xref: /freebsd/sys/vm/vm_page.c (revision eacee0ff7ec955b32e09515246bd97b6edcd2b0f)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 
122 /*
123  *	Associated with page of user-allocatable memory is a
124  *	page structure.
125  */
126 
127 static struct vm_page **vm_page_buckets; /* Array of buckets */
128 static int vm_page_bucket_count;	/* How big is array? */
129 static int vm_page_hash_mask;		/* Mask for hash function */
130 static volatile int vm_page_bucket_generation;
131 static struct mtx vm_buckets_mtx[BUCKET_HASH_SIZE];
132 
133 vm_page_t vm_page_array = 0;
134 int vm_page_array_size = 0;
135 long first_page = 0;
136 int vm_page_zero_count = 0;
137 
138 /*
139  *	vm_set_page_size:
140  *
141  *	Sets the page size, perhaps based upon the memory
142  *	size.  Must be called before any use of page-size
143  *	dependent functions.
144  */
145 void
146 vm_set_page_size(void)
147 {
148 	if (cnt.v_page_size == 0)
149 		cnt.v_page_size = PAGE_SIZE;
150 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
151 		panic("vm_set_page_size: page size not a power of two");
152 }
153 
154 /*
155  *	vm_page_startup:
156  *
157  *	Initializes the resident memory module.
158  *
159  *	Allocates memory for the page cells, and
160  *	for the object/offset-to-page hash table headers.
161  *	Each page cell is initialized and placed on the free list.
162  */
163 
164 vm_offset_t
165 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166 {
167 	vm_offset_t mapped;
168 	struct vm_page **bucket;
169 	vm_size_t npages, page_range;
170 	vm_offset_t new_end;
171 	int i;
172 	vm_offset_t pa;
173 	int nblocks;
174 	vm_offset_t last_pa;
175 
176 	/* the biggest memory array is the second group of pages */
177 	vm_offset_t end;
178 	vm_offset_t biggestone, biggestsize;
179 
180 	vm_offset_t total;
181 
182 	total = 0;
183 	biggestsize = 0;
184 	biggestone = 0;
185 	nblocks = 0;
186 	vaddr = round_page(vaddr);
187 
188 	for (i = 0; phys_avail[i + 1]; i += 2) {
189 		phys_avail[i] = round_page(phys_avail[i]);
190 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
191 	}
192 
193 	for (i = 0; phys_avail[i + 1]; i += 2) {
194 		int size = phys_avail[i + 1] - phys_avail[i];
195 
196 		if (size > biggestsize) {
197 			biggestone = i;
198 			biggestsize = size;
199 		}
200 		++nblocks;
201 		total += size;
202 	}
203 
204 	end = phys_avail[biggestone+1];
205 
206 	/*
207 	 * Initialize the queue headers for the free queue, the active queue
208 	 * and the inactive queue.
209 	 */
210 
211 	vm_pageq_init();
212 
213 	/*
214 	 * Allocate (and initialize) the hash table buckets.
215 	 *
216 	 * The number of buckets MUST BE a power of 2, and the actual value is
217 	 * the next power of 2 greater than the number of physical pages in
218 	 * the system.
219 	 *
220 	 * We make the hash table approximately 2x the number of pages to
221 	 * reduce the chain length.  This is about the same size using the
222 	 * singly-linked list as the 1x hash table we were using before
223 	 * using TAILQ but the chain length will be smaller.
224 	 *
225 	 * Note: This computation can be tweaked if desired.
226 	 */
227 	if (vm_page_bucket_count == 0) {
228 		vm_page_bucket_count = 1;
229 		while (vm_page_bucket_count < atop(total))
230 			vm_page_bucket_count <<= 1;
231 	}
232 	vm_page_bucket_count <<= 1;
233 	vm_page_hash_mask = vm_page_bucket_count - 1;
234 
235 	/*
236 	 * Validate these addresses.
237 	 */
238 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
239 	new_end = trunc_page(new_end);
240 	mapped = pmap_map(&vaddr, new_end, end,
241 	    VM_PROT_READ | VM_PROT_WRITE);
242 	bzero((caddr_t) mapped, end - new_end);
243 
244 	vm_page_buckets = (struct vm_page **)mapped;
245 	bucket = vm_page_buckets;
246 	for (i = 0; i < vm_page_bucket_count; i++) {
247 		*bucket = NULL;
248 		bucket++;
249 	}
250 	for (i = 0; i < BUCKET_HASH_SIZE; ++i)
251 		mtx_init(&vm_buckets_mtx[i],  "vm buckets hash mutexes", MTX_DEF);
252 
253 	/*
254 	 * Compute the number of pages of memory that will be available for
255 	 * use (taking into account the overhead of a page structure per
256 	 * page).
257 	 */
258 
259 	first_page = phys_avail[0] / PAGE_SIZE;
260 
261 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
262 	npages = (total - (page_range * sizeof(struct vm_page)) -
263 	    (end - new_end)) / PAGE_SIZE;
264 
265 	end = new_end;
266 
267 	/*
268 	 * Initialize the mem entry structures now, and put them in the free
269 	 * queue.
270 	 */
271 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
272 	mapped = pmap_map(&vaddr, new_end, end,
273 	    VM_PROT_READ | VM_PROT_WRITE);
274 	vm_page_array = (vm_page_t) mapped;
275 
276 	/*
277 	 * Clear all of the page structures
278 	 */
279 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
280 	vm_page_array_size = page_range;
281 
282 	/*
283 	 * Construct the free queue(s) in descending order (by physical
284 	 * address) so that the first 16MB of physical memory is allocated
285 	 * last rather than first.  On large-memory machines, this avoids
286 	 * the exhaustion of low physical memory before isa_dmainit has run.
287 	 */
288 	cnt.v_page_count = 0;
289 	cnt.v_free_count = 0;
290 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
291 		pa = phys_avail[i];
292 		if (i == biggestone)
293 			last_pa = new_end;
294 		else
295 			last_pa = phys_avail[i + 1];
296 		while (pa < last_pa && npages-- > 0) {
297 			vm_pageq_add_new_page(pa);
298 			pa += PAGE_SIZE;
299 		}
300 	}
301 	return (vaddr);
302 }
303 
304 /*
305  *	vm_page_hash:
306  *
307  *	Distributes the object/offset key pair among hash buckets.
