xref: /freebsd/sys/vm/vm_page.c (revision e9b148a3185f41e3a09e91ea75cae7828d908845)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Resident memory management module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_vm.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113 
114 #include <machine/md_var.h>
115 
116 extern int	uma_startup_count(int);
117 extern void	uma_startup(void *, int);
118 extern int	vmem_startup_count(void);
119 
120 struct vm_domain vm_dom[MAXMEMDOM];
121 
122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
123 
124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
125 
126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
127 /* The following fields are protected by the domainset lock. */
128 domainset_t __exclusive_cache_line vm_min_domains;
129 domainset_t __exclusive_cache_line vm_severe_domains;
130 static int vm_min_waiters;
131 static int vm_severe_waiters;
132 static int vm_pageproc_waiters;
133 
134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
135     "VM page statistics");
136 
137 static counter_u64_t queue_ops = EARLY_COUNTER;
138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
139     CTLFLAG_RD, &queue_ops,
140     "Number of batched queue operations");
141 
142 static counter_u64_t queue_nops = EARLY_COUNTER;
143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
144     CTLFLAG_RD, &queue_nops,
145     "Number of batched queue operations with no effects");
146 
147 static void
148 counter_startup(void)
149 {
150 
151 	queue_ops = counter_u64_alloc(M_WAITOK);
152 	queue_nops = counter_u64_alloc(M_WAITOK);
153 }
154 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
155 
156 /*
157  * bogus page -- for I/O to/from partially complete buffers,
158  * or for paging into sparsely invalid regions.
159  */
160 vm_page_t bogus_page;
161 
162 vm_page_t vm_page_array;
163 long vm_page_array_size;
164 long first_page;
165 
166 static int boot_pages;
167 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168     &boot_pages, 0,
169     "number of pages allocated for bootstrapping the VM system");
170 
171 static TAILQ_HEAD(, vm_page) blacklist_head;
172 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
173 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
174     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
175 
176 static uma_zone_t fakepg_zone;
177 
178 static void vm_page_alloc_check(vm_page_t m);
179 static void _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
180     const char *wmesg, bool nonshared, bool locked);
181 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
182 static void vm_page_dequeue_complete(vm_page_t m);
183 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
184 static void vm_page_init(void *dummy);
185 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
186     vm_pindex_t pindex, vm_page_t mpred);
187 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
188     vm_page_t mpred);
189 static void vm_page_mvqueue(vm_page_t m, uint8_t queue);
190 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
191     vm_page_t m_run, vm_paddr_t high);
192 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
193     int req);
194 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
195     int flags);
196 static void vm_page_zone_release(void *arg, void **store, int cnt);
197 
198 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
199 
200 static void
201 vm_page_init(void *dummy)
202 {
203 
204 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
205 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
206 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
207 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
208 }
209 
210 /*
211  * The cache page zone is initialized later since we need to be able to allocate
212  * pages before UMA is fully initialized.
213  */
214 static void
215 vm_page_init_cache_zones(void *dummy __unused)
216 {
217 	struct vm_domain *vmd;
218 	struct vm_pgcache *pgcache;
219 	int domain, maxcache, pool;
220 
221 	maxcache = 0;
222 	TUNABLE_INT_FETCH("vm.pgcache_zone_max", &maxcache);
223 	for (domain = 0; domain < vm_ndomains; domain++) {
224 		vmd = VM_DOMAIN(domain);
225 
226 		/*
227 		 * Don't allow the page caches to take up more than .1875% of
228 		 * memory.  A UMA bucket contains at most 256 free pages, and we
229 		 * have two buckets per CPU per free pool.
230 		 */
231 		if (vmd->vmd_page_count / 600 < 2 * 256 * mp_ncpus *
232 		    VM_NFREEPOOL)
233 			continue;
234 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
235 			pgcache = &vmd->vmd_pgcache[pool];
236 			pgcache->domain = domain;
237 			pgcache->pool = pool;
238 			pgcache->zone = uma_zcache_create("vm pgcache",
239 			    sizeof(struct vm_page), NULL, NULL, NULL, NULL,
240 			    vm_page_zone_import, vm_page_zone_release, pgcache,
241 			    UMA_ZONE_MAXBUCKET | UMA_ZONE_VM);
242 			(void)uma_zone_set_maxcache(pgcache->zone, maxcache);
243 		}
244 	}
245 }
246 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
247 
248 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
249 #if PAGE_SIZE == 32768
250 #ifdef CTASSERT
251 CTASSERT(sizeof(u_long) >= 8);
252 #endif
253 #endif
254 
255 /*
256  *	vm_set_page_size:
257  *
258  *	Sets the page size, perhaps based upon the memory
259  *	size.  Must be called before any use of page-size
260  *	dependent functions.
261  */
262 void
263 vm_set_page_size(void)
264 {
265 	if (vm_cnt.v_page_size == 0)
266 		vm_cnt.v_page_size = PAGE_SIZE;
267 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
268 		panic("vm_set_page_size: page size not a power of two");
269 }
270 
271 /*
272  *	vm_page_blacklist_next:
273  *
274  *	Find the next entry in the provided string of blacklist
275  *	addresses.  Entries are separated by space, comma, or newline.
276  *	If an invalid integer is encountered then the rest of the
277  *	string is skipped.  Updates the list pointer to the next
278  *	character, or NULL if the string is exhausted or invalid.
279  */
280 static vm_paddr_t
281 vm_page_blacklist_next(char **list, char *end)
282 {
283 	vm_paddr_t bad;
284 	char *cp, *pos;
285 
286 	if (list == NULL || *list == NULL)
287 		return (0);
288 	if (**list =='\0') {
289 		*list = NULL;
290 		return (0);
291 	}
292 
293 	/*
294 	 * If there's no end pointer then the buffer is coming from
295 	 * the kenv and we know it's null-terminated.
296 	 */
297 	if (end == NULL)
298 		end = *list + strlen(*list);
299 
300 	/* Ensure that strtoq() won't walk off the end */
301 	if (*end != '\0') {
302 		if (*end == '\n' || *end == ' ' || *end  == ',')
303 			*end = '\0';
304 		else {
305 			printf("Blacklist not terminated, skipping\n");
306 			*list = NULL;
307 			return (0);
308 		}
309 	}
310 
311 	for (pos = *list; *pos != '\0'; pos = cp) {
312 		bad = strtoq(pos, &cp, 0);
313 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
314 			if (bad == 0) {
315 				if (++cp < end)
316 					continue;
317 				else
318 					break;
319 			}
320 		} else
321 			break;
322 		if (*cp == '\0' || ++cp >= end)
323 			*list = NULL;
324 		else
325 			*list = cp;
326 		return (trunc_page(bad));
327 	}
328 	printf("Garbage in RAM blacklist, skipping\n");
329 	*list = NULL;
330 	return (0);
331 }
332 
333 bool
334 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
335 {
336 	struct vm_domain *vmd;
337 	vm_page_t m;
338 	int ret;
339 
340 	m = vm_phys_paddr_to_vm_page(pa);
341 	if (m == NULL)
342 		return (true); /* page does not exist, no failure */
343 
344 	vmd = vm_pagequeue_domain(m);
345 	vm_domain_free_lock(vmd);
346 	ret = vm_phys_unfree_page(m);
347 	vm_domain_free_unlock(vmd);
348 	if (ret != 0) {
349 		vm_domain_freecnt_inc(vmd, -1);
350 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
351 		if (verbose)
352 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
353 	}
354 	return (ret);
355 }
356 
357 /*
358  *	vm_page_blacklist_check:
359  *
360  *	Iterate through the provided string of blacklist addresses, pulling
361  *	each entry out of the physical allocator free list and putting it
362  *	onto a list for reporting via the vm.page_blacklist sysctl.
363  */
364 static void
365 vm_page_blacklist_check(char *list, char *end)
366 {
367 	vm_paddr_t pa;
368 	char *next;
369 
370 	next = list;
371 	while (next != NULL) {
372 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
373 			continue;
374 		vm_page_blacklist_add(pa, bootverbose);
375 	}
376 }
377 
378 /*
379  *	vm_page_blacklist_load:
380  *
381  *	Search for a special module named "ram_blacklist".  It'll be a
382  *	plain text file provided by the user via the loader directive
383  *	of the same name.
384  */
385 static void
386 vm_page_blacklist_load(char **list, char **end)
387 {
388 	void *mod;
389 	u_char *ptr;
390 	u_int len;
391 
392 	mod = NULL;
393 	ptr = NULL;
394 
395 	mod = preload_search_by_type("ram_blacklist");
396 	if (mod != NULL) {
397 		ptr = preload_fetch_addr(mod);
398 		len = preload_fetch_size(mod);
399         }
400 	*list = ptr;
401 	if (ptr != NULL)
402 		*end = ptr + len;
403 	else
404 		*end = NULL;
405 	return;
406 }
407 
408 static int
409 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
410 {
411 	vm_page_t m;
412 	struct sbuf sbuf;
413 	int error, first;
414 
415 	first = 1;
416 	error = sysctl_wire_old_buffer(req, 0);
417 	if (error != 0)
418 		return (error);
419 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
420 	TAILQ_FOREACH(m, &blacklist_head, listq) {
421 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
422 		    (uintmax_t)m->phys_addr);
423 		first = 0;
424 	}
425 	error = sbuf_finish(&sbuf);
426 	sbuf_delete(&sbuf);
427 	return (error);
428 }
429 
430 /*
431  * Initialize a dummy page for use in scans of the specified paging queue.
432  * In principle, this function only needs to set the flag PG_MARKER.
433  * Nonetheless, it write busies the page as a safety precaution.
434  */
435 static void
436 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags)
437 {
438 
439 	bzero(marker, sizeof(*marker));
440 	marker->flags = PG_MARKER;
441 	marker->aflags = aflags;
442 	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
443 	marker->queue = queue;
444 }
445 
446 static void
447 vm_page_domain_init(int domain)
448 {
449 	struct vm_domain *vmd;
450 	struct vm_pagequeue *pq;
451 	int i;
452 
453 	vmd = VM_DOMAIN(domain);
454 	bzero(vmd, sizeof(*vmd));
455 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
456 	    "vm inactive pagequeue";
457 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
458 	    "vm active pagequeue";
459 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
460 	    "vm laundry pagequeue";
461 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
462 	    "vm unswappable pagequeue";
463 	vmd->vmd_domain = domain;
464 	vmd->vmd_page_count = 0;
465 	vmd->vmd_free_count = 0;
466 	vmd->vmd_segs = 0;
467 	vmd->vmd_oom = FALSE;
468 	for (i = 0; i < PQ_COUNT; i++) {
469 		pq = &vmd->vmd_pagequeues[i];
470 		TAILQ_INIT(&pq->pq_pl);
471 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
472 		    MTX_DEF | MTX_DUPOK);
473 		pq->pq_pdpages = 0;
474 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
475 	}
476 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
477 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
478 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
479 
480 	/*
481 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
482 	 * insertions.
483 	 */
484 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
485 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
486 	    &vmd->vmd_inacthead, plinks.q);
487 
488 	/*
489 	 * The clock pages are used to implement active queue scanning without
490 	 * requeues.  Scans start at clock[0], which is advanced after the scan
491 	 * ends.  When the two clock hands meet, they are reset and scanning
492 	 * resumes from the head of the queue.
493 	 */
494 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
495 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
496 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
497 	    &vmd->vmd_clock[0], plinks.q);
498 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
499 	    &vmd->vmd_clock[1], plinks.q);
500 }
501 
502 /*
503  * Initialize a physical page in preparation for adding it to the free
504  * lists.
505  */
506 static void
507 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
508 {
509 
510 	m->object = NULL;
511 	m->ref_count = 0;
512 	m->busy_lock = VPB_UNBUSIED;
513 	m->flags = m->aflags = 0;
514 	m->phys_addr = pa;
515 	m->queue = PQ_NONE;
516 	m->psind = 0;
517 	m->segind = segind;
518 	m->order = VM_NFREEORDER;
519 	m->pool = VM_FREEPOOL_DEFAULT;
520 	m->valid = m->dirty = 0;
521 	pmap_page_init(m);
522 }
523 
524 #ifndef PMAP_HAS_PAGE_ARRAY
525 static vm_paddr_t
526 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
527 {
528 	vm_paddr_t new_end;
529 
530 	/*
531 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
532 	 * However, because this page is allocated from KVM, out-of-bounds
533 	 * accesses using the direct map will not be trapped.
534 	 */
535 	*vaddr += PAGE_SIZE;
536 
537 	/*
538 	 * Allocate physical memory for the page structures, and map it.
539 	 */
540 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
541 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
542 	    VM_PROT_READ | VM_PROT_WRITE);
543 	vm_page_array_size = page_range;
544 
545 	return (new_end);
546 }
547 #endif
548 
549 /*
550  *	vm_page_startup:
551  *
552  *	Initializes the resident memory module.  Allocates physical memory for
553  *	bootstrapping UMA and some data structures that are used to manage
554  *	physical pages.  Initializes these structures, and populates the free
555  *	page queues.
556  */
557 vm_offset_t
558 vm_page_startup(vm_offset_t vaddr)
559 {
560 	struct vm_phys_seg *seg;
561 	vm_page_t m;
562 	char *list, *listend;
563 	vm_offset_t mapped;
564 	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
565 	vm_paddr_t last_pa, pa;
566 	u_long pagecount;
567 	int biggestone, i, segind;
568 #ifdef WITNESS
569 	int witness_size;
570 #endif
571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
572 	long ii;
573 #endif
574 
575 	vaddr = round_page(vaddr);
576 
577 	vm_phys_early_startup();
578 	biggestone = vm_phys_avail_largest();
579 	end = phys_avail[biggestone+1];
580 
581 	/*
582 	 * Initialize the page and queue locks.
583 	 */
584 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
585 	for (i = 0; i < PA_LOCK_COUNT; i++)
586 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
587 	for (i = 0; i < vm_ndomains; i++)
588 		vm_page_domain_init(i);
589 
590 	/*
591 	 * Allocate memory for use when boot strapping the kernel memory
592 	 * allocator.  Tell UMA how many zones we are going to create
593 	 * before going fully functional.  UMA will add its zones.
594 	 *
595 	 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
596 	 * KMAP ENTRY, MAP ENTRY, VMSPACE.
597 	 */
598 	boot_pages = uma_startup_count(8);
599 
600 #ifndef UMA_MD_SMALL_ALLOC
601 	/* vmem_startup() calls uma_prealloc(). */
602 	boot_pages += vmem_startup_count();
603 	/* vm_map_startup() calls uma_prealloc(). */
604 	boot_pages += howmany(MAX_KMAP,
605 	    UMA_SLAB_SPACE / sizeof(struct vm_map));
606 
607 	/*
608 	 * Before going fully functional kmem_init() does allocation
609 	 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
610 	 */
611 	boot_pages += 2;
612 #endif
613 	/*
614 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
615 	 * manually fetch the value.
616 	 */
617 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
618 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
619 	new_end = trunc_page(new_end);
620 	mapped = pmap_map(&vaddr, new_end, end,
621 	    VM_PROT_READ | VM_PROT_WRITE);
622 	bzero((void *)mapped, end - new_end);
623 	uma_startup((void *)mapped, boot_pages);
624 
625 #ifdef WITNESS
626 	witness_size = round_page(witness_startup_count());
627 	new_end -= witness_size;
628 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
629 	    VM_PROT_READ | VM_PROT_WRITE);
630 	bzero((void *)mapped, witness_size);
631 	witness_startup((void *)mapped);
632 #endif
633 
634 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
635     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
636     defined(__powerpc64__)
637 	/*
638 	 * Allocate a bitmap to indicate that a random physical page
639 	 * needs to be included in a minidump.
640 	 *
641 	 * The amd64 port needs this to indicate which direct map pages
642 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
643 	 *
644 	 * However, i386 still needs this workspace internally within the
645 	 * minidump code.  In theory, they are not needed on i386, but are
646 	 * included should the sf_buf code decide to use them.
647 	 */
648 	last_pa = 0;
649 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
650 		if (dump_avail[i + 1] > last_pa)
651 			last_pa = dump_avail[i + 1];
652 	page_range = last_pa / PAGE_SIZE;
653 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
654 	new_end -= vm_page_dump_size;
655 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
656 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
657 	bzero((void *)vm_page_dump, vm_page_dump_size);
658 #else
659 	(void)last_pa;
660 #endif
661 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
662     defined(__riscv) || defined(__powerpc64__)
663 	/*
664 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
665 	 * in a crash dump.  When pmap_map() uses the direct map, they are
666 	 * not automatically included.
667 	 */
668 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
669 		dump_add_page(pa);
670 #endif
671 	phys_avail[biggestone + 1] = new_end;
672 #ifdef __amd64__
673 	/*
674 	 * Request that the physical pages underlying the message buffer be
675 	 * included in a crash dump.  Since the message buffer is accessed
676 	 * through the direct map, they are not automatically included.
677 	 */
678 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
679 	last_pa = pa + round_page(msgbufsize);
680 	while (pa < last_pa) {
681 		dump_add_page(pa);
682 		pa += PAGE_SIZE;
683 	}
684 #endif
685 	/*
686 	 * Compute the number of pages of memory that will be available for
687 	 * use, taking into account the overhead of a page structure per page.
688 	 * In other words, solve
689 	 *	"available physical memory" - round_page(page_range *
690 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
691 	 * for page_range.
