1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /*- 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/lock.h> 105 #include <sys/kernel.h> 106 #include <sys/malloc.h> 107 #include <sys/mutex.h> 108 #include <sys/proc.h> 109 #include <sys/sysctl.h> 110 #include <sys/vmmeter.h> 111 #include <sys/vnode.h> 112 113 #include <vm/vm.h> 114 #include <vm/vm_param.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_pager.h> 120 #include <vm/vm_phys.h> 121 #include <vm/vm_extern.h> 122 #include <vm/uma.h> 123 #include <vm/uma_int.h> 124 125 #include <machine/md_var.h> 126 127 /* 128 * Associated with page of user-allocatable memory is a 129 * page structure. 130 */ 131 132 struct mtx vm_page_queue_mtx; 133 struct mtx vm_page_queue_free_mtx; 134 135 vm_page_t vm_page_array = 0; 136 int vm_page_array_size = 0; 137 long first_page = 0; 138 int vm_page_zero_count = 0; 139 140 static int boot_pages = UMA_BOOT_PAGES; 141 TUNABLE_INT("vm.boot_pages", &boot_pages); 142 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 143 "number of pages allocated for bootstrapping the VM system"); 144 145 /* 146 * vm_set_page_size: 147 * 148 * Sets the page size, perhaps based upon the memory 149 * size. Must be called before any use of page-size 150 * dependent functions. 151 */ 152 void 153 vm_set_page_size(void) 154 { 155 if (cnt.v_page_size == 0) 156 cnt.v_page_size = PAGE_SIZE; 157 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 158 panic("vm_set_page_size: page size not a power of two"); 159 } 160 161 /* 162 * vm_page_blacklist_lookup: 163 * 164 * See if a physical address in this page has been listed 165 * in the blacklist tunable. Entries in the tunable are 166 * separated by spaces or commas. If an invalid integer is 167 * encountered then the rest of the string is skipped. 168 */ 169 static int 170 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 171 { 172 vm_paddr_t bad; 173 char *cp, *pos; 174 175 for (pos = list; *pos != '\0'; pos = cp) { 176 bad = strtoq(pos, &cp, 0); 177 if (*cp != '\0') { 178 if (*cp == ' ' || *cp == ',') { 179 cp++; 180 if (cp == pos) 181 continue; 182 } else 183 break; 184 } 185 if (pa == trunc_page(bad)) 186 return (1); 187 } 188 return (0); 189 } 190 191 /* 192 * vm_page_startup: 193 * 194 * Initializes the resident memory module. 195 * 196 * Allocates memory for the page cells, and 197 * for the object/offset-to-page hash table headers. 198 * Each page cell is initialized and placed on the free list. 199 */ 200 vm_offset_t 201 vm_page_startup(vm_offset_t vaddr) 202 { 203 vm_offset_t mapped; 204 vm_size_t npages; 205 vm_paddr_t page_range; 206 vm_paddr_t new_end; 207 int i; 208 vm_paddr_t pa; 209 int nblocks; 210 vm_paddr_t last_pa; 211 char *list; 212 213 /* the biggest memory array is the second group of pages */ 214 vm_paddr_t end; 215 vm_paddr_t biggestsize; 216 vm_paddr_t low_water, high_water; 217 int biggestone; 218 219 vm_paddr_t total; 220 221 total = 0; 222 biggestsize = 0; 223 biggestone = 0; 224 nblocks = 0; 225 vaddr = round_page(vaddr); 226 227 for (i = 0; phys_avail[i + 1]; i += 2) { 228 phys_avail[i] = round_page(phys_avail[i]); 229 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 230 } 231 232 low_water = phys_avail[0]; 233 high_water = phys_avail[1]; 234 235 for (i = 0; phys_avail[i + 1]; i += 2) { 236 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 237 238 if (size > biggestsize) { 239 biggestone = i; 240 biggestsize = size; 241 } 242 if (phys_avail[i] < low_water) 243 low_water = phys_avail[i]; 244 if (phys_avail[i + 1] > high_water) 245 high_water = phys_avail[i + 1]; 246 ++nblocks; 247 total += size; 248 } 249 250 end = phys_avail[biggestone+1]; 251 252 /* 253 * Initialize the locks. 254 */ 255 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 256 MTX_RECURSE); 257 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 258 MTX_DEF); 259 260 /* 261 * Initialize the queue headers for the free queue, the active queue 262 * and the inactive queue. 263 */ 264 vm_pageq_init(); 265 266 /* 267 * Allocate memory for use when boot strapping the kernel memory 268 * allocator. 269 */ 270 new_end = end - (boot_pages * UMA_SLAB_SIZE); 271 new_end = trunc_page(new_end); 272 mapped = pmap_map(&vaddr, new_end, end, 273 VM_PROT_READ | VM_PROT_WRITE); 274 bzero((void *)mapped, end - new_end); 275 uma_startup((void *)mapped, boot_pages); 276 277 #if defined(__amd64__) || defined(__i386__) 278 /* 279 * Allocate a bitmap to indicate that a random physical page 280 * needs to be included in a minidump. 281 * 282 * The amd64 port needs this to indicate which direct map pages 283 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 284 * 285 * However, i386 still needs this workspace internally within the 286 * minidump code. In theory, they are not needed on i386, but are 287 * included should the sf_buf code decide to use them. 288 */ 289 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 290 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 291 new_end -= vm_page_dump_size; 292 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 293 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 294 bzero((void *)vm_page_dump, vm_page_dump_size); 295 #endif 296 /* 297 * Compute the number of pages of memory that will be available for 298 * use (taking into account the overhead of a page structure per 299 * page). 300 */ 301 first_page = low_water / PAGE_SIZE; 302 #ifdef VM_PHYSSEG_SPARSE 303 page_range = 0; 304 for (i = 0; phys_avail[i + 1] != 0; i += 2) 305 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 306 #elif defined(VM_PHYSSEG_DENSE) 307 page_range = high_water / PAGE_SIZE - first_page; 308 #else 309 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 310 #endif 311 npages = (total - (page_range * sizeof(struct vm_page)) - 312 (end - new_end)) / PAGE_SIZE; 313 end = new_end; 314 315 /* 316 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 317 */ 318 vaddr += PAGE_SIZE; 319 320 /* 321 * Initialize the mem entry structures now, and put them in the free 322 * queue. 323 */ 324 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 325 mapped = pmap_map(&vaddr, new_end, end, 326 VM_PROT_READ | VM_PROT_WRITE); 327 vm_page_array = (vm_page_t) mapped; 328 #ifdef __amd64__ 329 /* 330 * pmap_map on amd64 comes out of the direct-map, not kvm like i386, 331 * so the pages must be tracked for a crashdump to include this data. 332 * This includes the vm_page_array and the early UMA bootstrap pages. 