308  *
309  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
310  *	This routine may not block.
311  *
312  *	We try to randomize the hash based on the object to spread the pages
313  *	out in the hash table without it costing us too much.
314  */
315 static __inline int
316 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
317 {
318 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
319 
320 	return(i & vm_page_hash_mask);
321 }
322 
323 void
324 vm_page_flag_set(vm_page_t m, unsigned short bits)
325 {
326 	GIANT_REQUIRED;
327 	m->flags |= bits;
328 }
329 
330 void
331 vm_page_flag_clear(vm_page_t m, unsigned short bits)
332 {
333 	GIANT_REQUIRED;
334 	m->flags &= ~bits;
335 }
336 
337 void
338 vm_page_busy(vm_page_t m)
339 {
340 	KASSERT((m->flags & PG_BUSY) == 0,
341 	    ("vm_page_busy: page already busy!!!"));
342 	vm_page_flag_set(m, PG_BUSY);
343 }
344 
345 /*
346  *      vm_page_flash:
347  *
348  *      wakeup anyone waiting for the page.
349  */
350 
351 void
352 vm_page_flash(vm_page_t m)
353 {
354 	if (m->flags & PG_WANTED) {
355 		vm_page_flag_clear(m, PG_WANTED);
356 		wakeup(m);
357 	}
358 }
359 
360 /*
361  *      vm_page_wakeup:
362  *
363  *      clear the PG_BUSY flag and wakeup anyone waiting for the
364  *      page.
365  *
366  */
367 
368 void
369 vm_page_wakeup(vm_page_t m)
370 {
371 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
372 	vm_page_flag_clear(m, PG_BUSY);
373 	vm_page_flash(m);
374 }
375 
376 /*
377  *
378  *
379  */
380 
381 void
382 vm_page_io_start(vm_page_t m)
383 {
384 	GIANT_REQUIRED;
385 	m->busy++;
386 }
387 
388 void
389 vm_page_io_finish(vm_page_t m)
390 {
391 	GIANT_REQUIRED;
392 	m->busy--;
393 	if (m->busy == 0)
394 		vm_page_flash(m);
395 }
396 
397 /*
398  * Keep page from being freed by the page daemon
399  * much of the same effect as wiring, except much lower
400  * overhead and should be used only for *very* temporary
401  * holding ("wiring").
402  */
403 void
404 vm_page_hold(vm_page_t mem)
405 {
406         GIANT_REQUIRED;
407         mem->hold_count++;
408 }
409 
410 void
411 vm_page_unhold(vm_page_t mem)
412 {
413 	GIANT_REQUIRED;
414 	--mem->hold_count;
415 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
416 }
417 
418 /*
419  *	vm_page_protect:
420  *
421  *	Reduce the protection of a page.  This routine never raises the
422  *	protection and therefore can be safely called if the page is already
423  *	at VM_PROT_NONE (it will be a NOP effectively ).
424  */
425 
426 void
427 vm_page_protect(vm_page_t mem, int prot)
428 {
429 	if (prot == VM_PROT_NONE) {
430 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
431 			pmap_page_protect(mem, VM_PROT_NONE);
432 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
433 		}
434 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
435 		pmap_page_protect(mem, VM_PROT_READ);
436 		vm_page_flag_clear(mem, PG_WRITEABLE);
437 	}
438 }
439 /*
440  *	vm_page_zero_fill:
441  *
442  *	Zero-fill the specified page.
443  *	Written as a standard pagein routine, to
444  *	be used by the zero-fill object.
445  */
446 boolean_t
447 vm_page_zero_fill(vm_page_t m)
448 {
449 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
450 	return (TRUE);
451 }
452 
453 /*
454  *	vm_page_copy:
455  *
456  *	Copy one page to another
457  */
458 void
459 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
460 {
461 	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
462 	dest_m->valid = VM_PAGE_BITS_ALL;
463 }
464 
465 /*
466  *	vm_page_free:
467  *
468  *	Free a page
469  *
470  *	The clearing of PG_ZERO is a temporary safety until the code can be
471  *	reviewed to determine that PG_ZERO is being properly cleared on
472  *	write faults or maps.  PG_ZERO was previously cleared in
473  *	vm_page_alloc().
474  */
475 void
476 vm_page_free(vm_page_t m)
477 {
478 	vm_page_flag_clear(m, PG_ZERO);
479 	vm_page_free_toq(m);
480 	vm_page_zero_idle_wakeup();
481 }
482 
483 /*
484  *	vm_page_free_zero:
485  *
486  *	Free a page to the zerod-pages queue
487  */
488 void
489 vm_page_free_zero(vm_page_t m)
490 {
491 	vm_page_flag_set(m, PG_ZERO);
492 	vm_page_free_toq(m);
493 }
494 
495 /*
496  *	vm_page_sleep_busy:
497  *
498  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
499  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
500  *	it almost had to sleep and made temporary spl*() mods), FALSE
501  *	otherwise.
502  *
503  *	This routine assumes that interrupts can only remove the busy
504  *	status from a page, not set the busy status or change it from
505  *	PG_BUSY to m->busy or vise versa (which would create a timing
506  *	window).
507  */
508 
509 int
510 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
511 {
512 	GIANT_REQUIRED;
513 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
514 		int s = splvm();
515 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
516 			/*
517 			 * Page is busy. Wait and retry.
518 			 */
519 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
520 			tsleep(m, PVM, msg, 0);
521 		}
522 		splx(s);
523 		return(TRUE);
524 		/* not reached */
525 	}
526 	return(FALSE);
527 }
528 /*
529  *	vm_page_dirty:
530  *
531  *	make page all dirty
532  */
533 
534 void
535 vm_page_dirty(vm_page_t m)
536 {
537 	KASSERT(m->queue - m->pc != PQ_CACHE,
538 	    ("vm_page_dirty: page in cache!"));
539 	m->dirty = VM_PAGE_BITS_ALL;
540 }
541 
542 /*
543  *	vm_page_undirty:
544  *
545  *	Set page to not be dirty.  Note: does not clear pmap modify bits
546  */
547 
548 void
549 vm_page_undirty(vm_page_t m)
550 {
551 	m->dirty = 0;
552 }
553 
554 /*
555  *	vm_page_insert:		[ internal use only ]
556  *
557  *	Inserts the given mem entry into the object and object list.
