xref: /freebsd/sys/vm/vm_page.c (revision eb320b0ee7503d0bf2b7c0ecdc59c2d82cf301d0)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*-
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/malloc.h>
107 #include <sys/mutex.h>
108 #include <sys/proc.h>
109 #include <sys/sysctl.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_phys.h>
121 #include <vm/vm_extern.h>
122 #include <vm/uma.h>
123 #include <vm/uma_int.h>
124 
125 #include <machine/md_var.h>
126 
127 /*
128  *	Associated with page of user-allocatable memory is a
129  *	page structure.
130  */
131 
132 struct mtx vm_page_queue_mtx;
133 struct mtx vm_page_queue_free_mtx;
134 
135 vm_page_t vm_page_array = 0;
136 int vm_page_array_size = 0;
137 long first_page = 0;
138 int vm_page_zero_count = 0;
139 
140 static int boot_pages = UMA_BOOT_PAGES;
141 TUNABLE_INT("vm.boot_pages", &boot_pages);
142 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
143 	"number of pages allocated for bootstrapping the VM system");
144 
145 /*
146  *	vm_set_page_size:
147  *
148  *	Sets the page size, perhaps based upon the memory
149  *	size.  Must be called before any use of page-size
150  *	dependent functions.
151  */
152 void
153 vm_set_page_size(void)
154 {
155 	if (cnt.v_page_size == 0)
156 		cnt.v_page_size = PAGE_SIZE;
157 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
158 		panic("vm_set_page_size: page size not a power of two");
159 }
160 
161 /*
162  *	vm_page_blacklist_lookup:
163  *
164  *	See if a physical address in this page has been listed
165  *	in the blacklist tunable.  Entries in the tunable are
166  *	separated by spaces or commas.  If an invalid integer is
167  *	encountered then the rest of the string is skipped.
168  */
169 static int
170 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
171 {
172 	vm_paddr_t bad;
173 	char *cp, *pos;
174 
175 	for (pos = list; *pos != '\0'; pos = cp) {
176 		bad = strtoq(pos, &cp, 0);
177 		if (*cp != '\0') {
178 			if (*cp == ' ' || *cp == ',') {
179 				cp++;
180 				if (cp == pos)
181 					continue;
182 			} else
183 				break;
184 		}
185 		if (pa == trunc_page(bad))
186 			return (1);
187 	}
188 	return (0);
189 }
190 
191 /*
192  *	vm_page_startup:
193  *
194  *	Initializes the resident memory module.
195  *
196  *	Allocates memory for the page cells, and
197  *	for the object/offset-to-page hash table headers.
198  *	Each page cell is initialized and placed on the free list.
199  */
200 vm_offset_t
201 vm_page_startup(vm_offset_t vaddr)
202 {
203 	vm_offset_t mapped;
204 	vm_size_t npages;
205 	vm_paddr_t page_range;
206 	vm_paddr_t new_end;
207 	int i;
208 	vm_paddr_t pa;
209 	int nblocks;
210 	vm_paddr_t last_pa;
211 	char *list;
212 
213 	/* the biggest memory array is the second group of pages */
214 	vm_paddr_t end;
215 	vm_paddr_t biggestsize;
216 	vm_paddr_t low_water, high_water;
217 	int biggestone;
218 
219 	vm_paddr_t total;
220 
221 	total = 0;
222 	biggestsize = 0;
223 	biggestone = 0;
224 	nblocks = 0;
225 	vaddr = round_page(vaddr);
226 
227 	for (i = 0; phys_avail[i + 1]; i += 2) {
228 		phys_avail[i] = round_page(phys_avail[i]);
229 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
230 	}
231 
232 	low_water = phys_avail[0];
233 	high_water = phys_avail[1];
234 
235 	for (i = 0; phys_avail[i + 1]; i += 2) {
236 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
237 
238 		if (size > biggestsize) {
239 			biggestone = i;
240 			biggestsize = size;
241 		}
242 		if (phys_avail[i] < low_water)
243 			low_water = phys_avail[i];
244 		if (phys_avail[i + 1] > high_water)
245 			high_water = phys_avail[i + 1];
246 		++nblocks;
247 		total += size;
248 	}
249 
250 	end = phys_avail[biggestone+1];
251 
252 	/*
253 	 * Initialize the locks.
254 	 */
255 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
256 	    MTX_RECURSE);
257 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
258 	    MTX_DEF);
259 
260 	/*
261 	 * Initialize the queue headers for the free queue, the active queue
262 	 * and the inactive queue.
263 	 */
264 	vm_pageq_init();
265 
266 	/*
267 	 * Allocate memory for use when boot strapping the kernel memory
268 	 * allocator.
269 	 */
270 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
271 	new_end = trunc_page(new_end);
272 	mapped = pmap_map(&vaddr, new_end, end,
273 	    VM_PROT_READ | VM_PROT_WRITE);
274 	bzero((void *)mapped, end - new_end);
275 	uma_startup((void *)mapped, boot_pages);
276 
277 #if defined(__amd64__) || defined(__i386__)
278 	/*
279 	 * Allocate a bitmap to indicate that a random physical page
280 	 * needs to be included in a minidump.
281 	 *
282 	 * The amd64 port needs this to indicate which direct map pages
283 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
284 	 *
285 	 * However, i386 still needs this workspace internally within the
286 	 * minidump code.  In theory, they are not needed on i386, but are
287 	 * included should the sf_buf code decide to use them.
288 	 */
289 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
290 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
291 	new_end -= vm_page_dump_size;
292 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
293 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
294 	bzero((void *)vm_page_dump, vm_page_dump_size);
295 #endif
296 	/*
297 	 * Compute the number of pages of memory that will be available for
298 	 * use (taking into account the overhead of a page structure per
299 	 * page).
300 	 */
301 	first_page = low_water / PAGE_SIZE;
302 #ifdef VM_PHYSSEG_SPARSE
303 	page_range = 0;
304 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
305 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
306 #elif defined(VM_PHYSSEG_DENSE)
307 	page_range = high_water / PAGE_SIZE - first_page;
308 #else
309 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
310 #endif
311 	npages = (total - (page_range * sizeof(struct vm_page)) -
312 	    (end - new_end)) / PAGE_SIZE;
313 	end = new_end;
314 
315 	/*
316 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
317 	 */
318 	vaddr += PAGE_SIZE;
319 
320 	/*
321 	 * Initialize the mem entry structures now, and put them in the free
322 	 * queue.
323 	 */
324 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
325 	mapped = pmap_map(&vaddr, new_end, end,
326 	    VM_PROT_READ | VM_PROT_WRITE);
327 	vm_page_array = (vm_page_t) mapped;
328 #ifdef __amd64__
329 	/*
330 	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
331 	 * so the pages must be tracked for a crashdump to include this data.
332 	 * This includes the vm_page_array and the early UMA bootstrap pages.
333 	 */
334 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
335 		dump_add_page(pa);
336 #endif
337 	phys_avail[biggestone + 1] = new_end;
338 
339 	/*
340 	 * Clear all of the page structures
341 	 */
342 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
343 	for (i = 0; i < page_range; i++)
344 		vm_page_array[i].order = VM_NFREEORDER;
345 	vm_page_array_size = page_range;
346 
347 	/*
348 	 * This assertion tests the hypothesis that npages and total are
349 	 * redundant.  XXX
350 	 */
351 	page_range = 0;
352 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
353 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
354 	KASSERT(page_range == npages,
355 	    ("vm_page_startup: inconsistent page counts"));
356 
357 	/*
358 	 * Initialize the physical memory allocator.