692 	 */
693 	low_avail = phys_avail[0];
694 	high_avail = phys_avail[1];
695 	for (i = 0; i < vm_phys_nsegs; i++) {
696 		if (vm_phys_segs[i].start < low_avail)
697 			low_avail = vm_phys_segs[i].start;
698 		if (vm_phys_segs[i].end > high_avail)
699 			high_avail = vm_phys_segs[i].end;
700 	}
701 	/* Skip the first chunk.  It is already accounted for. */
702 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
703 		if (phys_avail[i] < low_avail)
704 			low_avail = phys_avail[i];
705 		if (phys_avail[i + 1] > high_avail)
706 			high_avail = phys_avail[i + 1];
707 	}
708 	first_page = low_avail / PAGE_SIZE;
709 #ifdef VM_PHYSSEG_SPARSE
710 	size = 0;
711 	for (i = 0; i < vm_phys_nsegs; i++)
712 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
713 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
714 		size += phys_avail[i + 1] - phys_avail[i];
715 #elif defined(VM_PHYSSEG_DENSE)
716 	size = high_avail - low_avail;
717 #else
718 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
719 #endif
720 
721 #ifdef PMAP_HAS_PAGE_ARRAY
722 	pmap_page_array_startup(size / PAGE_SIZE);
723 	biggestone = vm_phys_avail_largest();
724 	end = new_end = phys_avail[biggestone + 1];
725 #else
726 #ifdef VM_PHYSSEG_DENSE
727 	/*
728 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
729 	 * the overhead of a page structure per page only if vm_page_array is
730 	 * allocated from the last physical memory chunk.  Otherwise, we must
731 	 * allocate page structures representing the physical memory
732 	 * underlying vm_page_array, even though they will not be used.
733 	 */
734 	if (new_end != high_avail)
735 		page_range = size / PAGE_SIZE;
736 	else
737 #endif
738 	{
739 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
740 
741 		/*
742 		 * If the partial bytes remaining are large enough for
743 		 * a page (PAGE_SIZE) without a corresponding
744 		 * 'struct vm_page', then new_end will contain an
745 		 * extra page after subtracting the length of the VM
746 		 * page array.  Compensate by subtracting an extra
747 		 * page from new_end.
748 		 */
749 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
750 			if (new_end == high_avail)
751 				high_avail -= PAGE_SIZE;
752 			new_end -= PAGE_SIZE;
753 		}
754 	}
755 	end = new_end;
756 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
757 #endif
758 
759 #if VM_NRESERVLEVEL > 0
760 	/*
761 	 * Allocate physical memory for the reservation management system's
762 	 * data structures, and map it.
763 	 */
764 	new_end = vm_reserv_startup(&vaddr, new_end);
765 #endif
766 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
767     defined(__riscv) || defined(__powerpc64__)
768 	/*
769 	 * Include vm_page_array and vm_reserv_array in a crash dump.
770 	 */
771 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
772 		dump_add_page(pa);
773 #endif
774 	phys_avail[biggestone + 1] = new_end;
775 
776 	/*
777 	 * Add physical memory segments corresponding to the available
778 	 * physical pages.
779 	 */
780 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
781 		if (vm_phys_avail_size(i) != 0)
782 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
783 
784 	/*
785 	 * Initialize the physical memory allocator.
786 	 */
787 	vm_phys_init();
788 
789 	/*
790 	 * Initialize the page structures and add every available page to the
791 	 * physical memory allocator's free lists.
792 	 */
793 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
794 	for (ii = 0; ii < vm_page_array_size; ii++) {
795 		m = &vm_page_array[ii];
796 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
797 		m->flags = PG_FICTITIOUS;
798 	}
799 #endif
800 	vm_cnt.v_page_count = 0;
801 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
802 		seg = &vm_phys_segs[segind];
803 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
804 		    m++, pa += PAGE_SIZE)
805 			vm_page_init_page(m, pa, segind);
806 
807 		/*
808 		 * Add the segment to the free lists only if it is covered by
809 		 * one of the ranges in phys_avail.  Because we've added the
810 		 * ranges to the vm_phys_segs array, we can assume that each
811 		 * segment is either entirely contained in one of the ranges,
812 		 * or doesn't overlap any of them.
813 		 */
814 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
815 			struct vm_domain *vmd;
816 
817 			if (seg->start < phys_avail[i] ||
818 			    seg->end > phys_avail[i + 1])
819 				continue;
820 
821 			m = seg->first_page;
822 			pagecount = (u_long)atop(seg->end - seg->start);
823 
824 			vmd = VM_DOMAIN(seg->domain);
825 			vm_domain_free_lock(vmd);
826 			vm_phys_enqueue_contig(m, pagecount);
827 			vm_domain_free_unlock(vmd);
828 			vm_domain_freecnt_inc(vmd, pagecount);
829 			vm_cnt.v_page_count += (u_int)pagecount;
830 
831 			vmd = VM_DOMAIN(seg->domain);
832 			vmd->vmd_page_count += (u_int)pagecount;
833 			vmd->vmd_segs |= 1UL << m->segind;
834 			break;
835 		}
836 	}
837 
838 	/*
839 	 * Remove blacklisted pages from the physical memory allocator.
840 	 */
841 	TAILQ_INIT(&blacklist_head);
842 	vm_page_blacklist_load(&list, &listend);
843 	vm_page_blacklist_check(list, listend);
844 
845 	list = kern_getenv("vm.blacklist");
846 	vm_page_blacklist_check(list, NULL);
847 
848 	freeenv(list);
849 #if VM_NRESERVLEVEL > 0
850 	/*
851 	 * Initialize the reservation management system.
852 	 */
853 	vm_reserv_init();
854 #endif
855 
856 	return (vaddr);
857 }
858 
859 void
860 vm_page_reference(vm_page_t m)
861 {
862 
863 	vm_page_aflag_set(m, PGA_REFERENCED);
864 }
865 
866 /*
867  *	vm_page_busy_acquire:
868  *
869  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
870  *	and drop the object lock if necessary.
871  */
872 int
873 vm_page_busy_acquire(vm_page_t m, int allocflags)
874 {
875 	vm_object_t obj;
876 	bool locked;
877 
878 	/*
879 	 * The page-specific object must be cached because page
880 	 * identity can change during the sleep, causing the
881 	 * re-lock of a different object.
882 	 * It is assumed that a reference to the object is already
883 	 * held by the callers.
884 	 */
885 	obj = m->object;
886 	for (;;) {
887 		if ((allocflags & VM_ALLOC_SBUSY) == 0) {
888 			if (vm_page_tryxbusy(m))
889 				return (TRUE);
890 		} else {
891 			if (vm_page_trysbusy(m))
892 				return (TRUE);
893 		}
894 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
895 			return (FALSE);
896 		if (obj != NULL)
897 			locked = VM_OBJECT_WOWNED(obj);
898 		else
899 			locked = FALSE;
900 		MPASS(locked || vm_page_wired(m));
901 		_vm_page_busy_sleep(obj, m, "vmpba",
902 		    (allocflags & VM_ALLOC_SBUSY) != 0, locked);
903 		if (locked)
904 			VM_OBJECT_WLOCK(obj);
905 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
906 			return (FALSE);
907 		KASSERT(m->object == obj || m->object == NULL,
908 		    ("vm_page_busy_acquire: page %p does not belong to %p",
909 		    m, obj));
910 	}
911 }
912 
913 /*
914  *	vm_page_busy_downgrade:
915  *
916  *	Downgrade an exclusive busy page into a single shared busy page.
917  */
918 void
919 vm_page_busy_downgrade(vm_page_t m)
920 {
921 	u_int x;
922 
923 	vm_page_assert_xbusied(m);
924 
925 	x = m->busy_lock;
926 	for (;;) {
927 		if (atomic_fcmpset_rel_int(&m->busy_lock,
928 		    &x, VPB_SHARERS_WORD(1)))
929 			break;
930 	}
931 	if ((x & VPB_BIT_WAITERS) != 0)
932 		wakeup(m);
933 }
934 
935 /*
936  *
937  *	vm_page_busy_tryupgrade:
938  *
939  *	Attempt to upgrade a single shared busy into an exclusive busy.
940  */
941 int
942 vm_page_busy_tryupgrade(vm_page_t m)
943 {
944 	u_int x;
945 
946 	vm_page_assert_sbusied(m);
947 
948 	x = m->busy_lock;
949 	for (;;) {
950 		if (VPB_SHARERS(x) > 1)
951 			return (0);
952 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
953 		    ("vm_page_busy_tryupgrade: invalid lock state"));
954 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
955 		    VPB_SINGLE_EXCLUSIVER | (x & VPB_BIT_WAITERS)))
956 			continue;
957 		return (1);
958 	}
959 }
960 
961 /*
962  *	vm_page_sbusied:
963  *
964  *	Return a positive value if the page is shared busied, 0 otherwise.
965  */
966 int
967 vm_page_sbusied(vm_page_t m)
968 {
969 	u_int x;
970 
971 	x = m->busy_lock;
972 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
973 }
974 
975 /*
976  *	vm_page_sunbusy:
977  *
978  *	Shared unbusy a page.
979  */
980 void
981 vm_page_sunbusy(vm_page_t m)
982 {
983 	u_int x;
984 
985 	vm_page_assert_sbusied(m);
986 
987 	x = m->busy_lock;
988 	for (;;) {
989 		if (VPB_SHARERS(x) > 1) {
990 			if (atomic_fcmpset_int(&m->busy_lock, &x,
991 			    x - VPB_ONE_SHARER))
992 				break;
993 			continue;
994 		}
995 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
996 		    ("vm_page_sunbusy: invalid lock state"));
997 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
998 			continue;
999 		if ((x & VPB_BIT_WAITERS) == 0)
1000 			break;
1001 		wakeup(m);
1002 		break;
1003 	}
1004 }
1005 
1006 /*
1007  *	vm_page_busy_sleep:
1008  *
1009  *	Sleep if the page is busy, using the page pointer as wchan.
1010  *	This is used to implement the hard-path of busying mechanism.
1011  *
1012  *	If nonshared is true, sleep only if the page is xbusy.
1013  *
1014  *	The object lock must be held on entry and will be released on exit.
1015  */
1016 void
1017 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1018 {
1019 	vm_object_t obj;
1020 
1021 	obj = m->object;
1022 	VM_OBJECT_ASSERT_LOCKED(obj);
1023 	vm_page_lock_assert(m, MA_NOTOWNED);
1024 
1025 	_vm_page_busy_sleep(obj, m, wmesg, nonshared, true);
1026 }
1027 
1028 static void
1029 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1030     bool nonshared, bool locked)
1031 {
1032 	u_int x;
1033 
1034 	/*
1035 	 * If the object is busy we must wait for that to drain to zero
1036 	 * before trying the page again.
1037 	 */
1038 	if (obj != NULL && vm_object_busied(obj)) {
1039 		if (locked)
1040 			VM_OBJECT_DROP(obj);
1041 		vm_object_busy_wait(obj, wmesg);
1042 		return;
1043 	}
1044 	sleepq_lock(m);
1045 	x = m->busy_lock;
1046 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1047 	    ((x & VPB_BIT_WAITERS) == 0 &&
1048 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1049 		if (locked)
1050 			VM_OBJECT_DROP(obj);
1051 		sleepq_release(m);
1052 		return;
1053 	}
1054 	if (locked)
1055 		VM_OBJECT_DROP(obj);
1056 	sleepq_add(m, NULL, wmesg, 0, 0);
1057 	sleepq_wait(m, PVM);
1058 }
1059 
1060 /*
1061  *	vm_page_trysbusy:
1062  *
1063  *	Try to shared busy a page.
1064  *	If the operation succeeds 1 is returned otherwise 0.
1065  *	The operation never sleeps.
1066  */
1067 int
1068 vm_page_trysbusy(vm_page_t m)
1069 {
1070 	vm_object_t obj;
1071 	u_int x;
1072 
1073 	obj = m->object;
1074 	x = m->busy_lock;
1075 	for (;;) {
1076 		if ((x & VPB_BIT_SHARED) == 0)
1077 			return (0);
1078 		/*
1079 		 * Reduce the window for transient busies that will trigger
1080 		 * false negatives in vm_page_ps_test().
1081 		 */
1082 		if (obj != NULL && vm_object_busied(obj))
1083 			return (0);
1084 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1085 		    x + VPB_ONE_SHARER))
1086 			break;
1087 	}
1088 
1089 	/* Refetch the object now that we're guaranteed that it is stable. */
1090 	obj = m->object;
1091 	if (obj != NULL && vm_object_busied(obj)) {
1092 		vm_page_sunbusy(m);
1093 		return (0);
1094 	}
1095 	return (1);
1096 }
1097 
1098 /*
1099  *	vm_page_tryxbusy:
1100  *
1101  *	Try to exclusive busy a page.
1102  *	If the operation succeeds 1 is returned otherwise 0.
1103  *	The operation never sleeps.
1104  */
1105 int
1106 vm_page_tryxbusy(vm_page_t m)
1107 {
1108 	vm_object_t obj;
1109 
1110         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1111             VPB_SINGLE_EXCLUSIVER) == 0)
1112 		return (0);
1113 
1114 	obj = m->object;
1115 	if (obj != NULL && vm_object_busied(obj)) {
1116 		vm_page_xunbusy(m);
1117 		return (0);
1118 	}
1119 	return (1);
1120 }
1121 
1122 /*
1123  *	vm_page_xunbusy_hard:
1124  *
1125  *	Called when unbusy has failed because there is a waiter.
1126  */
1127 void
1128 vm_page_xunbusy_hard(vm_page_t m)
1129 {
1130 
1131 	vm_page_assert_xbusied(m);
1132 
1133 	/*
1134 	 * Wake the waiter.
1135 	 */
1136 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1137 	wakeup(m);
1138 }
1139 
1140 /*
1141  * Avoid releasing and reacquiring the same page lock.
1142  */
1143 void
1144 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1145 {
1146 	struct mtx *mtx1;
1147 
1148 	mtx1 = vm_page_lockptr(m);
1149 	if (*mtx == mtx1)
1150 		return;
1151 	if (*mtx != NULL)
1152 		mtx_unlock(*mtx);
1153 	*mtx = mtx1;
1154 	mtx_lock(mtx1);
1155 }
1156 
1157 /*
1158  *	vm_page_unhold_pages:
1159  *
1160  *	Unhold each of the pages that is referenced by the given array.
1161  */
1162 void
1163 vm_page_unhold_pages(vm_page_t *ma, int count)
1164 {
1165 
1166 	for (; count != 0; count--) {
1167 		vm_page_unwire(*ma, PQ_ACTIVE);
1168 		ma++;
1169 	}
1170 }
1171 
1172 vm_page_t
1173 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1174 {
1175 	vm_page_t m;
1176 
1177 #ifdef VM_PHYSSEG_SPARSE
1178 	m = vm_phys_paddr_to_vm_page(pa);
1179 	if (m == NULL)
1180 		m = vm_phys_fictitious_to_vm_page(pa);
1181 	return (m);
1182 #elif defined(VM_PHYSSEG_DENSE)
1183 	long pi;
1184 
1185 	pi = atop(pa);
1186 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1187 		m = &vm_page_array[pi - first_page];
1188 		return (m);
1189 	}
1190 	return (vm_phys_fictitious_to_vm_page(pa));
1191 #else
1192 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1193 #endif
1194 }
1195 
1196 /*
1197  *	vm_page_getfake:
1198  *
1199  *	Create a fictitious page with the specified physical address and
1200  *	memory attribute.  The memory attribute is the only the machine-
1201  *	dependent aspect of a fictitious page that must be initialized.
1202  */
1203 vm_page_t
1204 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1205 {
1206 	vm_page_t m;
1207 
1208 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1209 	vm_page_initfake(m, paddr, memattr);
1210 	return (m);
1211 }
1212 
1213 void
1214 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1215 {
1216 
1217 	if ((m->flags & PG_FICTITIOUS) != 0) {
1218 		/*
1219 		 * The page's memattr might have changed since the
1220 		 * previous initialization.  Update the pmap to the
1221 		 * new memattr.
1222 		 */
1223 		goto memattr;
1224 	}
1225 	m->phys_addr = paddr;
1226 	m->queue = PQ_NONE;
1227 	/* Fictitious pages don't use "segind". */
1228 	m->flags = PG_FICTITIOUS;
1229 	/* Fictitious pages don't use "order" or "pool". */
1230 	m->oflags = VPO_UNMANAGED;
1231 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1232 	/* Fictitious pages are unevictable. */
1233 	m->ref_count = 1;
1234 	pmap_page_init(m);
1235 memattr:
1236 	pmap_page_set_memattr(m, memattr);
1237 }
1238 
1239 /*
1240  *	vm_page_putfake:
1241  *
1242  *	Release a fictitious page.
1243  */
1244 void
1245 vm_page_putfake(vm_page_t m)
1246 {
1247 
1248 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1249 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1250 	    ("vm_page_putfake: bad page %p", m));
1251 	if (vm_page_xbusied(m))
1252 		vm_page_xunbusy(m);
1253 	uma_zfree(fakepg_zone, m);
1254 }
1255 
1256 /*
1257  *	vm_page_updatefake:
1258  *
1259  *	Update the given fictitious page to the specified physical address and
1260  *	memory attribute.
