609 /*
1610  *	vm_page_lookup:
1611  *
1612  *	Returns the page associated with the object/offset
1613  *	pair specified; if none is found, NULL is returned.
1614  *
1615  *	The object must be locked.
1616  */
1617 vm_page_t
1618 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1619 {
1620 
1621 	VM_OBJECT_ASSERT_LOCKED(object);
1622 	return (vm_radix_lookup(&object->rtree, pindex));
1623 }
1624 
1625 /*
1626  *	vm_page_find_least:
1627  *
1628  *	Returns the page associated with the object with least pindex
1629  *	greater than or equal to the parameter pindex, or NULL.
1630  *
1631  *	The object must be locked.
1632  */
1633 vm_page_t
1634 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1635 {
1636 	vm_page_t m;
1637 
1638 	VM_OBJECT_ASSERT_LOCKED(object);
1639 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1640 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1641 	return (m);
1642 }
1643 
1644 /*
1645  * Returns the given page's successor (by pindex) within the object if it is
1646  * resident; if none is found, NULL is returned.
1647  *
1648  * The object must be locked.
1649  */
1650 vm_page_t
1651 vm_page_next(vm_page_t m)
1652 {
1653 	vm_page_t next;
1654 
1655 	VM_OBJECT_ASSERT_LOCKED(m->object);
1656 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1657 		MPASS(next->object == m->object);
1658 		if (next->pindex != m->pindex + 1)
1659 			next = NULL;
1660 	}
1661 	return (next);
1662 }
1663 
1664 /*
1665  * Returns the given page's predecessor (by pindex) within the object if it is
1666  * resident; if none is found, NULL is returned.
1667  *
1668  * The object must be locked.
1669  */
1670 vm_page_t
1671 vm_page_prev(vm_page_t m)
1672 {
1673 	vm_page_t prev;
1674 
1675 	VM_OBJECT_ASSERT_LOCKED(m->object);
1676 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1677 		MPASS(prev->object == m->object);
1678 		if (prev->pindex != m->pindex - 1)
1679 			prev = NULL;
1680 	}
1681 	return (prev);
1682 }
1683 
1684 /*
1685  * Uses the page mnew as a replacement for an existing page at index
1686  * pindex which must be already present in the object.
1687  */
1688 vm_page_t
1689 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1690 {
1691 	vm_page_t mold;
1692 
1693 	VM_OBJECT_ASSERT_WLOCKED(object);
1694 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1695 	    ("vm_page_replace: page %p already in object", mnew));
1696 
1697 	/*
1698 	 * This function mostly follows vm_page_insert() and
1699 	 * vm_page_remove() without the radix, object count and vnode
1700 	 * dance.  Double check such functions for more comments.
1701 	 */
1702 
1703 	mnew->object = object;
1704 	mnew->pindex = pindex;
1705 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1706 	mold = vm_radix_replace(&object->rtree, mnew);
1707 	KASSERT(mold->queue == PQ_NONE,
1708 	    ("vm_page_replace: old page %p is on a paging queue", mold));
1709 
1710 	/* Keep the resident page list in sorted order. */
1711 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1712 	TAILQ_REMOVE(&object->memq, mold, listq);
1713 
1714 	mold->object = NULL;
1715 	atomic_clear_int(&mold->ref_count, VPRC_OBJREF);
1716 	vm_page_xunbusy(mold);
1717 
1718 	/*
1719 	 * The object's resident_page_count does not change because we have
1720 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1721 	 */
1722 	if (pmap_page_is_write_mapped(mnew))
1723 		vm_object_set_writeable_dirty(object);
1724 	return (mold);
1725 }
1726 
1727 /*
1728  *	vm_page_rename:
1729  *
1730  *	Move the given memory entry from its
1731  *	current object to the specified target object/offset.
1732  *
1733  *	Note: swap associated with the page must be invalidated by the move.  We
1734  *	      have to do this for several reasons:  (1) we aren't freeing the
1735  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1736  *	      moving the page from object A to B, and will then later move
1737  *	      the backing store from A to B and we can't have a conflict.
1738  *
1739  *	Note: we *always* dirty the page.  It is necessary both for the
1740  *	      fact that we moved it, and because we may be invalidating
1741  *	      swap.
1742  *
1743  *	The objects must be locked.
1744  */
1745 int
1746 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1747 {
1748 	vm_page_t mpred;
1749 	vm_pindex_t opidx;
1750 
1751 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1752 
1753 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1754 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1755 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1756 	    ("vm_page_rename: pindex already renamed"));
1757 
1758 	/*
1759 	 * Create a custom version of vm_page_insert() which does not depend
1760 	 * by m_prev and can cheat on the implementation aspects of the
1761 	 * function.
1762 	 */
1763 	opidx = m->pindex;
1764 	m->pindex = new_pindex;
1765 	if (vm_radix_insert(&new_object->rtree, m)) {
1766 		m->pindex = opidx;
1767 		return (1);
1768 	}
1769 
1770 	/*
1771 	 * The operation cannot fail anymore.  The removal must happen before
1772 	 * the listq iterator is tainted.
1773 	 */
1774 	m->pindex = opidx;
1775 	vm_page_object_remove(m);
1776 
1777 	/* Return back to the new pindex to complete vm_page_insert(). */
1778 	m->pindex = new_pindex;
1779 	m->object = new_object;
1780 
1781 	vm_page_insert_radixdone(m, new_object, mpred);
1782 	vm_page_dirty(m);
1783 	return (0);
1784 }
1785 
1786 /*
1787  *	vm_page_alloc:
1788  *
1789  *	Allocate and return a page that is associated with the specified
1790  *	object and offset pair.  By default, this page is exclusive busied.
1791  *
1792  *	The caller must always specify an allocation class.
1793  *
1794  *	allocation classes:
1795  *	VM_ALLOC_NORMAL		normal process request
1796  *	VM_ALLOC_SYSTEM		system *really* needs a page
1797  *	VM_ALLOC_INTERRUPT	interrupt time request
1798  *
1799  *	optional allocation flags:
1800  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1801  *				intends to allocate
1802  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1803  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1804  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1805  *				should not be exclusive busy
1806  *	VM_ALLOC_SBUSY		shared busy the allocated page
1807  *	VM_ALLOC_WIRED		wire the allocated page
1808  *	VM_ALLOC_ZERO		prefer a zeroed page
1809  */
1810 vm_page_t
1811 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1812 {
1813 
1814 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1815 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1816 }
1817 
1818 vm_page_t
1819 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1820     int req)
1821 {
1822 
1823 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1824 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1825 	    NULL));
1826 }
1827 
1828 /*
1829  * Allocate a page in the specified object with the given page index.  To
1830  * optimize insertion of the page into the object, the caller must also specifiy
1831  * the resident page in the object with largest index smaller than the given
1832  * page index, or NULL if no such page exists.
1833  */
1834 vm_page_t
1835 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1836     int req, vm_page_t mpred)
1837 {
1838 	struct vm_domainset_iter di;
1839 	vm_page_t m;
1840 	int domain;
1841 
1842 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1843 	do {
1844 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1845 		    mpred);
1846 		if (m != NULL)
1847 			break;
1848 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1849 
1850 	return (m);
1851 }
1852 
1853 /*
1854  * Returns true if the number of free pages exceeds the minimum
1855  * for the request class and false otherwise.
1856  */
1857 int
1858 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1859 {
1860 	u_int limit, old, new;
1861 
1862 	req = req & VM_ALLOC_CLASS_MASK;
1863 
1864 	/*
1865 	 * The page daemon is allowed to dig deeper into the free page list.
1866 	 */
1867 	if (curproc == pageproc && req != VM_ALLOC_INTERRUPT)
1868 		req = VM_ALLOC_SYSTEM;
1869 	if (req == VM_ALLOC_INTERRUPT)
1870 		limit = 0;
1871 	else if (req == VM_ALLOC_SYSTEM)
1872 		limit = vmd->vmd_interrupt_free_min;
1873 	else
1874 		limit = vmd->vmd_free_reserved;
1875 
1876 	/*
1877 	 * Attempt to reserve the pages.  Fail if we're below the limit.
1878 	 */
1879 	limit += npages;
1880 	old = vmd->vmd_free_count;
1881 	do {
1882 		if (old < limit)
1883 			return (0);
1884 		new = old - npages;
1885 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1886 
1887 	/* Wake the page daemon if we've crossed the threshold. */
1888 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1889 		pagedaemon_wakeup(vmd->vmd_domain);
1890 
1891 	/* Only update bitsets on transitions. */
1892 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1893 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1894 		vm_domain_set(vmd);
1895 
1896 	return (1);
1897 }
1898 
1899 vm_page_t
1900 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1901     int req, vm_page_t mpred)
1902 {
1903 	struct vm_domain *vmd;
1904 	vm_page_t m;
1905 	int flags, pool;
1906 
1907 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1908 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1909 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1910 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1911 	    ("inconsistent object(%p)/req(%x)", object, req));
1912 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1913 	    ("Can't sleep and retry object insertion."));
1914 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1915 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1916 	    (uintmax_t)pindex));
1917 	if (object != NULL)
1918 		VM_OBJECT_ASSERT_WLOCKED(object);
1919 
1920 	flags = 0;
1921 	m = NULL;
1922 	pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1923 again:
1924 #if VM_NRESERVLEVEL > 0
1925 	/*
1926 	 * Can we allocate the page from a reservation?
1927 	 */
1928 	if (vm_object_reserv(object) &&
1929 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
1930 	    NULL) {
1931 		domain = vm_phys_domain(m);
1932 		vmd = VM_DOMAIN(domain);
1933 		goto found;
1934 	}
1935 #endif
1936 	vmd = VM_DOMAIN(domain);
1937 	if (vmd->vmd_pgcache[pool].zone != NULL) {
1938 		m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1939 		if (m != NULL) {
1940 			flags |= PG_PCPU_CACHE;
1941 			goto found;
1942 		}
1943 	}
1944 	if (vm_domain_allocate(vmd, req, 1)) {
1945 		/*
1946 		 * If not, allocate it from the free page queues.
1947 		 */
1948 		vm_domain_free_lock(vmd);
1949 		m = vm_phys_alloc_pages(domain, pool, 0);
1950 		vm_domain_free_unlock(vmd);
1951 		if (m == NULL) {
1952 			vm_domain_freecnt_inc(vmd, 1);
1953 #if VM_NRESERVLEVEL > 0
1954 			if (vm_reserv_reclaim_inactive(domain))
1955 				goto again;
1956 #endif
1957 		}
1958 	}
1959 	if (m == NULL) {
1960 		/*
1961 		 * Not allocatable, give up.
1962 		 */
1963 		if (vm_domain_alloc_fail(vmd, object, req))
1964 			goto again;
1965 		return (NULL);
1966 	}
1967 
1968 	/*
1969 	 * At this point we had better have found a good page.
1970 	 */
1971 found:
1972 	vm_page_dequeue(m);
1973 	vm_page_alloc_check(m);
1974 
1975 	/*
1976 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1977 	 */
1978 	if ((req & VM_ALLOC_ZERO) != 0)
1979 		flags |= (m->flags & PG_ZERO);
1980 	if ((req & VM_ALLOC_NODUMP) != 0)
1981 		flags |= PG_NODUMP;
1982 	m->flags = flags;
1983 	m->aflags = 0;
1984 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1985 	    VPO_UNMANAGED : 0;
1986 	m->busy_lock = VPB_UNBUSIED;
1987 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1988 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1989 	if ((req & VM_ALLOC_SBUSY) != 0)
1990 		m->busy_lock = VPB_SHARERS_WORD(1);
1991 	if (req & VM_ALLOC_WIRED) {
1992 		/*
1993 		 * The page lock is not required for wiring a page until that
1994 		 * page is inserted into the object.
1995 		 */
1996 		vm_wire_add(1);
1997 		m->ref_count = 1;
1998 	}
1999 	m->act_count = 0;
2000 
2001 	if (object != NULL) {
2002 		if (vm_page_insert_after(m, object, pindex, mpred)) {
2003 			if (req & VM_ALLOC_WIRED) {
2004 				vm_wire_sub(1);
2005 				m->ref_count = 0;
2006 			}
2007 			KASSERT(m->object == NULL, ("page %p has object", m));
2008 			m->oflags = VPO_UNMANAGED;
2009 			m->busy_lock = VPB_UNBUSIED;
2010 			/* Don't change PG_ZERO. */
2011 			vm_page_free_toq(m);
2012 			if (req & VM_ALLOC_WAITFAIL) {
2013 				VM_OBJECT_WUNLOCK(object);
2014 				vm_radix_wait();
2015 				VM_OBJECT_WLOCK(object);
2016 			}
2017 			return (NULL);
2018 		}
2019 
2020 		/* Ignore device objects; the pager sets "memattr" for them. */
2021 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2022 		    (object->flags & OBJ_FICTITIOUS) == 0)
2023 			pmap_page_set_memattr(m, object->memattr);
2024 	} else
2025 		m->pindex = pindex;
2026 
2027 	return (m);
2028 }
2029 
2030 /*
2031  *	vm_page_alloc_contig:
2032  *
2033  *	Allocate a contiguous set of physical pages of the given size "npages"
2034  *	from the free lists.  All of the physical pages must be at or above
2035  *	the given physical address "low" and below the given physical address
2036  *	"high".  The given value "alignment" determines the alignment of the
2037  *	first physical page in the set.  If the given value "boundary" is
2038  *	non-zero, then the set of physical pages cannot cross any physical
2039  *	address boundary that is a multiple of that value.  Both "alignment"
2040  *	and "boundary" must be a power of two.
2041  *
2042  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2043  *	then the memory attribute setting for the physical pages is configured
2044  *	to the object's memory attribute setting.  Otherwise, the memory
2045  *	attribute setting for the physical pages is configured to "memattr",
2046  *	overriding the object's memory attribute setting.  However, if the
2047  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2048  *	memory attribute setting for the physical pages cannot be configured
2049  *	to VM_MEMATTR_DEFAULT.
2050  *
2051  *	The specified object may not contain fictitious pages.
2052  *
2053  *	The caller must always specify an allocation class.