359 	 */
360 	vm_phys_init();
361 
362 	/*
363 	 * Add every available physical page that is not blacklisted to
364 	 * the free lists.
365 	 */
366 	cnt.v_page_count = 0;
367 	cnt.v_free_count = 0;
368 	list = getenv("vm.blacklist");
369 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
370 		pa = phys_avail[i];
371 		last_pa = phys_avail[i + 1];
372 		while (pa < last_pa) {
373 			if (list != NULL &&
374 			    vm_page_blacklist_lookup(list, pa))
375 				printf("Skipping page with pa 0x%jx\n",
376 				    (uintmax_t)pa);
377 			else
378 				vm_phys_add_page(pa);
379 			pa += PAGE_SIZE;
380 		}
381 	}
382 	freeenv(list);
383 	return (vaddr);
384 }
385 
386 void
387 vm_page_flag_set(vm_page_t m, unsigned short bits)
388 {
389 
390 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
391 	m->flags |= bits;
392 }
393 
394 void
395 vm_page_flag_clear(vm_page_t m, unsigned short bits)
396 {
397 
398 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
399 	m->flags &= ~bits;
400 }
401 
402 void
403 vm_page_busy(vm_page_t m)
404 {
405 
406 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
407 	KASSERT((m->oflags & VPO_BUSY) == 0,
408 	    ("vm_page_busy: page already busy!!!"));
409 	m->oflags |= VPO_BUSY;
410 }
411 
412 /*
413  *      vm_page_flash:
414  *
415  *      wakeup anyone waiting for the page.
416  */
417 void
418 vm_page_flash(vm_page_t m)
419 {
420 
421 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
422 	if (m->oflags & VPO_WANTED) {
423 		m->oflags &= ~VPO_WANTED;
424 		wakeup(m);
425 	}
426 }
427 
428 /*
429  *      vm_page_wakeup:
430  *
431  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
432  *      page.
433  *
434  */
435 void
436 vm_page_wakeup(vm_page_t m)
437 {
438 
439 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
440 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
441 	m->oflags &= ~VPO_BUSY;
442 	vm_page_flash(m);
443 }
444 
445 void
446 vm_page_io_start(vm_page_t m)
447 {
448 
449 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
450 	m->busy++;
451 }
452 
453 void
454 vm_page_io_finish(vm_page_t m)
455 {
456 
457 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
458 	m->busy--;
459 	if (m->busy == 0)
460 		vm_page_flash(m);
461 }
462 
463 /*
464  * Keep page from being freed by the page daemon
465  * much of the same effect as wiring, except much lower
466  * overhead and should be used only for *very* temporary
467  * holding ("wiring").
468  */
469 void
470 vm_page_hold(vm_page_t mem)
471 {
472 
473 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
474         mem->hold_count++;
475 }
476 
477 void
478 vm_page_unhold(vm_page_t mem)
479 {
480 
481 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
482 	--mem->hold_count;
483 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
484 	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
485 		vm_page_free_toq(mem);
486 }
487 
488 /*
489  *	vm_page_free:
490  *
491  *	Free a page.
492  */
493 void
494 vm_page_free(vm_page_t m)
495 {
496 
497 	m->flags &= ~PG_ZERO;
498 	vm_page_free_toq(m);
499 }
500 
501 /*
502  *	vm_page_free_zero:
503  *
504  *	Free a page to the zerod-pages queue
505  */
506 void
507 vm_page_free_zero(vm_page_t m)
508 {
509 
510 	m->flags |= PG_ZERO;
511 	vm_page_free_toq(m);
512 }
513 
514 /*
515  *	vm_page_sleep:
516  *
517  *	Sleep and release the page queues lock.
518  *
519  *	The object containing the given page must be locked.
520  */
521 void
522 vm_page_sleep(vm_page_t m, const char *msg)
523 {
524 
525 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
526 	if (!mtx_owned(&vm_page_queue_mtx))
527 		vm_page_lock_queues();
528 	vm_page_flag_set(m, PG_REFERENCED);
529 	vm_page_unlock_queues();
530 
531 	/*
532 	 * It's possible that while we sleep, the page will get
533 	 * unbusied and freed.  If we are holding the object
534 	 * lock, we will assume we hold a reference to the object
535 	 * such that even if m->object changes, we can re-lock
536 	 * it.
537 	 */
538 	m->oflags |= VPO_WANTED;
539 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
540 }
541 
542 /*
543  *	vm_page_dirty:
544  *
545  *	make page all dirty
546  */
547 void
548 vm_page_dirty(vm_page_t m)
549 {
550 	KASSERT((m->flags & PG_CACHED) == 0,
551 	    ("vm_page_dirty: page in cache!"));
552 	KASSERT(!VM_PAGE_IS_FREE(m),
553 	    ("vm_page_dirty: page is free!"));
554 	m->dirty = VM_PAGE_BITS_ALL;
555 }
556 
557 /*
558  *	vm_page_splay:
559  *
560  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
561  *	the vm_page containing the given pindex.  If, however, that
562  *	pindex is not found in the vm_object, returns a vm_page that is
563  *	adjacent to the pindex, coming before or after it.
564  */
565 vm_page_t
566 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
567 {
568 	struct vm_page dummy;
569 	vm_page_t lefttreemax, righttreemin, y;
570 
571 	if (root == NULL)
572 		return (root);
573 	lefttreemax = righttreemin = &dummy;
574 	for (;; root = y) {
575 		if (pindex < root->pindex) {
576 			if ((y = root->left) == NULL)
577 				break;
578 			if (pindex < y->pindex) {
579 				/* Rotate right. */
580 				root->left = y->right;
581 				y->right = root;
582 				root = y;
583 				if ((y = root->left) == NULL)
584 					break;
585 			}
586 			/* Link into the new root's right tree. */
587 			righttreemin->left = root;
588 			righttreemin = root;
589 		} else if (pindex > root->pindex) {
590 			if ((y = root->right) == NULL)
591 				break;
592 			if (pindex > y->pindex) {
593 				/* Rotate left. */
594 				root->right = y->left;
595 				y->left = root;
596 				root = y;
597 				if ((y = root->right) == NULL)
598 					break;
599 			}
600 			/* Link into the new root's left tree. */
601 			lefttreemax->right = root;
602 			lefttreemax = root;
603 		} else
604 			break;
605 	}
606 	/* Assemble the new root. */
607 	lefttreemax->right = root->left;
608 	righttreemin->left = root->right;
609 	root->left = dummy.right;
610 	root->right = dummy.left;
611 	return (root);
612 }
613 
614 /*
615  *	vm_page_insert:		[ internal use only ]
616  *
617  *	Inserts the given mem entry into the object and object list.
618  *
619  *	The pagetables are not updated but will presumably fault the page
620  *	in if necessary, or if a kernel page the caller will at some point
621  *	enter the page into the kernel's pmap.  We are not allowed to block
622  *	here so we *can't* do this anyway.
623  *
624  *	The object and page must be locked.
625  *	This routine may not block.