1261  */
1262 void
1263 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1264 {
1265 
1266 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1267 	    ("vm_page_updatefake: bad page %p", m));
1268 	m->phys_addr = paddr;
1269 	pmap_page_set_memattr(m, memattr);
1270 }
1271 
1272 /*
1273  *	vm_page_free:
1274  *
1275  *	Free a page.
1276  */
1277 void
1278 vm_page_free(vm_page_t m)
1279 {
1280 
1281 	m->flags &= ~PG_ZERO;
1282 	vm_page_free_toq(m);
1283 }
1284 
1285 /*
1286  *	vm_page_free_zero:
1287  *
1288  *	Free a page to the zerod-pages queue
1289  */
1290 void
1291 vm_page_free_zero(vm_page_t m)
1292 {
1293 
1294 	m->flags |= PG_ZERO;
1295 	vm_page_free_toq(m);
1296 }
1297 
1298 /*
1299  * Unbusy and handle the page queueing for a page from a getpages request that
1300  * was optionally read ahead or behind.
1301  */
1302 void
1303 vm_page_readahead_finish(vm_page_t m)
1304 {
1305 
1306 	/* We shouldn't put invalid pages on queues. */
1307 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1308 
1309 	/*
1310 	 * Since the page is not the actually needed one, whether it should
1311 	 * be activated or deactivated is not obvious.  Empirical results
1312 	 * have shown that deactivating the page is usually the best choice,
1313 	 * unless the page is wanted by another thread.
1314 	 */
1315 	vm_page_lock(m);
1316 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1317 		vm_page_activate(m);
1318 	else
1319 		vm_page_deactivate(m);
1320 	vm_page_unlock(m);
1321 	vm_page_xunbusy(m);
1322 }
1323 
1324 /*
1325  *	vm_page_sleep_if_busy:
1326  *
1327  *	Sleep and release the object lock if the page is busied.
1328  *	Returns TRUE if the thread slept.
1329  *
1330  *	The given page must be unlocked and object containing it must
1331  *	be locked.
1332  */
1333 int
1334 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1335 {
1336 	vm_object_t obj;
1337 
1338 	vm_page_lock_assert(m, MA_NOTOWNED);
1339 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1340 
1341 	/*
1342 	 * The page-specific object must be cached because page
1343 	 * identity can change during the sleep, causing the
1344 	 * re-lock of a different object.
1345 	 * It is assumed that a reference to the object is already
1346 	 * held by the callers.
1347 	 */
1348 	obj = m->object;
1349 	if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1350 		vm_page_busy_sleep(m, msg, false);
1351 		VM_OBJECT_WLOCK(obj);
1352 		return (TRUE);
1353 	}
1354 	return (FALSE);
1355 }
1356 
1357 /*
1358  *	vm_page_sleep_if_xbusy:
1359  *
1360  *	Sleep and release the object lock if the page is xbusied.
1361  *	Returns TRUE if the thread slept.
1362  *
1363  *	The given page must be unlocked and object containing it must
1364  *	be locked.
1365  */
1366 int
1367 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1368 {
1369 	vm_object_t obj;
1370 
1371 	vm_page_lock_assert(m, MA_NOTOWNED);
1372 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1373 
1374 	/*
1375 	 * The page-specific object must be cached because page
1376 	 * identity can change during the sleep, causing the
1377 	 * re-lock of a different object.
1378 	 * It is assumed that a reference to the object is already
1379 	 * held by the callers.
1380 	 */
1381 	obj = m->object;
1382 	if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1383 		vm_page_busy_sleep(m, msg, true);
1384 		VM_OBJECT_WLOCK(obj);
1385 		return (TRUE);
1386 	}
1387 	return (FALSE);
1388 }
1389 
1390 /*
1391  *	vm_page_dirty_KBI:		[ internal use only ]
1392  *
1393  *	Set all bits in the page's dirty field.
1394  *
1395  *	The object containing the specified page must be locked if the
1396  *	call is made from the machine-independent layer.
1397  *
1398  *	See vm_page_clear_dirty_mask().
1399  *
1400  *	This function should only be called by vm_page_dirty().
1401  */
1402 void
1403 vm_page_dirty_KBI(vm_page_t m)
1404 {
1405 
1406 	/* Refer to this operation by its public name. */
1407 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1408 	m->dirty = VM_PAGE_BITS_ALL;
1409 }
1410 
1411 /*
1412  *	vm_page_insert:		[ internal use only ]
1413  *
1414  *	Inserts the given mem entry into the object and object list.
1415  *
1416  *	The object must be locked.
1417  */
1418 int
1419 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1420 {
1421 	vm_page_t mpred;
1422 
1423 	VM_OBJECT_ASSERT_WLOCKED(object);
1424 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1425 	return (vm_page_insert_after(m, object, pindex, mpred));
1426 }
1427 
1428 /*
1429  *	vm_page_insert_after:
1430  *
1431  *	Inserts the page "m" into the specified object at offset "pindex".
1432  *
1433  *	The page "mpred" must immediately precede the offset "pindex" within
1434  *	the specified object.
1435  *
1436  *	The object must be locked.
1437  */
1438 static int
1439 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1440     vm_page_t mpred)
1441 {
1442 	vm_page_t msucc;
1443 
1444 	VM_OBJECT_ASSERT_WLOCKED(object);
1445 	KASSERT(m->object == NULL,
1446 	    ("vm_page_insert_after: page already inserted"));
1447 	if (mpred != NULL) {
1448 		KASSERT(mpred->object == object,
1449 		    ("vm_page_insert_after: object doesn't contain mpred"));
1450 		KASSERT(mpred->pindex < pindex,
1451 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1452 		msucc = TAILQ_NEXT(mpred, listq);
1453 	} else
1454 		msucc = TAILQ_FIRST(&object->memq);
1455 	if (msucc != NULL)
1456 		KASSERT(msucc->pindex > pindex,
1457 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1458 
1459 	/*
1460 	 * Record the object/offset pair in this page.
1461 	 */
1462 	m->object = object;
1463 	m->pindex = pindex;
1464 	m->ref_count |= VPRC_OBJREF;
1465 
1466 	/*
1467 	 * Now link into the object's ordered list of backed pages.
1468 	 */
1469 	if (vm_radix_insert(&object->rtree, m)) {
1470 		m->object = NULL;
1471 		m->pindex = 0;
1472 		m->ref_count &= ~VPRC_OBJREF;
1473 		return (1);
1474 	}
1475 	vm_page_insert_radixdone(m, object, mpred);
1476 	return (0);
1477 }
1478 
1479 /*
1480  *	vm_page_insert_radixdone:
1481  *
1482  *	Complete page "m" insertion into the specified object after the
1483  *	radix trie hooking.
1484  *
1485  *	The page "mpred" must precede the offset "m->pindex" within the
1486  *	specified object.
1487  *
1488  *	The object must be locked.
1489  */
1490 static void
1491 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1492 {
1493 
1494 	VM_OBJECT_ASSERT_WLOCKED(object);
1495 	KASSERT(object != NULL && m->object == object,
1496 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1497 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1498 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1499 	if (mpred != NULL) {
1500 		KASSERT(mpred->object == object,
1501 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1502 		KASSERT(mpred->pindex < m->pindex,
1503 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1504 	}
1505 
1506 	if (mpred != NULL)
1507 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1508 	else
1509 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1510 
1511 	/*
1512 	 * Show that the object has one more resident page.
1513 	 */
1514 	object->resident_page_count++;
1515 
1516 	/*
1517 	 * Hold the vnode until the last page is released.
1518 	 */
1519 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1520 		vhold(object->handle);
1521 
1522 	/*
1523 	 * Since we are inserting a new and possibly dirty page,
1524 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1525 	 */
1526 	if (pmap_page_is_write_mapped(m))
1527 		vm_object_set_writeable_dirty(object);
1528 }
1529 
1530 /*
1531  * Do the work to remove a page from its object.  The caller is responsible for
1532  * updating the page's fields to reflect this removal.
1533  */
1534 static void
1535 vm_page_object_remove(vm_page_t m)
1536 {
1537 	vm_object_t object;
1538 	vm_page_t mrem;
1539 
1540 	object = m->object;
1541 	VM_OBJECT_ASSERT_WLOCKED(object);
1542 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1543 	    ("page %p is missing its object ref", m));
1544 
1545 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1546 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1547 
1548 	/*
1549 	 * Now remove from the object's list of backed pages.
1550 	 */
1551 	TAILQ_REMOVE(&object->memq, m, listq);
1552 
1553 	/*
1554 	 * And show that the object has one fewer resident page.
1555 	 */
1556 	object->resident_page_count--;
1557 
1558 	/*
1559 	 * The vnode may now be recycled.
1560 	 */
1561 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1562 		vdrop(object->handle);
1563 }
1564 
1565 /*
1566  *	vm_page_remove:
1567  *
1568  *	Removes the specified page from its containing object, but does not
1569  *	invalidate any backing storage.  Returns true if the object's reference
1570  *	was the last reference to the page, and false otherwise.
1571  *
1572  *	The object must be locked.
1573  */
1574 bool
1575 vm_page_remove(vm_page_t m)
1576 {
1577 
1578 	vm_page_object_remove(m);
1579 	m->object = NULL;
1580 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1581 }
1582 
1583 /*
1584  *	vm_page_lookup:
1585  *
1586  *	Returns the page associated with the object/offset
1587  *	pair specified; if none is found, NULL is returned.
1588  *
1589  *	The object must be locked.
1590  */
1591 vm_page_t
1592 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1593 {
1594 
1595 	VM_OBJECT_ASSERT_LOCKED(object);
1596 	return (vm_radix_lookup(&object->rtree, pindex));
1597 }
1598 
1599 /*
1600  *	vm_page_find_least:
1601  *
1602  *	Returns the page associated with the object with least pindex
1603  *	greater than or equal to the parameter pindex, or NULL.
1604  *
1605  *	The object must be locked.
1606  */
1607 vm_page_t
1608 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1609 {
1610 	vm_page_t m;
1611 
1612 	VM_OBJECT_ASSERT_LOCKED(object);
1613 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1614 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1615 	return (m);
1616 }
1617 
1618 /*
1619  * Returns the given page's successor (by pindex) within the object if it is
1620  * resident; if none is found, NULL is returned.
1621  *
1622  * The object must be locked.
1623  */
1624 vm_page_t
1625 vm_page_next(vm_page_t m)
1626 {
1627 	vm_page_t next;
1628 
1629 	VM_OBJECT_ASSERT_LOCKED(m->object);
1630 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1631 		MPASS(next->object == m->object);
1632 		if (next->pindex != m->pindex + 1)
1633 			next = NULL;
1634 	}
1635 	return (next);
1636 }
1637 
1638 /*
1639  * Returns the given page's predecessor (by pindex) within the object if it is
1640  * resident; if none is found, NULL is returned.
1641  *
1642  * The object must be locked.
1643  */
1644 vm_page_t
1645 vm_page_prev(vm_page_t m)
1646 {
1647 	vm_page_t prev;
1648 
1649 	VM_OBJECT_ASSERT_LOCKED(m->object);
1650 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1651 		MPASS(prev->object == m->object);
1652 		if (prev->pindex != m->pindex - 1)
1653 			prev = NULL;
1654 	}
1655 	return (prev);
1656 }
1657 
1658 /*
1659  * Uses the page mnew as a replacement for an existing page at index
1660  * pindex which must be already present in the object.
1661  */
1662 vm_page_t
1663 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1664 {
1665 	vm_page_t mold;
1666 
1667 	VM_OBJECT_ASSERT_WLOCKED(object);
1668 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1669 	    ("vm_page_replace: page %p already in object", mnew));
1670 
1671 	/*
1672 	 * This function mostly follows vm_page_insert() and
1673 	 * vm_page_remove() without the radix, object count and vnode
1674 	 * dance.  Double check such functions for more comments.
1675 	 */
1676 
1677 	mnew->object = object;
1678 	mnew->pindex = pindex;
1679 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1680 	mold = vm_radix_replace(&object->rtree, mnew);
1681 	KASSERT(mold->queue == PQ_NONE,
1682 	    ("vm_page_replace: old page %p is on a paging queue", mold));
1683 
1684 	/* Keep the resident page list in sorted order. */
1685 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1686 	TAILQ_REMOVE(&object->memq, mold, listq);
1687 
1688 	mold->object = NULL;
1689 	atomic_clear_int(&mold->ref_count, VPRC_OBJREF);
1690 	vm_page_xunbusy(mold);
1691 
1692 	/*
1693 	 * The object's resident_page_count does not change because we have
1694 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1695 	 */
1696 	if (pmap_page_is_write_mapped(mnew))
1697 		vm_object_set_writeable_dirty(object);
1698 	return (mold);
1699 }
1700 
1701 /*
1702  *	vm_page_rename:
1703  *
1704  *	Move the given memory entry from its
1705  *	current object to the specified target object/offset.
1706  *
1707  *	Note: swap associated with the page must be invalidated by the move.  We
1708  *	      have to do this for several reasons:  (1) we aren't freeing the
1709  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1710  *	      moving the page from object A to B, and will then later move
1711  *	      the backing store from A to B and we can't have a conflict.
1712  *
1713  *	Note: we *always* dirty the page.  It is necessary both for the
1714  *	      fact that we moved it, and because we may be invalidating
1715  *	      swap.
1716  *
1717  *	The objects must be locked.
1718  */
1719 int
1720 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1721 {
1722 	vm_page_t mpred;
1723 	vm_pindex_t opidx;
1724 
1725 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1726 
1727 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1728 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1729 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1730 	    ("vm_page_rename: pindex already renamed"));
1731 
1732 	/*
1733 	 * Create a custom version of vm_page_insert() which does not depend
1734 	 * by m_prev and can cheat on the implementation aspects of the
1735 	 * function.
1736 	 */
1737 	opidx = m->pindex;
1738 	m->pindex = new_pindex;
1739 	if (vm_radix_insert(&new_object->rtree, m)) {
1740 		m->pindex = opidx;
1741 		return (1);
1742 	}
1743 
1744 	/*
1745 	 * The operation cannot fail anymore.  The removal must happen before
1746 	 * the listq iterator is tainted.
1747 	 */
1748 	m->pindex = opidx;
1749 	vm_page_object_remove(m);
1750 
1751 	/* Return back to the new pindex to complete vm_page_insert(). */
1752 	m->pindex = new_pindex;
1753 	m->object = new_object;
1754 
1755 	vm_page_insert_radixdone(m, new_object, mpred);
1756 	vm_page_dirty(m);
1757 	return (0);
1758 }
1759 
1760 /*
1761  *	vm_page_alloc:
1762  *
1763  *	Allocate and return a page that is associated with the specified
1764  *	object and offset pair.  By default, this page is exclusive busied.
1765  *
1766  *	The caller must always specify an allocation class.
1767  *
1768  *	allocation classes:
1769  *	VM_ALLOC_NORMAL		normal process request
1770  *	VM_ALLOC_SYSTEM		system *really* needs a page
1771  *	VM_ALLOC_INTERRUPT	interrupt time request
1772  *
1773  *	optional allocation flags:
1774  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1775  *				intends to allocate
1776  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1777  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1778  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1779  *				should not be exclusive busy
1780  *	VM_ALLOC_SBUSY		shared busy the allocated page
1781  *	VM_ALLOC_WIRED		wire the allocated page
1782  *	VM_ALLOC_ZERO		prefer a zeroed page
1783  */
1784 vm_page_t
1785 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1786 {
1787 
1788 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1789 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1790 }
1791 
1792 vm_page_t
1793 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1794     int req)
1795 {
1796 
1797 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1798 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1799 	    NULL));
1800 }
1801 
1802 /*
1803  * Allocate a page in the specified object with the given page index.  To
1804  * optimize insertion of the page into the object, the caller must also specifiy
1805  * the resident page in the object with largest index smaller than the given
1806  * page index, or NULL if no such page exists.
1807  */
1808 vm_page_t
1809 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1810     int req, vm_page_t mpred)
1811 {
1812 	struct vm_domainset_iter di;
1813 	vm_page_t m;
1814 	int domain;
1815 
1816 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1817 	do {
1818 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1819 		    mpred);
1820 		if (m != NULL)
1821 			break;
1822 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1823 
1824 	return (m);
1825 }
1826 
1827 /*
1828  * Returns true if the number of free pages exceeds the minimum
1829  * for the request class and false otherwise.
1830  */
1831 int
1832 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1833 {
1834 	u_int limit, old, new;
1835 
1836 	req = req & VM_ALLOC_CLASS_MASK;
1837 
1838 	/*
1839 	 * The page daemon is allowed to dig deeper into the free page list.
1840 	 */
1841 	if (curproc == pageproc && req != VM_ALLOC_INTERRUPT)
1842 		req = VM_ALLOC_SYSTEM;
1843 	if (req == VM_ALLOC_INTERRUPT)
1844 		limit = 0;
1845 	else if (req == VM_ALLOC_SYSTEM)
1846 		limit = vmd->vmd_interrupt_free_min;
1847 	else
1848 		limit = vmd->vmd_free_reserved;
1849 
1850 	/*
1851 	 * Attempt to reserve the pages.  Fail if we're below the limit.