558  *
559  *	The pagetables are not updated but will presumably fault the page
560  *	in if necessary, or if a kernel page the caller will at some point
561  *	enter the page into the kernel's pmap.  We are not allowed to block
562  *	here so we *can't* do this anyway.
563  *
564  *	The object and page must be locked, and must be splhigh.
565  *	This routine may not block.
566  */
567 
568 void
569 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
570 {
571 	struct vm_page **bucket;
572 
573 	GIANT_REQUIRED;
574 
575 	if (m->object != NULL)
576 		panic("vm_page_insert: already inserted");
577 
578 	/*
579 	 * Record the object/offset pair in this page
580 	 */
581 
582 	m->object = object;
583 	m->pindex = pindex;
584 
585 	/*
586 	 * Insert it into the object_object/offset hash table
587 	 */
588 
589 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
590 	m->hnext = *bucket;
591 	*bucket = m;
592 	vm_page_bucket_generation++;
593 
594 	/*
595 	 * Now link into the object's list of backed pages.
596 	 */
597 
598 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
599 	object->generation++;
600 
601 	/*
602 	 * show that the object has one more resident page.
603 	 */
604 
605 	object->resident_page_count++;
606 
607 	/*
608 	 * Since we are inserting a new and possibly dirty page,
609 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
610 	 */
611 	if (m->flags & PG_WRITEABLE)
612 		vm_object_set_writeable_dirty(object);
613 }
614 
615 /*
616  *	vm_page_remove:
617  *				NOTE: used by device pager as well -wfj
618  *
619  *	Removes the given mem entry from the object/offset-page
620  *	table and the object page list, but do not invalidate/terminate
621  *	the backing store.
622  *
623  *	The object and page must be locked, and at splhigh.
624  *	The underlying pmap entry (if any) is NOT removed here.
625  *	This routine may not block.
626  */
627 
628 void
629 vm_page_remove(vm_page_t m)
630 {
631 	vm_object_t object;
632 
633 	GIANT_REQUIRED;
634 
635 	if (m->object == NULL)
636 		return;
637 
638 	if ((m->flags & PG_BUSY) == 0) {
639 		panic("vm_page_remove: page not busy");
640 	}
641 
642 	/*
643 	 * Basically destroy the page.
644 	 */
645 
646 	vm_page_wakeup(m);
647 
648 	object = m->object;
649 
650 	/*
651 	 * Remove from the object_object/offset hash table.  The object
652 	 * must be on the hash queue, we will panic if it isn't
653 	 *
654 	 * Note: we must NULL-out m->hnext to prevent loops in detached
655 	 * buffers with vm_page_lookup().
656 	 */
657 
658 	{
659 		struct vm_page **bucket;
660 
661 		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
662 		while (*bucket != m) {
663 			if (*bucket == NULL)
664 				panic("vm_page_remove(): page not found in hash");
665 			bucket = &(*bucket)->hnext;
666 		}
667 		*bucket = m->hnext;
668 		m->hnext = NULL;
669 		vm_page_bucket_generation++;
670 	}
671 
672 	/*
673 	 * Now remove from the object's list of backed pages.
674 	 */
675 
676 	TAILQ_REMOVE(&object->memq, m, listq);
677 
678 	/*
679 	 * And show that the object has one fewer resident page.
680 	 */
681 
682 	object->resident_page_count--;
683 	object->generation++;
684 
685 	m->object = NULL;
686 }
687 
688 /*
689  *	vm_page_lookup:
690  *
691  *	Returns the page associated with the object/offset
692  *	pair specified; if none is found, NULL is returned.
693  *
694  *	NOTE: the code below does not lock.  It will operate properly if
695  *	an interrupt makes a change, but the generation algorithm will not
696  *	operate properly in an SMP environment where both cpu's are able to run
697  *	kernel code simultaneously.
698  *
699  *	The object must be locked.  No side effects.
700  *	This routine may not block.
701  *	This is a critical path routine
702  */
703 
704 vm_page_t
705 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
706 {
707 	vm_page_t m;
708 	struct vm_page **bucket;
709 	int generation;
710 
711 	/*
712 	 * Search the hash table for this object/offset pair
713 	 */
714 
715 retry:
716 	generation = vm_page_bucket_generation;
717 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
718 	for (m = *bucket; m != NULL; m = m->hnext) {
719 		if ((m->object == object) && (m->pindex == pindex)) {
720 			if (vm_page_bucket_generation != generation)
721 				goto retry;
722 			return (m);
723 		}
724 	}
725 	if (vm_page_bucket_generation != generation)
726 		goto retry;
727 	return (NULL);
728 }
729 
730 /*
731  *	vm_page_rename:
732  *
733  *	Move the given memory entry from its
734  *	current object to the specified target object/offset.
735  *
736  *	The object must be locked.
737  *	This routine may not block.
738  *
739  *	Note: this routine will raise itself to splvm(), the caller need not.
740  *
741  *	Note: swap associated with the page must be invalidated by the move.  We
742  *	      have to do this for several reasons:  (1) we aren't freeing the
743  *	      page, (2) we are dirtying the page, (3) the VM system is probably
744  *	      moving the page from object A to B, and will then later move
745  *	      the backing store from A to B and we can't have a conflict.
746  *
747  *	Note: we *always* dirty the page.  It is necessary both for the
748  *	      fact that we moved it, and because we may be invalidating
749  *	      swap.  If the page is on the cache, we have to deactivate it
750  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
751  *	      on the cache.
752  */
753 
754 void
755 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
756 {
757 	int s;
758 
759 	s = splvm();
760 	vm_page_remove(m);
761 	vm_page_insert(m, new_object, new_pindex);
762 	if (m->queue - m->pc == PQ_CACHE)
763 		vm_page_deactivate(m);
764 	vm_page_dirty(m);
765 	splx(s);
766 }
767 
768 /*
769  *	vm_page_select_cache:
770  *
771  *	Find a page on the cache queue with color optimization.  As pages
772  *	might be found, but not applicable, they are deactivated.  This
773  *	keeps us from using potentially busy cached pages.