626  */
627 void
628 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
629 {
630 	vm_page_t root;
631 
632 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
633 	if (m->object != NULL)
634 		panic("vm_page_insert: page already inserted");
635 
636 	/*
637 	 * Record the object/offset pair in this page
638 	 */
639 	m->object = object;
640 	m->pindex = pindex;
641 
642 	/*
643 	 * Now link into the object's ordered list of backed pages.
644 	 */
645 	root = object->root;
646 	if (root == NULL) {
647 		m->left = NULL;
648 		m->right = NULL;
649 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
650 	} else {
651 		root = vm_page_splay(pindex, root);
652 		if (pindex < root->pindex) {
653 			m->left = root->left;
654 			m->right = root;
655 			root->left = NULL;
656 			TAILQ_INSERT_BEFORE(root, m, listq);
657 		} else if (pindex == root->pindex)
658 			panic("vm_page_insert: offset already allocated");
659 		else {
660 			m->right = root->right;
661 			m->left = root;
662 			root->right = NULL;
663 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
664 		}
665 	}
666 	object->root = m;
667 	object->generation++;
668 
669 	/*
670 	 * show that the object has one more resident page.
671 	 */
672 	object->resident_page_count++;
673 	/*
674 	 * Hold the vnode until the last page is released.
675 	 */
676 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
677 		vhold((struct vnode *)object->handle);
678 
679 	/*
680 	 * Since we are inserting a new and possibly dirty page,
681 	 * update the object's OBJ_MIGHTBEDIRTY flag.
682 	 */
683 	if (m->flags & PG_WRITEABLE)
684 		vm_object_set_writeable_dirty(object);
685 }
686 
687 /*
688  *	vm_page_remove:
689  *				NOTE: used by device pager as well -wfj
690  *
691  *	Removes the given mem entry from the object/offset-page
692  *	table and the object page list, but do not invalidate/terminate
693  *	the backing store.
694  *
695  *	The object and page must be locked.
696  *	The underlying pmap entry (if any) is NOT removed here.
697  *	This routine may not block.
698  */
699 void
700 vm_page_remove(vm_page_t m)
701 {
702 	vm_object_t object;
703 	vm_page_t root;
704 
705 	if ((object = m->object) == NULL)
706 		return;
707 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
708 	if (m->oflags & VPO_BUSY) {
709 		m->oflags &= ~VPO_BUSY;
710 		vm_page_flash(m);
711 	}
712 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
713 
714 	/*
715 	 * Now remove from the object's list of backed pages.
716 	 */
717 	if (m != object->root)
718 		vm_page_splay(m->pindex, object->root);
719 	if (m->left == NULL)
720 		root = m->right;
721 	else {
722 		root = vm_page_splay(m->pindex, m->left);
723 		root->right = m->right;
724 	}
725 	object->root = root;
726 	TAILQ_REMOVE(&object->memq, m, listq);
727 
728 	/*
729 	 * And show that the object has one fewer resident page.
730 	 */
731 	object->resident_page_count--;
732 	object->generation++;
733 	/*
734 	 * The vnode may now be recycled.
735 	 */
736 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
737 		vdrop((struct vnode *)object->handle);
738 
739 	m->object = NULL;
740 }
741 
742 /*
743  *	vm_page_lookup:
744  *
745  *	Returns the page associated with the object/offset
746  *	pair specified; if none is found, NULL is returned.
747  *
748  *	The object must be locked.
749  *	This routine may not block.
750  *	This is a critical path routine
751  */
752 vm_page_t
753 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
754 {
755 	vm_page_t m;
756 
757 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
758 	if ((m = object->root) != NULL && m->pindex != pindex) {
759 		m = vm_page_splay(pindex, m);
760 		if ((object->root = m)->pindex != pindex)
761 			m = NULL;
762 	}
763 	return (m);
764 }
765 
766 /*
767  *	vm_page_rename:
768  *
769  *	Move the given memory entry from its
770  *	current object to the specified target object/offset.
771  *
772  *	The object must be locked.
773  *	This routine may not block.
774  *
775  *	Note: swap associated with the page must be invalidated by the move.  We
776  *	      have to do this for several reasons:  (1) we aren't freeing the
777  *	      page, (2) we are dirtying the page, (3) the VM system is probably
778  *	      moving the page from object A to B, and will then later move
779  *	      the backing store from A to B and we can't have a conflict.
780  *
781  *	Note: we *always* dirty the page.  It is necessary both for the
782  *	      fact that we moved it, and because we may be invalidating
783  *	      swap.  If the page is on the cache, we have to deactivate it
784  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
785  *	      on the cache.
786  */
787 void
788 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
789 {
790 
791 	vm_page_remove(m);
792 	vm_page_insert(m, new_object, new_pindex);
793 	vm_page_dirty(m);
794 }
795 
796 /*
797  *	Convert all of the given object's cached pages that have a
798  *	pindex within the given range into free pages.  If the value
799  *	zero is given for "end", then the range's upper bound is
800  *	infinity.  If the given object is backed by a vnode and it
801  *	transitions from having one or more cached pages to none, the
802  *	vnode's hold count is reduced.
803  */
804 void
805 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
806 {
807 	vm_page_t m, m_next;
808 	boolean_t empty;
809 
810 	mtx_lock(&vm_page_queue_free_mtx);
811 	if (__predict_false(object->cache == NULL)) {
812 		mtx_unlock(&vm_page_queue_free_mtx);
813 		return;
814 	}
815 	m = object->cache = vm_page_splay(start, object->cache);
816 	if (m->pindex < start) {
817 		if (m->right == NULL)
818 			m = NULL;
819 		else {
820 			m_next = vm_page_splay(start, m->right);
821 			m_next->left = m;
822 			m->right = NULL;
823 			m = object->cache = m_next;
824 		}
825 	}
826 
827 	/*
828 	 * At this point, "m" is either (1) a reference to the page
829 	 * with the least pindex that is greater than or equal to
830 	 * "start" or (2) NULL.
831 	 */
832 	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
833 		/*
834 		 * Find "m"'s successor and remove "m" from the
835 		 * object's cache.
836 		 */
837 		if (m->right == NULL) {
838 			object->cache = m->left;
839 			m_next = NULL;
840 		} else {
841 			m_next = vm_page_splay(start, m->right);
842 			m_next->left = m->left;
843 			object->cache = m_next;
844 		}
845 		/* Convert "m" to a free page. */
846 		m->object = NULL;
847 		m->valid = 0;
848 		/* Clear PG_CACHED and set PG_FREE. */
849 		m->flags ^= PG_CACHED | PG_FREE;
850 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
851 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
852 		cnt.v_cache_count--;
853 		cnt.v_free_count++;
854 	}
855 	empty = object->cache == NULL;
856 	mtx_unlock(&vm_page_queue_free_mtx);
857 	if (object->type == OBJT_VNODE && empty)
858 		vdrop(object->handle);
859 }
860 
861 /*
862  *	Returns the cached page that is associated with the given
863  *	object and offset.  If, however, none exists, returns NULL.
864  *
865  *	The free page queue must be locked.
866  */
867 static inline vm_page_t
868 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
869 {
870 	vm_page_t m;
871 
872 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
873 	if ((m = object->cache) != NULL && m->pindex != pindex) {
874 		m = vm_page_splay(pindex, m);
875 		if ((object->cache = m)->pindex != pindex)
876 			m = NULL;
877 	}
878 	return (m);
879 }
880 
881 /*
882  *	Remove the given cached page from its containing object's
883  *	collection of cached pages.