1852 	 */
1853 	limit += npages;
1854 	old = vmd->vmd_free_count;
1855 	do {
1856 		if (old < limit)
1857 			return (0);
1858 		new = old - npages;
1859 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1860 
1861 	/* Wake the page daemon if we've crossed the threshold. */
1862 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1863 		pagedaemon_wakeup(vmd->vmd_domain);
1864 
1865 	/* Only update bitsets on transitions. */
1866 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1867 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1868 		vm_domain_set(vmd);
1869 
1870 	return (1);
1871 }
1872 
1873 vm_page_t
1874 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1875     int req, vm_page_t mpred)
1876 {
1877 	struct vm_domain *vmd;
1878 	vm_page_t m;
1879 	int flags, pool;
1880 
1881 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1882 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1883 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1884 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1885 	    ("inconsistent object(%p)/req(%x)", object, req));
1886 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1887 	    ("Can't sleep and retry object insertion."));
1888 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1889 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1890 	    (uintmax_t)pindex));
1891 	if (object != NULL)
1892 		VM_OBJECT_ASSERT_WLOCKED(object);
1893 
1894 	flags = 0;
1895 	m = NULL;
1896 	pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1897 again:
1898 #if VM_NRESERVLEVEL > 0
1899 	/*
1900 	 * Can we allocate the page from a reservation?
1901 	 */
1902 	if (vm_object_reserv(object) &&
1903 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
1904 	    NULL) {
1905 		domain = vm_phys_domain(m);
1906 		vmd = VM_DOMAIN(domain);
1907 		goto found;
1908 	}
1909 #endif
1910 	vmd = VM_DOMAIN(domain);
1911 	if (vmd->vmd_pgcache[pool].zone != NULL) {
1912 		m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1913 		if (m != NULL) {
1914 			flags |= PG_PCPU_CACHE;
1915 			goto found;
1916 		}
1917 	}
1918 	if (vm_domain_allocate(vmd, req, 1)) {
1919 		/*
1920 		 * If not, allocate it from the free page queues.
1921 		 */
1922 		vm_domain_free_lock(vmd);
1923 		m = vm_phys_alloc_pages(domain, pool, 0);
1924 		vm_domain_free_unlock(vmd);
1925 		if (m == NULL) {
1926 			vm_domain_freecnt_inc(vmd, 1);
1927 #if VM_NRESERVLEVEL > 0
1928 			if (vm_reserv_reclaim_inactive(domain))
1929 				goto again;
1930 #endif
1931 		}
1932 	}
1933 	if (m == NULL) {
1934 		/*
1935 		 * Not allocatable, give up.
1936 		 */
1937 		if (vm_domain_alloc_fail(vmd, object, req))
1938 			goto again;
1939 		return (NULL);
1940 	}
1941 
1942 	/*
1943 	 * At this point we had better have found a good page.
1944 	 */
1945 found:
1946 	vm_page_dequeue(m);
1947 	vm_page_alloc_check(m);
1948 
1949 	/*
1950 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1951 	 */
1952 	if ((req & VM_ALLOC_ZERO) != 0)
1953 		flags |= (m->flags & PG_ZERO);
1954 	if ((req & VM_ALLOC_NODUMP) != 0)
1955 		flags |= PG_NODUMP;
1956 	m->flags = flags;
1957 	m->aflags = 0;
1958 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1959 	    VPO_UNMANAGED : 0;
1960 	m->busy_lock = VPB_UNBUSIED;
1961 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1962 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1963 	if ((req & VM_ALLOC_SBUSY) != 0)
1964 		m->busy_lock = VPB_SHARERS_WORD(1);
1965 	if (req & VM_ALLOC_WIRED) {
1966 		/*
1967 		 * The page lock is not required for wiring a page until that
1968 		 * page is inserted into the object.
1969 		 */
1970 		vm_wire_add(1);
1971 		m->ref_count = 1;
1972 	}
1973 	m->act_count = 0;
1974 
1975 	if (object != NULL) {
1976 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1977 			if (req & VM_ALLOC_WIRED) {
1978 				vm_wire_sub(1);
1979 				m->ref_count = 0;
1980 			}
1981 			KASSERT(m->object == NULL, ("page %p has object", m));
1982 			m->oflags = VPO_UNMANAGED;
1983 			m->busy_lock = VPB_UNBUSIED;
1984 			/* Don't change PG_ZERO. */
1985 			vm_page_free_toq(m);
1986 			if (req & VM_ALLOC_WAITFAIL) {
1987 				VM_OBJECT_WUNLOCK(object);
1988 				vm_radix_wait();
1989 				VM_OBJECT_WLOCK(object);
1990 			}
1991 			return (NULL);
1992 		}
1993 
1994 		/* Ignore device objects; the pager sets "memattr" for them. */
1995 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1996 		    (object->flags & OBJ_FICTITIOUS) == 0)
1997 			pmap_page_set_memattr(m, object->memattr);
1998 	} else
1999 		m->pindex = pindex;
2000 
2001 	return (m);
2002 }
2003 
2004 /*
2005  *	vm_page_alloc_contig:
2006  *
2007  *	Allocate a contiguous set of physical pages of the given size "npages"
2008  *	from the free lists.  All of the physical pages must be at or above
2009  *	the given physical address "low" and below the given physical address
2010  *	"high".  The given value "alignment" determines the alignment of the
2011  *	first physical page in the set.  If the given value "boundary" is
2012  *	non-zero, then the set of physical pages cannot cross any physical
2013  *	address boundary that is a multiple of that value.  Both "alignment"
2014  *	and "boundary" must be a power of two.
2015  *
2016  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2017  *	then the memory attribute setting for the physical pages is configured
2018  *	to the object's memory attribute setting.  Otherwise, the memory
2019  *	attribute setting for the physical pages is configured to "memattr",
2020  *	overriding the object's memory attribute setting.  However, if the
2021  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2022  *	memory attribute setting for the physical pages cannot be configured
2023  *	to VM_MEMATTR_DEFAULT.
2024  *
2025  *	The specified object may not contain fictitious pages.
2026  *
2027  *	The caller must always specify an allocation class.
2028  *
2029  *	allocation classes:
2030  *	VM_ALLOC_NORMAL		normal process request
2031  *	VM_ALLOC_SYSTEM		system *really* needs a page
2032  *	VM_ALLOC_INTERRUPT	interrupt time request
2033  *
2034  *	optional allocation flags:
2035  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2036  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2037  *	VM_ALLOC_NOOBJ		page is not associated with an object and
2038  *				should not be exclusive busy
2039  *	VM_ALLOC_SBUSY		shared busy the allocated page
2040  *	VM_ALLOC_WIRED		wire the allocated page
2041  *	VM_ALLOC_ZERO		prefer a zeroed page
2042  */
2043 vm_page_t
2044 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2045     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2046     vm_paddr_t boundary, vm_memattr_t memattr)
2047 {
2048 	struct vm_domainset_iter di;
2049 	vm_page_t m;
2050 	int domain;
2051 
2052 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2053 	do {
2054 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2055 		    npages, low, high, alignment, boundary, memattr);
2056 		if (m != NULL)
2057 			break;
2058 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2059 
2060 	return (m);
2061 }
2062 
2063 vm_page_t
2064 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2065     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2066     vm_paddr_t boundary, vm_memattr_t memattr)
2067 {
2068 	struct vm_domain *vmd;
2069 	vm_page_t m, m_ret, mpred;
2070 	u_int busy_lock, flags, oflags;
2071 
2072 	mpred = NULL;	/* XXX: pacify gcc */
2073 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2074 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2075 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2076 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2077 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2078 	    req));
2079 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2080 	    ("Can't sleep and retry object insertion."));
2081 	if (object != NULL) {
2082 		VM_OBJECT_ASSERT_WLOCKED(object);
2083 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2084 		    ("vm_page_alloc_contig: object %p has fictitious pages",
2085 		    object));
2086 	}
2087 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2088 
2089 	if (object != NULL) {
2090 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
2091 		KASSERT(mpred == NULL || mpred->pindex != pindex,
2092 		    ("vm_page_alloc_contig: pindex already allocated"));
2093 	}
2094 
2095 	/*
2096 	 * Can we allocate the pages without the number of free pages falling
2097 	 * below the lower bound for the allocation class?
2098 	 */
2099 	m_ret = NULL;
2100 again:
2101 #if VM_NRESERVLEVEL > 0
2102 	/*
2103 	 * Can we allocate the pages from a reservation?
2104 	 */
2105 	if (vm_object_reserv(object) &&
2106 	    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2107 	    mpred, npages, low, high, alignment, boundary)) != NULL) {
2108 		domain = vm_phys_domain(m_ret);
2109 		vmd = VM_DOMAIN(domain);
2110 		goto found;
2111 	}
2112 #endif
2113 	vmd = VM_DOMAIN(domain);
2114 	if (vm_domain_allocate(vmd, req, npages)) {
2115 		/*
2116 		 * allocate them from the free page queues.
2117 		 */
2118 		vm_domain_free_lock(vmd);
2119 		m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2120 		    alignment, boundary);
2121 		vm_domain_free_unlock(vmd);
2122 		if (m_ret == NULL) {
2123 			vm_domain_freecnt_inc(vmd, npages);
2124 #if VM_NRESERVLEVEL > 0
2125 			if (vm_reserv_reclaim_contig(domain, npages, low,
2126 			    high, alignment, boundary))
2127 				goto again;
2128 #endif
2129 		}
2130 	}
2131 	if (m_ret == NULL) {
2132 		if (vm_domain_alloc_fail(vmd, object, req))
2133 			goto again;
2134 		return (NULL);
2135 	}
2136 #if VM_NRESERVLEVEL > 0
2137 found:
2138 #endif
2139 	for (m = m_ret; m < &m_ret[npages]; m++) {
2140 		vm_page_dequeue(m);
2141 		vm_page_alloc_check(m);
2142 	}
2143 
2144 	/*
2145 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2146 	 */
2147 	flags = 0;
2148 	if ((req & VM_ALLOC_ZERO) != 0)
2149 		flags = PG_ZERO;
2150 	if ((req & VM_ALLOC_NODUMP) != 0)
2151 		flags |= PG_NODUMP;
2152 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2153 	    VPO_UNMANAGED : 0;
2154 	busy_lock = VPB_UNBUSIED;
2155 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2156 		busy_lock = VPB_SINGLE_EXCLUSIVER;
2157 	if ((req & VM_ALLOC_SBUSY) != 0)
2158 		busy_lock = VPB_SHARERS_WORD(1);
2159 	if ((req & VM_ALLOC_WIRED) != 0)
2160 		vm_wire_add(npages);
2161 	if (object != NULL) {
2162 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2163 		    memattr == VM_MEMATTR_DEFAULT)
2164 			memattr = object->memattr;
2165 	}
2166 	for (m = m_ret; m < &m_ret[npages]; m++) {
2167 		m->aflags = 0;
2168 		m->flags = (m->flags | PG_NODUMP) & flags;
2169 		m->busy_lock = busy_lock;
2170 		if ((req & VM_ALLOC_WIRED) != 0)
2171 			m->ref_count = 1;
2172 		m->act_count = 0;
2173 		m->oflags = oflags;
2174 		if (object != NULL) {
2175 			if (vm_page_insert_after(m, object, pindex, mpred)) {
2176 				if ((req & VM_ALLOC_WIRED) != 0)
2177 					vm_wire_sub(npages);
2178 				KASSERT(m->object == NULL,
2179 				    ("page %p has object", m));
2180 				mpred = m;
2181 				for (m = m_ret; m < &m_ret[npages]; m++) {
2182 					if (m <= mpred &&
2183 					    (req & VM_ALLOC_WIRED) != 0)
2184 						m->ref_count = 0;
2185 					m->oflags = VPO_UNMANAGED;
2186 					m->busy_lock = VPB_UNBUSIED;
2187 					/* Don't change PG_ZERO. */
2188 					vm_page_free_toq(m);
2189 				}
2190 				if (req & VM_ALLOC_WAITFAIL) {
2191 					VM_OBJECT_WUNLOCK(object);
2192 					vm_radix_wait();
2193 					VM_OBJECT_WLOCK(object);
2194 				}
2195 				return (NULL);
2196 			}
2197 			mpred = m;
2198 		} else
2199 			m->pindex = pindex;
2200 		if (memattr != VM_MEMATTR_DEFAULT)
2201 			pmap_page_set_memattr(m, memattr);
2202 		pindex++;
2203 	}
2204 	return (m_ret);
2205 }
2206 
2207 /*
2208  * Check a page that has been freshly dequeued from a freelist.
2209  */
2210 static void
2211 vm_page_alloc_check(vm_page_t m)
2212 {
2213 
2214 	KASSERT(m->object == NULL, ("page %p has object", m));
2215 	KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
2216 	    ("page %p has unexpected queue %d, flags %#x",
2217 	    m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK)));
2218 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2219 	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2220 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2221 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2222 	    ("page %p has unexpected memattr %d",
2223 	    m, pmap_page_get_memattr(m)));
2224 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2225 }
2226 
2227 /*
2228  * 	vm_page_alloc_freelist:
2229  *
2230  *	Allocate a physical page from the specified free page list.
2231  *
2232  *	The caller must always specify an allocation class.
2233  *
2234  *	allocation classes:
2235  *	VM_ALLOC_NORMAL		normal process request
2236  *	VM_ALLOC_SYSTEM		system *really* needs a page
2237  *	VM_ALLOC_INTERRUPT	interrupt time request
2238  *
2239  *	optional allocation flags:
2240  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2241  *				intends to allocate
2242  *	VM_ALLOC_WIRED		wire the allocated page
2243  *	VM_ALLOC_ZERO		prefer a zeroed page
2244  */
2245 vm_page_t
2246 vm_page_alloc_freelist(int freelist, int req)
2247 {
2248 	struct vm_domainset_iter di;
2249 	vm_page_t m;
2250 	int domain;
2251 
2252 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2253 	do {
2254 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2255 		if (m != NULL)
2256 			break;
2257 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2258 
2259 	return (m);
2260 }
2261 
2262 vm_page_t
2263 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2264 {
2265 	struct vm_domain *vmd;
2266 	vm_page_t m;
2267 	u_int flags;
2268 
2269 	m = NULL;
2270 	vmd = VM_DOMAIN(domain);
2271 again:
2272 	if (vm_domain_allocate(vmd, req, 1)) {
2273 		vm_domain_free_lock(vmd);
2274 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2275 		    VM_FREEPOOL_DIRECT, 0);
2276 		vm_domain_free_unlock(vmd);
2277 		if (m == NULL)
2278 			vm_domain_freecnt_inc(vmd, 1);
2279 	}
2280 	if (m == NULL) {
2281 		if (vm_domain_alloc_fail(vmd, NULL, req))
2282 			goto again;
2283 		return (NULL);
2284 	}
2285 	vm_page_dequeue(m);
2286 	vm_page_alloc_check(m);
2287 
2288 	/*
2289 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2290 	 */
2291 	m->aflags = 0;
2292 	flags = 0;
2293 	if ((req & VM_ALLOC_ZERO) != 0)
2294 		flags = PG_ZERO;
2295 	m->flags &= flags;
2296 	if ((req & VM_ALLOC_WIRED) != 0) {
2297 		/*
2298 		 * The page lock is not required for wiring a page that does
2299 		 * not belong to an object.
2300 		 */
2301 		vm_wire_add(1);
2302 		m->ref_count = 1;
2303 	}
2304 	/* Unmanaged pages don't use "act_count". */
2305 	m->oflags = VPO_UNMANAGED;
2306 	return (m);
2307 }
2308 
2309 static int
2310 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2311 {
2312 	struct vm_domain *vmd;
2313 	struct vm_pgcache *pgcache;
2314 	int i;
2315 
2316 	pgcache = arg;
2317 	vmd = VM_DOMAIN(pgcache->domain);
2318 	/* Only import if we can bring in a full bucket. */
2319 	if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2320 		return (0);
2321 	domain = vmd->vmd_domain;
2322 	vm_domain_free_lock(vmd);
2323 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2324 	    (vm_page_t *)store);
2325 	vm_domain_free_unlock(vmd);
2326 	if (cnt != i)
2327 		vm_domain_freecnt_inc(vmd, cnt - i);
2328 
2329 	return (i);
2330 }
2331 
2332 static void
2333 vm_page_zone_release(void *arg, void **store, int cnt)
2334 {
2335 	struct vm_domain *vmd;
2336 	struct vm_pgcache *pgcache;
2337 	vm_page_t m;
2338 	int i;
2339 
2340 	pgcache = arg;
2341 	vmd = VM_DOMAIN(pgcache->domain);
2342 	vm_domain_free_lock(vmd);
2343 	for (i = 0; i < cnt; i++) {
2344 		m = (vm_page_t)store[i];
2345 		vm_phys_free_pages(m, 0);
2346 	}
2347 	vm_domain_free_unlock(vmd);
2348 	vm_domain_freecnt_inc(vmd, cnt);
2349 }
2350 
2351 #define	VPSC_ANY	0	/* No restrictions. */
2352 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2353 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2354 
2355 /*
2356  *	vm_page_scan_contig:
2357  *
2358  *	Scan vm_page_array[] between the specified entries "m_start" and
2359  *	"m_end" for a run of contiguous physical pages that satisfy the
2360  *	specified conditions, and return the lowest page in the run.  The
2361  *	specified "alignment" determines the alignment of the lowest physical
2362  *	page in the run.  If the specified "boundary" is non-zero, then the
2363  *	run of physical pages cannot span a physical address that is a
2364  *	multiple of "boundary".
2365  *
2366  *	"m_end" is never dereferenced, so it need not point to a vm_page
2367  *	structure within vm_page_array[].
2368  *
2369  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2370  *	span a hole (or discontiguity) in the physical address space.  Both
2371  *	"alignment" and "boundary" must be a power of two.