333 */ 334 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 335 dump_add_page(pa); 336 #endif 337 phys_avail[biggestone + 1] = new_end; 338 339 /* 340 * Clear all of the page structures 341 */ 342 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 343 for (i = 0; i < page_range; i++) 344 vm_page_array[i].order = VM_NFREEORDER; 345 vm_page_array_size = page_range; 346 347 /* 348 * This assertion tests the hypothesis that npages and total are 349 * redundant. XXX 350 */ 351 page_range = 0; 352 for (i = 0; phys_avail[i + 1] != 0; i += 2) 353 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 354 KASSERT(page_range == npages, 355 ("vm_page_startup: inconsistent page counts")); 356 357 /* 358 * Initialize the physical memory allocator. 359 */ 360 vm_phys_init(); 361 362 /* 363 * Add every available physical page that is not blacklisted to 364 * the free lists. 365 */ 366 cnt.v_page_count = 0; 367 cnt.v_free_count = 0; 368 list = getenv("vm.blacklist"); 369 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 370 pa = phys_avail[i]; 371 last_pa = phys_avail[i + 1]; 372 while (pa < last_pa) { 373 if (list != NULL && 374 vm_page_blacklist_lookup(list, pa)) 375 printf("Skipping page with pa 0x%jx\n", 376 (uintmax_t)pa); 377 else 378 vm_phys_add_page(pa); 379 pa += PAGE_SIZE; 380 } 381 } 382 freeenv(list); 383 return (vaddr); 384 } 385 386 void 387 vm_page_flag_set(vm_page_t m, unsigned short bits) 388 { 389 390 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 391 m->flags |= bits; 392 } 393 394 void 395 vm_page_flag_clear(vm_page_t m, unsigned short bits) 396 { 397 398 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 399 m->flags &= ~bits; 400 } 401 402 void 403 vm_page_busy(vm_page_t m) 404 { 405 406 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 407 KASSERT((m->oflags & VPO_BUSY) == 0, 408 ("vm_page_busy: page already busy!!!")); 409 m->oflags |= VPO_BUSY; 410 } 411 412 /* 413 * vm_page_flash: 414 * 415 * wakeup anyone waiting for the page. 416 */ 417 void 418 vm_page_flash(vm_page_t m) 419 { 420 421 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 422 if (m->oflags & VPO_WANTED) { 423 m->oflags &= ~VPO_WANTED; 424 wakeup(m); 425 } 426 } 427 428 /* 429 * vm_page_wakeup: 430 * 431 * clear the VPO_BUSY flag and wakeup anyone waiting for the 432 * page. 433 * 434 */ 435 void 436 vm_page_wakeup(vm_page_t m) 437 { 438 439 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 440 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!")); 441 m->oflags &= ~VPO_BUSY; 442 vm_page_flash(m); 443 } 444 445 void 446 vm_page_io_start(vm_page_t m) 447 { 448 449 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 450 m->busy++; 451 } 452 453 void 454 vm_page_io_finish(vm_page_t m) 455 { 456 457 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 458 m->busy--; 459 if (m->busy == 0) 460 vm_page_flash(m); 461 } 462 463 /* 464 * Keep page from being freed by the page daemon 465 * much of the same effect as wiring, except much lower 466 * overhead and should be used only for *very* temporary 467 * holding ("wiring"). 468 */ 469 void 470 vm_page_hold(vm_page_t mem) 471 { 472 473 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 474 mem->hold_count++; 475 } 476 477 void 478 vm_page_unhold(vm_page_t mem) 479 { 480 481 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 482 --mem->hold_count; 483 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 484 if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD)) 485 vm_page_free_toq(mem); 486 } 487 488 /* 489 * vm_page_free: 490 * 491 * Free a page. 492 */ 493 void 494 vm_page_free(vm_page_t m) 495 { 496 497 m->flags &= ~PG_ZERO; 498 vm_page_free_toq(m); 499 } 500 501 /* 502 * vm_page_free_zero: 503 * 504 * Free a page to the zerod-pages queue 505 */ 506 void 507 vm_page_free_zero(vm_page_t m) 508 { 509 510 m->flags |= PG_ZERO; 511 vm_page_free_toq(m); 512 } 513 514 /* 515 * vm_page_sleep: 516 * 517 * Sleep and release the page queues lock. 518 * 519 * The object containing the given page must be locked. 520 */ 521 void 522 vm_page_sleep(vm_page_t m, const char *msg) 523 { 524 525 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 526 if (!mtx_owned(&vm_page_queue_mtx)) 527 vm_page_lock_queues(); 528 vm_page_flag_set(m, PG_REFERENCED); 529 vm_page_unlock_queues(); 530 531 /* 532 * It's possible that while we sleep, the page will get 533 * unbusied and freed. If we are holding the object 534 * lock, we will assume we hold a reference to the object 535 * such that even if m->object changes, we can re-lock 536 * it. 537 */ 538 m->oflags |= VPO_WANTED; 539 msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0); 540 } 541 542 /* 543 * vm_page_dirty: 544 * 545 * make page all dirty 546 */ 547 void 548 vm_page_dirty(vm_page_t m) 549 { 550 KASSERT((m->flags & PG_CACHED) == 0, 551 ("vm_page_dirty: page in cache!")); 552 KASSERT(!VM_PAGE_IS_FREE(m), 553 ("vm_page_dirty: page is free!")); 554 m->dirty = VM_PAGE_BITS_ALL; 555 } 556 557 /* 558 * vm_page_splay: 559 * 560 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 561 * the vm_page containing the given pindex. If, however, that 562 * pindex is not found in the vm_object, returns a vm_page that is 563 * adjacent to the pindex, coming before or after it. 564 */ 565 vm_page_t 566 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 567 { 568 struct vm_page dummy; 569 vm_page_t lefttreemax, righttreemin, y; 570 571 if (root == NULL) 572 return (root); 573 lefttreemax = righttreemin = &dummy; 574 for (;; root = y) { 575 if (pindex < root->pindex) { 576 if ((y = root->left) == NULL) 577 break; 578 if (pindex < y->pindex) { 579 /* Rotate right. */ 580 root->left = y->right; 581 y->right = root; 582 root = y; 583 if ((y = root->left) == NULL) 584 break; 585 } 586 /* Link into the new root's right tree. */ 587 righttreemin->left = root; 588 righttreemin = root; 589 } else if (pindex > root->pindex) { 590 if ((y = root->right) == NULL) 591 break; 592 if (pindex > y->pindex) { 593 /* Rotate left. */ 594 root->right = y->left; 595 y->left = root; 596 root = y; 597 if ((y = root->right) == NULL) 598 break; 599 } 600 /* Link into the new root's left tree. */ 601 lefttreemax->right = root; 602 lefttreemax = root; 603 } else 604 break; 605 } 606 /* Assemble the new root. */ 607 lefttreemax->right = root->left; 608 righttreemin->left = root->right; 609 root->left = dummy.right; 610 root->right = dummy.left; 611 return (root); 612 } 613 614 /* 615 * vm_page_insert: [ internal use only ] 616 * 617 * Inserts the given mem entry into the object and object list. 618 * 619 * The pagetables are not updated but will presumably fault the page 620 * in if necessary, or if a kernel page the caller will at some point 621 * enter the page into the kernel's pmap. We are not allowed to block 622 * here so we *can't* do this anyway. 623 * 624 * The object and page must be locked. 625 * This routine may not block. 