2054  *
2055  *	allocation classes:
2056  *	VM_ALLOC_NORMAL		normal process request
2057  *	VM_ALLOC_SYSTEM		system *really* needs a page
2058  *	VM_ALLOC_INTERRUPT	interrupt time request
2059  *
2060  *	optional allocation flags:
2061  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2062  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2063  *	VM_ALLOC_NOOBJ		page is not associated with an object and
2064  *				should not be exclusive busy
2065  *	VM_ALLOC_SBUSY		shared busy the allocated page
2066  *	VM_ALLOC_WIRED		wire the allocated page
2067  *	VM_ALLOC_ZERO		prefer a zeroed page
2068  */
2069 vm_page_t
2070 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2071     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2072     vm_paddr_t boundary, vm_memattr_t memattr)
2073 {
2074 	struct vm_domainset_iter di;
2075 	vm_page_t m;
2076 	int domain;
2077 
2078 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2079 	do {
2080 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2081 		    npages, low, high, alignment, boundary, memattr);
2082 		if (m != NULL)
2083 			break;
2084 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2085 
2086 	return (m);
2087 }
2088 
2089 vm_page_t
2090 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2091     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2092     vm_paddr_t boundary, vm_memattr_t memattr)
2093 {
2094 	struct vm_domain *vmd;
2095 	vm_page_t m, m_ret, mpred;
2096 	u_int busy_lock, flags, oflags;
2097 
2098 	mpred = NULL;	/* XXX: pacify gcc */
2099 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2100 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2101 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2102 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2103 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2104 	    req));
2105 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2106 	    ("Can't sleep and retry object insertion."));
2107 	if (object != NULL) {
2108 		VM_OBJECT_ASSERT_WLOCKED(object);
2109 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2110 		    ("vm_page_alloc_contig: object %p has fictitious pages",
2111 		    object));
2112 	}
2113 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2114 
2115 	if (object != NULL) {
2116 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
2117 		KASSERT(mpred == NULL || mpred->pindex != pindex,
2118 		    ("vm_page_alloc_contig: pindex already allocated"));
2119 	}
2120 
2121 	/*
2122 	 * Can we allocate the pages without the number of free pages falling
2123 	 * below the lower bound for the allocation class?
2124 	 */
2125 	m_ret = NULL;
2126 again:
2127 #if VM_NRESERVLEVEL > 0
2128 	/*
2129 	 * Can we allocate the pages from a reservation?
2130 	 */
2131 	if (vm_object_reserv(object) &&
2132 	    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2133 	    mpred, npages, low, high, alignment, boundary)) != NULL) {
2134 		domain = vm_phys_domain(m_ret);
2135 		vmd = VM_DOMAIN(domain);
2136 		goto found;
2137 	}
2138 #endif
2139 	vmd = VM_DOMAIN(domain);
2140 	if (vm_domain_allocate(vmd, req, npages)) {
2141 		/*
2142 		 * allocate them from the free page queues.
2143 		 */
2144 		vm_domain_free_lock(vmd);
2145 		m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2146 		    alignment, boundary);
2147 		vm_domain_free_unlock(vmd);
2148 		if (m_ret == NULL) {
2149 			vm_domain_freecnt_inc(vmd, npages);
2150 #if VM_NRESERVLEVEL > 0
2151 			if (vm_reserv_reclaim_contig(domain, npages, low,
2152 			    high, alignment, boundary))
2153 				goto again;
2154 #endif
2155 		}
2156 	}
2157 	if (m_ret == NULL) {
2158 		if (vm_domain_alloc_fail(vmd, object, req))
2159 			goto again;
2160 		return (NULL);
2161 	}
2162 #if VM_NRESERVLEVEL > 0
2163 found:
2164 #endif
2165 	for (m = m_ret; m < &m_ret[npages]; m++) {
2166 		vm_page_dequeue(m);
2167 		vm_page_alloc_check(m);
2168 	}
2169 
2170 	/*
2171 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2172 	 */
2173 	flags = 0;
2174 	if ((req & VM_ALLOC_ZERO) != 0)
2175 		flags = PG_ZERO;
2176 	if ((req & VM_ALLOC_NODUMP) != 0)
2177 		flags |= PG_NODUMP;
2178 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2179 	    VPO_UNMANAGED : 0;
2180 	busy_lock = VPB_UNBUSIED;
2181 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2182 		busy_lock = VPB_SINGLE_EXCLUSIVER;
2183 	if ((req & VM_ALLOC_SBUSY) != 0)
2184 		busy_lock = VPB_SHARERS_WORD(1);
2185 	if ((req & VM_ALLOC_WIRED) != 0)
2186 		vm_wire_add(npages);
2187 	if (object != NULL) {
2188 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2189 		    memattr == VM_MEMATTR_DEFAULT)
2190 			memattr = object->memattr;
2191 	}
2192 	for (m = m_ret; m < &m_ret[npages]; m++) {
2193 		m->aflags = 0;
2194 		m->flags = (m->flags | PG_NODUMP) & flags;
2195 		m->busy_lock = busy_lock;
2196 		if ((req & VM_ALLOC_WIRED) != 0)
2197 			m->ref_count = 1;
2198 		m->act_count = 0;
2199 		m->oflags = oflags;
2200 		if (object != NULL) {
2201 			if (vm_page_insert_after(m, object, pindex, mpred)) {
2202 				if ((req & VM_ALLOC_WIRED) != 0)
2203 					vm_wire_sub(npages);
2204 				KASSERT(m->object == NULL,
2205 				    ("page %p has object", m));
2206 				mpred = m;
2207 				for (m = m_ret; m < &m_ret[npages]; m++) {
2208 					if (m <= mpred &&
2209 					    (req & VM_ALLOC_WIRED) != 0)
2210 						m->ref_count = 0;
2211 					m->oflags = VPO_UNMANAGED;
2212 					m->busy_lock = VPB_UNBUSIED;
2213 					/* Don't change PG_ZERO. */
2214 					vm_page_free_toq(m);
2215 				}
2216 				if (req & VM_ALLOC_WAITFAIL) {
2217 					VM_OBJECT_WUNLOCK(object);
2218 					vm_radix_wait();
2219 					VM_OBJECT_WLOCK(object);
2220 				}
2221 				return (NULL);
2222 			}
2223 			mpred = m;
2224 		} else
2225 			m->pindex = pindex;
2226 		if (memattr != VM_MEMATTR_DEFAULT)
2227 			pmap_page_set_memattr(m, memattr);
2228 		pindex++;
2229 	}
2230 	return (m_ret);
2231 }
2232 
2233 /*
2234  * Check a page that has been freshly dequeued from a freelist.
2235  */
2236 static void
2237 vm_page_alloc_check(vm_page_t m)
2238 {
2239 
2240 	KASSERT(m->object == NULL, ("page %p has object", m));
2241 	KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
2242 	    ("page %p has unexpected queue %d, flags %#x",
2243 	    m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK)));
2244 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2245 	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2246 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2247 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2248 	    ("page %p has unexpected memattr %d",
2249 	    m, pmap_page_get_memattr(m)));
2250 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2251 }
2252 
2253 /*
2254  * 	vm_page_alloc_freelist:
2255  *
2256  *	Allocate a physical page from the specified free page list.
2257  *
2258  *	The caller must always specify an allocation class.
2259  *
2260  *	allocation classes:
2261  *	VM_ALLOC_NORMAL		normal process request
2262  *	VM_ALLOC_SYSTEM		system *really* needs a page
2263  *	VM_ALLOC_INTERRUPT	interrupt time request
2264  *
2265  *	optional allocation flags:
2266  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2267  *				intends to allocate
2268  *	VM_ALLOC_WIRED		wire the allocated page
2269  *	VM_ALLOC_ZERO		prefer a zeroed page
2270  */
2271 vm_page_t
2272 vm_page_alloc_freelist(int freelist, int req)
2273 {
2274 	struct vm_domainset_iter di;
2275 	vm_page_t m;
2276 	int domain;
2277 
2278 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2279 	do {
2280 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2281 		if (m != NULL)
2282 			break;
2283 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2284 
2285 	return (m);
2286 }
2287 
2288 vm_page_t
2289 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2290 {
2291 	struct vm_domain *vmd;
2292 	vm_page_t m;
2293 	u_int flags;
2294 
2295 	m = NULL;
2296 	vmd = VM_DOMAIN(domain);
2297 again:
2298 	if (vm_domain_allocate(vmd, req, 1)) {
2299 		vm_domain_free_lock(vmd);
2300 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2301 		    VM_FREEPOOL_DIRECT, 0);
2302 		vm_domain_free_unlock(vmd);
2303 		if (m == NULL)
2304 			vm_domain_freecnt_inc(vmd, 1);
2305 	}
2306 	if (m == NULL) {
2307 		if (vm_domain_alloc_fail(vmd, NULL, req))
2308 			goto again;
2309 		return (NULL);
2310 	}
2311 	vm_page_dequeue(m);
2312 	vm_page_alloc_check(m);
2313 
2314 	/*
2315 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2316 	 */
2317 	m->aflags = 0;
2318 	flags = 0;
2319 	if ((req & VM_ALLOC_ZERO) != 0)
2320 		flags = PG_ZERO;
2321 	m->flags &= flags;
2322 	if ((req & VM_ALLOC_WIRED) != 0) {
2323 		/*
2324 		 * The page lock is not required for wiring a page that does
2325 		 * not belong to an object.
2326 		 */
2327 		vm_wire_add(1);
2328 		m->ref_count = 1;
2329 	}
2330 	/* Unmanaged pages don't use "act_count". */
2331 	m->oflags = VPO_UNMANAGED;
2332 	return (m);
2333 }
2334 
2335 static int
2336 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2337 {
2338 	struct vm_domain *vmd;
2339 	struct vm_pgcache *pgcache;
2340 	int i;
2341 
2342 	pgcache = arg;
2343 	vmd = VM_DOMAIN(pgcache->domain);
2344 	/* Only import if we can bring in a full bucket. */
2345 	if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2346 		return (0);
2347 	domain = vmd->vmd_domain;
2348 	vm_domain_free_lock(vmd);
2349 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2350 	    (vm_page_t *)store);
2351 	vm_domain_free_unlock(vmd);
2352 	if (cnt != i)
2353 		vm_domain_freecnt_inc(vmd, cnt - i);
2354 
2355 	return (i);
2356 }
2357 
2358 static void
2359 vm_page_zone_release(void *arg, void **store, int cnt)
2360 {
2361 	struct vm_domain *vmd;
2362 	struct vm_pgcache *pgcache;
2363 	vm_page_t m;
2364 	int i;
2365 
2366 	pgcache = arg;
2367 	vmd = VM_DOMAIN(pgcache->domain);
2368 	vm_domain_free_lock(vmd);
2369 	for (i = 0; i < cnt; i++) {
2370 		m = (vm_page_t)store[i];
2371 		vm_phys_free_pages(m, 0);
2372 	}
2373 	vm_domain_free_unlock(vmd);
2374 	vm_domain_freecnt_inc(vmd, cnt);
2375 }
2376 
2377 #define	VPSC_ANY	0	/* No restrictions. */
2378 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2379 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2380 
2381 /*
2382  *	vm_page_scan_contig:
2383  *
2384  *	Scan vm_page_array[] between the specified entries "m_start" and
2385  *	"m_end" for a run of contiguous physical pages that satisfy the
2386  *	specified conditions, and return the lowest page in the run.  The
2387  *	specified "alignment" determines the alignment of the lowest physical
2388  *	page in the run.  If the specified "boundary" is non-zero, then the
2389  *	run of physical pages cannot span a physical address that is a
2390  *	multiple of "boundary".
2391  *
2392  *	"m_end" is never dereferenced, so it need not point to a vm_page
2393  *	structure within vm_page_array[].
2394  *
2395  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2396  *	span a hole (or discontiguity) in the physical address space.  Both
2397  *	"alignment" and "boundary" must be a power of two.
2398  */
2399 vm_page_t
2400 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2401     u_long alignment, vm_paddr_t boundary, int options)
2402 {
2403 	struct mtx *m_mtx;
2404 	vm_object_t object;
2405 	vm_paddr_t pa;
2406 	vm_page_t m, m_run;
2407 #if VM_NRESERVLEVEL > 0
2408 	int level;
2409 #endif
2410 	int m_inc, order, run_ext, run_len;
2411 
2412 	KASSERT(npages > 0, ("npages is 0"));
2413 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2414 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2415 	m_run = NULL;
2416 	run_len = 0;
2417 	m_mtx = NULL;
2418 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2419 		KASSERT((m->flags & PG_MARKER) == 0,
2420 		    ("page %p is PG_MARKER", m));
2421 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2422 		    ("fictitious page %p has invalid ref count", m));
2423 
2424 		/*
2425 		 * If the current page would be the start of a run, check its
2426 		 * physical address against the end, alignment, and boundary
2427 		 * conditions.  If it doesn't satisfy these conditions, either
2428 		 * terminate the scan or advance to the next page that
2429 		 * satisfies the failed condition.
2430 		 */
2431 		if (run_len == 0) {
2432 			KASSERT(m_run == NULL, ("m_run != NULL"));
2433 			if (m + npages > m_end)
2434 				break;
2435 			pa = VM_PAGE_TO_PHYS(m);
2436 			if ((pa & (alignment - 1)) != 0) {
2437 				m_inc = atop(roundup2(pa, alignment) - pa);
2438 				continue;
2439 			}
2440 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2441 			    boundary) != 0) {
2442 				m_inc = atop(roundup2(pa, boundary) - pa);
2443 				continue;
2444 			}
2445 		} else
2446 			KASSERT(m_run != NULL, ("m_run == NULL"));
2447 
2448 		vm_page_change_lock(m, &m_mtx);
2449 		m_inc = 1;
2450 retry:
2451 		if (vm_page_wired(m))
2452 			run_ext = 0;
2453 #if VM_NRESERVLEVEL > 0
2454 		else if ((level = vm_reserv_level(m)) >= 0 &&
2455 		    (options & VPSC_NORESERV) != 0) {
2456 			run_ext = 0;
2457 			/* Advance to the end of the reservation. */
2458 			pa = VM_PAGE_TO_PHYS(m);
2459 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2460 			    pa);
2461 		}
2462 #endif
2463 		else if ((object = m->object) != NULL) {
2464 			/*
2465 			 * The page is considered eligible for relocation if
2466 			 * and only if it could be laundered or reclaimed by
2467 			 * the page daemon.
2468 			 */
2469 			if (!VM_OBJECT_TRYRLOCK(object)) {
2470 				mtx_unlock(m_mtx);
2471 				VM_OBJECT_RLOCK(object);
2472 				mtx_lock(m_mtx);
2473 				if (m->object != object) {
2474 					/*
2475 					 * The page may have been freed.