2372  */
2373 vm_page_t
2374 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2375     u_long alignment, vm_paddr_t boundary, int options)
2376 {
2377 	struct mtx *m_mtx;
2378 	vm_object_t object;
2379 	vm_paddr_t pa;
2380 	vm_page_t m, m_run;
2381 #if VM_NRESERVLEVEL > 0
2382 	int level;
2383 #endif
2384 	int m_inc, order, run_ext, run_len;
2385 
2386 	KASSERT(npages > 0, ("npages is 0"));
2387 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2388 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2389 	m_run = NULL;
2390 	run_len = 0;
2391 	m_mtx = NULL;
2392 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2393 		KASSERT((m->flags & PG_MARKER) == 0,
2394 		    ("page %p is PG_MARKER", m));
2395 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2396 		    ("fictitious page %p has invalid ref count", m));
2397 
2398 		/*
2399 		 * If the current page would be the start of a run, check its
2400 		 * physical address against the end, alignment, and boundary
2401 		 * conditions.  If it doesn't satisfy these conditions, either
2402 		 * terminate the scan or advance to the next page that
2403 		 * satisfies the failed condition.
2404 		 */
2405 		if (run_len == 0) {
2406 			KASSERT(m_run == NULL, ("m_run != NULL"));
2407 			if (m + npages > m_end)
2408 				break;
2409 			pa = VM_PAGE_TO_PHYS(m);
2410 			if ((pa & (alignment - 1)) != 0) {
2411 				m_inc = atop(roundup2(pa, alignment) - pa);
2412 				continue;
2413 			}
2414 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2415 			    boundary) != 0) {
2416 				m_inc = atop(roundup2(pa, boundary) - pa);
2417 				continue;
2418 			}
2419 		} else
2420 			KASSERT(m_run != NULL, ("m_run == NULL"));
2421 
2422 		vm_page_change_lock(m, &m_mtx);
2423 		m_inc = 1;
2424 retry:
2425 		if (vm_page_wired(m))
2426 			run_ext = 0;
2427 #if VM_NRESERVLEVEL > 0
2428 		else if ((level = vm_reserv_level(m)) >= 0 &&
2429 		    (options & VPSC_NORESERV) != 0) {
2430 			run_ext = 0;
2431 			/* Advance to the end of the reservation. */
2432 			pa = VM_PAGE_TO_PHYS(m);
2433 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2434 			    pa);
2435 		}
2436 #endif
2437 		else if ((object = m->object) != NULL) {
2438 			/*
2439 			 * The page is considered eligible for relocation if
2440 			 * and only if it could be laundered or reclaimed by
2441 			 * the page daemon.
2442 			 */
2443 			if (!VM_OBJECT_TRYRLOCK(object)) {
2444 				mtx_unlock(m_mtx);
2445 				VM_OBJECT_RLOCK(object);
2446 				mtx_lock(m_mtx);
2447 				if (m->object != object) {
2448 					/*
2449 					 * The page may have been freed.
2450 					 */
2451 					VM_OBJECT_RUNLOCK(object);
2452 					goto retry;
2453 				}
2454 			}
2455 			/* Don't care: PG_NODUMP, PG_ZERO. */
2456 			if (object->type != OBJT_DEFAULT &&
2457 			    object->type != OBJT_SWAP &&
2458 			    object->type != OBJT_VNODE) {
2459 				run_ext = 0;
2460 #if VM_NRESERVLEVEL > 0
2461 			} else if ((options & VPSC_NOSUPER) != 0 &&
2462 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2463 				run_ext = 0;
2464 				/* Advance to the end of the superpage. */
2465 				pa = VM_PAGE_TO_PHYS(m);
2466 				m_inc = atop(roundup2(pa + 1,
2467 				    vm_reserv_size(level)) - pa);
2468 #endif
2469 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2470 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) &&
2471 			    !vm_page_wired(m)) {
2472 				/*
2473 				 * The page is allocated but eligible for
2474 				 * relocation.  Extend the current run by one
2475 				 * page.
2476 				 */
2477 				KASSERT(pmap_page_get_memattr(m) ==
2478 				    VM_MEMATTR_DEFAULT,
2479 				    ("page %p has an unexpected memattr", m));
2480 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2481 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2482 				    ("page %p has unexpected oflags", m));
2483 				/* Don't care: PGA_NOSYNC. */
2484 				run_ext = 1;
2485 			} else
2486 				run_ext = 0;
2487 			VM_OBJECT_RUNLOCK(object);
2488 #if VM_NRESERVLEVEL > 0
2489 		} else if (level >= 0) {
2490 			/*
2491 			 * The page is reserved but not yet allocated.  In
2492 			 * other words, it is still free.  Extend the current
2493 			 * run by one page.
2494 			 */
2495 			run_ext = 1;
2496 #endif
2497 		} else if ((order = m->order) < VM_NFREEORDER) {
2498 			/*
2499 			 * The page is enqueued in the physical memory
2500 			 * allocator's free page queues.  Moreover, it is the
2501 			 * first page in a power-of-two-sized run of
2502 			 * contiguous free pages.  Add these pages to the end
2503 			 * of the current run, and jump ahead.
2504 			 */
2505 			run_ext = 1 << order;
2506 			m_inc = 1 << order;
2507 		} else {
2508 			/*
2509 			 * Skip the page for one of the following reasons: (1)
2510 			 * It is enqueued in the physical memory allocator's
2511 			 * free page queues.  However, it is not the first
2512 			 * page in a run of contiguous free pages.  (This case
2513 			 * rarely occurs because the scan is performed in
2514 			 * ascending order.) (2) It is not reserved, and it is
2515 			 * transitioning from free to allocated.  (Conversely,
2516 			 * the transition from allocated to free for managed
2517 			 * pages is blocked by the page lock.) (3) It is
2518 			 * allocated but not contained by an object and not
2519 			 * wired, e.g., allocated by Xen's balloon driver.
2520 			 */
2521 			run_ext = 0;
2522 		}
2523 
2524 		/*
2525 		 * Extend or reset the current run of pages.
2526 		 */
2527 		if (run_ext > 0) {
2528 			if (run_len == 0)
2529 				m_run = m;
2530 			run_len += run_ext;
2531 		} else {
2532 			if (run_len > 0) {
2533 				m_run = NULL;
2534 				run_len = 0;
2535 			}
2536 		}
2537 	}
2538 	if (m_mtx != NULL)
2539 		mtx_unlock(m_mtx);
2540 	if (run_len >= npages)
2541 		return (m_run);
2542 	return (NULL);
2543 }
2544 
2545 /*
2546  *	vm_page_reclaim_run:
2547  *
2548  *	Try to relocate each of the allocated virtual pages within the
2549  *	specified run of physical pages to a new physical address.  Free the
2550  *	physical pages underlying the relocated virtual pages.  A virtual page
2551  *	is relocatable if and only if it could be laundered or reclaimed by
2552  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2553  *	physical address above "high".
2554  *
2555  *	Returns 0 if every physical page within the run was already free or
2556  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2557  *	value indicating why the last attempt to relocate a virtual page was
2558  *	unsuccessful.
2559  *
2560  *	"req_class" must be an allocation class.
2561  */
2562 static int
2563 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2564     vm_paddr_t high)
2565 {
2566 	struct vm_domain *vmd;
2567 	struct mtx *m_mtx;
2568 	struct spglist free;
2569 	vm_object_t object;
2570 	vm_paddr_t pa;
2571 	vm_page_t m, m_end, m_new;
2572 	int error, order, req;
2573 
2574 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2575 	    ("req_class is not an allocation class"));
2576 	SLIST_INIT(&free);
2577 	error = 0;
2578 	m = m_run;
2579 	m_end = m_run + npages;
2580 	m_mtx = NULL;
2581 	for (; error == 0 && m < m_end; m++) {
2582 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2583 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2584 
2585 		/*
2586 		 * Avoid releasing and reacquiring the same page lock.
2587 		 */
2588 		vm_page_change_lock(m, &m_mtx);
2589 retry:
2590 		/*
2591 		 * Racily check for wirings.  Races are handled below.
2592 		 */
2593 		if (vm_page_wired(m))
2594 			error = EBUSY;
2595 		else if ((object = m->object) != NULL) {
2596 			/*
2597 			 * The page is relocated if and only if it could be
2598 			 * laundered or reclaimed by the page daemon.
2599 			 */
2600 			if (!VM_OBJECT_TRYWLOCK(object)) {
2601 				mtx_unlock(m_mtx);
2602 				VM_OBJECT_WLOCK(object);
2603 				mtx_lock(m_mtx);
2604 				if (m->object != object) {
2605 					/*
2606 					 * The page may have been freed.
2607 					 */
2608 					VM_OBJECT_WUNLOCK(object);
2609 					goto retry;
2610 				}
2611 			}
2612 			/* Don't care: PG_NODUMP, PG_ZERO. */
2613 			if (object->type != OBJT_DEFAULT &&
2614 			    object->type != OBJT_SWAP &&
2615 			    object->type != OBJT_VNODE)
2616 				error = EINVAL;
2617 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2618 				error = EINVAL;
2619 			else if (vm_page_queue(m) != PQ_NONE &&
2620 			    vm_page_tryxbusy(m) != 0) {
2621 				if (vm_page_wired(m)) {
2622 					vm_page_xunbusy(m);
2623 					error = EBUSY;
2624 					goto unlock;
2625 				}
2626 				KASSERT(pmap_page_get_memattr(m) ==
2627 				    VM_MEMATTR_DEFAULT,
2628 				    ("page %p has an unexpected memattr", m));
2629 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2630 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2631 				    ("page %p has unexpected oflags", m));
2632 				/* Don't care: PGA_NOSYNC. */
2633 				if (!vm_page_none_valid(m)) {
2634 					/*
2635 					 * First, try to allocate a new page
2636 					 * that is above "high".  Failing
2637 					 * that, try to allocate a new page
2638 					 * that is below "m_run".  Allocate
2639 					 * the new page between the end of
2640 					 * "m_run" and "high" only as a last
2641 					 * resort.
2642 					 */
2643 					req = req_class | VM_ALLOC_NOOBJ;
2644 					if ((m->flags & PG_NODUMP) != 0)
2645 						req |= VM_ALLOC_NODUMP;
2646 					if (trunc_page(high) !=
2647 					    ~(vm_paddr_t)PAGE_MASK) {
2648 						m_new = vm_page_alloc_contig(
2649 						    NULL, 0, req, 1,
2650 						    round_page(high),
2651 						    ~(vm_paddr_t)0,
2652 						    PAGE_SIZE, 0,
2653 						    VM_MEMATTR_DEFAULT);
2654 					} else
2655 						m_new = NULL;
2656 					if (m_new == NULL) {
2657 						pa = VM_PAGE_TO_PHYS(m_run);
2658 						m_new = vm_page_alloc_contig(
2659 						    NULL, 0, req, 1,
2660 						    0, pa - 1, PAGE_SIZE, 0,
2661 						    VM_MEMATTR_DEFAULT);
2662 					}
2663 					if (m_new == NULL) {
2664 						pa += ptoa(npages);
2665 						m_new = vm_page_alloc_contig(
2666 						    NULL, 0, req, 1,
2667 						    pa, high, PAGE_SIZE, 0,
2668 						    VM_MEMATTR_DEFAULT);
2669 					}
2670 					if (m_new == NULL) {
2671 						vm_page_xunbusy(m);
2672 						error = ENOMEM;
2673 						goto unlock;
2674 					}
2675 
2676 					/*
2677 					 * Unmap the page and check for new
2678 					 * wirings that may have been acquired
2679 					 * through a pmap lookup.
2680 					 */
2681 					if (object->ref_count != 0 &&
2682 					    !vm_page_try_remove_all(m)) {
2683 						vm_page_free(m_new);
2684 						error = EBUSY;
2685 						goto unlock;
2686 					}
2687 
2688 					/*
2689 					 * Replace "m" with the new page.  For
2690 					 * vm_page_replace(), "m" must be busy
2691 					 * and dequeued.  Finally, change "m"
2692 					 * as if vm_page_free() was called.
2693 					 */
2694 					m_new->aflags = m->aflags &
2695 					    ~PGA_QUEUE_STATE_MASK;
2696 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2697 					    ("page %p is managed", m_new));
2698 					pmap_copy_page(m, m_new);
2699 					m_new->valid = m->valid;
2700 					m_new->dirty = m->dirty;
2701 					m->flags &= ~PG_ZERO;
2702 					vm_page_dequeue(m);
2703 					vm_page_replace_checked(m_new, object,
2704 					    m->pindex, m);
2705 					if (vm_page_free_prep(m))
2706 						SLIST_INSERT_HEAD(&free, m,
2707 						    plinks.s.ss);
2708 
2709 					/*
2710 					 * The new page must be deactivated
2711 					 * before the object is unlocked.
2712 					 */
2713 					vm_page_change_lock(m_new, &m_mtx);
2714 					vm_page_deactivate(m_new);
2715 				} else {
2716 					m->flags &= ~PG_ZERO;
2717 					vm_page_dequeue(m);
2718 					if (vm_page_free_prep(m))
2719 						SLIST_INSERT_HEAD(&free, m,
2720 						    plinks.s.ss);
2721 					KASSERT(m->dirty == 0,
2722 					    ("page %p is dirty", m));
2723 				}
2724 			} else
2725 				error = EBUSY;
2726 unlock:
2727 			VM_OBJECT_WUNLOCK(object);
2728 		} else {
2729 			MPASS(vm_phys_domain(m) == domain);
2730 			vmd = VM_DOMAIN(domain);
2731 			vm_domain_free_lock(vmd);
2732 			order = m->order;
2733 			if (order < VM_NFREEORDER) {
2734 				/*
2735 				 * The page is enqueued in the physical memory
2736 				 * allocator's free page queues.  Moreover, it
2737 				 * is the first page in a power-of-two-sized
2738 				 * run of contiguous free pages.  Jump ahead
2739 				 * to the last page within that run, and
2740 				 * continue from there.
2741 				 */
2742 				m += (1 << order) - 1;
2743 			}
2744 #if VM_NRESERVLEVEL > 0
2745 			else if (vm_reserv_is_page_free(m))
2746 				order = 0;
2747 #endif
2748 			vm_domain_free_unlock(vmd);
2749 			if (order == VM_NFREEORDER)
2750 				error = EINVAL;
2751 		}
2752 	}
2753 	if (m_mtx != NULL)
2754 		mtx_unlock(m_mtx);
2755 	if ((m = SLIST_FIRST(&free)) != NULL) {
2756 		int cnt;
2757 
2758 		vmd = VM_DOMAIN(domain);
2759 		cnt = 0;
2760 		vm_domain_free_lock(vmd);
2761 		do {
2762 			MPASS(vm_phys_domain(m) == domain);
2763 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2764 			vm_phys_free_pages(m, 0);
2765 			cnt++;
2766 		} while ((m = SLIST_FIRST(&free)) != NULL);
2767 		vm_domain_free_unlock(vmd);
2768 		vm_domain_freecnt_inc(vmd, cnt);
2769 	}
2770 	return (error);
2771 }
2772 
2773 #define	NRUNS	16
2774 
2775 CTASSERT(powerof2(NRUNS));
2776 
2777 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2778 
2779 #define	MIN_RECLAIM	8
2780 
2781 /*
2782  *	vm_page_reclaim_contig:
2783  *
2784  *	Reclaim allocated, contiguous physical memory satisfying the specified
2785  *	conditions by relocating the virtual pages using that physical memory.
2786  *	Returns true if reclamation is successful and false otherwise.  Since
2787  *	relocation requires the allocation of physical pages, reclamation may
2788  *	fail due to a shortage of free pages.  When reclamation fails, callers
2789  *	are expected to perform vm_wait() before retrying a failed allocation
2790  *	operation, e.g., vm_page_alloc_contig().
2791  *
2792  *	The caller must always specify an allocation class through "req".
2793  *
2794  *	allocation classes:
2795  *	VM_ALLOC_NORMAL		normal process request
2796  *	VM_ALLOC_SYSTEM		system *really* needs a page
2797  *	VM_ALLOC_INTERRUPT	interrupt time request
2798  *
2799  *	The optional allocation flags are ignored.
2800  *
2801  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2802  *	must be a power of two.
2803  */
2804 bool
2805 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2806     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2807 {
2808 	struct vm_domain *vmd;
2809 	vm_paddr_t curr_low;
2810 	vm_page_t m_run, m_runs[NRUNS];
2811 	u_long count, reclaimed;
2812 	int error, i, options, req_class;
2813 
2814 	KASSERT(npages > 0, ("npages is 0"));
2815 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2816 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2817 	req_class = req & VM_ALLOC_CLASS_MASK;
2818 
2819 	/*
2820 	 * The page daemon is allowed to dig deeper into the free page list.
2821 	 */
2822 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2823 		req_class = VM_ALLOC_SYSTEM;
2824 
2825 	/*
2826 	 * Return if the number of free pages cannot satisfy the requested
2827 	 * allocation.
2828 	 */
2829 	vmd = VM_DOMAIN(domain);
2830 	count = vmd->vmd_free_count;
2831 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
2832 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2833 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2834 		return (false);
2835 
2836 	/*
2837 	 * Scan up to three times, relaxing the restrictions ("options") on
2838 	 * the reclamation of reservations and superpages each time.