626 */ 627 void 628 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 629 { 630 vm_page_t root; 631 632 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 633 if (m->object != NULL) 634 panic("vm_page_insert: page already inserted"); 635 636 /* 637 * Record the object/offset pair in this page 638 */ 639 m->object = object; 640 m->pindex = pindex; 641 642 /* 643 * Now link into the object's ordered list of backed pages. 644 */ 645 root = object->root; 646 if (root == NULL) { 647 m->left = NULL; 648 m->right = NULL; 649 TAILQ_INSERT_TAIL(&object->memq, m, listq); 650 } else { 651 root = vm_page_splay(pindex, root); 652 if (pindex < root->pindex) { 653 m->left = root->left; 654 m->right = root; 655 root->left = NULL; 656 TAILQ_INSERT_BEFORE(root, m, listq); 657 } else if (pindex == root->pindex) 658 panic("vm_page_insert: offset already allocated"); 659 else { 660 m->right = root->right; 661 m->left = root; 662 root->right = NULL; 663 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 664 } 665 } 666 object->root = m; 667 object->generation++; 668 669 /* 670 * show that the object has one more resident page. 671 */ 672 object->resident_page_count++; 673 /* 674 * Hold the vnode until the last page is released. 675 */ 676 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 677 vhold((struct vnode *)object->handle); 678 679 /* 680 * Since we are inserting a new and possibly dirty page, 681 * update the object's OBJ_MIGHTBEDIRTY flag. 682 */ 683 if (m->flags & PG_WRITEABLE) 684 vm_object_set_writeable_dirty(object); 685 } 686 687 /* 688 * vm_page_remove: 689 * NOTE: used by device pager as well -wfj 690 * 691 * Removes the given mem entry from the object/offset-page 692 * table and the object page list, but do not invalidate/terminate 693 * the backing store. 694 * 695 * The object and page must be locked. 696 * The underlying pmap entry (if any) is NOT removed here. 697 * This routine may not block. 698 */ 699 void 700 vm_page_remove(vm_page_t m) 701 { 702 vm_object_t object; 703 vm_page_t root; 704 705 if ((object = m->object) == NULL) 706 return; 707 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 708 if (m->oflags & VPO_BUSY) { 709 m->oflags &= ~VPO_BUSY; 710 vm_page_flash(m); 711 } 712 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 713 714 /* 715 * Now remove from the object's list of backed pages. 716 */ 717 if (m != object->root) 718 vm_page_splay(m->pindex, object->root); 719 if (m->left == NULL) 720 root = m->right; 721 else { 722 root = vm_page_splay(m->pindex, m->left); 723 root->right = m->right; 724 } 725 object->root = root; 726 TAILQ_REMOVE(&object->memq, m, listq); 727 728 /* 729 * And show that the object has one fewer resident page. 730 */ 731 object->resident_page_count--; 732 object->generation++; 733 /* 734 * The vnode may now be recycled. 735 */ 736 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 737 vdrop((struct vnode *)object->handle); 738 739 m->object = NULL; 740 } 741 742 /* 743 * vm_page_lookup: 744 * 745 * Returns the page associated with the object/offset 746 * pair specified; if none is found, NULL is returned. 747 * 748 * The object must be locked. 749 * This routine may not block. 750 * This is a critical path routine 751 */ 752 vm_page_t 753 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 754 { 755 vm_page_t m; 756 757 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 758 if ((m = object->root) != NULL && m->pindex != pindex) { 759 m = vm_page_splay(pindex, m); 760 if ((object->root = m)->pindex != pindex) 761 m = NULL; 762 } 763 return (m); 764 } 765 766 /* 767 * vm_page_rename: 768 * 769 * Move the given memory entry from its 770 * current object to the specified target object/offset. 771 * 772 * The object must be locked. 773 * This routine may not block. 774 * 775 * Note: swap associated with the page must be invalidated by the move. We 776 * have to do this for several reasons: (1) we aren't freeing the 777 * page, (2) we are dirtying the page, (3) the VM system is probably 778 * moving the page from object A to B, and will then later move 779 * the backing store from A to B and we can't have a conflict. 780 * 781 * Note: we *always* dirty the page. It is necessary both for the 782 * fact that we moved it, and because we may be invalidating 783 * swap. If the page is on the cache, we have to deactivate it 784 * or vm_page_dirty() will panic. Dirty pages are not allowed 785 * on the cache. 786 */ 787 void 788 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 789 { 790 791 vm_page_remove(m); 792 vm_page_insert(m, new_object, new_pindex); 793 vm_page_dirty(m); 794 } 795 796 /* 797 * Convert all of the given object's cached pages that have a 798 * pindex within the given range into free pages. If the value 799 * zero is given for "end", then the range's upper bound is 800 * infinity. If the given object is backed by a vnode and it 801 * transitions from having one or more cached pages to none, the 802 * vnode's hold count is reduced. 803 */ 804 void 805 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 806 { 807 vm_page_t m, m_next; 808 boolean_t empty; 809 810 mtx_lock(&vm_page_queue_free_mtx); 811 if (__predict_false(object->cache == NULL)) { 812 mtx_unlock(&vm_page_queue_free_mtx); 813 return; 814 } 815 m = object->cache = vm_page_splay(start, object->cache); 816 if (m->pindex < start) { 817 if (m->right == NULL) 818 m = NULL; 819 else { 820 m_next = vm_page_splay(start, m->right); 821 m_next->left = m; 822 m->right = NULL; 823 m = object->cache = m_next; 824 } 825 } 826 827 /* 828 * At this point, "m" is either (1) a reference to the page 829 * with the least pindex that is greater than or equal to 830 * "start" or (2) NULL. 831 */ 832 for (; m != NULL && (m->pindex < end || end == 0); m = m_next) { 833 /* 834 * Find "m"'s successor and remove "m" from the 835 * object's cache. 836 */ 837 if (m->right == NULL) { 838 object->cache = m->left; 839 m_next = NULL; 840 } else { 841 m_next = vm_page_splay(start, m->right); 842 m_next->left = m->left; 843 object->cache = m_next; 844 } 845 /* Convert "m" to a free page. */ 846 m->object = NULL; 847 m->valid = 0; 848 /* Clear PG_CACHED and set PG_FREE. */ 849 m->flags ^= PG_CACHED | PG_FREE; 850 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE, 851 ("vm_page_cache_free: page %p has inconsistent flags", m)); 852 cnt.v_cache_count--; 853 cnt.v_free_count++; 854 } 855 empty = object->cache == NULL; 856 mtx_unlock(&vm_page_queue_free_mtx); 857 if (object->type == OBJT_VNODE && empty) 858 vdrop(object->handle); 859 } 860 861 /* 862 * Returns the cached page that is associated with the given 863 * object and offset. If, however, none exists, returns NULL. 864 * 865 * The free page queue must be locked. 