774  *
775  *	This routine must be called at splvm().
776  *	This routine may not block.
777  */
778 static vm_page_t
779 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
780 {
781 	vm_page_t m;
782 
783 	GIANT_REQUIRED;
784 	while (TRUE) {
785 		m = vm_pageq_find(
786 		    PQ_CACHE,
787 		    (pindex + object->pg_color) & PQ_L2_MASK,
788 		    FALSE
789 		);
790 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
791 			       m->hold_count || m->wire_count)) {
792 			vm_page_deactivate(m);
793 			continue;
794 		}
795 		return m;
796 	}
797 }
798 
799 /*
800  *	vm_page_select_free:
801  *
802  *	Find a free or zero page, with specified preference.
803  *
804  *	This routine must be called at splvm().
805  *	This routine may not block.
806  */
807 
808 static __inline vm_page_t
809 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
810 {
811 	vm_page_t m;
812 
813 	m = vm_pageq_find(
814 		PQ_FREE,
815 		(pindex + object->pg_color) & PQ_L2_MASK,
816 		prefer_zero
817 	);
818 	return(m);
819 }
820 
821 /*
822  *	vm_page_alloc:
823  *
824  *	Allocate and return a memory cell associated
825  *	with this VM object/offset pair.
826  *
827  *	page_req classes:
828  *	VM_ALLOC_NORMAL		normal process request
829  *	VM_ALLOC_SYSTEM		system *really* needs a page
830  *	VM_ALLOC_INTERRUPT	interrupt time request
831  *	VM_ALLOC_ZERO		zero page
832  *
833  *	This routine may not block.
834  *
835  *	Additional special handling is required when called from an
836  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
837  *	the page cache in this case.
838  */
839 
840 vm_page_t
841 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
842 {
843 	vm_page_t m = NULL;
844 	int s;
845 
846 	GIANT_REQUIRED;
847 
848 	KASSERT(!vm_page_lookup(object, pindex),
849 		("vm_page_alloc: page already allocated"));
850 
851 	/*
852 	 * The pager is allowed to eat deeper into the free page list.
853 	 */
854 
855 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
856 		page_req = VM_ALLOC_SYSTEM;
857 	};
858 
859 	s = splvm();
860 
861 loop:
862 	if (cnt.v_free_count > cnt.v_free_reserved) {
863 		/*
864 		 * Allocate from the free queue if there are plenty of pages
865 		 * in it.
866 		 */
867 		if (page_req == VM_ALLOC_ZERO)
868 			m = vm_page_select_free(object, pindex, TRUE);
869 		else
870 			m = vm_page_select_free(object, pindex, FALSE);
871 	} else if (
872 	    (page_req == VM_ALLOC_SYSTEM &&
873 	     cnt.v_cache_count == 0 &&
874 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
875 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
876 	) {
877 		/*
878 		 * Interrupt or system, dig deeper into the free list.
879 		 */
880 		m = vm_page_select_free(object, pindex, FALSE);
881 	} else if (page_req != VM_ALLOC_INTERRUPT) {
882 		/*
883 		 * Allocatable from cache (non-interrupt only).  On success,
884 		 * we must free the page and try again, thus ensuring that
885 		 * cnt.v_*_free_min counters are replenished.
886 		 */
887 		m = vm_page_select_cache(object, pindex);
888 		if (m == NULL) {
889 			splx(s);
890 #if defined(DIAGNOSTIC)
891 			if (cnt.v_cache_count > 0)
892 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
893 #endif
894 			vm_pageout_deficit++;
895 			pagedaemon_wakeup();
896 			return (NULL);
897 		}
898 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
899 		vm_page_busy(m);
900 		vm_page_protect(m, VM_PROT_NONE);
901 		vm_page_free(m);
902 		goto loop;
903 	} else {
904 		/*
905 		 * Not allocatable from cache from interrupt, give up.
906 		 */
907 		splx(s);
908 		vm_pageout_deficit++;
909 		pagedaemon_wakeup();
910 		return (NULL);
911 	}
912 
913 	/*
914 	 *  At this point we had better have found a good page.
915 	 */
916 
917 	KASSERT(
918 	    m != NULL,
919 	    ("vm_page_alloc(): missing page on free queue\n")
920 	);
921 
922 	/*
923 	 * Remove from free queue
924 	 */
925 
926 	vm_pageq_remove_nowakeup(m);
927 
928 	/*
929 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
930 	 */
931 
932 	if (m->flags & PG_ZERO) {
933 		vm_page_zero_count--;
934 		m->flags = PG_ZERO | PG_BUSY;
935 	} else {
936 		m->flags = PG_BUSY;
937 	}
938 	m->wire_count = 0;
939 	m->hold_count = 0;
940 	m->act_count = 0;
941 	m->busy = 0;
942 	m->valid = 0;
943 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
944 
945 	/*
946 	 * vm_page_insert() is safe prior to the splx().  Note also that
947 	 * inserting a page here does not insert it into the pmap (which
948 	 * could cause us to block allocating memory).  We cannot block
949 	 * anywhere.
950 	 */
951 
952 	vm_page_insert(m, object, pindex);
953 
954 	/*
955 	 * Don't wakeup too often - wakeup the pageout daemon when
956 	 * we would be nearly out of memory.
957 	 */
958 	if (vm_paging_needed())
959 		pagedaemon_wakeup();
960 
961 	splx(s);
962 
963 	return (m);
964 }
965 
966 /*
967  *	vm_wait:	(also see VM_WAIT macro)
968  *
969  *	Block until free pages are available for allocation
970  */
971 
972 void
973 vm_wait(void)
974 {
975 	int s;
976 
977 	s = splvm();
978 	if (curproc == pageproc) {
979 		vm_pageout_pages_needed = 1;
980 		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
981 	} else {
982 		if (!vm_pages_needed) {
983 			vm_pages_needed = 1;
984 			wakeup(&vm_pages_needed);
985 		}
986 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
987 	}
988 	splx(s);
989 }
990 
991 /*
992  *	vm_page_activate:
993  *
994  *	Put the specified page on the active list (if appropriate).