2839 	 */
2840 	for (options = VPSC_NORESERV;;) {
2841 		/*
2842 		 * Find the highest runs that satisfy the given constraints
2843 		 * and restrictions, and record them in "m_runs".
2844 		 */
2845 		curr_low = low;
2846 		count = 0;
2847 		for (;;) {
2848 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
2849 			    high, alignment, boundary, options);
2850 			if (m_run == NULL)
2851 				break;
2852 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2853 			m_runs[RUN_INDEX(count)] = m_run;
2854 			count++;
2855 		}
2856 
2857 		/*
2858 		 * Reclaim the highest runs in LIFO (descending) order until
2859 		 * the number of reclaimed pages, "reclaimed", is at least
2860 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2861 		 * reclamation is idempotent, and runs will (likely) recur
2862 		 * from one scan to the next as restrictions are relaxed.
2863 		 */
2864 		reclaimed = 0;
2865 		for (i = 0; count > 0 && i < NRUNS; i++) {
2866 			count--;
2867 			m_run = m_runs[RUN_INDEX(count)];
2868 			error = vm_page_reclaim_run(req_class, domain, npages,
2869 			    m_run, high);
2870 			if (error == 0) {
2871 				reclaimed += npages;
2872 				if (reclaimed >= MIN_RECLAIM)
2873 					return (true);
2874 			}
2875 		}
2876 
2877 		/*
2878 		 * Either relax the restrictions on the next scan or return if
2879 		 * the last scan had no restrictions.
2880 		 */
2881 		if (options == VPSC_NORESERV)
2882 			options = VPSC_NOSUPER;
2883 		else if (options == VPSC_NOSUPER)
2884 			options = VPSC_ANY;
2885 		else if (options == VPSC_ANY)
2886 			return (reclaimed != 0);
2887 	}
2888 }
2889 
2890 bool
2891 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2892     u_long alignment, vm_paddr_t boundary)
2893 {
2894 	struct vm_domainset_iter di;
2895 	int domain;
2896 	bool ret;
2897 
2898 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2899 	do {
2900 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2901 		    high, alignment, boundary);
2902 		if (ret)
2903 			break;
2904 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2905 
2906 	return (ret);
2907 }
2908 
2909 /*
2910  * Set the domain in the appropriate page level domainset.
2911  */
2912 void
2913 vm_domain_set(struct vm_domain *vmd)
2914 {
2915 
2916 	mtx_lock(&vm_domainset_lock);
2917 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2918 		vmd->vmd_minset = 1;
2919 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2920 	}
2921 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2922 		vmd->vmd_severeset = 1;
2923 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2924 	}
2925 	mtx_unlock(&vm_domainset_lock);
2926 }
2927 
2928 /*
2929  * Clear the domain from the appropriate page level domainset.
2930  */
2931 void
2932 vm_domain_clear(struct vm_domain *vmd)
2933 {
2934 
2935 	mtx_lock(&vm_domainset_lock);
2936 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2937 		vmd->vmd_minset = 0;
2938 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2939 		if (vm_min_waiters != 0) {
2940 			vm_min_waiters = 0;
2941 			wakeup(&vm_min_domains);
2942 		}
2943 	}
2944 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2945 		vmd->vmd_severeset = 0;
2946 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2947 		if (vm_severe_waiters != 0) {
2948 			vm_severe_waiters = 0;
2949 			wakeup(&vm_severe_domains);
2950 		}
2951 	}
2952 
2953 	/*
2954 	 * If pageout daemon needs pages, then tell it that there are
2955 	 * some free.
2956 	 */
2957 	if (vmd->vmd_pageout_pages_needed &&
2958 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
2959 		wakeup(&vmd->vmd_pageout_pages_needed);
2960 		vmd->vmd_pageout_pages_needed = 0;
2961 	}
2962 
2963 	/* See comments in vm_wait_doms(). */
2964 	if (vm_pageproc_waiters) {
2965 		vm_pageproc_waiters = 0;
2966 		wakeup(&vm_pageproc_waiters);
2967 	}
2968 	mtx_unlock(&vm_domainset_lock);
2969 }
2970 
2971 /*
2972  * Wait for free pages to exceed the min threshold globally.
2973  */
2974 void
2975 vm_wait_min(void)
2976 {
2977 
2978 	mtx_lock(&vm_domainset_lock);
2979 	while (vm_page_count_min()) {
2980 		vm_min_waiters++;
2981 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
2982 	}
2983 	mtx_unlock(&vm_domainset_lock);
2984 }
2985 
2986 /*
2987  * Wait for free pages to exceed the severe threshold globally.
2988  */
2989 void
2990 vm_wait_severe(void)
2991 {
2992 
2993 	mtx_lock(&vm_domainset_lock);
2994 	while (vm_page_count_severe()) {
2995 		vm_severe_waiters++;
2996 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
2997 		    "vmwait", 0);
2998 	}
2999 	mtx_unlock(&vm_domainset_lock);
3000 }
3001 
3002 u_int
3003 vm_wait_count(void)
3004 {
3005 
3006 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3007 }
3008 
3009 void
3010 vm_wait_doms(const domainset_t *wdoms)
3011 {
3012 
3013 	/*
3014 	 * We use racey wakeup synchronization to avoid expensive global
3015 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3016 	 * To handle this, we only sleep for one tick in this instance.  It
3017 	 * is expected that most allocations for the pageproc will come from
3018 	 * kmem or vm_page_grab* which will use the more specific and
3019 	 * race-free vm_wait_domain().
3020 	 */
3021 	if (curproc == pageproc) {
3022 		mtx_lock(&vm_domainset_lock);
3023 		vm_pageproc_waiters++;
3024 		msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3025 		    "pageprocwait", 1);
3026 	} else {
3027 		/*
3028 		 * XXX Ideally we would wait only until the allocation could
3029 		 * be satisfied.  This condition can cause new allocators to
3030 		 * consume all freed pages while old allocators wait.
3031 		 */
3032 		mtx_lock(&vm_domainset_lock);
3033 		if (vm_page_count_min_set(wdoms)) {
3034 			vm_min_waiters++;
3035 			msleep(&vm_min_domains, &vm_domainset_lock,
3036 			    PVM | PDROP, "vmwait", 0);
3037 		} else
3038 			mtx_unlock(&vm_domainset_lock);
3039 	}
3040 }
3041 
3042 /*
3043  *	vm_wait_domain:
3044  *
3045  *	Sleep until free pages are available for allocation.
3046  *	- Called in various places after failed memory allocations.
3047  */
3048 void
3049 vm_wait_domain(int domain)
3050 {
3051 	struct vm_domain *vmd;
3052 	domainset_t wdom;
3053 
3054 	vmd = VM_DOMAIN(domain);
3055 	vm_domain_free_assert_unlocked(vmd);
3056 
3057 	if (curproc == pageproc) {
3058 		mtx_lock(&vm_domainset_lock);
3059 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3060 			vmd->vmd_pageout_pages_needed = 1;
3061 			msleep(&vmd->vmd_pageout_pages_needed,
3062 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3063 		} else
3064 			mtx_unlock(&vm_domainset_lock);
3065 	} else {
3066 		if (pageproc == NULL)
3067 			panic("vm_wait in early boot");
3068 		DOMAINSET_ZERO(&wdom);
3069 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3070 		vm_wait_doms(&wdom);
3071 	}
3072 }
3073 
3074 /*
3075  *	vm_wait:
3076  *
3077  *	Sleep until free pages are available for allocation in the
3078  *	affinity domains of the obj.  If obj is NULL, the domain set
3079  *	for the calling thread is used.
3080  *	Called in various places after failed memory allocations.
3081  */
3082 void
3083 vm_wait(vm_object_t obj)
3084 {
3085 	struct domainset *d;
3086 
3087 	d = NULL;
3088 
3089 	/*
3090 	 * Carefully fetch pointers only once: the struct domainset
3091 	 * itself is ummutable but the pointer might change.
3092 	 */
3093 	if (obj != NULL)
3094 		d = obj->domain.dr_policy;
3095 	if (d == NULL)
3096 		d = curthread->td_domain.dr_policy;
3097 
3098 	vm_wait_doms(&d->ds_mask);
3099 }
3100 
3101 /*
3102  *	vm_domain_alloc_fail:
3103  *
3104  *	Called when a page allocation function fails.  Informs the
3105  *	pagedaemon and performs the requested wait.  Requires the
3106  *	domain_free and object lock on entry.  Returns with the
3107  *	object lock held and free lock released.  Returns an error when
3108  *	retry is necessary.
3109  *
3110  */
3111 static int
3112 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3113 {
3114 
3115 	vm_domain_free_assert_unlocked(vmd);
3116 
3117 	atomic_add_int(&vmd->vmd_pageout_deficit,
3118 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3119 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3120 		if (object != NULL)
3121 			VM_OBJECT_WUNLOCK(object);
3122 		vm_wait_domain(vmd->vmd_domain);
3123 		if (object != NULL)
3124 			VM_OBJECT_WLOCK(object);
3125 		if (req & VM_ALLOC_WAITOK)
3126 			return (EAGAIN);
3127 	}
3128 
3129 	return (0);
3130 }
3131 
3132 /*
3133  *	vm_waitpfault:
3134  *
3135  *	Sleep until free pages are available for allocation.
3136  *	- Called only in vm_fault so that processes page faulting
3137  *	  can be easily tracked.
3138  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3139  *	  processes will be able to grab memory first.  Do not change
3140  *	  this balance without careful testing first.
3141  */
3142 void
3143 vm_waitpfault(struct domainset *dset, int timo)
3144 {
3145 
3146 	/*
3147 	 * XXX Ideally we would wait only until the allocation could
3148 	 * be satisfied.  This condition can cause new allocators to
3149 	 * consume all freed pages while old allocators wait.
3150 	 */
3151 	mtx_lock(&vm_domainset_lock);
3152 	if (vm_page_count_min_set(&dset->ds_mask)) {
3153 		vm_min_waiters++;
3154 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3155 		    "pfault", timo);
3156 	} else
3157 		mtx_unlock(&vm_domainset_lock);
3158 }
3159 
3160 static struct vm_pagequeue *
3161 vm_page_pagequeue(vm_page_t m)
3162 {
3163 
3164 	uint8_t queue;
3165 
3166 	if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3167 		return (NULL);
3168 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3169 }
3170 
3171 static inline void
3172 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m)
3173 {
3174 	struct vm_domain *vmd;
3175 	uint8_t qflags;
3176 
3177 	CRITICAL_ASSERT(curthread);
3178 	vm_pagequeue_assert_locked(pq);
3179 
3180 	/*
3181 	 * The page daemon is allowed to set m->queue = PQ_NONE without
3182 	 * the page queue lock held.  In this case it is about to free the page,
3183 	 * which must not have any queue state.
3184 	 */
3185 	qflags = atomic_load_8(&m->aflags);
3186 	KASSERT(pq == vm_page_pagequeue(m) ||
3187 	    (qflags & PGA_QUEUE_STATE_MASK) == 0,
3188 	    ("page %p doesn't belong to queue %p but has aflags %#x",
3189 	    m, pq, qflags));
3190 
3191 	if ((qflags & PGA_DEQUEUE) != 0) {
3192 		if (__predict_true((qflags & PGA_ENQUEUED) != 0))
3193 			vm_pagequeue_remove(pq, m);
3194 		vm_page_dequeue_complete(m);
3195 		counter_u64_add(queue_ops, 1);
3196 	} else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) {
3197 		if ((qflags & PGA_ENQUEUED) != 0)
3198 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3199 		else {
3200 			vm_pagequeue_cnt_inc(pq);
3201 			vm_page_aflag_set(m, PGA_ENQUEUED);
3202 		}
3203 
3204 		/*
3205 		 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.
3206 		 * In particular, if both flags are set in close succession,
3207 		 * only PGA_REQUEUE_HEAD will be applied, even if it was set
3208 		 * first.
3209 		 */
3210 		if ((qflags & PGA_REQUEUE_HEAD) != 0) {
3211 			KASSERT(m->queue == PQ_INACTIVE,
3212 			    ("head enqueue not supported for page %p", m));
3213 			vmd = vm_pagequeue_domain(m);
3214 			TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3215 		} else
3216 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3217 
3218 		vm_page_aflag_clear(m, qflags & (PGA_REQUEUE |
3219 		    PGA_REQUEUE_HEAD));
3220 		counter_u64_add(queue_ops, 1);
3221 	} else {
3222 		counter_u64_add(queue_nops, 1);
3223 	}
3224 }
3225 
3226 static void
3227 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3228     uint8_t queue)
3229 {
3230 	vm_page_t m;
3231 	int i;
3232 
3233 	for (i = 0; i < bq->bq_cnt; i++) {
3234 		m = bq->bq_pa[i];
3235 		if (__predict_false(m->queue != queue))
3236 			continue;
3237 		vm_pqbatch_process_page(pq, m);
3238 	}
3239 	vm_batchqueue_init(bq);
3240 }
3241 
3242 /*
3243  *	vm_page_pqbatch_submit:		[ internal use only ]
3244  *
3245  *	Enqueue a page in the specified page queue's batched work queue.
3246  *	The caller must have encoded the requested operation in the page
3247  *	structure's aflags field.
3248  */
3249 void
3250 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3251 {
3252 	struct vm_batchqueue *bq;
3253 	struct vm_pagequeue *pq;
3254 	int domain;
3255 
3256 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3257 	    ("page %p is unmanaged", m));
3258 	KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3259 	    ("missing synchronization for page %p", m));
3260 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3261 
3262 	domain = vm_phys_domain(m);
3263 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3264 
3265 	critical_enter();
3266 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3267 	if (vm_batchqueue_insert(bq, m)) {
3268 		critical_exit();
3269 		return;
3270 	}
3271 	critical_exit();
3272 	vm_pagequeue_lock(pq);
3273 	critical_enter();
3274 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3275 	vm_pqbatch_process(pq, bq, queue);
3276 
3277 	/*
3278 	 * The page may have been logically dequeued before we acquired the
3279 	 * page queue lock.  In this case, since we either hold the page lock
3280 	 * or the page is being freed, a different thread cannot be concurrently
3281 	 * enqueuing the page.
3282 	 */
3283 	if (__predict_true(m->queue == queue))
3284 		vm_pqbatch_process_page(pq, m);
3285 	else {
3286 		KASSERT(m->queue == PQ_NONE,
3287 		    ("invalid queue transition for page %p", m));
3288 		KASSERT((m->aflags & PGA_ENQUEUED) == 0,
3289 		    ("page %p is enqueued with invalid queue index", m));
3290 	}
3291 	vm_pagequeue_unlock(pq);
3292 	critical_exit();
3293 }
3294 
3295 /*
3296  *	vm_page_pqbatch_drain:		[ internal use only ]
3297  *
3298  *	Force all per-CPU page queue batch queues to be drained.  This is
3299  *	intended for use in severe memory shortages, to ensure that pages
3300  *	do not remain stuck in the batch queues.
3301  */
3302 void
3303 vm_page_pqbatch_drain(void)
3304 {
3305 	struct thread *td;
3306 	struct vm_domain *vmd;
3307 	struct vm_pagequeue *pq;
3308 	int cpu, domain, queue;
3309 
3310 	td = curthread;
3311 	CPU_FOREACH(cpu) {
3312 		thread_lock(td);
3313 		sched_bind(td, cpu);
3314 		thread_unlock(td);
3315 
3316 		for (domain = 0; domain < vm_ndomains; domain++) {
3317 			vmd = VM_DOMAIN(domain);
3318 			for (queue = 0; queue < PQ_COUNT; queue++) {
3319 				pq = &vmd->vmd_pagequeues[queue];
3320 				vm_pagequeue_lock(pq);
3321 				critical_enter();
3322 				vm_pqbatch_process(pq,
3323 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3324 				critical_exit();
3325 				vm_pagequeue_unlock(pq);
3326 			}
3327 		}
3328 	}
3329 	thread_lock(td);
3330 	sched_unbind(td);
3331 	thread_unlock(td);
3332 }
3333 
3334 /*
3335  * Complete the logical removal of a page from a page queue.  We must be
3336  * careful to synchronize with the page daemon, which may be concurrently
3337  * examining the page with only the page lock held.  The page must not be
3338  * in a state where it appears to be logically enqueued.
3339  */
3340 static void
3341 vm_page_dequeue_complete(vm_page_t m)
3342 {
3343 
3344 	m->queue = PQ_NONE;
3345 	atomic_thread_fence_rel();
3346 	vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3347 }
3348 
3349 /*
3350  *	vm_page_dequeue_deferred:	[ internal use only ]
3351  *
3352  *	Request removal of the given page from its current page
3353  *	queue.  Physical removal from the queue may be deferred
3354  *	indefinitely.
3355  *
3356  *	The page must be locked.
3357  */
3358 void
3359 vm_page_dequeue_deferred(vm_page_t m)
3360 {
3361 	uint8_t queue;
3362 
3363 	vm_page_assert_locked(m);
3364 
3365 	if ((queue = vm_page_queue(m)) == PQ_NONE)
3366 		return;
3367 
3368 	/*
3369 	 * Set PGA_DEQUEUE if it is not already set to handle a concurrent call
3370 	 * to vm_page_dequeue_deferred_free().  In particular, avoid modifying
3371 	 * the page's queue state once vm_page_dequeue_deferred_free() has been
3372 	 * called.  In the event of a race, two batch queue entries for the page
3373 	 * will be created, but the second will have no effect.