866 */ 867 static inline vm_page_t 868 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 869 { 870 vm_page_t m; 871 872 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 873 if ((m = object->cache) != NULL && m->pindex != pindex) { 874 m = vm_page_splay(pindex, m); 875 if ((object->cache = m)->pindex != pindex) 876 m = NULL; 877 } 878 return (m); 879 } 880 881 /* 882 * Remove the given cached page from its containing object's 883 * collection of cached pages. 884 * 885 * The free page queue must be locked. 886 */ 887 void 888 vm_page_cache_remove(vm_page_t m) 889 { 890 vm_object_t object; 891 vm_page_t root; 892 893 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 894 KASSERT((m->flags & PG_CACHED) != 0, 895 ("vm_page_cache_remove: page %p is not cached", m)); 896 object = m->object; 897 if (m != object->cache) { 898 root = vm_page_splay(m->pindex, object->cache); 899 KASSERT(root == m, 900 ("vm_page_cache_remove: page %p is not cached in object %p", 901 m, object)); 902 } 903 if (m->left == NULL) 904 root = m->right; 905 else if (m->right == NULL) 906 root = m->left; 907 else { 908 root = vm_page_splay(m->pindex, m->left); 909 root->right = m->right; 910 } 911 object->cache = root; 912 m->object = NULL; 913 cnt.v_cache_count--; 914 } 915 916 /* 917 * Transfer all of the cached pages with offset greater than or 918 * equal to 'offidxstart' from the original object's cache to the 919 * new object's cache. However, any cached pages with offset 920 * greater than or equal to the new object's size are kept in the 921 * original object. Initially, the new object's cache must be 922 * empty. Offset 'offidxstart' in the original object must 923 * correspond to offset zero in the new object. 924 * 925 * The new object must be locked. 926 */ 927 void 928 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 929 vm_object_t new_object) 930 { 931 vm_page_t m, m_next; 932 933 /* 934 * Insertion into an object's collection of cached pages 935 * requires the object to be locked. In contrast, removal does 936 * not. 937 */ 938 VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED); 939 KASSERT(new_object->cache == NULL, 940 ("vm_page_cache_transfer: object %p has cached pages", 941 new_object)); 942 mtx_lock(&vm_page_queue_free_mtx); 943 if ((m = orig_object->cache) != NULL) { 944 /* 945 * Transfer all of the pages with offset greater than or 946 * equal to 'offidxstart' from the original object's 947 * cache to the new object's cache. 948 */ 949 m = vm_page_splay(offidxstart, m); 950 if (m->pindex < offidxstart) { 951 orig_object->cache = m; 952 new_object->cache = m->right; 953 m->right = NULL; 954 } else { 955 orig_object->cache = m->left; 956 new_object->cache = m; 957 m->left = NULL; 958 } 959 while ((m = new_object->cache) != NULL) { 960 if ((m->pindex - offidxstart) >= new_object->size) { 961 /* 962 * Return all of the cached pages with 963 * offset greater than or equal to the 964 * new object's size to the original 965 * object's cache. 966 */ 967 new_object->cache = m->left; 968 m->left = orig_object->cache; 969 orig_object->cache = m; 970 break; 971 } 972 m_next = vm_page_splay(m->pindex, m->right); 973 /* Update the page's object and offset. */ 974 m->object = new_object; 975 m->pindex -= offidxstart; 976 if (m_next == NULL) 977 break; 978 m->right = NULL; 979 m_next->left = m; 980 new_object->cache = m_next; 981 } 982 KASSERT(new_object->cache == NULL || 983 new_object->type == OBJT_SWAP, 984 ("vm_page_cache_transfer: object %p's type is incompatible" 985 " with cached pages", new_object)); 986 } 987 mtx_unlock(&vm_page_queue_free_mtx); 988 } 989 990 /* 991 * vm_page_alloc: 992 * 993 * Allocate and return a memory cell associated 994 * with this VM object/offset pair. 995 * 996 * page_req classes: 997 * VM_ALLOC_NORMAL normal process request 998 * VM_ALLOC_SYSTEM system *really* needs a page 999 * VM_ALLOC_INTERRUPT interrupt time request 1000 * VM_ALLOC_ZERO zero page 1001 * 1002 * This routine may not block. 1003 */ 1004 vm_page_t 1005 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1006 { 1007 struct vnode *vp = NULL; 1008 vm_object_t m_object; 1009 vm_page_t m; 1010 int flags, page_req; 1011 1012 page_req = req & VM_ALLOC_CLASS_MASK; 1013 KASSERT(curthread->td_intr_nesting_level == 0 || 1014 page_req == VM_ALLOC_INTERRUPT, 1015 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context")); 1016 1017 if ((req & VM_ALLOC_NOOBJ) == 0) { 1018 KASSERT(object != NULL, 1019 ("vm_page_alloc: NULL object.")); 1020 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1021 } 1022 1023 /* 1024 * The pager is allowed to eat deeper into the free page list. 1025 */ 1026 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 1027 page_req = VM_ALLOC_SYSTEM; 1028 }; 1029 1030 mtx_lock(&vm_page_queue_free_mtx); 1031 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1032 (page_req == VM_ALLOC_SYSTEM && 1033 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1034 (page_req == VM_ALLOC_INTERRUPT && 1035 cnt.v_free_count + cnt.v_cache_count > 0)) { 1036 /* 1037 * Allocate from the free queue if the number of free pages 1038 * exceeds the minimum for the request class. 1039 */ 1040 if (object != NULL && 1041 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1042 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1043 mtx_unlock(&vm_page_queue_free_mtx); 1044 return (NULL); 1045 } 1046 vm_phys_unfree_page(m); 1047 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1048 mtx_unlock(&vm_page_queue_free_mtx); 1049 return (NULL); 1050 } else 1051 m = vm_phys_alloc_pages(object != NULL ? 1052 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1053 } else { 1054 /* 1055 * Not allocatable, give up. 1056 */ 1057 mtx_unlock(&vm_page_queue_free_mtx); 1058 atomic_add_int(&vm_pageout_deficit, 1); 1059 pagedaemon_wakeup(); 1060 return (NULL); 1061 } 1062 1063 /* 1064 * At this point we had better have found a good page. 1065 */ 1066 1067 KASSERT( 1068 m != NULL, 1069 ("vm_page_alloc(): missing page on free queue") 1070 ); 1071 if ((m->flags & PG_CACHED) != 0) { 1072 KASSERT(m->valid != 0, 1073 ("vm_page_alloc: cached page %p is invalid", m)); 1074 if (m->object == object && m->pindex == pindex) 1075 cnt.v_reactivated++; 1076 else 1077 m->valid = 0; 1078 m_object = m->object; 1079 vm_page_cache_remove(m); 1080 if (m_object->type == OBJT_VNODE && m_object->cache == NULL) 1081 vp = m_object->handle; 1082 } else { 1083 KASSERT(VM_PAGE_IS_FREE(m), 1084 ("vm_page_alloc: page %p is not free", m)); 1085 KASSERT(m->valid == 0, 1086 ("vm_page_alloc: free page %p is valid", m)); 1087 cnt.v_free_count--; 1088 } 1089 1090 /* 1091 * Initialize structure. Only the PG_ZERO flag is inherited. 