2476 					 */
2477 					VM_OBJECT_RUNLOCK(object);
2478 					goto retry;
2479 				}
2480 			}
2481 			/* Don't care: PG_NODUMP, PG_ZERO. */
2482 			if (object->type != OBJT_DEFAULT &&
2483 			    object->type != OBJT_SWAP &&
2484 			    object->type != OBJT_VNODE) {
2485 				run_ext = 0;
2486 #if VM_NRESERVLEVEL > 0
2487 			} else if ((options & VPSC_NOSUPER) != 0 &&
2488 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2489 				run_ext = 0;
2490 				/* Advance to the end of the superpage. */
2491 				pa = VM_PAGE_TO_PHYS(m);
2492 				m_inc = atop(roundup2(pa + 1,
2493 				    vm_reserv_size(level)) - pa);
2494 #endif
2495 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2496 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) &&
2497 			    !vm_page_wired(m)) {
2498 				/*
2499 				 * The page is allocated but eligible for
2500 				 * relocation.  Extend the current run by one
2501 				 * page.
2502 				 */
2503 				KASSERT(pmap_page_get_memattr(m) ==
2504 				    VM_MEMATTR_DEFAULT,
2505 				    ("page %p has an unexpected memattr", m));
2506 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2507 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2508 				    ("page %p has unexpected oflags", m));
2509 				/* Don't care: PGA_NOSYNC. */
2510 				run_ext = 1;
2511 			} else
2512 				run_ext = 0;
2513 			VM_OBJECT_RUNLOCK(object);
2514 #if VM_NRESERVLEVEL > 0
2515 		} else if (level >= 0) {
2516 			/*
2517 			 * The page is reserved but not yet allocated.  In
2518 			 * other words, it is still free.  Extend the current
2519 			 * run by one page.
2520 			 */
2521 			run_ext = 1;
2522 #endif
2523 		} else if ((order = m->order) < VM_NFREEORDER) {
2524 			/*
2525 			 * The page is enqueued in the physical memory
2526 			 * allocator's free page queues.  Moreover, it is the
2527 			 * first page in a power-of-two-sized run of
2528 			 * contiguous free pages.  Add these pages to the end
2529 			 * of the current run, and jump ahead.
2530 			 */
2531 			run_ext = 1 << order;
2532 			m_inc = 1 << order;
2533 		} else {
2534 			/*
2535 			 * Skip the page for one of the following reasons: (1)
2536 			 * It is enqueued in the physical memory allocator's
2537 			 * free page queues.  However, it is not the first
2538 			 * page in a run of contiguous free pages.  (This case
2539 			 * rarely occurs because the scan is performed in
2540 			 * ascending order.) (2) It is not reserved, and it is
2541 			 * transitioning from free to allocated.  (Conversely,
2542 			 * the transition from allocated to free for managed
2543 			 * pages is blocked by the page lock.) (3) It is
2544 			 * allocated but not contained by an object and not
2545 			 * wired, e.g., allocated by Xen's balloon driver.
2546 			 */
2547 			run_ext = 0;
2548 		}
2549 
2550 		/*
2551 		 * Extend or reset the current run of pages.
2552 		 */
2553 		if (run_ext > 0) {
2554 			if (run_len == 0)
2555 				m_run = m;
2556 			run_len += run_ext;
2557 		} else {
2558 			if (run_len > 0) {
2559 				m_run = NULL;
2560 				run_len = 0;
2561 			}
2562 		}
2563 	}
2564 	if (m_mtx != NULL)
2565 		mtx_unlock(m_mtx);
2566 	if (run_len >= npages)
2567 		return (m_run);
2568 	return (NULL);
2569 }
2570 
2571 /*
2572  *	vm_page_reclaim_run:
2573  *
2574  *	Try to relocate each of the allocated virtual pages within the
2575  *	specified run of physical pages to a new physical address.  Free the
2576  *	physical pages underlying the relocated virtual pages.  A virtual page
2577  *	is relocatable if and only if it could be laundered or reclaimed by
2578  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2579  *	physical address above "high".
2580  *
2581  *	Returns 0 if every physical page within the run was already free or
2582  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2583  *	value indicating why the last attempt to relocate a virtual page was
2584  *	unsuccessful.
2585  *
2586  *	"req_class" must be an allocation class.
2587  */
2588 static int
2589 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2590     vm_paddr_t high)
2591 {
2592 	struct vm_domain *vmd;
2593 	struct mtx *m_mtx;
2594 	struct spglist free;
2595 	vm_object_t object;
2596 	vm_paddr_t pa;
2597 	vm_page_t m, m_end, m_new;
2598 	int error, order, req;
2599 
2600 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2601 	    ("req_class is not an allocation class"));
2602 	SLIST_INIT(&free);
2603 	error = 0;
2604 	m = m_run;
2605 	m_end = m_run + npages;
2606 	m_mtx = NULL;
2607 	for (; error == 0 && m < m_end; m++) {
2608 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2609 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2610 
2611 		/*
2612 		 * Avoid releasing and reacquiring the same page lock.
2613 		 */
2614 		vm_page_change_lock(m, &m_mtx);
2615 retry:
2616 		/*
2617 		 * Racily check for wirings.  Races are handled below.
2618 		 */
2619 		if (vm_page_wired(m))
2620 			error = EBUSY;
2621 		else if ((object = m->object) != NULL) {
2622 			/*
2623 			 * The page is relocated if and only if it could be
2624 			 * laundered or reclaimed by the page daemon.
2625 			 */
2626 			if (!VM_OBJECT_TRYWLOCK(object)) {
2627 				mtx_unlock(m_mtx);
2628 				VM_OBJECT_WLOCK(object);
2629 				mtx_lock(m_mtx);
2630 				if (m->object != object) {
2631 					/*
2632 					 * The page may have been freed.
2633 					 */
2634 					VM_OBJECT_WUNLOCK(object);
2635 					goto retry;
2636 				}
2637 			}
2638 			/* Don't care: PG_NODUMP, PG_ZERO. */
2639 			if (object->type != OBJT_DEFAULT &&
2640 			    object->type != OBJT_SWAP &&
2641 			    object->type != OBJT_VNODE)
2642 				error = EINVAL;
2643 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2644 				error = EINVAL;
2645 			else if (vm_page_queue(m) != PQ_NONE &&
2646 			    vm_page_tryxbusy(m) != 0) {
2647 				if (vm_page_wired(m)) {
2648 					vm_page_xunbusy(m);
2649 					error = EBUSY;
2650 					goto unlock;
2651 				}
2652 				KASSERT(pmap_page_get_memattr(m) ==
2653 				    VM_MEMATTR_DEFAULT,
2654 				    ("page %p has an unexpected memattr", m));
2655 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2656 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2657 				    ("page %p has unexpected oflags", m));
2658 				/* Don't care: PGA_NOSYNC. */
2659 				if (!vm_page_none_valid(m)) {
2660 					/*
2661 					 * First, try to allocate a new page
2662 					 * that is above "high".  Failing
2663 					 * that, try to allocate a new page
2664 					 * that is below "m_run".  Allocate
2665 					 * the new page between the end of
2666 					 * "m_run" and "high" only as a last
2667 					 * resort.
2668 					 */
2669 					req = req_class | VM_ALLOC_NOOBJ;
2670 					if ((m->flags & PG_NODUMP) != 0)
2671 						req |= VM_ALLOC_NODUMP;
2672 					if (trunc_page(high) !=
2673 					    ~(vm_paddr_t)PAGE_MASK) {
2674 						m_new = vm_page_alloc_contig(
2675 						    NULL, 0, req, 1,
2676 						    round_page(high),
2677 						    ~(vm_paddr_t)0,
2678 						    PAGE_SIZE, 0,
2679 						    VM_MEMATTR_DEFAULT);
2680 					} else
2681 						m_new = NULL;
2682 					if (m_new == NULL) {
2683 						pa = VM_PAGE_TO_PHYS(m_run);
2684 						m_new = vm_page_alloc_contig(
2685 						    NULL, 0, req, 1,
2686 						    0, pa - 1, PAGE_SIZE, 0,
2687 						    VM_MEMATTR_DEFAULT);
2688 					}
2689 					if (m_new == NULL) {
2690 						pa += ptoa(npages);
2691 						m_new = vm_page_alloc_contig(
2692 						    NULL, 0, req, 1,
2693 						    pa, high, PAGE_SIZE, 0,
2694 						    VM_MEMATTR_DEFAULT);
2695 					}
2696 					if (m_new == NULL) {
2697 						vm_page_xunbusy(m);
2698 						error = ENOMEM;
2699 						goto unlock;
2700 					}
2701 
2702 					/*
2703 					 * Unmap the page and check for new
2704 					 * wirings that may have been acquired
2705 					 * through a pmap lookup.
2706 					 */
2707 					if (object->ref_count != 0 &&
2708 					    !vm_page_try_remove_all(m)) {
2709 						vm_page_free(m_new);
2710 						error = EBUSY;
2711 						goto unlock;
2712 					}
2713 
2714 					/*
2715 					 * Replace "m" with the new page.  For
2716 					 * vm_page_replace(), "m" must be busy
2717 					 * and dequeued.  Finally, change "m"
2718 					 * as if vm_page_free() was called.
2719 					 */
2720 					m_new->aflags = m->aflags &
2721 					    ~PGA_QUEUE_STATE_MASK;
2722 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2723 					    ("page %p is managed", m_new));
2724 					pmap_copy_page(m, m_new);
2725 					m_new->valid = m->valid;
2726 					m_new->dirty = m->dirty;
2727 					m->flags &= ~PG_ZERO;
2728 					vm_page_dequeue(m);
2729 					vm_page_replace_checked(m_new, object,
2730 					    m->pindex, m);
2731 					if (vm_page_free_prep(m))
2732 						SLIST_INSERT_HEAD(&free, m,
2733 						    plinks.s.ss);
2734 
2735 					/*
2736 					 * The new page must be deactivated
2737 					 * before the object is unlocked.
2738 					 */
2739 					vm_page_change_lock(m_new, &m_mtx);
2740 					vm_page_deactivate(m_new);
2741 				} else {
2742 					m->flags &= ~PG_ZERO;
2743 					vm_page_dequeue(m);
2744 					if (vm_page_free_prep(m))
2745 						SLIST_INSERT_HEAD(&free, m,
2746 						    plinks.s.ss);
2747 					KASSERT(m->dirty == 0,
2748 					    ("page %p is dirty", m));
2749 				}
2750 			} else
2751 				error = EBUSY;
2752 unlock:
2753 			VM_OBJECT_WUNLOCK(object);
2754 		} else {
2755 			MPASS(vm_phys_domain(m) == domain);
2756 			vmd = VM_DOMAIN(domain);
2757 			vm_domain_free_lock(vmd);
2758 			order = m->order;
2759 			if (order < VM_NFREEORDER) {
2760 				/*
2761 				 * The page is enqueued in the physical memory
2762 				 * allocator's free page queues.  Moreover, it
2763 				 * is the first page in a power-of-two-sized
2764 				 * run of contiguous free pages.  Jump ahead
2765 				 * to the last page within that run, and
2766 				 * continue from there.
2767 				 */
2768 				m += (1 << order) - 1;
2769 			}
2770 #if VM_NRESERVLEVEL > 0
2771 			else if (vm_reserv_is_page_free(m))
2772 				order = 0;
2773 #endif
2774 			vm_domain_free_unlock(vmd);
2775 			if (order == VM_NFREEORDER)
2776 				error = EINVAL;
2777 		}
2778 	}
2779 	if (m_mtx != NULL)
2780 		mtx_unlock(m_mtx);
2781 	if ((m = SLIST_FIRST(&free)) != NULL) {
2782 		int cnt;
2783 
2784 		vmd = VM_DOMAIN(domain);
2785 		cnt = 0;
2786 		vm_domain_free_lock(vmd);
2787 		do {
2788 			MPASS(vm_phys_domain(m) == domain);
2789 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2790 			vm_phys_free_pages(m, 0);
2791 			cnt++;
2792 		} while ((m = SLIST_FIRST(&free)) != NULL);
2793 		vm_domain_free_unlock(vmd);
2794 		vm_domain_freecnt_inc(vmd, cnt);
2795 	}
2796 	return (error);
2797 }
2798 
2799 #define	NRUNS	16
2800 
2801 CTASSERT(powerof2(NRUNS));
2802 
2803 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2804 
2805 #define	MIN_RECLAIM	8
2806 
2807 /*
2808  *	vm_page_reclaim_contig:
2809  *
2810  *	Reclaim allocated, contiguous physical memory satisfying the specified
2811  *	conditions by relocating the virtual pages using that physical memory.
2812  *	Returns true if reclamation is successful and false otherwise.  Since
2813  *	relocation requires the allocation of physical pages, reclamation may
2814  *	fail due to a shortage of free pages.  When reclamation fails, callers
2815  *	are expected to perform vm_wait() before retrying a failed allocation
2816  *	operation, e.g., vm_page_alloc_contig().
2817  *
2818  *	The caller must always specify an allocation class through "req".
2819  *
2820  *	allocation classes:
2821  *	VM_ALLOC_NORMAL		normal process request
2822  *	VM_ALLOC_SYSTEM		system *really* needs a page
2823  *	VM_ALLOC_INTERRUPT	interrupt time request
2824  *
2825  *	The optional allocation flags are ignored.
2826  *
2827  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2828  *	must be a power of two.
2829  */
2830 bool
2831 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2832     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2833 {
2834 	struct vm_domain *vmd;
2835 	vm_paddr_t curr_low;
2836 	vm_page_t m_run, m_runs[NRUNS];
2837 	u_long count, reclaimed;
2838 	int error, i, options, req_class;
2839 
2840 	KASSERT(npages > 0, ("npages is 0"));
2841 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2842 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2843 	req_class = req & VM_ALLOC_CLASS_MASK;
2844 
2845 	/*
2846 	 * The page daemon is allowed to dig deeper into the free page list.
2847 	 */
2848 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2849 		req_class = VM_ALLOC_SYSTEM;
2850 
2851 	/*
2852 	 * Return if the number of free pages cannot satisfy the requested
2853 	 * allocation.