884  *
885  *	The free page queue must be locked.
886  */
887 void
888 vm_page_cache_remove(vm_page_t m)
889 {
890 	vm_object_t object;
891 	vm_page_t root;
892 
893 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
894 	KASSERT((m->flags & PG_CACHED) != 0,
895 	    ("vm_page_cache_remove: page %p is not cached", m));
896 	object = m->object;
897 	if (m != object->cache) {
898 		root = vm_page_splay(m->pindex, object->cache);
899 		KASSERT(root == m,
900 		    ("vm_page_cache_remove: page %p is not cached in object %p",
901 		    m, object));
902 	}
903 	if (m->left == NULL)
904 		root = m->right;
905 	else if (m->right == NULL)
906 		root = m->left;
907 	else {
908 		root = vm_page_splay(m->pindex, m->left);
909 		root->right = m->right;
910 	}
911 	object->cache = root;
912 	m->object = NULL;
913 	cnt.v_cache_count--;
914 }
915 
916 /*
917  *	Transfer all of the cached pages with offset greater than or
918  *	equal to 'offidxstart' from the original object's cache to the
919  *	new object's cache.  However, any cached pages with offset
920  *	greater than or equal to the new object's size are kept in the
921  *	original object.  Initially, the new object's cache must be
922  *	empty.  Offset 'offidxstart' in the original object must
923  *	correspond to offset zero in the new object.
924  *
925  *	The new object must be locked.
926  */
927 void
928 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
929     vm_object_t new_object)
930 {
931 	vm_page_t m, m_next;
932 
933 	/*
934 	 * Insertion into an object's collection of cached pages
935 	 * requires the object to be locked.  In contrast, removal does
936 	 * not.
937 	 */
938 	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
939 	KASSERT(new_object->cache == NULL,
940 	    ("vm_page_cache_transfer: object %p has cached pages",
941 	    new_object));
942 	mtx_lock(&vm_page_queue_free_mtx);
943 	if ((m = orig_object->cache) != NULL) {
944 		/*
945 		 * Transfer all of the pages with offset greater than or
946 		 * equal to 'offidxstart' from the original object's
947 		 * cache to the new object's cache.
948 		 */
949 		m = vm_page_splay(offidxstart, m);
950 		if (m->pindex < offidxstart) {
951 			orig_object->cache = m;
952 			new_object->cache = m->right;
953 			m->right = NULL;
954 		} else {
955 			orig_object->cache = m->left;
956 			new_object->cache = m;
957 			m->left = NULL;
958 		}
959 		while ((m = new_object->cache) != NULL) {
960 			if ((m->pindex - offidxstart) >= new_object->size) {
961 				/*
962 				 * Return all of the cached pages with
963 				 * offset greater than or equal to the
964 				 * new object's size to the original
965 				 * object's cache.
966 				 */
967 				new_object->cache = m->left;
968 				m->left = orig_object->cache;
969 				orig_object->cache = m;
970 				break;
971 			}
972 			m_next = vm_page_splay(m->pindex, m->right);
973 			/* Update the page's object and offset. */
974 			m->object = new_object;
975 			m->pindex -= offidxstart;
976 			if (m_next == NULL)
977 				break;
978 			m->right = NULL;
979 			m_next->left = m;
980 			new_object->cache = m_next;
981 		}
982 		KASSERT(new_object->cache == NULL ||
983 		    new_object->type == OBJT_SWAP,
984 		    ("vm_page_cache_transfer: object %p's type is incompatible"
985 		    " with cached pages", new_object));
986 	}
987 	mtx_unlock(&vm_page_queue_free_mtx);
988 }
989 
990 /*
991  *	vm_page_alloc:
992  *
993  *	Allocate and return a memory cell associated
994  *	with this VM object/offset pair.
995  *
996  *	page_req classes:
997  *	VM_ALLOC_NORMAL		normal process request
998  *	VM_ALLOC_SYSTEM		system *really* needs a page
999  *	VM_ALLOC_INTERRUPT	interrupt time request
1000  *	VM_ALLOC_ZERO		zero page
1001  *
1002  *	This routine may not block.
1003  */
1004 vm_page_t
1005 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1006 {
1007 	struct vnode *vp = NULL;
1008 	vm_object_t m_object;
1009 	vm_page_t m;
1010 	int flags, page_req;
1011 
1012 	page_req = req & VM_ALLOC_CLASS_MASK;
1013 	KASSERT(curthread->td_intr_nesting_level == 0 ||
1014 	    page_req == VM_ALLOC_INTERRUPT,
1015 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1016 
1017 	if ((req & VM_ALLOC_NOOBJ) == 0) {
1018 		KASSERT(object != NULL,
1019 		    ("vm_page_alloc: NULL object."));
1020 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1021 	}
1022 
1023 	/*
1024 	 * The pager is allowed to eat deeper into the free page list.
1025 	 */
1026 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1027 		page_req = VM_ALLOC_SYSTEM;
1028 	};
1029 
1030 	mtx_lock(&vm_page_queue_free_mtx);
1031 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1032 	    (page_req == VM_ALLOC_SYSTEM &&
1033 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1034 	    (page_req == VM_ALLOC_INTERRUPT &&
1035 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1036 		/*
1037 		 * Allocate from the free queue if the number of free pages
1038 		 * exceeds the minimum for the request class.
1039 		 */
1040 		if (object != NULL &&
1041 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1042 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1043 				mtx_unlock(&vm_page_queue_free_mtx);
1044 				return (NULL);
1045 			}
1046 			vm_phys_unfree_page(m);
1047 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1048 			mtx_unlock(&vm_page_queue_free_mtx);
1049 			return (NULL);
1050 		} else
1051 			m = vm_phys_alloc_pages(object != NULL ?
1052 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1053 	} else {
1054 		/*
1055 		 * Not allocatable, give up.
1056 		 */
1057 		mtx_unlock(&vm_page_queue_free_mtx);
1058 		atomic_add_int(&vm_pageout_deficit, 1);
1059 		pagedaemon_wakeup();
1060 		return (NULL);
1061 	}
1062 
1063 	/*
1064 	 *  At this point we had better have found a good page.