1092 */ 1093 flags = 0; 1094 if (m->flags & PG_ZERO) { 1095 vm_page_zero_count--; 1096 if (req & VM_ALLOC_ZERO) 1097 flags = PG_ZERO; 1098 } 1099 if (object == NULL || object->type == OBJT_PHYS) 1100 flags |= PG_UNMANAGED; 1101 m->flags = flags; 1102 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) 1103 m->oflags = 0; 1104 else 1105 m->oflags = VPO_BUSY; 1106 if (req & VM_ALLOC_WIRED) { 1107 atomic_add_int(&cnt.v_wire_count, 1); 1108 m->wire_count = 1; 1109 } else 1110 m->wire_count = 0; 1111 m->hold_count = 0; 1112 m->act_count = 0; 1113 m->busy = 0; 1114 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 1115 mtx_unlock(&vm_page_queue_free_mtx); 1116 1117 if ((req & VM_ALLOC_NOOBJ) == 0) 1118 vm_page_insert(m, object, pindex); 1119 else 1120 m->pindex = pindex; 1121 1122 /* 1123 * The following call to vdrop() must come after the above call 1124 * to vm_page_insert() in case both affect the same object and 1125 * vnode. Otherwise, the affected vnode's hold count could 1126 * temporarily become zero. 1127 */ 1128 if (vp != NULL) 1129 vdrop(vp); 1130 1131 /* 1132 * Don't wakeup too often - wakeup the pageout daemon when 1133 * we would be nearly out of memory. 1134 */ 1135 if (vm_paging_needed()) 1136 pagedaemon_wakeup(); 1137 1138 return (m); 1139 } 1140 1141 /* 1142 * vm_wait: (also see VM_WAIT macro) 1143 * 1144 * Block until free pages are available for allocation 1145 * - Called in various places before memory allocations. 1146 */ 1147 void 1148 vm_wait(void) 1149 { 1150 1151 mtx_lock(&vm_page_queue_free_mtx); 1152 if (curproc == pageproc) { 1153 vm_pageout_pages_needed = 1; 1154 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1155 PDROP | PSWP, "VMWait", 0); 1156 } else { 1157 if (!vm_pages_needed) { 1158 vm_pages_needed = 1; 1159 wakeup(&vm_pages_needed); 1160 } 1161 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1162 "vmwait", 0); 1163 } 1164 } 1165 1166 /* 1167 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1168 * 1169 * Block until free pages are available for allocation 1170 * - Called only in vm_fault so that processes page faulting 1171 * can be easily tracked. 1172 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1173 * processes will be able to grab memory first. Do not change 1174 * this balance without careful testing first. 1175 */ 1176 void 1177 vm_waitpfault(void) 1178 { 1179 1180 mtx_lock(&vm_page_queue_free_mtx); 1181 if (!vm_pages_needed) { 1182 vm_pages_needed = 1; 1183 wakeup(&vm_pages_needed); 1184 } 1185 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 1186 "pfault", 0); 1187 } 1188 1189 /* 1190 * vm_page_activate: 1191 * 1192 * Put the specified page on the active list (if appropriate). 1193 * Ensure that act_count is at least ACT_INIT but do not otherwise 1194 * mess with it. 1195 * 1196 * The page queues must be locked. 1197 * This routine may not block. 1198 */ 1199 void 1200 vm_page_activate(vm_page_t m) 1201 { 1202 1203 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1204 if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) { 1205 vm_pageq_remove(m); 1206 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1207 if (m->act_count < ACT_INIT) 1208 m->act_count = ACT_INIT; 1209 vm_pageq_enqueue(PQ_ACTIVE, m); 1210 } 1211 } else { 1212 if (m->act_count < ACT_INIT) 1213 m->act_count = ACT_INIT; 1214 } 1215 } 1216 1217 /* 1218 * vm_page_free_wakeup: 1219 * 1220 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1221 * routine is called when a page has been added to the cache or free 1222 * queues. 1223 * 1224 * The page queues must be locked. 1225 * This routine may not block. 1226 */ 1227 static inline void 1228 vm_page_free_wakeup(void) 1229 { 1230 1231 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1232 /* 1233 * if pageout daemon needs pages, then tell it that there are 1234 * some free. 1235 */ 1236 if (vm_pageout_pages_needed && 1237 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1238 wakeup(&vm_pageout_pages_needed); 1239 vm_pageout_pages_needed = 0; 1240 } 1241 /* 1242 * wakeup processes that are waiting on memory if we hit a 1243 * high water mark. And wakeup scheduler process if we have 1244 * lots of memory. this process will swapin processes. 1245 */ 1246 if (vm_pages_needed && !vm_page_count_min()) { 1247 vm_pages_needed = 0; 1248 wakeup(&cnt.v_free_count); 1249 } 1250 } 1251 1252 /* 1253 * vm_page_free_toq: 1254 * 1255 * Returns the given page to the free list, 1256 * disassociating it with any VM object. 1257 * 1258 * Object and page must be locked prior to entry. 1259 * This routine may not block. 1260 */ 1261 1262 void 1263 vm_page_free_toq(vm_page_t m) 1264 { 1265 1266 if (VM_PAGE_GETQUEUE(m) != PQ_NONE) 1267 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1268 KASSERT(!pmap_page_is_mapped(m), 1269 ("vm_page_free_toq: freeing mapped page %p", m)); 1270 PCPU_INC(cnt.v_tfree); 1271 1272 if (m->busy || VM_PAGE_IS_FREE(m)) { 1273 printf( 1274 "vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n", 1275 (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0, 1276 m->hold_count); 1277 if (VM_PAGE_IS_FREE(m)) 1278 panic("vm_page_free: freeing free page"); 1279 else 1280 panic("vm_page_free: freeing busy page"); 1281 } 1282 1283 /* 1284 * unqueue, then remove page. Note that we cannot destroy 1285 * the page here because we do not want to call the pager's 1286 * callback routine until after we've put the page on the 1287 * appropriate free queue. 1288 */ 1289 vm_pageq_remove(m); 1290 vm_page_remove(m); 1291 1292 /* 1293 * If fictitious remove object association and 1294 * return, otherwise delay object association removal. 1295 */ 1296 if ((m->flags & PG_FICTITIOUS) != 0) { 1297 return; 1298 } 1299 1300 m->valid = 0; 1301 vm_page_undirty(m); 1302 1303 if (m->wire_count != 0) { 1304 if (m->wire_count > 1) { 1305 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1306 m->wire_count, (long)m->pindex); 1307 } 1308 panic("vm_page_free: freeing wired page"); 1309 } 1310 if (m->hold_count != 0) { 1311 m->flags &= ~PG_ZERO; 1312 vm_pageq_enqueue(PQ_HOLD, m); 1313 } else { 1314 m->flags |= PG_FREE; 1315 mtx_lock(&vm_page_queue_free_mtx); 1316 cnt.v_free_count++; 1317 if ((m->flags & PG_ZERO) != 0) { 1318 vm_phys_free_pages(m, 0); 1319 ++vm_page_zero_count; 1320 } else { 1321 vm_phys_free_pages(m, 0); 1322 vm_page_zero_idle_wakeup(); 1323 } 1324 vm_page_free_wakeup(); 1325 mtx_unlock(&vm_page_queue_free_mtx); 1326 } 1327 } 1328 1329 /* 1330 * vm_page_wire: 1331 * 1332 * Mark this page as wired down by yet 1333 * another map, removing it from paging queues 1334 * as necessary. 1335 * 1336 * The page queues must be locked. 1337 * This routine may not block. 1338 */ 1339 void 1340 vm_page_wire(vm_page_t m) 1341 { 1342 1343 /* 1344 * Only bump the wire statistics if the page is not already wired, 1345 * and only unqueue the page if it is on some queue (if it is unmanaged 1346 * it is already off the queues). 