995  *	Ensure that act_count is at least ACT_INIT but do not otherwise
996  *	mess with it.
997  *
998  *	The page queues must be locked.
999  *	This routine may not block.
1000  */
1001 void
1002 vm_page_activate(vm_page_t m)
1003 {
1004 	int s;
1005 
1006 	GIANT_REQUIRED;
1007 	s = splvm();
1008 
1009 	if (m->queue != PQ_ACTIVE) {
1010 		if ((m->queue - m->pc) == PQ_CACHE)
1011 			cnt.v_reactivated++;
1012 
1013 		vm_pageq_remove(m);
1014 
1015 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1016 			m->queue = PQ_ACTIVE;
1017 			vm_page_queues[PQ_ACTIVE].lcnt++;
1018 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1019 			if (m->act_count < ACT_INIT)
1020 				m->act_count = ACT_INIT;
1021 			cnt.v_active_count++;
1022 		}
1023 	} else {
1024 		if (m->act_count < ACT_INIT)
1025 			m->act_count = ACT_INIT;
1026 	}
1027 
1028 	splx(s);
1029 }
1030 
1031 /*
1032  *	vm_page_free_wakeup:
1033  *
1034  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1035  *	routine is called when a page has been added to the cache or free
1036  *	queues.
1037  *
1038  *	This routine may not block.
1039  *	This routine must be called at splvm()
1040  */
1041 static __inline void
1042 vm_page_free_wakeup(void)
1043 {
1044 	/*
1045 	 * if pageout daemon needs pages, then tell it that there are
1046 	 * some free.
1047 	 */
1048 	if (vm_pageout_pages_needed &&
1049 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1050 		wakeup(&vm_pageout_pages_needed);
1051 		vm_pageout_pages_needed = 0;
1052 	}
1053 	/*
1054 	 * wakeup processes that are waiting on memory if we hit a
1055 	 * high water mark. And wakeup scheduler process if we have
1056 	 * lots of memory. this process will swapin processes.
1057 	 */
1058 	if (vm_pages_needed && !vm_page_count_min()) {
1059 		vm_pages_needed = 0;
1060 		wakeup(&cnt.v_free_count);
1061 	}
1062 }
1063 
1064 /*
1065  *	vm_page_free_toq:
1066  *
1067  *	Returns the given page to the PQ_FREE list,
1068  *	disassociating it with any VM object.
1069  *
1070  *	Object and page must be locked prior to entry.
1071  *	This routine may not block.
1072  */
1073 
1074 void
1075 vm_page_free_toq(vm_page_t m)
1076 {
1077 	int s;
1078 	struct vpgqueues *pq;
1079 	vm_object_t object = m->object;
1080 
1081 	GIANT_REQUIRED;
1082 	s = splvm();
1083 	cnt.v_tfree++;
1084 
1085 	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1086 		(m->hold_count != 0)) {
1087 		printf(
1088 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1089 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1090 		    m->hold_count);
1091 		if ((m->queue - m->pc) == PQ_FREE)
1092 			panic("vm_page_free: freeing free page");
1093 		else
1094 			panic("vm_page_free: freeing busy page");
1095 	}
1096 
1097 	/*
1098 	 * unqueue, then remove page.  Note that we cannot destroy
1099 	 * the page here because we do not want to call the pager's
1100 	 * callback routine until after we've put the page on the
1101 	 * appropriate free queue.
1102 	 */
1103 
1104 	vm_pageq_remove_nowakeup(m);
1105 	vm_page_remove(m);
1106 
1107 	/*
1108 	 * If fictitious remove object association and
1109 	 * return, otherwise delay object association removal.
1110 	 */
1111 
1112 	if ((m->flags & PG_FICTITIOUS) != 0) {
1113 		splx(s);
1114 		return;
1115 	}
1116 
1117 	m->valid = 0;
1118 	vm_page_undirty(m);
1119 
1120 	if (m->wire_count != 0) {
1121 		if (m->wire_count > 1) {
1122 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1123 				m->wire_count, (long)m->pindex);
1124 		}
1125 		panic("vm_page_free: freeing wired page\n");
1126 	}
1127 
1128 	/*
1129 	 * If we've exhausted the object's resident pages we want to free
1130 	 * it up.
1131 	 */
1132 
1133 	if (object &&
1134 	    (object->type == OBJT_VNODE) &&
1135 	    ((object->flags & OBJ_DEAD) == 0)
1136 	) {
1137 		struct vnode *vp = (struct vnode *)object->handle;
1138 
1139 		if (vp && VSHOULDFREE(vp))
1140 			vfree(vp);
1141 	}
1142 
1143 	/*
1144 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1145 	 */
1146 
1147 	if (m->flags & PG_UNMANAGED) {
1148 	    m->flags &= ~PG_UNMANAGED;
1149 	} else {
1150 #ifdef __alpha__
1151 	    pmap_page_is_free(m);
1152 #endif
1153 	}
1154 
1155 	m->queue = PQ_FREE + m->pc;
1156 	pq = &vm_page_queues[m->queue];
1157 	pq->lcnt++;
1158 	++(*pq->cnt);
1159 
1160 	/*
1161 	 * Put zero'd pages on the end ( where we look for zero'd pages
1162 	 * first ) and non-zerod pages at the head.
1163 	 */
1164 
1165 	if (m->flags & PG_ZERO) {
1166 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1167 		++vm_page_zero_count;
1168 	} else {
1169 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1170 	}
1171 
1172 	vm_page_free_wakeup();
1173 
1174 	splx(s);
1175 }
1176 
1177 /*
1178  *	vm_page_unmanage:
1179  *
1180  * 	Prevent PV management from being done on the page.  The page is
1181  *	removed from the paging queues as if it were wired, and as a
1182  *	consequence of no longer being managed the pageout daemon will not
1183  *	touch it (since there is no way to locate the pte mappings for the
1184  *	page).  madvise() calls that mess with the pmap will also no longer
1185  *	operate on the page.
1186  *
1187  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1188  *	will clear the flag.
1189  *
1190  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1191  *	physical memory as backing store rather then swap-backed memory and
1192  *	will eventually be extended to support 4MB unmanaged physical
1193  *	mappings.