1065 	 */
1066 
1067 	KASSERT(
1068 	    m != NULL,
1069 	    ("vm_page_alloc(): missing page on free queue")
1070 	);
1071 	if ((m->flags & PG_CACHED) != 0) {
1072 		KASSERT(m->valid != 0,
1073 		    ("vm_page_alloc: cached page %p is invalid", m));
1074 		if (m->object == object && m->pindex == pindex)
1075 	  		cnt.v_reactivated++;
1076 		else
1077 			m->valid = 0;
1078 		m_object = m->object;
1079 		vm_page_cache_remove(m);
1080 		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1081 			vp = m_object->handle;
1082 	} else {
1083 		KASSERT(VM_PAGE_IS_FREE(m),
1084 		    ("vm_page_alloc: page %p is not free", m));
1085 		KASSERT(m->valid == 0,
1086 		    ("vm_page_alloc: free page %p is valid", m));
1087 		cnt.v_free_count--;
1088 	}
1089 
1090 	/*
1091 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1092 	 */
1093 	flags = 0;
1094 	if (m->flags & PG_ZERO) {
1095 		vm_page_zero_count--;
1096 		if (req & VM_ALLOC_ZERO)
1097 			flags = PG_ZERO;
1098 	}
1099 	if (object == NULL || object->type == OBJT_PHYS)
1100 		flags |= PG_UNMANAGED;
1101 	m->flags = flags;
1102 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1103 		m->oflags = 0;
1104 	else
1105 		m->oflags = VPO_BUSY;
1106 	if (req & VM_ALLOC_WIRED) {
1107 		atomic_add_int(&cnt.v_wire_count, 1);
1108 		m->wire_count = 1;
1109 	} else
1110 		m->wire_count = 0;
1111 	m->hold_count = 0;
1112 	m->act_count = 0;
1113 	m->busy = 0;
1114 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
1115 	mtx_unlock(&vm_page_queue_free_mtx);
1116 
1117 	if ((req & VM_ALLOC_NOOBJ) == 0)
1118 		vm_page_insert(m, object, pindex);
1119 	else
1120 		m->pindex = pindex;
1121 
1122 	/*
1123 	 * The following call to vdrop() must come after the above call
1124 	 * to vm_page_insert() in case both affect the same object and
1125 	 * vnode.  Otherwise, the affected vnode's hold count could
1126 	 * temporarily become zero.
1127 	 */
1128 	if (vp != NULL)
1129 		vdrop(vp);
1130 
1131 	/*
1132 	 * Don't wakeup too often - wakeup the pageout daemon when
1133 	 * we would be nearly out of memory.
1134 	 */
1135 	if (vm_paging_needed())
1136 		pagedaemon_wakeup();
1137 
1138 	return (m);
1139 }
1140 
1141 /*
1142  *	vm_wait:	(also see VM_WAIT macro)
1143  *
1144  *	Block until free pages are available for allocation
1145  *	- Called in various places before memory allocations.
1146  */
1147 void
1148 vm_wait(void)
1149 {
1150 
1151 	mtx_lock(&vm_page_queue_free_mtx);
1152 	if (curproc == pageproc) {
1153 		vm_pageout_pages_needed = 1;
1154 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1155 		    PDROP | PSWP, "VMWait", 0);
1156 	} else {
1157 		if (!vm_pages_needed) {
1158 			vm_pages_needed = 1;
1159 			wakeup(&vm_pages_needed);
1160 		}
1161 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1162 		    "vmwait", 0);
1163 	}
1164 }
1165 
1166 /*
1167  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1168  *
1169  *	Block until free pages are available for allocation
1170  *	- Called only in vm_fault so that processes page faulting
1171  *	  can be easily tracked.
1172  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1173  *	  processes will be able to grab memory first.  Do not change
1174  *	  this balance without careful testing first.
1175  */
1176 void
1177 vm_waitpfault(void)
1178 {
1179 
1180 	mtx_lock(&vm_page_queue_free_mtx);
1181 	if (!vm_pages_needed) {
1182 		vm_pages_needed = 1;
1183 		wakeup(&vm_pages_needed);
1184 	}
1185 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1186 	    "pfault", 0);
1187 }
1188 
1189 /*
1190  *	vm_page_activate:
1191  *
1192  *	Put the specified page on the active list (if appropriate).
1193  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1194  *	mess with it.
1195  *
1196  *	The page queues must be locked.
1197  *	This routine may not block.
1198  */
1199 void
1200 vm_page_activate(vm_page_t m)
1201 {
1202 
1203 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1204 	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1205 		vm_pageq_remove(m);
1206 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1207 			if (m->act_count < ACT_INIT)
1208 				m->act_count = ACT_INIT;
1209 			vm_pageq_enqueue(PQ_ACTIVE, m);
1210 		}
1211 	} else {
1212 		if (m->act_count < ACT_INIT)
1213 			m->act_count = ACT_INIT;
1214 	}
1215 }
1216 
1217 /*
1218  *	vm_page_free_wakeup:
1219  *
1220  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1221  *	routine is called when a page has been added to the cache or free
1222  *	queues.
1223  *
1224  *	The page queues must be locked.
1225  *	This routine may not block.
1226  */
1227 static inline void
1228 vm_page_free_wakeup(void)
1229 {
1230 
1231 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1232 	/*
1233 	 * if pageout daemon needs pages, then tell it that there are
1234 	 * some free.
1235 	 */
1236 	if (vm_pageout_pages_needed &&
1237 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1238 		wakeup(&vm_pageout_pages_needed);
1239 		vm_pageout_pages_needed = 0;
1240 	}
1241 	/*
1242 	 * wakeup processes that are waiting on memory if we hit a
1243 	 * high water mark. And wakeup scheduler process if we have
1244 	 * lots of memory. this process will swapin processes.
1245 	 */
1246 	if (vm_pages_needed && !vm_page_count_min()) {
1247 		vm_pages_needed = 0;
1248 		wakeup(&cnt.v_free_count);
1249 	}
1250 }
1251 
1252 /*
1253  *	vm_page_free_toq:
1254  *
1255  *	Returns the given page to the free list,
1256  *	disassociating it with any VM object.
1257  *
1258  *	Object and page must be locked prior to entry.
1259  *	This routine may not block.
1260  */
1261 
1262 void
1263 vm_page_free_toq(vm_page_t m)
1264 {
1265 
1266 	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1267 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1268 	KASSERT(!pmap_page_is_mapped(m),
1269 	    ("vm_page_free_toq: freeing mapped page %p", m));
1270 	PCPU_INC(cnt.v_tfree);
1271 
1272 	if (m->busy || VM_PAGE_IS_FREE(m)) {
1273 		printf(
1274 		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1275 		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1276 		    m->hold_count);
1277 		if (VM_PAGE_IS_FREE(m))
1278 			panic("vm_page_free: freeing free page");
1279 		else
1280 			panic("vm_page_free: freeing busy page");
1281 	}
1282 
1283 	/*
1284 	 * unqueue, then remove page.  Note that we cannot destroy
1285 	 * the page here because we do not want to call the pager's
1286 	 * callback routine until after we've put the page on the
1287 	 * appropriate free queue.
1288 	 */
1289 	vm_pageq_remove(m);
1290 	vm_page_remove(m);
1291 
1292 	/*
1293 	 * If fictitious remove object association and
1294 	 * return, otherwise delay object association removal.
1295 	 */
1296 	if ((m->flags & PG_FICTITIOUS) != 0) {
1297 		return;
1298 	}
1299 
1300 	m->valid = 0;
1301 	vm_page_undirty(m);
1302 
1303 	if (m->wire_count != 0) {
1304 		if (m->wire_count > 1) {
1305 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1306 				m->wire_count, (long)m->pindex);
1307 		}
1308 		panic("vm_page_free: freeing wired page");
1309 	}
1310 	if (m->hold_count != 0) {
1311 		m->flags &= ~PG_ZERO;
1312 		vm_pageq_enqueue(PQ_HOLD, m);
1313 	} else {
1314 		m->flags |= PG_FREE;
1315 		mtx_lock(&vm_page_queue_free_mtx);
1316 		cnt.v_free_count++;
1317 		if ((m->flags & PG_ZERO) != 0) {
1318 			vm_phys_free_pages(m, 0);
1319 			++vm_page_zero_count;
1320 		} else {
1321 			vm_phys_free_pages(m, 0);
1322 			vm_page_zero_idle_wakeup();
1323 		}
1324 		vm_page_free_wakeup();
1325 		mtx_unlock(&vm_page_queue_free_mtx);
1326 	}
1327 }
1328 
1329 /*
1330  *	vm_page_wire:
1331  *
1332  *	Mark this page as wired down by yet
1333  *	another map, removing it from paging queues
1334  *	as necessary.