1347 */ 1348 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1349 if (m->flags & PG_FICTITIOUS) 1350 return; 1351 if (m->wire_count == 0) { 1352 if ((m->flags & PG_UNMANAGED) == 0) 1353 vm_pageq_remove(m); 1354 atomic_add_int(&cnt.v_wire_count, 1); 1355 } 1356 m->wire_count++; 1357 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1358 } 1359 1360 /* 1361 * vm_page_unwire: 1362 * 1363 * Release one wiring of this page, potentially 1364 * enabling it to be paged again. 1365 * 1366 * Many pages placed on the inactive queue should actually go 1367 * into the cache, but it is difficult to figure out which. What 1368 * we do instead, if the inactive target is well met, is to put 1369 * clean pages at the head of the inactive queue instead of the tail. 1370 * This will cause them to be moved to the cache more quickly and 1371 * if not actively re-referenced, freed more quickly. If we just 1372 * stick these pages at the end of the inactive queue, heavy filesystem 1373 * meta-data accesses can cause an unnecessary paging load on memory bound 1374 * processes. This optimization causes one-time-use metadata to be 1375 * reused more quickly. 1376 * 1377 * BUT, if we are in a low-memory situation we have no choice but to 1378 * put clean pages on the cache queue. 1379 * 1380 * A number of routines use vm_page_unwire() to guarantee that the page 1381 * will go into either the inactive or active queues, and will NEVER 1382 * be placed in the cache - for example, just after dirtying a page. 1383 * dirty pages in the cache are not allowed. 1384 * 1385 * The page queues must be locked. 1386 * This routine may not block. 1387 */ 1388 void 1389 vm_page_unwire(vm_page_t m, int activate) 1390 { 1391 1392 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1393 if (m->flags & PG_FICTITIOUS) 1394 return; 1395 if (m->wire_count > 0) { 1396 m->wire_count--; 1397 if (m->wire_count == 0) { 1398 atomic_subtract_int(&cnt.v_wire_count, 1); 1399 if (m->flags & PG_UNMANAGED) { 1400 ; 1401 } else if (activate) 1402 vm_pageq_enqueue(PQ_ACTIVE, m); 1403 else { 1404 vm_page_flag_clear(m, PG_WINATCFLS); 1405 vm_pageq_enqueue(PQ_INACTIVE, m); 1406 } 1407 } 1408 } else { 1409 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1410 } 1411 } 1412 1413 1414 /* 1415 * Move the specified page to the inactive queue. If the page has 1416 * any associated swap, the swap is deallocated. 1417 * 1418 * Normally athead is 0 resulting in LRU operation. athead is set 1419 * to 1 if we want this page to be 'as if it were placed in the cache', 1420 * except without unmapping it from the process address space. 1421 * 1422 * This routine may not block. 1423 */ 1424 static inline void 1425 _vm_page_deactivate(vm_page_t m, int athead) 1426 { 1427 1428 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1429 1430 /* 1431 * Ignore if already inactive. 1432 */ 1433 if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) 1434 return; 1435 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1436 vm_page_flag_clear(m, PG_WINATCFLS); 1437 vm_pageq_remove(m); 1438 if (athead) 1439 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1440 else 1441 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1442 VM_PAGE_SETQUEUE2(m, PQ_INACTIVE); 1443 cnt.v_inactive_count++; 1444 } 1445 } 1446 1447 void 1448 vm_page_deactivate(vm_page_t m) 1449 { 1450 _vm_page_deactivate(m, 0); 1451 } 1452 1453 /* 1454 * vm_page_try_to_cache: 1455 * 1456 * Returns 0 on failure, 1 on success 1457 */ 1458 int 1459 vm_page_try_to_cache(vm_page_t m) 1460 { 1461 1462 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1463 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1464 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1465 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1466 return (0); 1467 } 1468 pmap_remove_all(m); 1469 if (m->dirty) 1470 return (0); 1471 vm_page_cache(m); 1472 return (1); 1473 } 1474 1475 /* 1476 * vm_page_try_to_free() 1477 * 1478 * Attempt to free the page. If we cannot free it, we do nothing. 1479 * 1 is returned on success, 0 on failure. 1480 */ 1481 int 1482 vm_page_try_to_free(vm_page_t m) 1483 { 1484 1485 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1486 if (m->object != NULL) 1487 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1488 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1489 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1490 return (0); 1491 } 1492 pmap_remove_all(m); 1493 if (m->dirty) 1494 return (0); 1495 vm_page_free(m); 1496 return (1); 1497 } 1498 1499 /* 1500 * vm_page_cache 1501 * 1502 * Put the specified page onto the page cache queue (if appropriate). 1503 * 1504 * This routine may not block. 1505 */ 1506 void 1507 vm_page_cache(vm_page_t m) 1508 { 1509 vm_object_t object; 1510 vm_page_t root; 1511 1512 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1513 object = m->object; 1514 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1515 if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy || 1516 m->hold_count || m->wire_count) { 1517 panic("vm_page_cache: attempting to cache busy page"); 1518 } 1519 pmap_remove_all(m); 1520 if (m->dirty != 0) 1521 panic("vm_page_cache: page %p is dirty", m); 1522 if (m->valid == 0 || object->type == OBJT_DEFAULT) { 1523 /* 1524 * Hypothesis: A cache-elgible page belonging to a 1525 * default object must be zero filled. 1526 */ 1527 vm_page_free(m); 1528 return; 1529 } 1530 KASSERT((m->flags & PG_CACHED) == 0, 1531 ("vm_page_cache: page %p is already cached", m)); 1532 cnt.v_tcached++; 1533 1534 /* 1535 * Remove the page from the paging queues. 1536 */ 1537 vm_pageq_remove(m); 1538 1539 /* 1540 * Remove the page from the object's collection of resident 1541 * pages. 1542 */ 1543 if (m != object->root) 1544 vm_page_splay(m->pindex, object->root); 1545 if (m->left == NULL) 1546 root = m->right; 1547 else { 1548 root = vm_page_splay(m->pindex, m->left); 1549 root->right = m->right; 1550 } 1551 object->root = root; 1552 TAILQ_REMOVE(&object->memq, m, listq); 1553 object->resident_page_count--; 1554 object->generation++; 1555 1556 /* 1557 * Insert the page into the object's collection of cached pages 1558 * and the physical memory allocator's cache/free page queues. 