1194  */
1195 
1196 void
1197 vm_page_unmanage(vm_page_t m)
1198 {
1199 	int s;
1200 
1201 	s = splvm();
1202 	if ((m->flags & PG_UNMANAGED) == 0) {
1203 		if (m->wire_count == 0)
1204 			vm_pageq_remove(m);
1205 	}
1206 	vm_page_flag_set(m, PG_UNMANAGED);
1207 	splx(s);
1208 }
1209 
1210 /*
1211  *	vm_page_wire:
1212  *
1213  *	Mark this page as wired down by yet
1214  *	another map, removing it from paging queues
1215  *	as necessary.
1216  *
1217  *	The page queues must be locked.
1218  *	This routine may not block.
1219  */
1220 void
1221 vm_page_wire(vm_page_t m)
1222 {
1223 	int s;
1224 
1225 	/*
1226 	 * Only bump the wire statistics if the page is not already wired,
1227 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1228 	 * it is already off the queues).
1229 	 */
1230 	s = splvm();
1231 	if (m->wire_count == 0) {
1232 		if ((m->flags & PG_UNMANAGED) == 0)
1233 			vm_pageq_remove(m);
1234 		cnt.v_wire_count++;
1235 	}
1236 	m->wire_count++;
1237 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1238 	splx(s);
1239 	vm_page_flag_set(m, PG_MAPPED);
1240 }
1241 
1242 /*
1243  *	vm_page_unwire:
1244  *
1245  *	Release one wiring of this page, potentially
1246  *	enabling it to be paged again.
1247  *
1248  *	Many pages placed on the inactive queue should actually go
1249  *	into the cache, but it is difficult to figure out which.  What
1250  *	we do instead, if the inactive target is well met, is to put
1251  *	clean pages at the head of the inactive queue instead of the tail.
1252  *	This will cause them to be moved to the cache more quickly and
1253  *	if not actively re-referenced, freed more quickly.  If we just
1254  *	stick these pages at the end of the inactive queue, heavy filesystem
1255  *	meta-data accesses can cause an unnecessary paging load on memory bound
1256  *	processes.  This optimization causes one-time-use metadata to be
1257  *	reused more quickly.
1258  *
1259  *	BUT, if we are in a low-memory situation we have no choice but to
1260  *	put clean pages on the cache queue.
1261  *
1262  *	A number of routines use vm_page_unwire() to guarantee that the page
1263  *	will go into either the inactive or active queues, and will NEVER
1264  *	be placed in the cache - for example, just after dirtying a page.
1265  *	dirty pages in the cache are not allowed.
1266  *
1267  *	The page queues must be locked.
1268  *	This routine may not block.
1269  */
1270 void
1271 vm_page_unwire(vm_page_t m, int activate)
1272 {
1273 	int s;
1274 
1275 	s = splvm();
1276 
1277 	if (m->wire_count > 0) {
1278 		m->wire_count--;
1279 		if (m->wire_count == 0) {
1280 			cnt.v_wire_count--;
1281 			if (m->flags & PG_UNMANAGED) {
1282 				;
1283 			} else if (activate) {
1284 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1285 				m->queue = PQ_ACTIVE;
1286 				vm_page_queues[PQ_ACTIVE].lcnt++;
1287 				cnt.v_active_count++;
1288 			} else {
1289 				vm_page_flag_clear(m, PG_WINATCFLS);
1290 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1291 				m->queue = PQ_INACTIVE;
1292 				vm_page_queues[PQ_INACTIVE].lcnt++;
1293 				cnt.v_inactive_count++;
1294 			}
1295 		}
1296 	} else {
1297 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1298 	}
1299 	splx(s);
1300 }
1301 
1302 
1303 /*
1304  * Move the specified page to the inactive queue.  If the page has
1305  * any associated swap, the swap is deallocated.
1306  *
1307  * Normally athead is 0 resulting in LRU operation.  athead is set
1308  * to 1 if we want this page to be 'as if it were placed in the cache',
1309  * except without unmapping it from the process address space.
1310  *
1311  * This routine may not block.
1312  */
1313 static __inline void
1314 _vm_page_deactivate(vm_page_t m, int athead)
1315 {
1316 	int s;
1317 
1318 	GIANT_REQUIRED;
1319 	/*
1320 	 * Ignore if already inactive.
1321 	 */
1322 	if (m->queue == PQ_INACTIVE)
1323 		return;
1324 
1325 	s = splvm();
1326 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1327 		if ((m->queue - m->pc) == PQ_CACHE)
1328 			cnt.v_reactivated++;
1329 		vm_page_flag_clear(m, PG_WINATCFLS);
1330 		vm_pageq_remove(m);
1331 		if (athead)
1332 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1333 		else
1334 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1335 		m->queue = PQ_INACTIVE;
1336 		vm_page_queues[PQ_INACTIVE].lcnt++;
1337 		cnt.v_inactive_count++;
1338 	}
1339 	splx(s);
1340 }
1341 
1342 void
1343 vm_page_deactivate(vm_page_t m)
1344 {
1345     _vm_page_deactivate(m, 0);
1346 }
1347 
1348 /*
1349  * vm_page_try_to_cache:
1350  *
1351  * Returns 0 on failure, 1 on success
1352  */
1353 int
1354 vm_page_try_to_cache(vm_page_t m)
1355 {
1356 	GIANT_REQUIRED;
1357 
1358 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1359 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1360 		return(0);
1361 	}
1362 	vm_page_test_dirty(m);
1363 	if (m->dirty)
1364 		return(0);
1365 	vm_page_cache(m);
1366 	return(1);
1367 }
1368 
1369 /*
1370  * vm_page_try_to_free()
1371  *
1372  *	Attempt to free the page.  If we cannot free it, we do nothing.
1373  *	1 is returned on success, 0 on failure.
1374  */
1375 int
1376 vm_page_try_to_free(vm_page_t m)
1377 {
1378 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1379 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1380 		return(0);
1381 	}
1382 	vm_page_test_dirty(m);
1383 	if (m->dirty)
1384 		return(0);
1385 	vm_page_busy(m);
1386 	vm_page_protect(m, VM_PROT_NONE);
1387 	vm_page_free(m);
1388 	return(1);
1389 }
1390 
1391 /*
1392  * vm_page_cache
1393  *
1394  * Put the specified page onto the page cache queue (if appropriate).