3374 	 */
3375 	if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE, PGA_DEQUEUE))
3376 		vm_page_pqbatch_submit(m, queue);
3377 }
3378 
3379 /*
3380  * A variant of vm_page_dequeue_deferred() that does not assert the page
3381  * lock and is only to be called from vm_page_free_prep().  Because the
3382  * page is being freed, we can assume that nothing other than the page
3383  * daemon is scheduling queue operations on this page, so we get for
3384  * free the mutual exclusion that is otherwise provided by the page lock.
3385  * To handle races, the page daemon must take care to atomically check
3386  * for PGA_DEQUEUE when updating queue state.
3387  */
3388 static void
3389 vm_page_dequeue_deferred_free(vm_page_t m)
3390 {
3391 	uint8_t queue;
3392 
3393 	KASSERT(m->ref_count == 0, ("page %p has references", m));
3394 
3395 	for (;;) {
3396 		if ((m->aflags & PGA_DEQUEUE) != 0)
3397 			return;
3398 		atomic_thread_fence_acq();
3399 		if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3400 			return;
3401 		if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE,
3402 		    PGA_DEQUEUE)) {
3403 			vm_page_pqbatch_submit(m, queue);
3404 			break;
3405 		}
3406 	}
3407 }
3408 
3409 /*
3410  *	vm_page_dequeue:
3411  *
3412  *	Remove the page from whichever page queue it's in, if any.
3413  *	The page must either be locked or unallocated.  This constraint
3414  *	ensures that the queue state of the page will remain consistent
3415  *	after this function returns.
3416  */
3417 void
3418 vm_page_dequeue(vm_page_t m)
3419 {
3420 	struct vm_pagequeue *pq, *pq1;
3421 	uint8_t aflags;
3422 
3423 	KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3424 	    ("page %p is allocated and unlocked", m));
3425 
3426 	for (pq = vm_page_pagequeue(m);; pq = pq1) {
3427 		if (pq == NULL) {
3428 			/*
3429 			 * A thread may be concurrently executing
3430 			 * vm_page_dequeue_complete().  Ensure that all queue
3431 			 * state is cleared before we return.
3432 			 */
3433 			aflags = atomic_load_8(&m->aflags);
3434 			if ((aflags & PGA_QUEUE_STATE_MASK) == 0)
3435 				return;
3436 			KASSERT((aflags & PGA_DEQUEUE) != 0,
3437 			    ("page %p has unexpected queue state flags %#x",
3438 			    m, aflags));
3439 
3440 			/*
3441 			 * Busy wait until the thread updating queue state is
3442 			 * finished.  Such a thread must be executing in a
3443 			 * critical section.
3444 			 */
3445 			cpu_spinwait();
3446 			pq1 = vm_page_pagequeue(m);
3447 			continue;
3448 		}
3449 		vm_pagequeue_lock(pq);
3450 		if ((pq1 = vm_page_pagequeue(m)) == pq)
3451 			break;
3452 		vm_pagequeue_unlock(pq);
3453 	}
3454 	KASSERT(pq == vm_page_pagequeue(m),
3455 	    ("%s: page %p migrated directly between queues", __func__, m));
3456 	KASSERT((m->aflags & PGA_DEQUEUE) != 0 ||
3457 	    mtx_owned(vm_page_lockptr(m)),
3458 	    ("%s: queued unlocked page %p", __func__, m));
3459 
3460 	if ((m->aflags & PGA_ENQUEUED) != 0)
3461 		vm_pagequeue_remove(pq, m);
3462 	vm_page_dequeue_complete(m);
3463 	vm_pagequeue_unlock(pq);
3464 }
3465 
3466 /*
3467  * Schedule the given page for insertion into the specified page queue.
3468  * Physical insertion of the page may be deferred indefinitely.
3469  */
3470 static void
3471 vm_page_enqueue(vm_page_t m, uint8_t queue)
3472 {
3473 
3474 	vm_page_assert_locked(m);
3475 	KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
3476 	    ("%s: page %p is already enqueued", __func__, m));
3477 
3478 	m->queue = queue;
3479 	if ((m->aflags & PGA_REQUEUE) == 0)
3480 		vm_page_aflag_set(m, PGA_REQUEUE);
3481 	vm_page_pqbatch_submit(m, queue);
3482 }
3483 
3484 /*
3485  *	vm_page_requeue:		[ internal use only ]
3486  *
3487  *	Schedule a requeue of the given page.
3488  *
3489  *	The page must be locked.
3490  */
3491 void
3492 vm_page_requeue(vm_page_t m)
3493 {
3494 
3495 	vm_page_assert_locked(m);
3496 	KASSERT(vm_page_queue(m) != PQ_NONE,
3497 	    ("%s: page %p is not logically enqueued", __func__, m));
3498 
3499 	if ((m->aflags & PGA_REQUEUE) == 0)
3500 		vm_page_aflag_set(m, PGA_REQUEUE);
3501 	vm_page_pqbatch_submit(m, atomic_load_8(&m->queue));
3502 }
3503 
3504 /*
3505  *	vm_page_swapqueue:		[ internal use only ]
3506  *
3507  *	Move the page from one queue to another, or to the tail of its
3508  *	current queue, in the face of a possible concurrent call to
3509  *	vm_page_dequeue_deferred_free().
3510  */
3511 void
3512 vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq)
3513 {
3514 	struct vm_pagequeue *pq;
3515 	vm_page_t next;
3516 	bool queued;
3517 
3518 	KASSERT(oldq < PQ_COUNT && newq < PQ_COUNT && oldq != newq,
3519 	    ("vm_page_swapqueue: invalid queues (%d, %d)", oldq, newq));
3520 	vm_page_assert_locked(m);
3521 
3522 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[oldq];
3523 	vm_pagequeue_lock(pq);
3524 
3525 	/*
3526 	 * The physical queue state might change at any point before the page
3527 	 * queue lock is acquired, so we must verify that we hold the correct
3528 	 * lock before proceeding.
3529 	 */
3530 	if (__predict_false(m->queue != oldq)) {
3531 		vm_pagequeue_unlock(pq);
3532 		return;
3533 	}
3534 
3535 	/*
3536 	 * Once the queue index of the page changes, there is nothing
3537 	 * synchronizing with further updates to the physical queue state.
3538 	 * Therefore we must remove the page from the queue now in anticipation
3539 	 * of a successful commit, and be prepared to roll back.
3540 	 */
3541 	if (__predict_true((m->aflags & PGA_ENQUEUED) != 0)) {
3542 		next = TAILQ_NEXT(m, plinks.q);
3543 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3544 		vm_page_aflag_clear(m, PGA_ENQUEUED);
3545 		queued = true;
3546 	} else {
3547 		queued = false;
3548 	}
3549 
3550 	/*
3551 	 * Atomically update the queue field and set PGA_REQUEUE while
3552 	 * ensuring that PGA_DEQUEUE has not been set.
3553 	 */
3554 	if (__predict_false(!vm_page_pqstate_cmpset(m, oldq, newq, PGA_DEQUEUE,
3555 	    PGA_REQUEUE))) {
3556 		if (queued) {
3557 			vm_page_aflag_set(m, PGA_ENQUEUED);
3558 			if (next != NULL)
3559 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3560 			else
3561 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3562 		}
3563 		vm_pagequeue_unlock(pq);
3564 		return;
3565 	}
3566 	vm_pagequeue_cnt_dec(pq);
3567 	vm_pagequeue_unlock(pq);
3568 	vm_page_pqbatch_submit(m, newq);
3569 }
3570 
3571 /*
3572  *	vm_page_free_prep:
3573  *
3574  *	Prepares the given page to be put on the free list,
3575  *	disassociating it from any VM object. The caller may return
3576  *	the page to the free list only if this function returns true.
3577  *
3578  *	The object must be locked.  The page must be locked if it is
3579  *	managed.
3580  */
3581 bool
3582 vm_page_free_prep(vm_page_t m)
3583 {
3584 
3585 	/*
3586 	 * Synchronize with threads that have dropped a reference to this
3587 	 * page.
3588 	 */
3589 	atomic_thread_fence_acq();
3590 
3591 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3592 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3593 		uint64_t *p;
3594 		int i;
3595 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3596 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3597 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3598 			    m, i, (uintmax_t)*p));
3599 	}
3600 #endif
3601 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3602 		KASSERT(!pmap_page_is_mapped(m),
3603 		    ("vm_page_free_prep: freeing mapped page %p", m));
3604 		KASSERT((m->aflags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3605 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3606 	} else {
3607 		KASSERT(m->queue == PQ_NONE,
3608 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3609 	}
3610 	VM_CNT_INC(v_tfree);
3611 
3612 	if (vm_page_sbusied(m))
3613 		panic("vm_page_free_prep: freeing shared busy page %p", m);
3614 
3615 	if (m->object != NULL) {
3616 		vm_page_object_remove(m);
3617 
3618 		/*
3619 		 * The object reference can be released without an atomic
3620 		 * operation.
3621 		 */
3622 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3623 		    m->ref_count == VPRC_OBJREF,
3624 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3625 		    m, m->ref_count));
3626 		m->object = NULL;
3627 		m->ref_count -= VPRC_OBJREF;
3628 	}
3629 
3630 	if (vm_page_xbusied(m))
3631 		vm_page_xunbusy(m);
3632 
3633 	/*
3634 	 * If fictitious remove object association and
3635 	 * return.
3636 	 */
3637 	if ((m->flags & PG_FICTITIOUS) != 0) {
3638 		KASSERT(m->ref_count == 1,
3639 		    ("fictitious page %p is referenced", m));
3640 		KASSERT(m->queue == PQ_NONE,
3641 		    ("fictitious page %p is queued", m));
3642 		return (false);
3643 	}
3644 
3645 	/*
3646 	 * Pages need not be dequeued before they are returned to the physical
3647 	 * memory allocator, but they must at least be marked for a deferred
3648 	 * dequeue.
3649 	 */
3650 	if ((m->oflags & VPO_UNMANAGED) == 0)
3651 		vm_page_dequeue_deferred_free(m);
3652 
3653 	m->valid = 0;
3654 	vm_page_undirty(m);
3655 
3656 	if (m->ref_count != 0)
3657 		panic("vm_page_free_prep: page %p has references", m);
3658 
3659 	/*
3660 	 * Restore the default memory attribute to the page.
3661 	 */
3662 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3663 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3664 
3665 #if VM_NRESERVLEVEL > 0
3666 	/*
3667 	 * Determine whether the page belongs to a reservation.  If the page was
3668 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3669 	 * as an optimization, we avoid the check in that case.
3670 	 */
3671 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3672 		return (false);
3673 #endif
3674 
3675 	return (true);
3676 }
3677 
3678 /*
3679  *	vm_page_free_toq:
3680  *
3681  *	Returns the given page to the free list, disassociating it
3682  *	from any VM object.
3683  *
3684  *	The object must be locked.  The page must be locked if it is
3685  *	managed.
3686  */
3687 void
3688 vm_page_free_toq(vm_page_t m)
3689 {
3690 	struct vm_domain *vmd;
3691 	uma_zone_t zone;
3692 
3693 	if (!vm_page_free_prep(m))
3694 		return;
3695 
3696 	vmd = vm_pagequeue_domain(m);
3697 	zone = vmd->vmd_pgcache[m->pool].zone;
3698 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3699 		uma_zfree(zone, m);
3700 		return;
3701 	}
3702 	vm_domain_free_lock(vmd);
3703 	vm_phys_free_pages(m, 0);
3704 	vm_domain_free_unlock(vmd);
3705 	vm_domain_freecnt_inc(vmd, 1);
3706 }
3707 
3708 /*
3709  *	vm_page_free_pages_toq:
3710  *
3711  *	Returns a list of pages to the free list, disassociating it
3712  *	from any VM object.  In other words, this is equivalent to
3713  *	calling vm_page_free_toq() for each page of a list of VM objects.
3714  *
3715  *	The objects must be locked.  The pages must be locked if it is
3716  *	managed.
3717  */
3718 void
3719 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3720 {
3721 	vm_page_t m;
3722 	int count;
3723 
3724 	if (SLIST_EMPTY(free))
3725 		return;
3726 
3727 	count = 0;
3728 	while ((m = SLIST_FIRST(free)) != NULL) {
3729 		count++;
3730 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3731 		vm_page_free_toq(m);
3732 	}
3733 
3734 	if (update_wire_count)
3735 		vm_wire_sub(count);
3736 }
3737 
3738 /*
3739  * Mark this page as wired down, preventing reclamation by the page daemon
3740  * or when the containing object is destroyed.
3741  */
3742 void
3743 vm_page_wire(vm_page_t m)
3744 {
3745 	u_int old;
3746 
3747 	KASSERT(m->object != NULL,
3748 	    ("vm_page_wire: page %p does not belong to an object", m));
3749 	if (!vm_page_busied(m))
3750 		VM_OBJECT_ASSERT_LOCKED(m->object);
3751 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3752 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
3753 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
3754 
3755 	old = atomic_fetchadd_int(&m->ref_count, 1);
3756 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3757 	    ("vm_page_wire: counter overflow for page %p", m));
3758 	if (VPRC_WIRE_COUNT(old) == 0)
3759 		vm_wire_add(1);
3760 }
3761 
3762 /*
3763  * Attempt to wire a mapped page following a pmap lookup of that page.
3764  * This may fail if a thread is concurrently tearing down mappings of the page.
3765  */
3766 bool
3767 vm_page_wire_mapped(vm_page_t m)
3768 {
3769 	u_int old;
3770 
3771 	old = m->ref_count;
3772 	do {
3773 		KASSERT(old > 0,
3774 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3775 		if ((old & VPRC_BLOCKED) != 0)
3776 			return (false);
3777 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3778 
3779 	if (VPRC_WIRE_COUNT(old) == 0)
3780 		vm_wire_add(1);
3781 	return (true);
3782 }
3783 
3784 /*
3785  * Release one wiring of the specified page, potentially allowing it to be
3786  * paged out.
3787  *
3788  * Only managed pages belonging to an object can be paged out.  If the number
3789  * of wirings transitions to zero and the page is eligible for page out, then
3790  * the page is added to the specified paging queue.  If the released wiring
3791  * represented the last reference to the page, the page is freed.
3792  *
3793  * A managed page must be locked.
3794  */
3795 void
3796 vm_page_unwire(vm_page_t m, uint8_t queue)
3797 {
3798 	u_int old;
3799 	bool locked;
3800 
3801 	KASSERT(queue < PQ_COUNT,
3802 	    ("vm_page_unwire: invalid queue %u request for page %p", queue, m));
3803 
3804 	if ((m->oflags & VPO_UNMANAGED) != 0) {
3805 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
3806 			vm_page_free(m);
3807 		return;
3808 	}
3809 
3810 	/*
3811 	 * Update LRU state before releasing the wiring reference.
3812 	 * We only need to do this once since we hold the page lock.
3813 	 * Use a release store when updating the reference count to
3814 	 * synchronize with vm_page_free_prep().
3815 	 */
3816 	old = m->ref_count;
3817 	locked = false;
3818 	do {
3819 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
3820 		    ("vm_page_unwire: wire count underflow for page %p", m));
3821 		if (!locked && VPRC_WIRE_COUNT(old) == 1) {
3822 			vm_page_lock(m);
3823 			locked = true;
3824 			if (queue == PQ_ACTIVE && vm_page_queue(m) == PQ_ACTIVE)
3825 				vm_page_reference(m);
3826 			else
3827 				vm_page_mvqueue(m, queue);
3828 		}
3829 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3830 
3831 	/*
3832 	 * Release the lock only after the wiring is released, to ensure that
3833 	 * the page daemon does not encounter and dequeue the page while it is
3834 	 * still wired.
3835 	 */
3836 	if (locked)
3837 		vm_page_unlock(m);
3838 
3839 	if (VPRC_WIRE_COUNT(old) == 1) {
3840 		vm_wire_sub(1);
3841 		if (old == 1)
3842 			vm_page_free(m);
3843 	}
3844 }
3845 
3846 /*
3847  * Unwire a page without (re-)inserting it into a page queue.  It is up
3848  * to the caller to enqueue, requeue, or free the page as appropriate.
3849  * In most cases involving managed pages, vm_page_unwire() should be used
3850  * instead.
3851  */
3852 bool
3853 vm_page_unwire_noq(vm_page_t m)
3854 {
3855 	u_int old;
3856 
3857 	old = vm_page_drop(m, 1);
3858 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
3859 	    ("vm_page_unref: counter underflow for page %p", m));
3860 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3861 	    ("vm_page_unref: missing ref on fictitious page %p", m));
3862 
3863 	if (VPRC_WIRE_COUNT(old) > 1)
3864 		return (false);
3865 	vm_wire_sub(1);
3866 	return (true);
3867 }
3868 
3869 /*
3870  * Ensure that the page is in the specified page queue.  If the page is
3871  * active or being moved to the active queue, ensure that its act_count is
3872  * at least ACT_INIT but do not otherwise mess with it.  Otherwise, ensure that
3873  * the page is at the tail of its page queue.
3874  *
3875  * The page may be wired.  The caller should release its wiring reference
3876  * before releasing the page lock, otherwise the page daemon may immediately
3877  * dequeue the page.
3878  *
3879  * A managed page must be locked.