2854 	 */
2855 	vmd = VM_DOMAIN(domain);
2856 	count = vmd->vmd_free_count;
2857 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
2858 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2859 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2860 		return (false);
2861 
2862 	/*
2863 	 * Scan up to three times, relaxing the restrictions ("options") on
2864 	 * the reclamation of reservations and superpages each time.
2865 	 */
2866 	for (options = VPSC_NORESERV;;) {
2867 		/*
2868 		 * Find the highest runs that satisfy the given constraints
2869 		 * and restrictions, and record them in "m_runs".
2870 		 */
2871 		curr_low = low;
2872 		count = 0;
2873 		for (;;) {
2874 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
2875 			    high, alignment, boundary, options);
2876 			if (m_run == NULL)
2877 				break;
2878 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2879 			m_runs[RUN_INDEX(count)] = m_run;
2880 			count++;
2881 		}
2882 
2883 		/*
2884 		 * Reclaim the highest runs in LIFO (descending) order until
2885 		 * the number of reclaimed pages, "reclaimed", is at least
2886 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2887 		 * reclamation is idempotent, and runs will (likely) recur
2888 		 * from one scan to the next as restrictions are relaxed.
2889 		 */
2890 		reclaimed = 0;
2891 		for (i = 0; count > 0 && i < NRUNS; i++) {
2892 			count--;
2893 			m_run = m_runs[RUN_INDEX(count)];
2894 			error = vm_page_reclaim_run(req_class, domain, npages,
2895 			    m_run, high);
2896 			if (error == 0) {
2897 				reclaimed += npages;
2898 				if (reclaimed >= MIN_RECLAIM)
2899 					return (true);
2900 			}
2901 		}
2902 
2903 		/*
2904 		 * Either relax the restrictions on the next scan or return if
2905 		 * the last scan had no restrictions.
2906 		 */
2907 		if (options == VPSC_NORESERV)
2908 			options = VPSC_NOSUPER;
2909 		else if (options == VPSC_NOSUPER)
2910 			options = VPSC_ANY;
2911 		else if (options == VPSC_ANY)
2912 			return (reclaimed != 0);
2913 	}
2914 }
2915 
2916 bool
2917 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2918     u_long alignment, vm_paddr_t boundary)
2919 {
2920 	struct vm_domainset_iter di;
2921 	int domain;
2922 	bool ret;
2923 
2924 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2925 	do {
2926 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2927 		    high, alignment, boundary);
2928 		if (ret)
2929 			break;
2930 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2931 
2932 	return (ret);
2933 }
2934 
2935 /*
2936  * Set the domain in the appropriate page level domainset.
2937  */
2938 void
2939 vm_domain_set(struct vm_domain *vmd)
2940 {
2941 
2942 	mtx_lock(&vm_domainset_lock);
2943 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2944 		vmd->vmd_minset = 1;
2945 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2946 	}
2947 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2948 		vmd->vmd_severeset = 1;
2949 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2950 	}
2951 	mtx_unlock(&vm_domainset_lock);
2952 }
2953 
2954 /*
2955  * Clear the domain from the appropriate page level domainset.
2956  */
2957 void
2958 vm_domain_clear(struct vm_domain *vmd)
2959 {
2960 
2961 	mtx_lock(&vm_domainset_lock);
2962 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2963 		vmd->vmd_minset = 0;
2964 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2965 		if (vm_min_waiters != 0) {
2966 			vm_min_waiters = 0;
2967 			wakeup(&vm_min_domains);
2968 		}
2969 	}
2970 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2971 		vmd->vmd_severeset = 0;
2972 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2973 		if (vm_severe_waiters != 0) {
2974 			vm_severe_waiters = 0;
2975 			wakeup(&vm_severe_domains);
2976 		}
2977 	}
2978 
2979 	/*
2980 	 * If pageout daemon needs pages, then tell it that there are
2981 	 * some free.
2982 	 */
2983 	if (vmd->vmd_pageout_pages_needed &&
2984 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
2985 		wakeup(&vmd->vmd_pageout_pages_needed);
2986 		vmd->vmd_pageout_pages_needed = 0;
2987 	}
2988 
2989 	/* See comments in vm_wait_doms(). */
2990 	if (vm_pageproc_waiters) {
2991 		vm_pageproc_waiters = 0;
2992 		wakeup(&vm_pageproc_waiters);
2993 	}
2994 	mtx_unlock(&vm_domainset_lock);
2995 }
2996 
2997 /*
2998  * Wait for free pages to exceed the min threshold globally.
2999  */
3000 void
3001 vm_wait_min(void)
3002 {
3003 
3004 	mtx_lock(&vm_domainset_lock);
3005 	while (vm_page_count_min()) {
3006 		vm_min_waiters++;
3007 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3008 	}
3009 	mtx_unlock(&vm_domainset_lock);
3010 }
3011 
3012 /*
3013  * Wait for free pages to exceed the severe threshold globally.
3014  */
3015 void
3016 vm_wait_severe(void)
3017 {
3018 
3019 	mtx_lock(&vm_domainset_lock);
3020 	while (vm_page_count_severe()) {
3021 		vm_severe_waiters++;
3022 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3023 		    "vmwait", 0);
3024 	}
3025 	mtx_unlock(&vm_domainset_lock);
3026 }
3027 
3028 u_int
3029 vm_wait_count(void)
3030 {
3031 
3032 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3033 }
3034 
3035 void
3036 vm_wait_doms(const domainset_t *wdoms)
3037 {
3038 
3039 	/*
3040 	 * We use racey wakeup synchronization to avoid expensive global
3041 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3042 	 * To handle this, we only sleep for one tick in this instance.  It
3043 	 * is expected that most allocations for the pageproc will come from
3044 	 * kmem or vm_page_grab* which will use the more specific and
3045 	 * race-free vm_wait_domain().
3046 	 */
3047 	if (curproc == pageproc) {
3048 		mtx_lock(&vm_domainset_lock);
3049 		vm_pageproc_waiters++;
3050 		msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3051 		    "pageprocwait", 1);
3052 	} else {
3053 		/*
3054 		 * XXX Ideally we would wait only until the allocation could
3055 		 * be satisfied.  This condition can cause new allocators to
3056 		 * consume all freed pages while old allocators wait.
3057 		 */
3058 		mtx_lock(&vm_domainset_lock);
3059 		if (vm_page_count_min_set(wdoms)) {
3060 			vm_min_waiters++;
3061 			msleep(&vm_min_domains, &vm_domainset_lock,
3062 			    PVM | PDROP, "vmwait", 0);
3063 		} else
3064 			mtx_unlock(&vm_domainset_lock);
3065 	}
3066 }
3067 
3068 /*
3069  *	vm_wait_domain:
3070  *
3071  *	Sleep until free pages are available for allocation.
3072  *	- Called in various places after failed memory allocations.
3073  */
3074 void
3075 vm_wait_domain(int domain)
3076 {
3077 	struct vm_domain *vmd;
3078 	domainset_t wdom;
3079 
3080 	vmd = VM_DOMAIN(domain);
3081 	vm_domain_free_assert_unlocked(vmd);
3082 
3083 	if (curproc == pageproc) {
3084 		mtx_lock(&vm_domainset_lock);
3085 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3086 			vmd->vmd_pageout_pages_needed = 1;
3087 			msleep(&vmd->vmd_pageout_pages_needed,
3088 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3089 		} else
3090 			mtx_unlock(&vm_domainset_lock);
3091 	} else {
3092 		if (pageproc == NULL)
3093 			panic("vm_wait in early boot");
3094 		DOMAINSET_ZERO(&wdom);
3095 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3096 		vm_wait_doms(&wdom);
3097 	}
3098 }
3099 
3100 /*
3101  *	vm_wait:
3102  *
3103  *	Sleep until free pages are available for allocation in the
3104  *	affinity domains of the obj.  If obj is NULL, the domain set
3105  *	for the calling thread is used.
3106  *	Called in various places after failed memory allocations.
3107  */
3108 void
3109 vm_wait(vm_object_t obj)
3110 {
3111 	struct domainset *d;
3112 
3113 	d = NULL;
3114 
3115 	/*
3116 	 * Carefully fetch pointers only once: the struct domainset
3117 	 * itself is ummutable but the pointer might change.
3118 	 */
3119 	if (obj != NULL)
3120 		d = obj->domain.dr_policy;
3121 	if (d == NULL)
3122 		d = curthread->td_domain.dr_policy;
3123 
3124 	vm_wait_doms(&d->ds_mask);
3125 }
3126 
3127 /*
3128  *	vm_domain_alloc_fail:
3129  *
3130  *	Called when a page allocation function fails.  Informs the
3131  *	pagedaemon and performs the requested wait.  Requires the
3132  *	domain_free and object lock on entry.  Returns with the
3133  *	object lock held and free lock released.  Returns an error when
3134  *	retry is necessary.
3135  *
3136  */
3137 static int
3138 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3139 {
3140 
3141 	vm_domain_free_assert_unlocked(vmd);
3142 
3143 	atomic_add_int(&vmd->vmd_pageout_deficit,
3144 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3145 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3146 		if (object != NULL)
3147 			VM_OBJECT_WUNLOCK(object);
3148 		vm_wait_domain(vmd->vmd_domain);
3149 		if (object != NULL)
3150 			VM_OBJECT_WLOCK(object);
3151 		if (req & VM_ALLOC_WAITOK)
3152 			return (EAGAIN);
3153 	}
3154 
3155 	return (0);
3156 }
3157 
3158 /*
3159  *	vm_waitpfault:
3160  *
3161  *	Sleep until free pages are available for allocation.
3162  *	- Called only in vm_fault so that processes page faulting
3163  *	  can be easily tracked.
3164  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3165  *	  processes will be able to grab memory first.  Do not change
3166  *	  this balance without careful testing first.
3167  */
3168 void
3169 vm_waitpfault(struct domainset *dset, int timo)
3170 {
3171 
3172 	/*
3173 	 * XXX Ideally we would wait only until the allocation could
3174 	 * be satisfied.  This condition can cause new allocators to
3175 	 * consume all freed pages while old allocators wait.
3176 	 */
3177 	mtx_lock(&vm_domainset_lock);
3178 	if (vm_page_count_min_set(&dset->ds_mask)) {
3179 		vm_min_waiters++;
3180 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3181 		    "pfault", timo);
3182 	} else
3183 		mtx_unlock(&vm_domainset_lock);
3184 }
3185 
3186 static struct vm_pagequeue *
3187 vm_page_pagequeue(vm_page_t m)
3188 {
3189 
3190 	uint8_t queue;
3191 
3192 	if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3193 		return (NULL);
3194 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3195 }
3196 
3197 static inline void
3198 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m)
3199 {
3200 	struct vm_domain *vmd;
3201 	uint8_t qflags;
3202 
3203 	CRITICAL_ASSERT(curthread);
3204 	vm_pagequeue_assert_locked(pq);
3205 
3206 	/*
3207 	 * The page daemon is allowed to set m->queue = PQ_NONE without
3208 	 * the page queue lock held.  In this case it is about to free the page,
3209 	 * which must not have any queue state.
3210 	 */
3211 	qflags = atomic_load_8(&m->aflags);
3212 	KASSERT(pq == vm_page_pagequeue(m) ||
3213 	    (qflags & PGA_QUEUE_STATE_MASK) == 0,
3214 	    ("page %p doesn't belong to queue %p but has aflags %#x",
3215 	    m, pq, qflags));
3216 
3217 	if ((qflags & PGA_DEQUEUE) != 0) {
3218 		if (__predict_true((qflags & PGA_ENQUEUED) != 0))
3219 			vm_pagequeue_remove(pq, m);
3220 		vm_page_dequeue_complete(m);
3221 		counter_u64_add(queue_ops, 1);
3222 	} else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) {
3223 		if ((qflags & PGA_ENQUEUED) != 0)
3224 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3225 		else {
3226 			vm_pagequeue_cnt_inc(pq);
3227 			vm_page_aflag_set(m, PGA_ENQUEUED);
3228 		}
3229 
3230 		/*
3231 		 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.
3232 		 * In particular, if both flags are set in close succession,
3233 		 * only PGA_REQUEUE_HEAD will be applied, even if it was set
3234 		 * first.
3235 		 */
3236 		if ((qflags & PGA_REQUEUE_HEAD) != 0) {
3237 			KASSERT(m->queue == PQ_INACTIVE,
3238 			    ("head enqueue not supported for page %p", m));
3239 			vmd = vm_pagequeue_domain(m);
3240 			TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3241 		} else
3242 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3243 
3244 		vm_page_aflag_clear(m, qflags & (PGA_REQUEUE |
3245 		    PGA_REQUEUE_HEAD));
3246 		counter_u64_add(queue_ops, 1);
3247 	} else {
3248 		counter_u64_add(queue_nops, 1);
3249 	}
3250 }
3251 
3252 static void
3253 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3254     uint8_t queue)
3255 {
3256 	vm_page_t m;
3257 	int i;
3258 
3259 	for (i = 0; i < bq->bq_cnt; i++) {
3260 		m = bq->bq_pa[i];
3261 		if (__predict_false(m->queue != queue))
3262 			continue;
3263 		vm_pqbatch_process_page(pq, m);
3264 	}
3265 	vm_batchqueue_init(bq);
3266 }
3267 
3268 /*
3269  *	vm_page_pqbatch_submit:		[ internal use only ]
3270  *
3271  *	Enqueue a page in the specified page queue's batched work queue.
3272  *	The caller must have encoded the requested operation in the page
3273  *	structure's aflags field.
3274  */
3275 void
3276 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3277 {
3278 	struct vm_batchqueue *bq;
3279 	struct vm_pagequeue *pq;
3280 	int domain;
3281 
3282 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3283 	    ("page %p is unmanaged", m));
3284 	KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3285 	    ("missing synchronization for page %p", m));
3286 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3287 
3288 	domain = vm_phys_domain(m);
3289 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3290 
3291 	critical_enter();
3292 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3293 	if (vm_batchqueue_insert(bq, m)) {
3294 		critical_exit();
3295 		return;
3296 	}
3297 	critical_exit();
3298 	vm_pagequeue_lock(pq);
3299 	critical_enter();
3300 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3301 	vm_pqbatch_process(pq, bq, queue);
3302 
3303 	/*
3304 	 * The page may have been logically dequeued before we acquired the
3305 	 * page queue lock.  In this case, since we either hold the page lock
3306 	 * or the page is being freed, a different thread cannot be concurrently
3307 	 * enqueuing the page.