1559 */ 1560 vm_page_flag_set(m, PG_CACHED); 1561 vm_page_flag_clear(m, PG_ZERO); 1562 mtx_lock(&vm_page_queue_free_mtx); 1563 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 1564 cnt.v_cache_count++; 1565 root = object->cache; 1566 if (root == NULL) { 1567 m->left = NULL; 1568 m->right = NULL; 1569 } else { 1570 root = vm_page_splay(m->pindex, root); 1571 if (m->pindex < root->pindex) { 1572 m->left = root->left; 1573 m->right = root; 1574 root->left = NULL; 1575 } else if (__predict_false(m->pindex == root->pindex)) 1576 panic("vm_page_cache: offset already cached"); 1577 else { 1578 m->right = root->right; 1579 m->left = root; 1580 root->right = NULL; 1581 } 1582 } 1583 object->cache = m; 1584 vm_phys_free_pages(m, 0); 1585 vm_page_free_wakeup(); 1586 mtx_unlock(&vm_page_queue_free_mtx); 1587 1588 /* 1589 * Increment the vnode's hold count if this is the object's only 1590 * cached page. Decrement the vnode's hold count if this was 1591 * the object's only resident page. 1592 */ 1593 if (object->type == OBJT_VNODE) { 1594 if (root == NULL && object->resident_page_count != 0) 1595 vhold(object->handle); 1596 else if (root != NULL && object->resident_page_count == 0) 1597 vdrop(object->handle); 1598 } 1599 } 1600 1601 /* 1602 * vm_page_dontneed 1603 * 1604 * Cache, deactivate, or do nothing as appropriate. This routine 1605 * is typically used by madvise() MADV_DONTNEED. 1606 * 1607 * Generally speaking we want to move the page into the cache so 1608 * it gets reused quickly. However, this can result in a silly syndrome 1609 * due to the page recycling too quickly. Small objects will not be 1610 * fully cached. On the otherhand, if we move the page to the inactive 1611 * queue we wind up with a problem whereby very large objects 1612 * unnecessarily blow away our inactive and cache queues. 1613 * 1614 * The solution is to move the pages based on a fixed weighting. We 1615 * either leave them alone, deactivate them, or move them to the cache, 1616 * where moving them to the cache has the highest weighting. 1617 * By forcing some pages into other queues we eventually force the 1618 * system to balance the queues, potentially recovering other unrelated 1619 * space from active. The idea is to not force this to happen too 1620 * often. 1621 */ 1622 void 1623 vm_page_dontneed(vm_page_t m) 1624 { 1625 static int dnweight; 1626 int dnw; 1627 int head; 1628 1629 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1630 dnw = ++dnweight; 1631 1632 /* 1633 * occassionally leave the page alone 1634 */ 1635 if ((dnw & 0x01F0) == 0 || 1636 VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) { 1637 if (m->act_count >= ACT_INIT) 1638 --m->act_count; 1639 return; 1640 } 1641 1642 if (m->dirty == 0 && pmap_is_modified(m)) 1643 vm_page_dirty(m); 1644 1645 if (m->dirty || (dnw & 0x0070) == 0) { 1646 /* 1647 * Deactivate the page 3 times out of 32. 1648 */ 1649 head = 0; 1650 } else { 1651 /* 1652 * Cache the page 28 times out of every 32. Note that 1653 * the page is deactivated instead of cached, but placed 1654 * at the head of the queue instead of the tail. 1655 */ 1656 head = 1; 1657 } 1658 _vm_page_deactivate(m, head); 1659 } 1660 1661 /* 1662 * Grab a page, waiting until we are waken up due to the page 1663 * changing state. We keep on waiting, if the page continues 1664 * to be in the object. If the page doesn't exist, first allocate it 1665 * and then conditionally zero it. 1666 * 1667 * This routine may block. 1668 */ 1669 vm_page_t 1670 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1671 { 1672 vm_page_t m; 1673 1674 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1675 retrylookup: 1676 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1677 if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) { 1678 if ((allocflags & VM_ALLOC_RETRY) == 0) 1679 return (NULL); 1680 goto retrylookup; 1681 } else { 1682 if ((allocflags & VM_ALLOC_WIRED) != 0) { 1683 vm_page_lock_queues(); 1684 vm_page_wire(m); 1685 vm_page_unlock_queues(); 1686 } 1687 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 1688 vm_page_busy(m); 1689 return (m); 1690 } 1691 } 1692 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1693 if (m == NULL) { 1694 VM_OBJECT_UNLOCK(object); 1695 VM_WAIT; 1696 VM_OBJECT_LOCK(object); 1697 if ((allocflags & VM_ALLOC_RETRY) == 0) 1698 return (NULL); 1699 goto retrylookup; 1700 } else if (m->valid != 0) 1701 return (m); 1702 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1703 pmap_zero_page(m); 1704 return (m); 1705 } 1706 1707 /* 1708 * Mapping function for valid bits or for dirty bits in 1709 * a page. May not block. 1710 * 1711 * Inputs are required to range within a page. 1712 */ 1713 int 1714 vm_page_bits(int base, int size) 1715 { 1716 int first_bit; 1717 int last_bit; 1718 1719 KASSERT( 1720 base + size <= PAGE_SIZE, 1721 ("vm_page_bits: illegal base/size %d/%d", base, size) 1722 ); 1723 1724 if (size == 0) /* handle degenerate case */ 1725 return (0); 1726 1727 first_bit = base >> DEV_BSHIFT; 1728 last_bit = (base + size - 1) >> DEV_BSHIFT; 1729 1730 return ((2 << last_bit) - (1 << first_bit)); 1731 } 1732 1733 /* 1734 * vm_page_set_validclean: 1735 * 1736 * Sets portions of a page valid and clean. The arguments are expected 1737 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1738 * of any partial chunks touched by the range. The invalid portion of 1739 * such chunks will be zero'd. 1740 * 1741 * This routine may not block. 1742 * 1743 * (base + size) must be less then or equal to PAGE_SIZE. 1744 */ 1745 void 1746 vm_page_set_validclean(vm_page_t m, int base, int size) 1747 { 1748 int pagebits; 1749 int frag; 1750 int endoff; 1751 1752 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1753 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1754 if (size == 0) /* handle degenerate case */ 1755 return; 1756 1757 /* 1758 * If the base is not DEV_BSIZE aligned and the valid 1759 * bit is clear, we have to zero out a portion of the 1760 * first block. 1761 */ 1762 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1763 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1764 pmap_zero_page_area(m, frag, base - frag); 1765 1766 /* 1767 * If the ending offset is not DEV_BSIZE aligned and the 1768 * valid bit is clear, we have to zero out a portion of 1769 * the last block. 1770 */ 1771 endoff = base + size; 1772 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1773 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1774 pmap_zero_page_area(m, endoff, 1775 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1776 1777 /* 1778 * Set valid, clear dirty bits. If validating the entire 1779 * page we can safely clear the pmap modify bit. We also 1780 * use this opportunity to clear the VPO_NOSYNC flag. If a process 1781 * takes a write fault on a MAP_NOSYNC memory area the flag will 1782 * be set again. 1783 * 1784 * We set valid bits inclusive of any overlap, but we can only 1785 * clear dirty bits for DEV_BSIZE chunks that are fully within 1786 * the range. 