1335  *
1336  *	The page queues must be locked.
1337  *	This routine may not block.
1338  */
1339 void
1340 vm_page_wire(vm_page_t m)
1341 {
1342 
1343 	/*
1344 	 * Only bump the wire statistics if the page is not already wired,
1345 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1346 	 * it is already off the queues).
1347 	 */
1348 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1349 	if (m->flags & PG_FICTITIOUS)
1350 		return;
1351 	if (m->wire_count == 0) {
1352 		if ((m->flags & PG_UNMANAGED) == 0)
1353 			vm_pageq_remove(m);
1354 		atomic_add_int(&cnt.v_wire_count, 1);
1355 	}
1356 	m->wire_count++;
1357 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1358 }
1359 
1360 /*
1361  *	vm_page_unwire:
1362  *
1363  *	Release one wiring of this page, potentially
1364  *	enabling it to be paged again.
1365  *
1366  *	Many pages placed on the inactive queue should actually go
1367  *	into the cache, but it is difficult to figure out which.  What
1368  *	we do instead, if the inactive target is well met, is to put
1369  *	clean pages at the head of the inactive queue instead of the tail.
1370  *	This will cause them to be moved to the cache more quickly and
1371  *	if not actively re-referenced, freed more quickly.  If we just
1372  *	stick these pages at the end of the inactive queue, heavy filesystem
1373  *	meta-data accesses can cause an unnecessary paging load on memory bound
1374  *	processes.  This optimization causes one-time-use metadata to be
1375  *	reused more quickly.
1376  *
1377  *	BUT, if we are in a low-memory situation we have no choice but to
1378  *	put clean pages on the cache queue.
1379  *
1380  *	A number of routines use vm_page_unwire() to guarantee that the page
1381  *	will go into either the inactive or active queues, and will NEVER
1382  *	be placed in the cache - for example, just after dirtying a page.
1383  *	dirty pages in the cache are not allowed.
1384  *
1385  *	The page queues must be locked.
1386  *	This routine may not block.
1387  */
1388 void
1389 vm_page_unwire(vm_page_t m, int activate)
1390 {
1391 
1392 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1393 	if (m->flags & PG_FICTITIOUS)
1394 		return;
1395 	if (m->wire_count > 0) {
1396 		m->wire_count--;
1397 		if (m->wire_count == 0) {
1398 			atomic_subtract_int(&cnt.v_wire_count, 1);
1399 			if (m->flags & PG_UNMANAGED) {
1400 				;
1401 			} else if (activate)
1402 				vm_pageq_enqueue(PQ_ACTIVE, m);
1403 			else {
1404 				vm_page_flag_clear(m, PG_WINATCFLS);
1405 				vm_pageq_enqueue(PQ_INACTIVE, m);
1406 			}
1407 		}
1408 	} else {
1409 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1410 	}
1411 }
1412 
1413 
1414 /*
1415  * Move the specified page to the inactive queue.  If the page has
1416  * any associated swap, the swap is deallocated.
1417  *
1418  * Normally athead is 0 resulting in LRU operation.  athead is set
1419  * to 1 if we want this page to be 'as if it were placed in the cache',
1420  * except without unmapping it from the process address space.
1421  *
1422  * This routine may not block.
1423  */
1424 static inline void
1425 _vm_page_deactivate(vm_page_t m, int athead)
1426 {
1427 
1428 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1429 
1430 	/*
1431 	 * Ignore if already inactive.
1432 	 */
1433 	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1434 		return;
1435 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1436 		vm_page_flag_clear(m, PG_WINATCFLS);
1437 		vm_pageq_remove(m);
1438 		if (athead)
1439 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1440 		else
1441 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1442 		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1443 		cnt.v_inactive_count++;
1444 	}
1445 }
1446 
1447 void
1448 vm_page_deactivate(vm_page_t m)
1449 {
1450     _vm_page_deactivate(m, 0);
1451 }
1452 
1453 /*
1454  * vm_page_try_to_cache:
1455  *
1456  * Returns 0 on failure, 1 on success
1457  */
1458 int
1459 vm_page_try_to_cache(vm_page_t m)
1460 {
1461 
1462 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1463 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1464 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1465 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1466 		return (0);
1467 	}
1468 	pmap_remove_all(m);
1469 	if (m->dirty)
1470 		return (0);
1471 	vm_page_cache(m);
1472 	return (1);
1473 }
1474 
1475 /*
1476  * vm_page_try_to_free()
1477  *
1478  *	Attempt to free the page.  If we cannot free it, we do nothing.
1479  *	1 is returned on success, 0 on failure.
1480  */
1481 int
1482 vm_page_try_to_free(vm_page_t m)
1483 {
1484 
1485 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1486 	if (m->object != NULL)
1487 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1488 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1489 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1490 		return (0);
1491 	}
1492 	pmap_remove_all(m);
1493 	if (m->dirty)
1494 		return (0);
1495 	vm_page_free(m);
1496 	return (1);
1497 }
1498 
1499 /*
1500  * vm_page_cache
1501  *
1502  * Put the specified page onto the page cache queue (if appropriate).
1503  *
1504  * This routine may not block.
1505  */
1506 void
1507 vm_page_cache(vm_page_t m)
1508 {
1509 	vm_object_t object;
1510 	vm_page_t root;
1511 
1512 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1513 	object = m->object;
1514 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1515 	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1516 	    m->hold_count || m->wire_count) {
1517 		panic("vm_page_cache: attempting to cache busy page");
1518 	}
1519 	pmap_remove_all(m);
1520 	if (m->dirty != 0)
1521 		panic("vm_page_cache: page %p is dirty", m);
1522 	if (m->valid == 0 || object->type == OBJT_DEFAULT) {
1523 		/*
1524 		 * Hypothesis: A cache-elgible page belonging to a
1525 		 * default object must be zero filled.
1526 		 */
1527 		vm_page_free(m);
1528 		return;
1529 	}
1530 	KASSERT((m->flags & PG_CACHED) == 0,
1531 	    ("vm_page_cache: page %p is already cached", m));
1532 	cnt.v_tcached++;
1533 
1534 	/*
1535 	 * Remove the page from the paging queues.
1536 	 */
1537 	vm_pageq_remove(m);
1538 
1539 	/*
1540 	 * Remove the page from the object's collection of resident
1541 	 * pages.
1542 	 */
1543 	if (m != object->root)
1544 		vm_page_splay(m->pindex, object->root);
1545 	if (m->left == NULL)
1546 		root = m->right;
1547 	else {
1548 		root = vm_page_splay(m->pindex, m->left);
1549 		root->right = m->right;
1550 	}
1551 	object->root = root;
1552 	TAILQ_REMOVE(&object->memq, m, listq);
1553 	object->resident_page_count--;
1554 	object->generation++;
1555 
1556 	/*
1557 	 * Insert the page into the object's collection of cached pages
1558 	 * and the physical memory allocator's cache/free page queues.