3308 	 */
3309 	if (__predict_true(m->queue == queue))
3310 		vm_pqbatch_process_page(pq, m);
3311 	else {
3312 		KASSERT(m->queue == PQ_NONE,
3313 		    ("invalid queue transition for page %p", m));
3314 		KASSERT((m->aflags & PGA_ENQUEUED) == 0,
3315 		    ("page %p is enqueued with invalid queue index", m));
3316 	}
3317 	vm_pagequeue_unlock(pq);
3318 	critical_exit();
3319 }
3320 
3321 /*
3322  *	vm_page_pqbatch_drain:		[ internal use only ]
3323  *
3324  *	Force all per-CPU page queue batch queues to be drained.  This is
3325  *	intended for use in severe memory shortages, to ensure that pages
3326  *	do not remain stuck in the batch queues.
3327  */
3328 void
3329 vm_page_pqbatch_drain(void)
3330 {
3331 	struct thread *td;
3332 	struct vm_domain *vmd;
3333 	struct vm_pagequeue *pq;
3334 	int cpu, domain, queue;
3335 
3336 	td = curthread;
3337 	CPU_FOREACH(cpu) {
3338 		thread_lock(td);
3339 		sched_bind(td, cpu);
3340 		thread_unlock(td);
3341 
3342 		for (domain = 0; domain < vm_ndomains; domain++) {
3343 			vmd = VM_DOMAIN(domain);
3344 			for (queue = 0; queue < PQ_COUNT; queue++) {
3345 				pq = &vmd->vmd_pagequeues[queue];
3346 				vm_pagequeue_lock(pq);
3347 				critical_enter();
3348 				vm_pqbatch_process(pq,
3349 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3350 				critical_exit();
3351 				vm_pagequeue_unlock(pq);
3352 			}
3353 		}
3354 	}
3355 	thread_lock(td);
3356 	sched_unbind(td);
3357 	thread_unlock(td);
3358 }
3359 
3360 /*
3361  * Complete the logical removal of a page from a page queue.  We must be
3362  * careful to synchronize with the page daemon, which may be concurrently
3363  * examining the page with only the page lock held.  The page must not be
3364  * in a state where it appears to be logically enqueued.
3365  */
3366 static void
3367 vm_page_dequeue_complete(vm_page_t m)
3368 {
3369 
3370 	m->queue = PQ_NONE;
3371 	atomic_thread_fence_rel();
3372 	vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3373 }
3374 
3375 /*
3376  *	vm_page_dequeue_deferred:	[ internal use only ]
3377  *
3378  *	Request removal of the given page from its current page
3379  *	queue.  Physical removal from the queue may be deferred
3380  *	indefinitely.
3381  *
3382  *	The page must be locked.
3383  */
3384 void
3385 vm_page_dequeue_deferred(vm_page_t m)
3386 {
3387 	uint8_t queue;
3388 
3389 	vm_page_assert_locked(m);
3390 
3391 	if ((queue = vm_page_queue(m)) == PQ_NONE)
3392 		return;
3393 
3394 	/*
3395 	 * Set PGA_DEQUEUE if it is not already set to handle a concurrent call
3396 	 * to vm_page_dequeue_deferred_free().  In particular, avoid modifying
3397 	 * the page's queue state once vm_page_dequeue_deferred_free() has been
3398 	 * called.  In the event of a race, two batch queue entries for the page
3399 	 * will be created, but the second will have no effect.
3400 	 */
3401 	if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE, PGA_DEQUEUE))
3402 		vm_page_pqbatch_submit(m, queue);
3403 }
3404 
3405 /*
3406  * A variant of vm_page_dequeue_deferred() that does not assert the page
3407  * lock and is only to be called from vm_page_free_prep().  Because the
3408  * page is being freed, we can assume that nothing other than the page
3409  * daemon is scheduling queue operations on this page, so we get for
3410  * free the mutual exclusion that is otherwise provided by the page lock.
3411  * To handle races, the page daemon must take care to atomically check
3412  * for PGA_DEQUEUE when updating queue state.
3413  */
3414 static void
3415 vm_page_dequeue_deferred_free(vm_page_t m)
3416 {
3417 	uint8_t queue;
3418 
3419 	KASSERT(m->ref_count == 0, ("page %p has references", m));
3420 
3421 	for (;;) {
3422 		if ((m->aflags & PGA_DEQUEUE) != 0)
3423 			return;
3424 		atomic_thread_fence_acq();
3425 		if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3426 			return;
3427 		if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE,
3428 		    PGA_DEQUEUE)) {
3429 			vm_page_pqbatch_submit(m, queue);
3430 			break;
3431 		}
3432 	}
3433 }
3434 
3435 /*
3436  *	vm_page_dequeue:
3437  *
3438  *	Remove the page from whichever page queue it's in, if any.
3439  *	The page must either be locked or unallocated.  This constraint
3440  *	ensures that the queue state of the page will remain consistent
3441  *	after this function returns.
3442  */
3443 void
3444 vm_page_dequeue(vm_page_t m)
3445 {
3446 	struct vm_pagequeue *pq, *pq1;
3447 	uint8_t aflags;
3448 
3449 	KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3450 	    ("page %p is allocated and unlocked", m));
3451 
3452 	for (pq = vm_page_pagequeue(m);; pq = pq1) {
3453 		if (pq == NULL) {
3454 			/*
3455 			 * A thread may be concurrently executing
3456 			 * vm_page_dequeue_complete().  Ensure that all queue
3457 			 * state is cleared before we return.
3458 			 */
3459 			aflags = atomic_load_8(&m->aflags);
3460 			if ((aflags & PGA_QUEUE_STATE_MASK) == 0)
3461 				return;
3462 			KASSERT((aflags & PGA_DEQUEUE) != 0,
3463 			    ("page %p has unexpected queue state flags %#x",
3464 			    m, aflags));
3465 
3466 			/*
3467 			 * Busy wait until the thread updating queue state is
3468 			 * finished.  Such a thread must be executing in a
3469 			 * critical section.
3470 			 */
3471 			cpu_spinwait();
3472 			pq1 = vm_page_pagequeue(m);
3473 			continue;
3474 		}
3475 		vm_pagequeue_lock(pq);
3476 		if ((pq1 = vm_page_pagequeue(m)) == pq)
3477 			break;
3478 		vm_pagequeue_unlock(pq);
3479 	}
3480 	KASSERT(pq == vm_page_pagequeue(m),
3481 	    ("%s: page %p migrated directly between queues", __func__, m));
3482 	KASSERT((m->aflags & PGA_DEQUEUE) != 0 ||
3483 	    mtx_owned(vm_page_lockptr(m)),
3484 	    ("%s: queued unlocked page %p", __func__, m));
3485 
3486 	if ((m->aflags & PGA_ENQUEUED) != 0)
3487 		vm_pagequeue_remove(pq, m);
3488 	vm_page_dequeue_complete(m);
3489 	vm_pagequeue_unlock(pq);
3490 }
3491 
3492 /*
3493  * Schedule the given page for insertion into the specified page queue.
3494  * Physical insertion of the page may be deferred indefinitely.
3495  */
3496 static void
3497 vm_page_enqueue(vm_page_t m, uint8_t queue)
3498 {
3499 
3500 	vm_page_assert_locked(m);
3501 	KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
3502 	    ("%s: page %p is already enqueued", __func__, m));
3503 
3504 	m->queue = queue;
3505 	if ((m->aflags & PGA_REQUEUE) == 0)
3506 		vm_page_aflag_set(m, PGA_REQUEUE);
3507 	vm_page_pqbatch_submit(m, queue);
3508 }
3509 
3510 /*
3511  *	vm_page_requeue:		[ internal use only ]
3512  *
3513  *	Schedule a requeue of the given page.
3514  *
3515  *	The page must be locked.
3516  */
3517 void
3518 vm_page_requeue(vm_page_t m)
3519 {
3520 
3521 	vm_page_assert_locked(m);
3522 	KASSERT(vm_page_queue(m) != PQ_NONE,
3523 	    ("%s: page %p is not logically enqueued", __func__, m));
3524 
3525 	if ((m->aflags & PGA_REQUEUE) == 0)
3526 		vm_page_aflag_set(m, PGA_REQUEUE);
3527 	vm_page_pqbatch_submit(m, atomic_load_8(&m->queue));
3528 }
3529 
3530 /*
3531  *	vm_page_swapqueue:		[ internal use only ]
3532  *
3533  *	Move the page from one queue to another, or to the tail of its
3534  *	current queue, in the face of a possible concurrent call to
3535  *	vm_page_dequeue_deferred_free().
3536  */
3537 void
3538 vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq)
3539 {
3540 	struct vm_pagequeue *pq;
3541 	vm_page_t next;
3542 	bool queued;
3543 
3544 	KASSERT(oldq < PQ_COUNT && newq < PQ_COUNT && oldq != newq,
3545 	    ("vm_page_swapqueue: invalid queues (%d, %d)", oldq, newq));
3546 	vm_page_assert_locked(m);
3547 
3548 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[oldq];
3549 	vm_pagequeue_lock(pq);
3550 
3551 	/*
3552 	 * The physical queue state might change at any point before the page
3553 	 * queue lock is acquired, so we must verify that we hold the correct
3554 	 * lock before proceeding.
3555 	 */
3556 	if (__predict_false(m->queue != oldq)) {
3557 		vm_pagequeue_unlock(pq);
3558 		return;
3559 	}
3560 
3561 	/*
3562 	 * Once the queue index of the page changes, there is nothing
3563 	 * synchronizing with further updates to the physical queue state.
3564 	 * Therefore we must remove the page from the queue now in anticipation
3565 	 * of a successful commit, and be prepared to roll back.
3566 	 */
3567 	if (__predict_true((m->aflags & PGA_ENQUEUED) != 0)) {
3568 		next = TAILQ_NEXT(m, plinks.q);
3569 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3570 		vm_page_aflag_clear(m, PGA_ENQUEUED);
3571 		queued = true;
3572 	} else {
3573 		queued = false;
3574 	}
3575 
3576 	/*
3577 	 * Atomically update the queue field and set PGA_REQUEUE while
3578 	 * ensuring that PGA_DEQUEUE has not been set.
3579 	 */
3580 	if (__predict_false(!vm_page_pqstate_cmpset(m, oldq, newq, PGA_DEQUEUE,
3581 	    PGA_REQUEUE))) {
3582 		if (queued) {
3583 			vm_page_aflag_set(m, PGA_ENQUEUED);
3584 			if (next != NULL)
3585 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3586 			else
3587 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3588 		}
3589 		vm_pagequeue_unlock(pq);
3590 		return;
3591 	}
3592 	vm_pagequeue_cnt_dec(pq);
3593 	vm_pagequeue_unlock(pq);
3594 	vm_page_pqbatch_submit(m, newq);
3595 }
3596 
3597 /*
3598  *	vm_page_free_prep:
3599  *
3600  *	Prepares the given page to be put on the free list,
3601  *	disassociating it from any VM object. The caller may return
3602  *	the page to the free list only if this function returns true.
3603  *
3604  *	The object must be locked.  The page must be locked if it is
3605  *	managed.
3606  */
3607 bool
3608 vm_page_free_prep(vm_page_t m)
3609 {
3610 
3611 	/*
3612 	 * Synchronize with threads that have dropped a reference to this
3613 	 * page.
3614 	 */
3615 	atomic_thread_fence_acq();
3616 
3617 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3618 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3619 		uint64_t *p;
3620 		int i;
3621 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3622 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3623 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3624 			    m, i, (uintmax_t)*p));
3625 	}
3626 #endif
3627 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3628 		KASSERT(!pmap_page_is_mapped(m),
3629 		    ("vm_page_free_prep: freeing mapped page %p", m));
3630 		KASSERT((m->aflags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3631 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3632 	} else {
3633 		KASSERT(m->queue == PQ_NONE,
3634 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3635 	}
3636 	VM_CNT_INC(v_tfree);
3637 
3638 	if (vm_page_sbusied(m))
3639 		panic("vm_page_free_prep: freeing shared busy page %p", m);
3640 
3641 	if (m->object != NULL) {
3642 		vm_page_object_remove(m);
3643 
3644 		/*
3645 		 * The object reference can be released without an atomic
3646 		 * operation.
3647 		 */
3648 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3649 		    m->ref_count == VPRC_OBJREF,
3650 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3651 		    m, m->ref_count));
3652 		m->object = NULL;
3653 		m->ref_count -= VPRC_OBJREF;
3654 	}
3655 
3656 	if (vm_page_xbusied(m))
3657 		vm_page_xunbusy(m);
3658 
3659 	/*
3660 	 * If fictitious remove object association and
3661 	 * return.
3662 	 */
3663 	if ((m->flags & PG_FICTITIOUS) != 0) {
3664 		KASSERT(m->ref_count == 1,
3665 		    ("fictitious page %p is referenced", m));
3666 		KASSERT(m->queue == PQ_NONE,
3667 		    ("fictitious page %p is queued", m));
3668 		return (false);
3669 	}
3670 
3671 	/*
3672 	 * Pages need not be dequeued before they are returned to the physical
3673 	 * memory allocator, but they must at least be marked for a deferred
3674 	 * dequeue.
3675 	 */
3676 	if ((m->oflags & VPO_UNMANAGED) == 0)
3677 		vm_page_dequeue_deferred_free(m);
3678 
3679 	m->valid = 0;
3680 	vm_page_undirty(m);
3681 
3682 	if (m->ref_count != 0)
3683 		panic("vm_page_free_prep: page %p has references", m);
3684 
3685 	/*
3686 	 * Restore the default memory attribute to the page.
3687 	 */
3688 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3689 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3690 
3691 #if VM_NRESERVLEVEL > 0
3692 	/*
3693 	 * Determine whether the page belongs to a reservation.  If the page was
3694 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3695 	 * as an optimization, we avoid the check in that case.
3696 	 */
3697 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3698 		return (false);
3699 #endif
3700 
3701 	return (true);
3702 }
3703 
3704 /*
3705  *	vm_page_free_toq:
3706  *
3707  *	Returns the given page to the free list, disassociating it
3708  *	from any VM object.
3709  *
3710  *	The object must be locked.  The page must be locked if it is
3711  *	managed.