1395  *
1396  * This routine may not block.
1397  */
1398 void
1399 vm_page_cache(vm_page_t m)
1400 {
1401 	int s;
1402 
1403 	GIANT_REQUIRED;
1404 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1405 		printf("vm_page_cache: attempting to cache busy page\n");
1406 		return;
1407 	}
1408 	if ((m->queue - m->pc) == PQ_CACHE)
1409 		return;
1410 
1411 	/*
1412 	 * Remove all pmaps and indicate that the page is not
1413 	 * writeable or mapped.
1414 	 */
1415 
1416 	vm_page_protect(m, VM_PROT_NONE);
1417 	if (m->dirty != 0) {
1418 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1419 			(long)m->pindex);
1420 	}
1421 	s = splvm();
1422 	vm_pageq_remove_nowakeup(m);
1423 	m->queue = PQ_CACHE + m->pc;
1424 	vm_page_queues[m->queue].lcnt++;
1425 	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1426 	cnt.v_cache_count++;
1427 	vm_page_free_wakeup();
1428 	splx(s);
1429 }
1430 
1431 /*
1432  * vm_page_dontneed
1433  *
1434  *	Cache, deactivate, or do nothing as appropriate.  This routine
1435  *	is typically used by madvise() MADV_DONTNEED.
1436  *
1437  *	Generally speaking we want to move the page into the cache so
1438  *	it gets reused quickly.  However, this can result in a silly syndrome
1439  *	due to the page recycling too quickly.  Small objects will not be
1440  *	fully cached.  On the otherhand, if we move the page to the inactive
1441  *	queue we wind up with a problem whereby very large objects
1442  *	unnecessarily blow away our inactive and cache queues.
1443  *
1444  *	The solution is to move the pages based on a fixed weighting.  We
1445  *	either leave them alone, deactivate them, or move them to the cache,
1446  *	where moving them to the cache has the highest weighting.
1447  *	By forcing some pages into other queues we eventually force the
1448  *	system to balance the queues, potentially recovering other unrelated
1449  *	space from active.  The idea is to not force this to happen too
1450  *	often.
1451  */
1452 
1453 void
1454 vm_page_dontneed(vm_page_t m)
1455 {
1456 	static int dnweight;
1457 	int dnw;
1458 	int head;
1459 
1460 	GIANT_REQUIRED;
1461 	dnw = ++dnweight;
1462 
1463 	/*
1464 	 * occassionally leave the page alone
1465 	 */
1466 
1467 	if ((dnw & 0x01F0) == 0 ||
1468 	    m->queue == PQ_INACTIVE ||
1469 	    m->queue - m->pc == PQ_CACHE
1470 	) {
1471 		if (m->act_count >= ACT_INIT)
1472 			--m->act_count;
1473 		return;
1474 	}
1475 
1476 	if (m->dirty == 0)
1477 		vm_page_test_dirty(m);
1478 
1479 	if (m->dirty || (dnw & 0x0070) == 0) {
1480 		/*
1481 		 * Deactivate the page 3 times out of 32.
1482 		 */
1483 		head = 0;
1484 	} else {
1485 		/*
1486 		 * Cache the page 28 times out of every 32.  Note that
1487 		 * the page is deactivated instead of cached, but placed
1488 		 * at the head of the queue instead of the tail.
1489 		 */
1490 		head = 1;
1491 	}
1492 	_vm_page_deactivate(m, head);
1493 }
1494 
1495 /*
1496  * Grab a page, waiting until we are waken up due to the page
1497  * changing state.  We keep on waiting, if the page continues
1498  * to be in the object.  If the page doesn't exist, allocate it.
1499  *
1500  * This routine may block.
1501  */
1502 vm_page_t
1503 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1504 {
1505 	vm_page_t m;
1506 	int s, generation;
1507 
1508 	GIANT_REQUIRED;
1509 retrylookup:
1510 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1511 		if (m->busy || (m->flags & PG_BUSY)) {
1512 			generation = object->generation;
1513 
1514 			s = splvm();
1515 			while ((object->generation == generation) &&
1516 					(m->busy || (m->flags & PG_BUSY))) {
1517 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1518 				tsleep(m, PVM, "pgrbwt", 0);
1519 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1520 					splx(s);
1521 					return NULL;
1522 				}
1523 			}
1524 			splx(s);
1525 			goto retrylookup;
1526 		} else {
1527 			vm_page_busy(m);
1528 			return m;
1529 		}
1530 	}
1531 
1532 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1533 	if (m == NULL) {
1534 		VM_WAIT;
1535 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1536 			return NULL;
1537 		goto retrylookup;
1538 	}
1539 
1540 	return m;
1541 }
1542 
1543 /*
1544  * Mapping function for valid bits or for dirty bits in
1545  * a page.  May not block.
1546  *
1547  * Inputs are required to range within a page.
1548  */
1549 
1550 __inline int
1551 vm_page_bits(int base, int size)
1552 {
1553 	int first_bit;
1554 	int last_bit;
1555 
1556 	KASSERT(
1557 	    base + size <= PAGE_SIZE,
1558 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1559 	);
1560 
1561 	if (size == 0)		/* handle degenerate case */
1562 		return(0);
1563 
1564 	first_bit = base >> DEV_BSHIFT;
1565 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1566 
1567 	return ((2 << last_bit) - (1 << first_bit));
1568 }
1569 
1570 /*
1571  *	vm_page_set_validclean:
1572  *
1573  *	Sets portions of a page valid and clean.  The arguments are expected
1574  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1575  *	of any partial chunks touched by the range.  The invalid portion of
1576  *	such chunks will be zero'd.
1577  *
1578  *	This routine may not block.
1579  *
1580  *	(base + size) must be less then or equal to PAGE_SIZE.
1581  */
1582 void
1583 vm_page_set_validclean(vm_page_t m, int base, int size)
1584 {
1585 	int pagebits;
1586 	int frag;
1587 	int endoff;
1588 
1589 	GIANT_REQUIRED;
1590 	if (size == 0)	/* handle degenerate case */
1591 		return;
1592 
1593 	/*
1594 	 * If the base is not DEV_BSIZE aligned and the valid
1595 	 * bit is clear, we have to zero out a portion of the
1596 	 * first block.