1559 	 */
1560 	vm_page_flag_set(m, PG_CACHED);
1561 	vm_page_flag_clear(m, PG_ZERO);
1562 	mtx_lock(&vm_page_queue_free_mtx);
1563 	vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1564 	cnt.v_cache_count++;
1565 	root = object->cache;
1566 	if (root == NULL) {
1567 		m->left = NULL;
1568 		m->right = NULL;
1569 	} else {
1570 		root = vm_page_splay(m->pindex, root);
1571 		if (m->pindex < root->pindex) {
1572 			m->left = root->left;
1573 			m->right = root;
1574 			root->left = NULL;
1575 		} else if (__predict_false(m->pindex == root->pindex))
1576 			panic("vm_page_cache: offset already cached");
1577 		else {
1578 			m->right = root->right;
1579 			m->left = root;
1580 			root->right = NULL;
1581 		}
1582 	}
1583 	object->cache = m;
1584 	vm_phys_free_pages(m, 0);
1585 	vm_page_free_wakeup();
1586 	mtx_unlock(&vm_page_queue_free_mtx);
1587 
1588 	/*
1589 	 * Increment the vnode's hold count if this is the object's only
1590 	 * cached page.  Decrement the vnode's hold count if this was
1591 	 * the object's only resident page.
1592 	 */
1593 	if (object->type == OBJT_VNODE) {
1594 		if (root == NULL && object->resident_page_count != 0)
1595 			vhold(object->handle);
1596 		else if (root != NULL && object->resident_page_count == 0)
1597 			vdrop(object->handle);
1598 	}
1599 }
1600 
1601 /*
1602  * vm_page_dontneed
1603  *
1604  *	Cache, deactivate, or do nothing as appropriate.  This routine
1605  *	is typically used by madvise() MADV_DONTNEED.
1606  *
1607  *	Generally speaking we want to move the page into the cache so
1608  *	it gets reused quickly.  However, this can result in a silly syndrome
1609  *	due to the page recycling too quickly.  Small objects will not be
1610  *	fully cached.  On the otherhand, if we move the page to the inactive
1611  *	queue we wind up with a problem whereby very large objects
1612  *	unnecessarily blow away our inactive and cache queues.
1613  *
1614  *	The solution is to move the pages based on a fixed weighting.  We
1615  *	either leave them alone, deactivate them, or move them to the cache,
1616  *	where moving them to the cache has the highest weighting.
1617  *	By forcing some pages into other queues we eventually force the
1618  *	system to balance the queues, potentially recovering other unrelated
1619  *	space from active.  The idea is to not force this to happen too
1620  *	often.
1621  */
1622 void
1623 vm_page_dontneed(vm_page_t m)
1624 {
1625 	static int dnweight;
1626 	int dnw;
1627 	int head;
1628 
1629 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1630 	dnw = ++dnweight;
1631 
1632 	/*
1633 	 * occassionally leave the page alone
1634 	 */
1635 	if ((dnw & 0x01F0) == 0 ||
1636 	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1637 		if (m->act_count >= ACT_INIT)
1638 			--m->act_count;
1639 		return;
1640 	}
1641 
1642 	if (m->dirty == 0 && pmap_is_modified(m))
1643 		vm_page_dirty(m);
1644 
1645 	if (m->dirty || (dnw & 0x0070) == 0) {
1646 		/*
1647 		 * Deactivate the page 3 times out of 32.
1648 		 */
1649 		head = 0;
1650 	} else {
1651 		/*
1652 		 * Cache the page 28 times out of every 32.  Note that
1653 		 * the page is deactivated instead of cached, but placed
1654 		 * at the head of the queue instead of the tail.
1655 		 */
1656 		head = 1;
1657 	}
1658 	_vm_page_deactivate(m, head);
1659 }
1660 
1661 /*
1662  * Grab a page, waiting until we are waken up due to the page
1663  * changing state.  We keep on waiting, if the page continues
1664  * to be in the object.  If the page doesn't exist, first allocate it
1665  * and then conditionally zero it.
1666  *
1667  * This routine may block.
1668  */
1669 vm_page_t
1670 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1671 {
1672 	vm_page_t m;
1673 
1674 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1675 retrylookup:
1676 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1677 		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1678 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1679 				return (NULL);
1680 			goto retrylookup;
1681 		} else {
1682 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1683 				vm_page_lock_queues();
1684 				vm_page_wire(m);
1685 				vm_page_unlock_queues();
1686 			}
1687 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1688 				vm_page_busy(m);
1689 			return (m);
1690 		}
1691 	}
1692 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1693 	if (m == NULL) {
1694 		VM_OBJECT_UNLOCK(object);
1695 		VM_WAIT;
1696 		VM_OBJECT_LOCK(object);
1697 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1698 			return (NULL);
1699 		goto retrylookup;
1700 	} else if (m->valid != 0)
1701 		return (m);
1702 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1703 		pmap_zero_page(m);
1704 	return (m);
1705 }
1706 
1707 /*
1708  * Mapping function for valid bits or for dirty bits in
1709  * a page.  May not block.
1710  *
1711  * Inputs are required to range within a page.
1712  */
1713 int
1714 vm_page_bits(int base, int size)
1715 {
1716 	int first_bit;
1717 	int last_bit;
1718 
1719 	KASSERT(
1720 	    base + size <= PAGE_SIZE,
1721 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1722 	);
1723 
1724 	if (size == 0)		/* handle degenerate case */
1725 		return (0);
1726 
1727 	first_bit = base >> DEV_BSHIFT;
1728 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1729 
1730 	return ((2 << last_bit) - (1 << first_bit));
1731 }
1732 
1733 /*
1734  *	vm_page_set_validclean:
1735  *
1736  *	Sets portions of a page valid and clean.  The arguments are expected
1737  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1738  *	of any partial chunks touched by the range.  The invalid portion of
1739  *	such chunks will be zero'd.
1740  *
1741  *	This routine may not block.
1742  *
1743  *	(base + size) must be less then or equal to PAGE_SIZE.
1744  */
1745 void
1746 vm_page_set_validclean(vm_page_t m, int base, int size)
1747 {
1748 	int pagebits;
1749 	int frag;
1750 	int endoff;
1751 
1752 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1753 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1754 	if (size == 0)	/* handle degenerate case */
1755 		return;
1756 
1757 	/*
1758 	 * If the base is not DEV_BSIZE aligned and the valid
1759 	 * bit is clear, we have to zero out a portion of the
1760 	 * first block.
1761 	 */
1762 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1763 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1764 		pmap_zero_page_area(m, frag, base - frag);
1765 
1766 	/*
1767 	 * If the ending offset is not DEV_BSIZE aligned and the
1768 	 * valid bit is clear, we have to zero out a portion of
1769 	 * the last block.
1770 	 */
1771 	endoff = base + size;
1772 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1773 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1774 		pmap_zero_page_area(m, endoff,
1775 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1776 
1777 	/*
1778 	 * Set valid, clear dirty bits.  If validating the entire
1779 	 * page we can safely clear the pmap modify bit.  We also
1780 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1781 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1782 	 * be set again.