3712  */
3713 void
3714 vm_page_free_toq(vm_page_t m)
3715 {
3716 	struct vm_domain *vmd;
3717 	uma_zone_t zone;
3718 
3719 	if (!vm_page_free_prep(m))
3720 		return;
3721 
3722 	vmd = vm_pagequeue_domain(m);
3723 	zone = vmd->vmd_pgcache[m->pool].zone;
3724 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3725 		uma_zfree(zone, m);
3726 		return;
3727 	}
3728 	vm_domain_free_lock(vmd);
3729 	vm_phys_free_pages(m, 0);
3730 	vm_domain_free_unlock(vmd);
3731 	vm_domain_freecnt_inc(vmd, 1);
3732 }
3733 
3734 /*
3735  *	vm_page_free_pages_toq:
3736  *
3737  *	Returns a list of pages to the free list, disassociating it
3738  *	from any VM object.  In other words, this is equivalent to
3739  *	calling vm_page_free_toq() for each page of a list of VM objects.
3740  *
3741  *	The objects must be locked.  The pages must be locked if it is
3742  *	managed.
3743  */
3744 void
3745 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3746 {
3747 	vm_page_t m;
3748 	int count;
3749 
3750 	if (SLIST_EMPTY(free))
3751 		return;
3752 
3753 	count = 0;
3754 	while ((m = SLIST_FIRST(free)) != NULL) {
3755 		count++;
3756 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3757 		vm_page_free_toq(m);
3758 	}
3759 
3760 	if (update_wire_count)
3761 		vm_wire_sub(count);
3762 }
3763 
3764 /*
3765  * Mark this page as wired down, preventing reclamation by the page daemon
3766  * or when the containing object is destroyed.
3767  */
3768 void
3769 vm_page_wire(vm_page_t m)
3770 {
3771 	u_int old;
3772 
3773 	KASSERT(m->object != NULL,
3774 	    ("vm_page_wire: page %p does not belong to an object", m));
3775 	if (!vm_page_busied(m))
3776 		VM_OBJECT_ASSERT_LOCKED(m->object);
3777 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3778 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
3779 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
3780 
3781 	old = atomic_fetchadd_int(&m->ref_count, 1);
3782 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3783 	    ("vm_page_wire: counter overflow for page %p", m));
3784 	if (VPRC_WIRE_COUNT(old) == 0)
3785 		vm_wire_add(1);
3786 }
3787 
3788 /*
3789  * Attempt to wire a mapped page following a pmap lookup of that page.
3790  * This may fail if a thread is concurrently tearing down mappings of the page.
3791  */
3792 bool
3793 vm_page_wire_mapped(vm_page_t m)
3794 {
3795 	u_int old;
3796 
3797 	old = m->ref_count;
3798 	do {
3799 		KASSERT(old > 0,
3800 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3801 		if ((old & VPRC_BLOCKED) != 0)
3802 			return (false);
3803 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3804 
3805 	if (VPRC_WIRE_COUNT(old) == 0)
3806 		vm_wire_add(1);
3807 	return (true);
3808 }
3809 
3810 /*
3811  * Release one wiring of the specified page, potentially allowing it to be
3812  * paged out.
3813  *
3814  * Only managed pages belonging to an object can be paged out.  If the number
3815  * of wirings transitions to zero and the page is eligible for page out, then
3816  * the page is added to the specified paging queue.  If the released wiring
3817  * represented the last reference to the page, the page is freed.
3818  *
3819  * A managed page must be locked.
3820  */
3821 void
3822 vm_page_unwire(vm_page_t m, uint8_t queue)
3823 {
3824 	u_int old;
3825 	bool locked;
3826 
3827 	KASSERT(queue < PQ_COUNT,
3828 	    ("vm_page_unwire: invalid queue %u request for page %p", queue, m));
3829 
3830 	if ((m->oflags & VPO_UNMANAGED) != 0) {
3831 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
3832 			vm_page_free(m);
3833 		return;
3834 	}
3835 
3836 	/*
3837 	 * Update LRU state before releasing the wiring reference.
3838 	 * We only need to do this once since we hold the page lock.
3839 	 * Use a release store when updating the reference count to
3840 	 * synchronize with vm_page_free_prep().
3841 	 */
3842 	old = m->ref_count;
3843 	locked = false;
3844 	do {
3845 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
3846 		    ("vm_page_unwire: wire count underflow for page %p", m));
3847 		if (!locked && VPRC_WIRE_COUNT(old) == 1) {
3848 			vm_page_lock(m);
3849 			locked = true;
3850 			if (queue == PQ_ACTIVE && vm_page_queue(m) == PQ_ACTIVE)
3851 				vm_page_reference(m);
3852 			else
3853 				vm_page_mvqueue(m, queue);
3854 		}
3855 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3856 
3857 	/*
3858 	 * Release the lock only after the wiring is released, to ensure that
3859 	 * the page daemon does not encounter and dequeue the page while it is
3860 	 * still wired.
3861 	 */
3862 	if (locked)
3863 		vm_page_unlock(m);
3864 
3865 	if (VPRC_WIRE_COUNT(old) == 1) {
3866 		vm_wire_sub(1);
3867 		if (old == 1)
3868 			vm_page_free(m);
3869 	}
3870 }
3871 
3872 /*
3873  * Unwire a page without (re-)inserting it into a page queue.  It is up
3874  * to the caller to enqueue, requeue, or free the page as appropriate.
3875  * In most cases involving managed pages, vm_page_unwire() should be used
3876  * instead.
3877  */
3878 bool
3879 vm_page_unwire_noq(vm_page_t m)
3880 {
3881 	u_int old;
3882 
3883 	old = vm_page_drop(m, 1);
3884 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
3885 	    ("vm_page_unref: counter underflow for page %p", m));
3886 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3887 	    ("vm_page_unref: missing ref on fictitious page %p", m));
3888 
3889 	if (VPRC_WIRE_COUNT(old) > 1)
3890 		return (false);
3891 	vm_wire_sub(1);
3892 	return (true);
3893 }
3894 
3895 /*
3896  * Ensure that the page is in the specified page queue.  If the page is
3897  * active or being moved to the active queue, ensure that its act_count is
3898  * at least ACT_INIT but do not otherwise mess with it.  Otherwise, ensure that
3899  * the page is at the tail of its page queue.
3900  *
3901  * The page may be wired.  The caller should release its wiring reference
3902  * before releasing the page lock, otherwise the page daemon may immediately
3903  * dequeue the page.
3904  *
3905  * A managed page must be locked.
3906  */
3907 static __always_inline void
3908 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue)
3909 {
3910 
3911 	vm_page_assert_locked(m);
3912 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3913 	    ("vm_page_mvqueue: page %p is unmanaged", m));
3914 
3915 	if (vm_page_queue(m) != nqueue) {
3916 		vm_page_dequeue(m);
3917 		vm_page_enqueue(m, nqueue);
3918 	} else if (nqueue != PQ_ACTIVE) {
3919 		vm_page_requeue(m);
3920 	}
3921 
3922 	if (nqueue == PQ_ACTIVE && m->act_count < ACT_INIT)
3923 		m->act_count = ACT_INIT;
3924 }
3925 
3926 /*
3927  * Put the specified page on the active list (if appropriate).
3928  */
3929 void
3930 vm_page_activate(vm_page_t m)
3931 {
3932 
3933 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3934 		return;
3935 	vm_page_mvqueue(m, PQ_ACTIVE);
3936 }
3937 
3938 /*
3939  * Move the specified page to the tail of the inactive queue, or requeue
3940  * the page if it is already in the inactive queue.
3941  */
3942 void
3943 vm_page_deactivate(vm_page_t m)
3944 {
3945 
3946 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3947 		return;
3948 	vm_page_mvqueue(m, PQ_INACTIVE);
3949 }
3950 
3951 /*
3952  * Move the specified page close to the head of the inactive queue,
3953  * bypassing LRU.  A marker page is used to maintain FIFO ordering.
3954  * As with regular enqueues, we use a per-CPU batch queue to reduce
3955  * contention on the page queue lock.
3956  */
3957 static void
3958 _vm_page_deactivate_noreuse(vm_page_t m)
3959 {
3960 
3961 	vm_page_assert_locked(m);
3962 
3963 	if (!vm_page_inactive(m)) {
3964 		vm_page_dequeue(m);
3965 		m->queue = PQ_INACTIVE;
3966 	}
3967 	if ((m->aflags & PGA_REQUEUE_HEAD) == 0)
3968 		vm_page_aflag_set(m, PGA_REQUEUE_HEAD);
3969 	vm_page_pqbatch_submit(m, PQ_INACTIVE);
3970 }
3971 
3972 void
3973 vm_page_deactivate_noreuse(vm_page_t m)
3974 {
3975 
3976 	KASSERT(m->object != NULL,
3977 	    ("vm_page_deactivate_noreuse: page %p has no object", m));
3978 
3979 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_wired(m))
3980 		_vm_page_deactivate_noreuse(m);
3981 }
3982 
3983 /*
3984  * Put a page in the laundry, or requeue it if it is already there.
3985  */
3986 void
3987 vm_page_launder(vm_page_t m)
3988 {
3989 
3990 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3991 		return;
3992 	vm_page_mvqueue(m, PQ_LAUNDRY);
3993 }
3994 
3995 /*
3996  * Put a page in the PQ_UNSWAPPABLE holding queue.
3997  */
3998 void
3999 vm_page_unswappable(vm_page_t m)
4000 {
4001 
4002 	vm_page_assert_locked(m);
4003 	KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4004 	    ("page %p already unswappable", m));
4005 
4006 	vm_page_dequeue(m);
4007 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4008 }
4009 
4010 static void
4011 vm_page_release_toq(vm_page_t m, int flags)
4012 {
4013 
4014 	vm_page_assert_locked(m);
4015 
4016 	/*
4017 	 * Use a check of the valid bits to determine whether we should
4018 	 * accelerate reclamation of the page.  The object lock might not be
4019 	 * held here, in which case the check is racy.  At worst we will either
4020 	 * accelerate reclamation of a valid page and violate LRU, or
4021 	 * unnecessarily defer reclamation of an invalid page.
4022 	 *
4023 	 * If we were asked to not cache the page, place it near the head of the
4024 	 * inactive queue so that is reclaimed sooner.
4025 	 */
4026 	if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0)
4027 		_vm_page_deactivate_noreuse(m);
4028 	else if (vm_page_active(m))
4029 		vm_page_reference(m);
4030 	else
4031 		vm_page_mvqueue(m, PQ_INACTIVE);
4032 }
4033 
4034 /*
4035  * Unwire a page and either attempt to free it or re-add it to the page queues.
4036  */
4037 void
4038 vm_page_release(vm_page_t m, int flags)
4039 {
4040 	vm_object_t object;
4041 	u_int old;
4042 	bool locked;
4043 
4044 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4045 	    ("vm_page_release: page %p is unmanaged", m));
4046 
4047 	if ((flags & VPR_TRYFREE) != 0) {
4048 		for (;;) {
4049 			object = (vm_object_t)atomic_load_ptr(&m->object);
4050 			if (object == NULL)
4051 				break;
4052 			/* Depends on type-stability. */
4053 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) {
4054 				object = NULL;
4055 				break;
4056 			}
4057 			if (object == m->object)
4058 				break;
4059 			VM_OBJECT_WUNLOCK(object);
4060 		}
4061 		if (__predict_true(object != NULL)) {
4062 			vm_page_release_locked(m, flags);
4063 			VM_OBJECT_WUNLOCK(object);
4064 			return;
4065 		}
4066 	}
4067 
4068 	/*
4069 	 * Update LRU state before releasing the wiring reference.
4070 	 * Use a release store when updating the reference count to
4071 	 * synchronize with vm_page_free_prep().
4072 	 */
4073 	old = m->ref_count;
4074 	locked = false;
4075 	do {
4076 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
4077 		    ("vm_page_unwire: wire count underflow for page %p", m));
4078 		if (!locked && VPRC_WIRE_COUNT(old) == 1) {
4079 			vm_page_lock(m);
4080 			locked = true;
4081 			vm_page_release_toq(m, flags);
4082 		}
4083 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4084 
4085 	/*
4086 	 * Release the lock only after the wiring is released, to ensure that
4087 	 * the page daemon does not encounter and dequeue the page while it is
4088 	 * still wired.
4089 	 */
4090 	if (locked)
4091 		vm_page_unlock(m);
4092 
4093 	if (VPRC_WIRE_COUNT(old) == 1) {
4094 		vm_wire_sub(1);
4095 		if (old == 1)
4096 			vm_page_free(m);
4097 	}
4098 }
4099 
4100 /* See vm_page_release(). */
4101 void
4102 vm_page_release_locked(vm_page_t m, int flags)
4103 {
4104 
4105 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4106 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4107 	    ("vm_page_release_locked: page %p is unmanaged", m));
4108 
4109 	if (vm_page_unwire_noq(m)) {
4110 		if ((flags & VPR_TRYFREE) != 0 &&
4111 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4112 		    m->dirty == 0 && !vm_page_busied(m)) {
4113 			vm_page_free(m);
4114 		} else {
4115 			vm_page_lock(m);
4116 			vm_page_release_toq(m, flags);
4117 			vm_page_unlock(m);
4118 		}
4119 	}
4120 }
4121 
4122 static bool
4123 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4124 {
4125 	u_int old;
4126 
4127 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4128 	    ("vm_page_try_blocked_op: page %p has no object", m));
4129 	KASSERT(vm_page_busied(m),
4130 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4131 	VM_OBJECT_ASSERT_LOCKED(m->object);
4132 
4133 	old = m->ref_count;
4134 	do {
4135 		KASSERT(old != 0,
4136 		    ("vm_page_try_blocked_op: page %p has no references", m));
4137 		if (VPRC_WIRE_COUNT(old) != 0)
4138 			return (false);
4139 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4140 
4141 	(op)(m);
4142 
4143 	/*
4144 	 * If the object is read-locked, new wirings may be created via an
4145 	 * object lookup.
4146 	 */
4147 	old = vm_page_drop(m, VPRC_BLOCKED);
4148 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4149 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4150 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4151 	    old, m));
4152 	return (true);
4153 }
4154 
4155 /*
4156  * Atomically check for wirings and remove all mappings of the page.
4157  */
4158 bool
4159 vm_page_try_remove_all(vm_page_t m)
4160 {
4161 
4162 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4163 }
4164 
4165 /*
4166  * Atomically check for wirings and remove all writeable mappings of the page.