1597 	 */
1598 
1599 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1600 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1601 	) {
1602 		pmap_zero_page_area(
1603 		    VM_PAGE_TO_PHYS(m),
1604 		    frag,
1605 		    base - frag
1606 		);
1607 	}
1608 
1609 	/*
1610 	 * If the ending offset is not DEV_BSIZE aligned and the
1611 	 * valid bit is clear, we have to zero out a portion of
1612 	 * the last block.
1613 	 */
1614 
1615 	endoff = base + size;
1616 
1617 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1618 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1619 	) {
1620 		pmap_zero_page_area(
1621 		    VM_PAGE_TO_PHYS(m),
1622 		    endoff,
1623 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1624 		);
1625 	}
1626 
1627 	/*
1628 	 * Set valid, clear dirty bits.  If validating the entire
1629 	 * page we can safely clear the pmap modify bit.  We also
1630 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1631 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1632 	 * be set again.
1633 	 *
1634 	 * We set valid bits inclusive of any overlap, but we can only
1635 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1636 	 * the range.
1637 	 */
1638 
1639 	pagebits = vm_page_bits(base, size);
1640 	m->valid |= pagebits;
1641 #if 0	/* NOT YET */
1642 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1643 		frag = DEV_BSIZE - frag;
1644 		base += frag;
1645 		size -= frag;
1646 		if (size < 0)
1647 			size = 0;
1648 	}
1649 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1650 #endif
1651 	m->dirty &= ~pagebits;
1652 	if (base == 0 && size == PAGE_SIZE) {
1653 		pmap_clear_modify(m);
1654 		vm_page_flag_clear(m, PG_NOSYNC);
1655 	}
1656 }
1657 
1658 #if 0
1659 
1660 void
1661 vm_page_set_dirty(vm_page_t m, int base, int size)
1662 {
1663 	m->dirty |= vm_page_bits(base, size);
1664 }
1665 
1666 #endif
1667 
1668 void
1669 vm_page_clear_dirty(vm_page_t m, int base, int size)
1670 {
1671 	GIANT_REQUIRED;
1672 	m->dirty &= ~vm_page_bits(base, size);
1673 }
1674 
1675 /*
1676  *	vm_page_set_invalid:
1677  *
1678  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1679  *	valid and dirty bits for the effected areas are cleared.
1680  *
1681  *	May not block.
1682  */
1683 void
1684 vm_page_set_invalid(vm_page_t m, int base, int size)
1685 {
1686 	int bits;
1687 
1688 	GIANT_REQUIRED;
1689 	bits = vm_page_bits(base, size);
1690 	m->valid &= ~bits;
1691 	m->dirty &= ~bits;
1692 	m->object->generation++;
1693 }
1694 
1695 /*
1696  * vm_page_zero_invalid()
1697  *
1698  *	The kernel assumes that the invalid portions of a page contain
1699  *	garbage, but such pages can be mapped into memory by user code.
1700  *	When this occurs, we must zero out the non-valid portions of the
1701  *	page so user code sees what it expects.
1702  *
1703  *	Pages are most often semi-valid when the end of a file is mapped
1704  *	into memory and the file's size is not page aligned.
1705  */
1706 
1707 void
1708 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1709 {
1710 	int b;
1711 	int i;
1712 
1713 	/*
1714 	 * Scan the valid bits looking for invalid sections that
1715 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1716 	 * valid bit may be set ) have already been zerod by
1717 	 * vm_page_set_validclean().
1718 	 */
1719 
1720 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1721 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1722 		    (m->valid & (1 << i))
1723 		) {
1724 			if (i > b) {
1725 				pmap_zero_page_area(
1726 				    VM_PAGE_TO_PHYS(m),
1727 				    b << DEV_BSHIFT,
1728 				    (i - b) << DEV_BSHIFT
1729 				);
1730 			}
1731 			b = i + 1;
1732 		}
1733 	}
1734 
1735 	/*
1736 	 * setvalid is TRUE when we can safely set the zero'd areas
1737 	 * as being valid.  We can do this if there are no cache consistancy
1738 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1739 	 */
1740 
1741 	if (setvalid)
1742 		m->valid = VM_PAGE_BITS_ALL;
1743 }
1744 
1745 /*
1746  *	vm_page_is_valid:
1747  *
1748  *	Is (partial) page valid?  Note that the case where size == 0
1749  *	will return FALSE in the degenerate case where the page is
1750  *	entirely invalid, and TRUE otherwise.
1751  *
1752  *	May not block.
1753  */
1754 
1755 int
1756 vm_page_is_valid(vm_page_t m, int base, int size)
1757 {
1758 	int bits = vm_page_bits(base, size);
1759 
1760 	if (m->valid && ((m->valid & bits) == bits))
1761 		return 1;
1762 	else
1763 		return 0;
1764 }
1765 
1766 /*
1767  * update dirty bits from pmap/mmu.  May not block.
1768  */
1769 
1770 void
1771 vm_page_test_dirty(vm_page_t m)
1772 {
1773 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1774 		vm_page_dirty(m);
1775 	}
1776 }
1777 
1778 #include "opt_ddb.h"
1779 #ifdef DDB
1780 #include <sys/kernel.h>
1781 
1782 #include <ddb/ddb.h>
1783 
1784 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1785 {
1786 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1787 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1788 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1789 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1790 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1791 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1792 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1793 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1794 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1795 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1796 }
1797 
1798 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1799 {
1800 	int i;
1801 	db_printf("PQ_FREE:");
1802 	for (i = 0; i < PQ_L2_SIZE; i++) {
1803 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1804 	}
1805 	db_printf("\n");
1806 
1807 	db_printf("PQ_CACHE:");
1808 	for (i = 0; i < PQ_L2_SIZE; i++) {
1809 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1810 	}
1811 	db_printf("\n");
1812 
1813 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1814 		vm_page_queues[PQ_ACTIVE].lcnt,
1815 		vm_page_queues[PQ_INACTIVE].lcnt);
1816 }
1817 #endif /* DDB */
1818