1787 */ 1788 pagebits = vm_page_bits(base, size); 1789 m->valid |= pagebits; 1790 #if 0 /* NOT YET */ 1791 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1792 frag = DEV_BSIZE - frag; 1793 base += frag; 1794 size -= frag; 1795 if (size < 0) 1796 size = 0; 1797 } 1798 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1799 #endif 1800 m->dirty &= ~pagebits; 1801 if (base == 0 && size == PAGE_SIZE) { 1802 pmap_clear_modify(m); 1803 m->oflags &= ~VPO_NOSYNC; 1804 } 1805 } 1806 1807 void 1808 vm_page_clear_dirty(vm_page_t m, int base, int size) 1809 { 1810 1811 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1812 m->dirty &= ~vm_page_bits(base, size); 1813 } 1814 1815 /* 1816 * vm_page_set_invalid: 1817 * 1818 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1819 * valid and dirty bits for the effected areas are cleared. 1820 * 1821 * May not block. 1822 */ 1823 void 1824 vm_page_set_invalid(vm_page_t m, int base, int size) 1825 { 1826 int bits; 1827 1828 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1829 bits = vm_page_bits(base, size); 1830 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1831 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 1832 pmap_remove_all(m); 1833 m->valid &= ~bits; 1834 m->dirty &= ~bits; 1835 m->object->generation++; 1836 } 1837 1838 /* 1839 * vm_page_zero_invalid() 1840 * 1841 * The kernel assumes that the invalid portions of a page contain 1842 * garbage, but such pages can be mapped into memory by user code. 1843 * When this occurs, we must zero out the non-valid portions of the 1844 * page so user code sees what it expects. 1845 * 1846 * Pages are most often semi-valid when the end of a file is mapped 1847 * into memory and the file's size is not page aligned. 1848 */ 1849 void 1850 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1851 { 1852 int b; 1853 int i; 1854 1855 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1856 /* 1857 * Scan the valid bits looking for invalid sections that 1858 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1859 * valid bit may be set ) have already been zerod by 1860 * vm_page_set_validclean(). 1861 */ 1862 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1863 if (i == (PAGE_SIZE / DEV_BSIZE) || 1864 (m->valid & (1 << i)) 1865 ) { 1866 if (i > b) { 1867 pmap_zero_page_area(m, 1868 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1869 } 1870 b = i + 1; 1871 } 1872 } 1873 1874 /* 1875 * setvalid is TRUE when we can safely set the zero'd areas 1876 * as being valid. We can do this if there are no cache consistancy 1877 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1878 */ 1879 if (setvalid) 1880 m->valid = VM_PAGE_BITS_ALL; 1881 } 1882 1883 /* 1884 * vm_page_is_valid: 1885 * 1886 * Is (partial) page valid? Note that the case where size == 0 1887 * will return FALSE in the degenerate case where the page is 1888 * entirely invalid, and TRUE otherwise. 1889 * 1890 * May not block. 1891 */ 1892 int 1893 vm_page_is_valid(vm_page_t m, int base, int size) 1894 { 1895 int bits = vm_page_bits(base, size); 1896 1897 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1898 if (m->valid && ((m->valid & bits) == bits)) 1899 return 1; 1900 else 1901 return 0; 1902 } 1903 1904 /* 1905 * update dirty bits from pmap/mmu. May not block. 1906 */ 1907 void 1908 vm_page_test_dirty(vm_page_t m) 1909 { 1910 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1911 vm_page_dirty(m); 1912 } 1913 } 1914 1915 int so_zerocp_fullpage = 0; 1916 1917 /* 1918 * Replace the given page with a copy. The copied page assumes 1919 * the portion of the given page's "wire_count" that is not the 1920 * responsibility of this copy-on-write mechanism. 1921 * 1922 * The object containing the given page must have a non-zero 1923 * paging-in-progress count and be locked. 1924 */ 1925 void 1926 vm_page_cowfault(vm_page_t m) 1927 { 1928 vm_page_t mnew; 1929 vm_object_t object; 1930 vm_pindex_t pindex; 1931 1932 object = m->object; 1933 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1934 KASSERT(object->paging_in_progress != 0, 1935 ("vm_page_cowfault: object %p's paging-in-progress count is zero.", 1936 object)); 1937 pindex = m->pindex; 1938 1939 retry_alloc: 1940 pmap_remove_all(m); 1941 vm_page_remove(m); 1942 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 1943 if (mnew == NULL) { 1944 vm_page_insert(m, object, pindex); 1945 vm_page_unlock_queues(); 1946 VM_OBJECT_UNLOCK(object); 1947 VM_WAIT; 1948 VM_OBJECT_LOCK(object); 1949 if (m == vm_page_lookup(object, pindex)) { 1950 vm_page_lock_queues(); 1951 goto retry_alloc; 1952 } else { 1953 /* 1954 * Page disappeared during the wait. 1955 */ 1956 vm_page_lock_queues(); 1957 return; 1958 } 1959 } 1960 1961 if (m->cow == 0) { 1962 /* 1963 * check to see if we raced with an xmit complete when 1964 * waiting to allocate a page. If so, put things back 1965 * the way they were 1966 */ 1967 vm_page_free(mnew); 1968 vm_page_insert(m, object, pindex); 1969 } else { /* clear COW & copy page */ 1970 if (!so_zerocp_fullpage) 1971 pmap_copy_page(m, mnew); 1972 mnew->valid = VM_PAGE_BITS_ALL; 1973 vm_page_dirty(mnew); 1974 mnew->wire_count = m->wire_count - m->cow; 1975 m->wire_count = m->cow; 1976 } 1977 } 1978 1979 void 1980 vm_page_cowclear(vm_page_t m) 1981 { 1982 1983 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1984 if (m->cow) { 1985 m->cow--; 1986 /* 1987 * let vm_fault add back write permission lazily 1988 */ 1989 } 1990 /* 1991 * sf_buf_free() will free the page, so we needn't do it here 1992 */ 1993 } 1994 1995 void 1996 vm_page_cowsetup(vm_page_t m) 1997 { 1998 1999 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2000 m->cow++; 2001 pmap_remove_write(m); 2002 } 2003 2004 #include "opt_ddb.h" 2005 #ifdef DDB 2006 #include <sys/kernel.h> 2007 2008 #include <ddb/ddb.h> 2009 2010 DB_SHOW_COMMAND(page, vm_page_print_page_info) 2011 { 2012 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 2013 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 2014 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 2015 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 2016 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 2017 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 2018 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 2019 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 2020 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 2021 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 2022 } 2023 2024 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 2025 { 2026 2027 db_printf("PQ_FREE:"); 2028 db_printf(" %d", cnt.v_free_count); 2029 db_printf("\n"); 2030 2031 db_printf("PQ_CACHE:"); 2032 db_printf(" %d", cnt.v_cache_count); 2033 db_printf("\n"); 2034 2035 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 2036 *vm_page_queues[PQ_ACTIVE].cnt, 2037 *vm_page_queues[PQ_INACTIVE].cnt); 2038 } 2039 #endif /* DDB */ 2040