4167  */
4168 bool
4169 vm_page_try_remove_write(vm_page_t m)
4170 {
4171 
4172 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4173 }
4174 
4175 /*
4176  * vm_page_advise
4177  *
4178  * 	Apply the specified advice to the given page.
4179  *
4180  *	The object and page must be locked.
4181  */
4182 void
4183 vm_page_advise(vm_page_t m, int advice)
4184 {
4185 
4186 	vm_page_assert_locked(m);
4187 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4188 	if (advice == MADV_FREE)
4189 		/*
4190 		 * Mark the page clean.  This will allow the page to be freed
4191 		 * without first paging it out.  MADV_FREE pages are often
4192 		 * quickly reused by malloc(3), so we do not do anything that
4193 		 * would result in a page fault on a later access.
4194 		 */
4195 		vm_page_undirty(m);
4196 	else if (advice != MADV_DONTNEED) {
4197 		if (advice == MADV_WILLNEED)
4198 			vm_page_activate(m);
4199 		return;
4200 	}
4201 
4202 	/*
4203 	 * Clear any references to the page.  Otherwise, the page daemon will
4204 	 * immediately reactivate the page.
4205 	 */
4206 	vm_page_aflag_clear(m, PGA_REFERENCED);
4207 
4208 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4209 		vm_page_dirty(m);
4210 
4211 	/*
4212 	 * Place clean pages near the head of the inactive queue rather than
4213 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4214 	 * the page will be reused quickly.  Dirty pages not already in the
4215 	 * laundry are moved there.
4216 	 */
4217 	if (m->dirty == 0)
4218 		vm_page_deactivate_noreuse(m);
4219 	else if (!vm_page_in_laundry(m))
4220 		vm_page_launder(m);
4221 }
4222 
4223 /*
4224  * Grab a page, waiting until we are waken up due to the page
4225  * changing state.  We keep on waiting, if the page continues
4226  * to be in the object.  If the page doesn't exist, first allocate it
4227  * and then conditionally zero it.
4228  *
4229  * This routine may sleep.
4230  *
4231  * The object must be locked on entry.  The lock will, however, be released
4232  * and reacquired if the routine sleeps.
4233  */
4234 vm_page_t
4235 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4236 {
4237 	vm_page_t m;
4238 	int sleep;
4239 	int pflags;
4240 
4241 	VM_OBJECT_ASSERT_WLOCKED(object);
4242 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4243 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4244 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4245 	pflags = allocflags &
4246 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4247 	    VM_ALLOC_NOBUSY);
4248 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4249 		pflags |= VM_ALLOC_WAITFAIL;
4250 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4251 		pflags |= VM_ALLOC_SBUSY;
4252 retrylookup:
4253 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4254 		if ((allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) != 0)
4255 			sleep = !vm_page_trysbusy(m);
4256 		else
4257 			sleep = !vm_page_tryxbusy(m);
4258 		if (sleep) {
4259 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4260 				return (NULL);
4261 			/*
4262 			 * Reference the page before unlocking and
4263 			 * sleeping so that the page daemon is less
4264 			 * likely to reclaim it.
4265 			 */
4266 			if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4267 				vm_page_aflag_set(m, PGA_REFERENCED);
4268 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4269 			    VM_ALLOC_IGN_SBUSY) != 0);
4270 			VM_OBJECT_WLOCK(object);
4271 			if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4272 				return (NULL);
4273 			goto retrylookup;
4274 		} else {
4275 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4276 				vm_page_wire(m);
4277 			goto out;
4278 		}
4279 	}
4280 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4281 		return (NULL);
4282 	m = vm_page_alloc(object, pindex, pflags);
4283 	if (m == NULL) {
4284 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4285 			return (NULL);
4286 		goto retrylookup;
4287 	}
4288 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4289 		pmap_zero_page(m);
4290 
4291 out:
4292 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4293 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4294 			vm_page_sunbusy(m);
4295 		else
4296 			vm_page_xunbusy(m);
4297 	}
4298 	return (m);
4299 }
4300 
4301 /*
4302  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4303  * their pager are zero filled and validated.
4304  */
4305 int
4306 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4307 {
4308 	vm_page_t m;
4309 	bool sleep, xbusy;
4310 	int pflags;
4311 	int rv;
4312 
4313 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4314 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4315 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4316 	KASSERT((allocflags &
4317 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4318 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4319 	VM_OBJECT_ASSERT_WLOCKED(object);
4320 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4321 	pflags |= VM_ALLOC_WAITFAIL;
4322 
4323 retrylookup:
4324 	xbusy = false;
4325 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4326 		/*
4327 		 * If the page is fully valid it can only become invalid
4328 		 * with the object lock held.  If it is not valid it can
4329 		 * become valid with the busy lock held.  Therefore, we
4330 		 * may unnecessarily lock the exclusive busy here if we
4331 		 * race with I/O completion not using the object lock.
4332 		 * However, we will not end up with an invalid page and a
4333 		 * shared lock.
4334 		 */
4335 		if (!vm_page_all_valid(m) ||
4336 		    (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4337 			sleep = !vm_page_tryxbusy(m);
4338 			xbusy = true;
4339 		} else
4340 			sleep = !vm_page_trysbusy(m);
4341 		if (sleep) {
4342 			/*
4343 			 * Reference the page before unlocking and
4344 			 * sleeping so that the page daemon is less
4345 			 * likely to reclaim it.
4346 			 */
4347 			if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4348 				vm_page_aflag_set(m, PGA_REFERENCED);
4349 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4350 			    VM_ALLOC_IGN_SBUSY) != 0);
4351 			VM_OBJECT_WLOCK(object);
4352 			goto retrylookup;
4353 		}
4354 		if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4355 		   !vm_page_all_valid(m)) {
4356 			if (xbusy)
4357 				vm_page_xunbusy(m);
4358 			else
4359 				vm_page_sunbusy(m);
4360 			*mp = NULL;
4361 			return (VM_PAGER_FAIL);
4362 		}
4363 		if ((allocflags & VM_ALLOC_WIRED) != 0)
4364 			vm_page_wire(m);
4365 		if (vm_page_all_valid(m))
4366 			goto out;
4367 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4368 		*mp = NULL;
4369 		return (VM_PAGER_FAIL);
4370 	} else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4371 		xbusy = true;
4372 	} else {
4373 		goto retrylookup;
4374 	}
4375 
4376 	vm_page_assert_xbusied(m);
4377 	MPASS(xbusy);
4378 	if (vm_pager_has_page(object, pindex, NULL, NULL)) {
4379 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
4380 		if (rv != VM_PAGER_OK) {
4381 			if (allocflags & VM_ALLOC_WIRED)
4382 				vm_page_unwire_noq(m);
4383 			vm_page_free(m);
4384 			*mp = NULL;
4385 			return (rv);
4386 		}
4387 		MPASS(vm_page_all_valid(m));
4388 	} else {
4389 		vm_page_zero_invalid(m, TRUE);
4390 	}
4391 out:
4392 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4393 		if (xbusy)
4394 			vm_page_xunbusy(m);
4395 		else
4396 			vm_page_sunbusy(m);
4397 	}
4398 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4399 		vm_page_busy_downgrade(m);
4400 	*mp = m;
4401 	return (VM_PAGER_OK);
4402 }
4403 
4404 /*
4405  * Return the specified range of pages from the given object.  For each
4406  * page offset within the range, if a page already exists within the object
4407  * at that offset and it is busy, then wait for it to change state.  If,
4408  * instead, the page doesn't exist, then allocate it.
4409  *
4410  * The caller must always specify an allocation class.
4411  *
4412  * allocation classes:
4413  *	VM_ALLOC_NORMAL		normal process request
4414  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4415  *
4416  * The caller must always specify that the pages are to be busied and/or
4417  * wired.
4418  *
4419  * optional allocation flags:
4420  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4421  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4422  *	VM_ALLOC_NOWAIT		do not sleep
4423  *	VM_ALLOC_SBUSY		set page to sbusy state
4424  *	VM_ALLOC_WIRED		wire the pages
4425  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4426  *
4427  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4428  * may return a partial prefix of the requested range.
4429  */
4430 int
4431 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4432     vm_page_t *ma, int count)
4433 {
4434 	vm_page_t m, mpred;
4435 	int pflags;
4436 	int i;
4437 	bool sleep;
4438 
4439 	VM_OBJECT_ASSERT_WLOCKED(object);
4440 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4441 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4442 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4443 	    (allocflags & VM_ALLOC_WIRED) != 0,
4444 	    ("vm_page_grab_pages: the pages must be busied or wired"));
4445 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4446 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4447 	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
4448 	if (count == 0)
4449 		return (0);
4450 	pflags = allocflags &
4451 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4452 	    VM_ALLOC_NOBUSY);
4453 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4454 		pflags |= VM_ALLOC_WAITFAIL;
4455 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4456 		pflags |= VM_ALLOC_SBUSY;
4457 	i = 0;
4458 retrylookup:
4459 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4460 	if (m == NULL || m->pindex != pindex + i) {
4461 		mpred = m;
4462 		m = NULL;
4463 	} else
4464 		mpred = TAILQ_PREV(m, pglist, listq);
4465 	for (; i < count; i++) {
4466 		if (m != NULL) {
4467 			if ((allocflags &
4468 			    (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
4469 				sleep = !vm_page_trysbusy(m);
4470 			else
4471 				sleep = !vm_page_tryxbusy(m);
4472 			if (sleep) {
4473 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4474 					break;
4475 				/*
4476 				 * Reference the page before unlocking and
4477 				 * sleeping so that the page daemon is less
4478 				 * likely to reclaim it.
4479 				 */
4480 				if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4481 					vm_page_aflag_set(m, PGA_REFERENCED);
4482 				vm_page_busy_sleep(m, "grbmaw", (allocflags &
4483 				    VM_ALLOC_IGN_SBUSY) != 0);
4484 				VM_OBJECT_WLOCK(object);
4485 				goto retrylookup;
4486 			}
4487 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4488 				vm_page_wire(m);
4489 		} else {
4490 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4491 				break;
4492 			m = vm_page_alloc_after(object, pindex + i,
4493 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4494 			if (m == NULL) {
4495 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4496 					break;
4497 				goto retrylookup;
4498 			}
4499 		}
4500 		if (vm_page_none_valid(m) &&
4501 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4502 			if ((m->flags & PG_ZERO) == 0)
4503 				pmap_zero_page(m);
4504 			vm_page_valid(m);
4505 		}
4506 		if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4507 			if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4508 				vm_page_sunbusy(m);
4509 			else
4510 				vm_page_xunbusy(m);
4511 		}
4512 		ma[i] = mpred = m;
4513 		m = vm_page_next(m);
4514 	}
4515 	return (i);
4516 }
4517 
4518 /*
4519  * Mapping function for valid or dirty bits in a page.
4520  *
4521  * Inputs are required to range within a page.
4522  */
4523 vm_page_bits_t
4524 vm_page_bits(int base, int size)
4525 {
4526 	int first_bit;
4527 	int last_bit;
4528 
4529 	KASSERT(
4530 	    base + size <= PAGE_SIZE,
4531 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
4532 	);
4533 
4534 	if (size == 0)		/* handle degenerate case */
4535 		return (0);
4536 
4537 	first_bit = base >> DEV_BSHIFT;
4538 	last_bit = (base + size - 1) >> DEV_BSHIFT;
4539 
4540 	return (((vm_page_bits_t)2 << last_bit) -
4541 	    ((vm_page_bits_t)1 << first_bit));
4542 }
4543 
4544 static inline void
4545 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4546 {
4547 
4548 #if PAGE_SIZE == 32768
4549 	atomic_set_64((uint64_t *)bits, set);
4550 #elif PAGE_SIZE == 16384
4551 	atomic_set_32((uint32_t *)bits, set);
4552 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4553 	atomic_set_16((uint16_t *)bits, set);
4554 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4555 	atomic_set_8((uint8_t *)bits, set);
4556 #else		/* PAGE_SIZE <= 8192 */
4557 	uintptr_t addr;
4558 	int shift;
4559 
4560 	addr = (uintptr_t)bits;
4561 	/*
4562 	 * Use a trick to perform a 32-bit atomic on the
4563 	 * containing aligned word, to not depend on the existence
4564 	 * of atomic_{set, clear}_{8, 16}.
4565 	 */
4566 	shift = addr & (sizeof(uint32_t) - 1);
4567 #if BYTE_ORDER == BIG_ENDIAN
4568 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4569 #else
4570 	shift *= NBBY;
4571 #endif
4572 	addr &= ~(sizeof(uint32_t) - 1);
4573 	atomic_set_32((uint32_t *)addr, set << shift);
4574 #endif		/* PAGE_SIZE */
4575 }
4576 
4577 static inline void
4578 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4579 {
4580 
4581 #if PAGE_SIZE == 32768
4582 	atomic_clear_64((uint64_t *)bits, clear);
4583 #elif PAGE_SIZE == 16384
4584 	atomic_clear_32((uint32_t *)bits, clear);
4585 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4586 	atomic_clear_16((uint16_t *)bits, clear);
4587 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4588 	atomic_clear_8((uint8_t *)bits, clear);
4589 #else		/* PAGE_SIZE <= 8192 */
4590 	uintptr_t addr;
4591 	int shift;
4592 
4593 	addr = (uintptr_t)bits;
4594 	/*
4595 	 * Use a trick to perform a 32-bit atomic on the
4596 	 * containing aligned word, to not depend on the existence
4597 	 * of atomic_{set, clear}_{8, 16}.
4598 	 */
4599 	shift = addr & (sizeof(uint32_t) - 1);
4600 #if BYTE_ORDER == BIG_ENDIAN
4601 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4602 #else
4603 	shift *= NBBY;
4604 #endif
4605 	addr &= ~(sizeof(uint32_t) - 1);
4606 	atomic_clear_32((uint32_t *)addr, clear << shift);
4607 #endif		/* PAGE_SIZE */
4608 }
4609 
4610 /*
4611  *	vm_page_set_valid_range:
4612  *
4613  *	Sets portions of a page valid.  The arguments are expected
4614  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4615  *	of any partial chunks touched by the range.  The invalid portion of
4616  *	such chunks will be zeroed.
4617  *
4618  *	(base + size) must be less then or equal to PAGE_SIZE.