1783 	 *
1784 	 * We set valid bits inclusive of any overlap, but we can only
1785 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1786 	 * the range.
1787 	 */
1788 	pagebits = vm_page_bits(base, size);
1789 	m->valid |= pagebits;
1790 #if 0	/* NOT YET */
1791 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1792 		frag = DEV_BSIZE - frag;
1793 		base += frag;
1794 		size -= frag;
1795 		if (size < 0)
1796 			size = 0;
1797 	}
1798 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1799 #endif
1800 	m->dirty &= ~pagebits;
1801 	if (base == 0 && size == PAGE_SIZE) {
1802 		pmap_clear_modify(m);
1803 		m->oflags &= ~VPO_NOSYNC;
1804 	}
1805 }
1806 
1807 void
1808 vm_page_clear_dirty(vm_page_t m, int base, int size)
1809 {
1810 
1811 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1812 	m->dirty &= ~vm_page_bits(base, size);
1813 }
1814 
1815 /*
1816  *	vm_page_set_invalid:
1817  *
1818  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1819  *	valid and dirty bits for the effected areas are cleared.
1820  *
1821  *	May not block.
1822  */
1823 void
1824 vm_page_set_invalid(vm_page_t m, int base, int size)
1825 {
1826 	int bits;
1827 
1828 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1829 	bits = vm_page_bits(base, size);
1830 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1831 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1832 		pmap_remove_all(m);
1833 	m->valid &= ~bits;
1834 	m->dirty &= ~bits;
1835 	m->object->generation++;
1836 }
1837 
1838 /*
1839  * vm_page_zero_invalid()
1840  *
1841  *	The kernel assumes that the invalid portions of a page contain
1842  *	garbage, but such pages can be mapped into memory by user code.
1843  *	When this occurs, we must zero out the non-valid portions of the
1844  *	page so user code sees what it expects.
1845  *
1846  *	Pages are most often semi-valid when the end of a file is mapped
1847  *	into memory and the file's size is not page aligned.
1848  */
1849 void
1850 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1851 {
1852 	int b;
1853 	int i;
1854 
1855 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1856 	/*
1857 	 * Scan the valid bits looking for invalid sections that
1858 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1859 	 * valid bit may be set ) have already been zerod by
1860 	 * vm_page_set_validclean().
1861 	 */
1862 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1863 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1864 		    (m->valid & (1 << i))
1865 		) {
1866 			if (i > b) {
1867 				pmap_zero_page_area(m,
1868 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1869 			}
1870 			b = i + 1;
1871 		}
1872 	}
1873 
1874 	/*
1875 	 * setvalid is TRUE when we can safely set the zero'd areas
1876 	 * as being valid.  We can do this if there are no cache consistancy
1877 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1878 	 */
1879 	if (setvalid)
1880 		m->valid = VM_PAGE_BITS_ALL;
1881 }
1882 
1883 /*
1884  *	vm_page_is_valid:
1885  *
1886  *	Is (partial) page valid?  Note that the case where size == 0
1887  *	will return FALSE in the degenerate case where the page is
1888  *	entirely invalid, and TRUE otherwise.
1889  *
1890  *	May not block.
1891  */
1892 int
1893 vm_page_is_valid(vm_page_t m, int base, int size)
1894 {
1895 	int bits = vm_page_bits(base, size);
1896 
1897 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1898 	if (m->valid && ((m->valid & bits) == bits))
1899 		return 1;
1900 	else
1901 		return 0;
1902 }
1903 
1904 /*
1905  * update dirty bits from pmap/mmu.  May not block.
1906  */
1907 void
1908 vm_page_test_dirty(vm_page_t m)
1909 {
1910 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1911 		vm_page_dirty(m);
1912 	}
1913 }
1914 
1915 int so_zerocp_fullpage = 0;
1916 
1917 /*
1918  *	Replace the given page with a copy.  The copied page assumes
1919  *	the portion of the given page's "wire_count" that is not the
1920  *	responsibility of this copy-on-write mechanism.
1921  *
1922  *	The object containing the given page must have a non-zero
1923  *	paging-in-progress count and be locked.
1924  */
1925 void
1926 vm_page_cowfault(vm_page_t m)
1927 {
1928 	vm_page_t mnew;
1929 	vm_object_t object;
1930 	vm_pindex_t pindex;
1931 
1932 	object = m->object;
1933 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1934 	KASSERT(object->paging_in_progress != 0,
1935 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
1936 	    object));
1937 	pindex = m->pindex;
1938 
1939  retry_alloc:
1940 	pmap_remove_all(m);
1941 	vm_page_remove(m);
1942 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1943 	if (mnew == NULL) {
1944 		vm_page_insert(m, object, pindex);
1945 		vm_page_unlock_queues();
1946 		VM_OBJECT_UNLOCK(object);
1947 		VM_WAIT;
1948 		VM_OBJECT_LOCK(object);
1949 		if (m == vm_page_lookup(object, pindex)) {
1950 			vm_page_lock_queues();
1951 			goto retry_alloc;
1952 		} else {
1953 			/*
1954 			 * Page disappeared during the wait.
1955 			 */
1956 			vm_page_lock_queues();
1957 			return;
1958 		}
1959 	}
1960 
1961 	if (m->cow == 0) {
1962 		/*
1963 		 * check to see if we raced with an xmit complete when
1964 		 * waiting to allocate a page.  If so, put things back
1965 		 * the way they were
1966 		 */
1967 		vm_page_free(mnew);
1968 		vm_page_insert(m, object, pindex);
1969 	} else { /* clear COW & copy page */
1970 		if (!so_zerocp_fullpage)
1971 			pmap_copy_page(m, mnew);
1972 		mnew->valid = VM_PAGE_BITS_ALL;
1973 		vm_page_dirty(mnew);
1974 		mnew->wire_count = m->wire_count - m->cow;
1975 		m->wire_count = m->cow;
1976 	}
1977 }
1978 
1979 void
1980 vm_page_cowclear(vm_page_t m)
1981 {
1982 
1983 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1984 	if (m->cow) {
1985 		m->cow--;
1986 		/*
1987 		 * let vm_fault add back write permission  lazily
1988 		 */
1989 	}
1990 	/*
1991 	 *  sf_buf_free() will free the page, so we needn't do it here
1992 	 */
1993 }
1994 
1995 void
1996 vm_page_cowsetup(vm_page_t m)
1997 {
1998 
1999 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2000 	m->cow++;
2001 	pmap_remove_write(m);
2002 }
2003 
2004 #include "opt_ddb.h"
2005 #ifdef DDB
2006 #include <sys/kernel.h>
2007 
2008 #include <ddb/ddb.h>
2009 
2010 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2011 {
2012 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2013 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2014 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2015 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2016 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2017 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2018 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2019 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2020 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2021 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2022 }
2023 
2024 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2025 {
2026 
2027 	db_printf("PQ_FREE:");
2028 	db_printf(" %d", cnt.v_free_count);
2029 	db_printf("\n");
2030 
2031 	db_printf("PQ_CACHE:");
2032 	db_printf(" %d", cnt.v_cache_count);
2033 	db_printf("\n");
2034 
2035 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2036 		*vm_page_queues[PQ_ACTIVE].cnt,
2037 		*vm_page_queues[PQ_INACTIVE].cnt);
2038 }
2039 #endif /* DDB */
2040