4619  */
4620 void
4621 vm_page_set_valid_range(vm_page_t m, int base, int size)
4622 {
4623 	int endoff, frag;
4624 	vm_page_bits_t pagebits;
4625 
4626 	vm_page_assert_busied(m);
4627 	if (size == 0)	/* handle degenerate case */
4628 		return;
4629 
4630 	/*
4631 	 * If the base is not DEV_BSIZE aligned and the valid
4632 	 * bit is clear, we have to zero out a portion of the
4633 	 * first block.
4634 	 */
4635 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4636 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4637 		pmap_zero_page_area(m, frag, base - frag);
4638 
4639 	/*
4640 	 * If the ending offset is not DEV_BSIZE aligned and the
4641 	 * valid bit is clear, we have to zero out a portion of
4642 	 * the last block.
4643 	 */
4644 	endoff = base + size;
4645 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4646 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4647 		pmap_zero_page_area(m, endoff,
4648 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4649 
4650 	/*
4651 	 * Assert that no previously invalid block that is now being validated
4652 	 * is already dirty.
4653 	 */
4654 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4655 	    ("vm_page_set_valid_range: page %p is dirty", m));
4656 
4657 	/*
4658 	 * Set valid bits inclusive of any overlap.
4659 	 */
4660 	pagebits = vm_page_bits(base, size);
4661 	if (vm_page_xbusied(m))
4662 		m->valid |= pagebits;
4663 	else
4664 		vm_page_bits_set(m, &m->valid, pagebits);
4665 }
4666 
4667 /*
4668  * Clear the given bits from the specified page's dirty field.
4669  */
4670 static __inline void
4671 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4672 {
4673 
4674 	vm_page_assert_busied(m);
4675 
4676 	/*
4677 	 * If the page is xbusied and not write mapped we are the
4678 	 * only thread that can modify dirty bits.  Otherwise, The pmap
4679 	 * layer can call vm_page_dirty() without holding a distinguished
4680 	 * lock.  The combination of page busy and atomic operations
4681 	 * suffice to guarantee consistency of the page dirty field.
4682 	 */
4683 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4684 		m->dirty &= ~pagebits;
4685 	else
4686 		vm_page_bits_clear(m, &m->dirty, pagebits);
4687 }
4688 
4689 /*
4690  *	vm_page_set_validclean:
4691  *
4692  *	Sets portions of a page valid and clean.  The arguments are expected
4693  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4694  *	of any partial chunks touched by the range.  The invalid portion of
4695  *	such chunks will be zero'd.
4696  *
4697  *	(base + size) must be less then or equal to PAGE_SIZE.
4698  */
4699 void
4700 vm_page_set_validclean(vm_page_t m, int base, int size)
4701 {
4702 	vm_page_bits_t oldvalid, pagebits;
4703 	int endoff, frag;
4704 
4705 	vm_page_assert_busied(m);
4706 	if (size == 0)	/* handle degenerate case */
4707 		return;
4708 
4709 	/*
4710 	 * If the base is not DEV_BSIZE aligned and the valid
4711 	 * bit is clear, we have to zero out a portion of the
4712 	 * first block.
4713 	 */
4714 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4715 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4716 		pmap_zero_page_area(m, frag, base - frag);
4717 
4718 	/*
4719 	 * If the ending offset is not DEV_BSIZE aligned and the
4720 	 * valid bit is clear, we have to zero out a portion of
4721 	 * the last block.
4722 	 */
4723 	endoff = base + size;
4724 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4725 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4726 		pmap_zero_page_area(m, endoff,
4727 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4728 
4729 	/*
4730 	 * Set valid, clear dirty bits.  If validating the entire
4731 	 * page we can safely clear the pmap modify bit.  We also
4732 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4733 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
4734 	 * be set again.
4735 	 *
4736 	 * We set valid bits inclusive of any overlap, but we can only
4737 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
4738 	 * the range.
4739 	 */
4740 	oldvalid = m->valid;
4741 	pagebits = vm_page_bits(base, size);
4742 	if (vm_page_xbusied(m))
4743 		m->valid |= pagebits;
4744 	else
4745 		vm_page_bits_set(m, &m->valid, pagebits);
4746 #if 0	/* NOT YET */
4747 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4748 		frag = DEV_BSIZE - frag;
4749 		base += frag;
4750 		size -= frag;
4751 		if (size < 0)
4752 			size = 0;
4753 	}
4754 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4755 #endif
4756 	if (base == 0 && size == PAGE_SIZE) {
4757 		/*
4758 		 * The page can only be modified within the pmap if it is
4759 		 * mapped, and it can only be mapped if it was previously
4760 		 * fully valid.
4761 		 */
4762 		if (oldvalid == VM_PAGE_BITS_ALL)
4763 			/*
4764 			 * Perform the pmap_clear_modify() first.  Otherwise,
4765 			 * a concurrent pmap operation, such as
4766 			 * pmap_protect(), could clear a modification in the
4767 			 * pmap and set the dirty field on the page before
4768 			 * pmap_clear_modify() had begun and after the dirty
4769 			 * field was cleared here.
4770 			 */
4771 			pmap_clear_modify(m);
4772 		m->dirty = 0;
4773 		vm_page_aflag_clear(m, PGA_NOSYNC);
4774 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4775 		m->dirty &= ~pagebits;
4776 	else
4777 		vm_page_clear_dirty_mask(m, pagebits);
4778 }
4779 
4780 void
4781 vm_page_clear_dirty(vm_page_t m, int base, int size)
4782 {
4783 
4784 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4785 }
4786 
4787 /*
4788  *	vm_page_set_invalid:
4789  *
4790  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
4791  *	valid and dirty bits for the effected areas are cleared.
4792  */
4793 void
4794 vm_page_set_invalid(vm_page_t m, int base, int size)
4795 {
4796 	vm_page_bits_t bits;
4797 	vm_object_t object;
4798 
4799 	/*
4800 	 * The object lock is required so that pages can't be mapped
4801 	 * read-only while we're in the process of invalidating them.
4802 	 */
4803 	object = m->object;
4804 	VM_OBJECT_ASSERT_WLOCKED(object);
4805 	vm_page_assert_busied(m);
4806 
4807 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4808 	    size >= object->un_pager.vnp.vnp_size)
4809 		bits = VM_PAGE_BITS_ALL;
4810 	else
4811 		bits = vm_page_bits(base, size);
4812 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4813 		pmap_remove_all(m);
4814 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4815 	    !pmap_page_is_mapped(m),
4816 	    ("vm_page_set_invalid: page %p is mapped", m));
4817 	if (vm_page_xbusied(m)) {
4818 		m->valid &= ~bits;
4819 		m->dirty &= ~bits;
4820 	} else {
4821 		vm_page_bits_clear(m, &m->valid, bits);
4822 		vm_page_bits_clear(m, &m->dirty, bits);
4823 	}
4824 }
4825 
4826 /*
4827  *	vm_page_invalid:
4828  *
4829  *	Invalidates the entire page.  The page must be busy, unmapped, and
4830  *	the enclosing object must be locked.  The object locks protects
4831  *	against concurrent read-only pmap enter which is done without
4832  *	busy.
4833  */
4834 void
4835 vm_page_invalid(vm_page_t m)
4836 {
4837 
4838 	vm_page_assert_busied(m);
4839 	VM_OBJECT_ASSERT_LOCKED(m->object);
4840 	MPASS(!pmap_page_is_mapped(m));
4841 
4842 	if (vm_page_xbusied(m))
4843 		m->valid = 0;
4844 	else
4845 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4846 }
4847 
4848 /*
4849  * vm_page_zero_invalid()
4850  *
4851  *	The kernel assumes that the invalid portions of a page contain
4852  *	garbage, but such pages can be mapped into memory by user code.
4853  *	When this occurs, we must zero out the non-valid portions of the
4854  *	page so user code sees what it expects.
4855  *
4856  *	Pages are most often semi-valid when the end of a file is mapped
4857  *	into memory and the file's size is not page aligned.
4858  */
4859 void
4860 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4861 {
4862 	int b;
4863 	int i;
4864 
4865 	/*
4866 	 * Scan the valid bits looking for invalid sections that
4867 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4868 	 * valid bit may be set ) have already been zeroed by
4869 	 * vm_page_set_validclean().
4870 	 */
4871 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4872 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
4873 		    (m->valid & ((vm_page_bits_t)1 << i))) {
4874 			if (i > b) {
4875 				pmap_zero_page_area(m,
4876 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4877 			}
4878 			b = i + 1;
4879 		}
4880 	}
4881 
4882 	/*
4883 	 * setvalid is TRUE when we can safely set the zero'd areas
4884 	 * as being valid.  We can do this if there are no cache consistancy
4885 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4886 	 */
4887 	if (setvalid)
4888 		vm_page_valid(m);
4889 }
4890 
4891 /*
4892  *	vm_page_is_valid:
4893  *
4894  *	Is (partial) page valid?  Note that the case where size == 0
4895  *	will return FALSE in the degenerate case where the page is
4896  *	entirely invalid, and TRUE otherwise.
4897  *
4898  *	Some callers envoke this routine without the busy lock held and
4899  *	handle races via higher level locks.  Typical callers should
4900  *	hold a busy lock to prevent invalidation.
4901  */
4902 int
4903 vm_page_is_valid(vm_page_t m, int base, int size)
4904 {
4905 	vm_page_bits_t bits;
4906 
4907 	bits = vm_page_bits(base, size);
4908 	return (m->valid != 0 && (m->valid & bits) == bits);
4909 }
4910 
4911 /*
4912  * Returns true if all of the specified predicates are true for the entire
4913  * (super)page and false otherwise.
4914  */
4915 bool
4916 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4917 {
4918 	vm_object_t object;
4919 	int i, npages;
4920 
4921 	object = m->object;
4922 	if (skip_m != NULL && skip_m->object != object)
4923 		return (false);
4924 	VM_OBJECT_ASSERT_LOCKED(object);
4925 	npages = atop(pagesizes[m->psind]);
4926 
4927 	/*
4928 	 * The physically contiguous pages that make up a superpage, i.e., a
4929 	 * page with a page size index ("psind") greater than zero, will
4930 	 * occupy adjacent entries in vm_page_array[].
4931 	 */
4932 	for (i = 0; i < npages; i++) {
4933 		/* Always test object consistency, including "skip_m". */
4934 		if (m[i].object != object)
4935 			return (false);
4936 		if (&m[i] == skip_m)
4937 			continue;
4938 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4939 			return (false);
4940 		if ((flags & PS_ALL_DIRTY) != 0) {
4941 			/*
4942 			 * Calling vm_page_test_dirty() or pmap_is_modified()
4943 			 * might stop this case from spuriously returning
4944 			 * "false".  However, that would require a write lock
4945 			 * on the object containing "m[i]".
4946 			 */
4947 			if (m[i].dirty != VM_PAGE_BITS_ALL)
4948 				return (false);
4949 		}
4950 		if ((flags & PS_ALL_VALID) != 0 &&
4951 		    m[i].valid != VM_PAGE_BITS_ALL)
4952 			return (false);
4953 	}
4954 	return (true);
4955 }
4956 
4957 /*
4958  * Set the page's dirty bits if the page is modified.
4959  */
4960 void
4961 vm_page_test_dirty(vm_page_t m)
4962 {
4963 
4964 	vm_page_assert_busied(m);
4965 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
4966 		vm_page_dirty(m);
4967 }
4968 
4969 void
4970 vm_page_valid(vm_page_t m)
4971 {
4972 
4973 	vm_page_assert_busied(m);
4974 	if (vm_page_xbusied(m))
4975 		m->valid = VM_PAGE_BITS_ALL;
4976 	else
4977 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
4978 }
4979 
4980 void
4981 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
4982 {
4983 
4984 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
4985 }
4986 
4987 void
4988 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
4989 {
4990 
4991 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
4992 }
4993 
4994 int
4995 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
4996 {
4997 
4998 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
4999 }
5000 
5001 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5002 void
5003 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5004 {
5005 
5006 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5007 }
5008 
5009 void
5010 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5011 {
5012 
5013 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5014 }
5015 #endif
5016 
5017 #ifdef INVARIANTS
5018 void
5019 vm_page_object_busy_assert(vm_page_t m)
5020 {
5021 
5022 	/*
5023 	 * Certain of the page's fields may only be modified by the
5024 	 * holder of a page or object busy.
5025 	 */
5026 	if (m->object != NULL && !vm_page_busied(m))
5027 		VM_OBJECT_ASSERT_BUSY(m->object);
5028 }
5029 
5030 void
5031 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
5032 {
5033 
5034 	if ((bits & PGA_WRITEABLE) == 0)
5035 		return;
5036 
5037 	/*
5038 	 * The PGA_WRITEABLE flag can only be set if the page is
5039 	 * managed, is exclusively busied or the object is locked.
5040 	 * Currently, this flag is only set by pmap_enter().
5041 	 */
5042 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5043 	    ("PGA_WRITEABLE on unmanaged page"));
5044 	if (!vm_page_xbusied(m))
5045 		VM_OBJECT_ASSERT_BUSY(m->object);
5046 }
5047 #endif
5048 
5049 #include "opt_ddb.h"
5050 #ifdef DDB
5051 #include <sys/kernel.h>
5052 
5053 #include <ddb/ddb.h>
5054 
5055 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5056 {
5057 
5058 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5059 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5060 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5061 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5062 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5063 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5064 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5065 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5066 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5067 }
5068 
5069 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5070 {
5071 	int dom;
5072 
5073 	db_printf("pq_free %d\n", vm_free_count());
5074 	for (dom = 0; dom < vm_ndomains; dom++) {
5075 		db_printf(
5076     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5077 		    dom,
5078 		    vm_dom[dom].vmd_page_count,
5079 		    vm_dom[dom].vmd_free_count,
5080 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5081 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5082 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5083 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5084 	}
5085 }
5086 
5087 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5088 {
5089 	vm_page_t m;
5090 	boolean_t phys, virt;
5091 
5092 	if (!have_addr) {
5093 		db_printf("show pginfo addr\n");
5094 		return;
5095 	}
5096 
5097 	phys = strchr(modif, 'p') != NULL;
5098 	virt = strchr(modif, 'v') != NULL;
5099 	if (virt)
5100 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5101 	else if (phys)
5102 		m = PHYS_TO_VM_PAGE(addr);
5103 	else
5104 		m = (vm_page_t)addr;
5105 	db_printf(
5106     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5107     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5108 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5109 	    m->queue, m->ref_count, m->aflags, m->oflags,
5110 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
5111 }
5112 #endif /* DDB */
5113