3880  */
3881 static __always_inline void
3882 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue)
3883 {
3884 
3885 	vm_page_assert_locked(m);
3886 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3887 	    ("vm_page_mvqueue: page %p is unmanaged", m));
3888 
3889 	if (vm_page_queue(m) != nqueue) {
3890 		vm_page_dequeue(m);
3891 		vm_page_enqueue(m, nqueue);
3892 	} else if (nqueue != PQ_ACTIVE) {
3893 		vm_page_requeue(m);
3894 	}
3895 
3896 	if (nqueue == PQ_ACTIVE && m->act_count < ACT_INIT)
3897 		m->act_count = ACT_INIT;
3898 }
3899 
3900 /*
3901  * Put the specified page on the active list (if appropriate).
3902  */
3903 void
3904 vm_page_activate(vm_page_t m)
3905 {
3906 
3907 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3908 		return;
3909 	vm_page_mvqueue(m, PQ_ACTIVE);
3910 }
3911 
3912 /*
3913  * Move the specified page to the tail of the inactive queue, or requeue
3914  * the page if it is already in the inactive queue.
3915  */
3916 void
3917 vm_page_deactivate(vm_page_t m)
3918 {
3919 
3920 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3921 		return;
3922 	vm_page_mvqueue(m, PQ_INACTIVE);
3923 }
3924 
3925 /*
3926  * Move the specified page close to the head of the inactive queue,
3927  * bypassing LRU.  A marker page is used to maintain FIFO ordering.
3928  * As with regular enqueues, we use a per-CPU batch queue to reduce
3929  * contention on the page queue lock.
3930  */
3931 static void
3932 _vm_page_deactivate_noreuse(vm_page_t m)
3933 {
3934 
3935 	vm_page_assert_locked(m);
3936 
3937 	if (!vm_page_inactive(m)) {
3938 		vm_page_dequeue(m);
3939 		m->queue = PQ_INACTIVE;
3940 	}
3941 	if ((m->aflags & PGA_REQUEUE_HEAD) == 0)
3942 		vm_page_aflag_set(m, PGA_REQUEUE_HEAD);
3943 	vm_page_pqbatch_submit(m, PQ_INACTIVE);
3944 }
3945 
3946 void
3947 vm_page_deactivate_noreuse(vm_page_t m)
3948 {
3949 
3950 	KASSERT(m->object != NULL,
3951 	    ("vm_page_deactivate_noreuse: page %p has no object", m));
3952 
3953 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_wired(m))
3954 		_vm_page_deactivate_noreuse(m);
3955 }
3956 
3957 /*
3958  * Put a page in the laundry, or requeue it if it is already there.
3959  */
3960 void
3961 vm_page_launder(vm_page_t m)
3962 {
3963 
3964 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3965 		return;
3966 	vm_page_mvqueue(m, PQ_LAUNDRY);
3967 }
3968 
3969 /*
3970  * Put a page in the PQ_UNSWAPPABLE holding queue.
3971  */
3972 void
3973 vm_page_unswappable(vm_page_t m)
3974 {
3975 
3976 	vm_page_assert_locked(m);
3977 	KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
3978 	    ("page %p already unswappable", m));
3979 
3980 	vm_page_dequeue(m);
3981 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
3982 }
3983 
3984 static void
3985 vm_page_release_toq(vm_page_t m, int flags)
3986 {
3987 
3988 	vm_page_assert_locked(m);
3989 
3990 	/*
3991 	 * Use a check of the valid bits to determine whether we should
3992 	 * accelerate reclamation of the page.  The object lock might not be
3993 	 * held here, in which case the check is racy.  At worst we will either
3994 	 * accelerate reclamation of a valid page and violate LRU, or
3995 	 * unnecessarily defer reclamation of an invalid page.
3996 	 *
3997 	 * If we were asked to not cache the page, place it near the head of the
3998 	 * inactive queue so that is reclaimed sooner.
3999 	 */
4000 	if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0)
4001 		_vm_page_deactivate_noreuse(m);
4002 	else if (vm_page_active(m))
4003 		vm_page_reference(m);
4004 	else
4005 		vm_page_mvqueue(m, PQ_INACTIVE);
4006 }
4007 
4008 /*
4009  * Unwire a page and either attempt to free it or re-add it to the page queues.
4010  */
4011 void
4012 vm_page_release(vm_page_t m, int flags)
4013 {
4014 	vm_object_t object;
4015 	u_int old;
4016 	bool locked;
4017 
4018 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4019 	    ("vm_page_release: page %p is unmanaged", m));
4020 
4021 	if ((flags & VPR_TRYFREE) != 0) {
4022 		for (;;) {
4023 			object = (vm_object_t)atomic_load_ptr(&m->object);
4024 			if (object == NULL)
4025 				break;
4026 			/* Depends on type-stability. */
4027 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) {
4028 				object = NULL;
4029 				break;
4030 			}
4031 			if (object == m->object)
4032 				break;
4033 			VM_OBJECT_WUNLOCK(object);
4034 		}
4035 		if (__predict_true(object != NULL)) {
4036 			vm_page_release_locked(m, flags);
4037 			VM_OBJECT_WUNLOCK(object);
4038 			return;
4039 		}
4040 	}
4041 
4042 	/*
4043 	 * Update LRU state before releasing the wiring reference.
4044 	 * Use a release store when updating the reference count to
4045 	 * synchronize with vm_page_free_prep().
4046 	 */
4047 	old = m->ref_count;
4048 	locked = false;
4049 	do {
4050 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
4051 		    ("vm_page_unwire: wire count underflow for page %p", m));
4052 		if (!locked && VPRC_WIRE_COUNT(old) == 1) {
4053 			vm_page_lock(m);
4054 			locked = true;
4055 			vm_page_release_toq(m, flags);
4056 		}
4057 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4058 
4059 	/*
4060 	 * Release the lock only after the wiring is released, to ensure that
4061 	 * the page daemon does not encounter and dequeue the page while it is
4062 	 * still wired.
4063 	 */
4064 	if (locked)
4065 		vm_page_unlock(m);
4066 
4067 	if (VPRC_WIRE_COUNT(old) == 1) {
4068 		vm_wire_sub(1);
4069 		if (old == 1)
4070 			vm_page_free(m);
4071 	}
4072 }
4073 
4074 /* See vm_page_release(). */
4075 void
4076 vm_page_release_locked(vm_page_t m, int flags)
4077 {
4078 
4079 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4080 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4081 	    ("vm_page_release_locked: page %p is unmanaged", m));
4082 
4083 	if (vm_page_unwire_noq(m)) {
4084 		if ((flags & VPR_TRYFREE) != 0 &&
4085 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4086 		    m->dirty == 0 && !vm_page_busied(m)) {
4087 			vm_page_free(m);
4088 		} else {
4089 			vm_page_lock(m);
4090 			vm_page_release_toq(m, flags);
4091 			vm_page_unlock(m);
4092 		}
4093 	}
4094 }
4095 
4096 static bool
4097 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4098 {
4099 	u_int old;
4100 
4101 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4102 	    ("vm_page_try_blocked_op: page %p has no object", m));
4103 	KASSERT(vm_page_busied(m),
4104 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4105 	VM_OBJECT_ASSERT_LOCKED(m->object);
4106 
4107 	old = m->ref_count;
4108 	do {
4109 		KASSERT(old != 0,
4110 		    ("vm_page_try_blocked_op: page %p has no references", m));
4111 		if (VPRC_WIRE_COUNT(old) != 0)
4112 			return (false);
4113 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4114 
4115 	(op)(m);
4116 
4117 	/*
4118 	 * If the object is read-locked, new wirings may be created via an
4119 	 * object lookup.
4120 	 */
4121 	old = vm_page_drop(m, VPRC_BLOCKED);
4122 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4123 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4124 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4125 	    old, m));
4126 	return (true);
4127 }
4128 
4129 /*
4130  * Atomically check for wirings and remove all mappings of the page.
4131  */
4132 bool
4133 vm_page_try_remove_all(vm_page_t m)
4134 {
4135 
4136 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4137 }
4138 
4139 /*
4140  * Atomically check for wirings and remove all writeable mappings of the page.
4141  */
4142 bool
4143 vm_page_try_remove_write(vm_page_t m)
4144 {
4145 
4146 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4147 }
4148 
4149 /*
4150  * vm_page_advise
4151  *
4152  * 	Apply the specified advice to the given page.
4153  *
4154  *	The object and page must be locked.
4155  */
4156 void
4157 vm_page_advise(vm_page_t m, int advice)
4158 {
4159 
4160 	vm_page_assert_locked(m);
4161 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4162 	if (advice == MADV_FREE)
4163 		/*
4164 		 * Mark the page clean.  This will allow the page to be freed
4165 		 * without first paging it out.  MADV_FREE pages are often
4166 		 * quickly reused by malloc(3), so we do not do anything that
4167 		 * would result in a page fault on a later access.
4168 		 */
4169 		vm_page_undirty(m);
4170 	else if (advice != MADV_DONTNEED) {
4171 		if (advice == MADV_WILLNEED)
4172 			vm_page_activate(m);
4173 		return;
4174 	}
4175 
4176 	/*
4177 	 * Clear any references to the page.  Otherwise, the page daemon will
4178 	 * immediately reactivate the page.
4179 	 */
4180 	vm_page_aflag_clear(m, PGA_REFERENCED);
4181 
4182 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4183 		vm_page_dirty(m);
4184 
4185 	/*
4186 	 * Place clean pages near the head of the inactive queue rather than
4187 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4188 	 * the page will be reused quickly.  Dirty pages not already in the
4189 	 * laundry are moved there.
4190 	 */
4191 	if (m->dirty == 0)
4192 		vm_page_deactivate_noreuse(m);
4193 	else if (!vm_page_in_laundry(m))
4194 		vm_page_launder(m);
4195 }
4196 
4197 /*
4198  * Grab a page, waiting until we are waken up due to the page
4199  * changing state.  We keep on waiting, if the page continues
4200  * to be in the object.  If the page doesn't exist, first allocate it
4201  * and then conditionally zero it.
4202  *
4203  * This routine may sleep.
4204  *
4205  * The object must be locked on entry.  The lock will, however, be released
4206  * and reacquired if the routine sleeps.
4207  */
4208 vm_page_t
4209 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4210 {
4211 	vm_page_t m;
4212 	int sleep;
4213 	int pflags;
4214 
4215 	VM_OBJECT_ASSERT_WLOCKED(object);
4216 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4217 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4218 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4219 	pflags = allocflags &
4220 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4221 	    VM_ALLOC_NOBUSY);
4222 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4223 		pflags |= VM_ALLOC_WAITFAIL;
4224 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4225 		pflags |= VM_ALLOC_SBUSY;
4226 retrylookup:
4227 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4228 		if ((allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) != 0)
4229 			sleep = !vm_page_trysbusy(m);
4230 		else
4231 			sleep = !vm_page_tryxbusy(m);
4232 		if (sleep) {
4233 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4234 				return (NULL);
4235 			/*
4236 			 * Reference the page before unlocking and
4237 			 * sleeping so that the page daemon is less
4238 			 * likely to reclaim it.
4239 			 */
4240 			if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4241 				vm_page_aflag_set(m, PGA_REFERENCED);
4242 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4243 			    VM_ALLOC_IGN_SBUSY) != 0);
4244 			VM_OBJECT_WLOCK(object);
4245 			if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4246 				return (NULL);
4247 			goto retrylookup;
4248 		} else {
4249 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4250 				vm_page_wire(m);
4251 			goto out;
4252 		}
4253 	}
4254 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4255 		return (NULL);
4256 	m = vm_page_alloc(object, pindex, pflags);
4257 	if (m == NULL) {
4258 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4259 			return (NULL);
4260 		goto retrylookup;
4261 	}
4262 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4263 		pmap_zero_page(m);
4264 
4265 out:
4266 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4267 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4268 			vm_page_sunbusy(m);
4269 		else
4270 			vm_page_xunbusy(m);
4271 	}
4272 	return (m);
4273 }
4274 
4275 /*
4276  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4277  * their pager are zero filled and validated.
4278  */
4279 int
4280 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4281 {
4282 	vm_page_t m;
4283 	bool sleep, xbusy;
4284 	int pflags;
4285 	int rv;
4286 
4287 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4288 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4289 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4290 	KASSERT((allocflags &
4291 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4292 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4293 	VM_OBJECT_ASSERT_WLOCKED(object);
4294 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4295 	pflags |= VM_ALLOC_WAITFAIL;
4296 
4297 retrylookup:
4298 	xbusy = false;
4299 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4300 		/*
4301 		 * If the page is fully valid it can only become invalid
4302 		 * with the object lock held.  If it is not valid it can
4303 		 * become valid with the busy lock held.  Therefore, we
4304 		 * may unnecessarily lock the exclusive busy here if we
4305 		 * race with I/O completion not using the object lock.
4306 		 * However, we will not end up with an invalid page and a
4307 		 * shared lock.
4308 		 */
4309 		if (!vm_page_all_valid(m) ||
4310 		    (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4311 			sleep = !vm_page_tryxbusy(m);
4312 			xbusy = true;
4313 		} else
4314 			sleep = !vm_page_trysbusy(m);
4315 		if (sleep) {
4316 			/*
4317 			 * Reference the page before unlocking and
4318 			 * sleeping so that the page daemon is less
4319 			 * likely to reclaim it.
4320 			 */
4321 			if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4322 				vm_page_aflag_set(m, PGA_REFERENCED);
4323 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4324 			    VM_ALLOC_IGN_SBUSY) != 0);
4325 			VM_OBJECT_WLOCK(object);
4326 			goto retrylookup;
4327 		}
4328 		if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4329 		   !vm_page_all_valid(m)) {
4330 			if (xbusy)
4331 				vm_page_xunbusy(m);
4332 			else
4333 				vm_page_sunbusy(m);
4334 			*mp = NULL;
4335 			return (VM_PAGER_FAIL);
4336 		}
4337 		if ((allocflags & VM_ALLOC_WIRED) != 0)
4338 			vm_page_wire(m);
4339 		if (vm_page_all_valid(m))
4340 			goto out;
4341 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4342 		*mp = NULL;
4343 		return (VM_PAGER_FAIL);
4344 	} else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4345 		xbusy = true;
4346 	} else {
4347 		goto retrylookup;
4348 	}
4349 
4350 	vm_page_assert_xbusied(m);
4351 	MPASS(xbusy);
4352 	if (vm_pager_has_page(object, pindex, NULL, NULL)) {
4353 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
4354 		if (rv != VM_PAGER_OK) {
4355 			if (allocflags & VM_ALLOC_WIRED)
4356 				vm_page_unwire_noq(m);
4357 			vm_page_free(m);
4358 			*mp = NULL;
4359 			return (rv);
4360 		}
4361 		MPASS(vm_page_all_valid(m));
4362 	} else {
4363 		vm_page_zero_invalid(m, TRUE);
4364 	}
4365 out:
4366 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4367 		if (xbusy)
4368 			vm_page_xunbusy(m);
4369 		else
4370 			vm_page_sunbusy(m);
4371 	}
4372 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4373 		vm_page_busy_downgrade(m);
4374 	*mp = m;
4375 	return (VM_PAGER_OK);
4376 }
4377 
4378 /*
4379  * Return the specified range of pages from the given object.  For each
4380  * page offset within the range, if a page already exists within the object
4381  * at that offset and it is busy, then wait for it to change state.  If,
4382  * instead, the page doesn't exist, then allocate it.
4383  *
4384  * The caller must always specify an allocation class.
4385  *
4386  * allocation classes:
4387  *	VM_ALLOC_NORMAL		normal process request
4388  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4389  *
4390  * The caller must always specify that the pages are to be busied and/or
4391  * wired.
4392  *
4393  * optional allocation flags:
4394  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4395  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4396  *	VM_ALLOC_NOWAIT		do not sleep
4397  *	VM_ALLOC_SBUSY		set page to sbusy state
4398  *	VM_ALLOC_WIRED		wire the pages
4399  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4400  *
4401  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4402  * may return a partial prefix of the requested range.
4403  */
4404 int
4405 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4406     vm_page_t *ma, int count)
4407 {
4408 	vm_page_t m, mpred;
4409 	int pflags;
4410 	int i;
4411 	bool sleep;
4412 
4413 	VM_OBJECT_ASSERT_WLOCKED(object);
4414 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4415 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4416 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4417 	    (allocflags & VM_ALLOC_WIRED) != 0,
4418 	    ("vm_page_grab_pages: the pages must be busied or wired"));
4419 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4420 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4421 	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
4422 	if (count == 0)
4423 		return (0);
4424 	pflags = allocflags &
4425 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4426 	    VM_ALLOC_NOBUSY);
4427 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4428 		pflags |= VM_ALLOC_WAITFAIL;
4429 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4430 		pflags |= VM_ALLOC_SBUSY;
4431 	i = 0;
4432 retrylookup:
4433 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4434 	if (m == NULL || m->pindex != pindex + i) {
4435 		mpred = m;
4436 		m = NULL;
4437 	} else
4438 		mpred = TAILQ_PREV(m, pglist, listq);
4439 	for (; i < count; i++) {
4440 		if (m != NULL) {
4441 			if ((allocflags &
4442 			    (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
4443 				sleep = !vm_page_trysbusy(m);
4444 			else
4445 				sleep = !vm_page_tryxbusy(m);
4446 			if (sleep) {
4447 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4448 					break;
4449 				/*
4450 				 * Reference the page before unlocking and
4451 				 * sleeping so that the page daemon is less
4452 				 * likely to reclaim it.
4453 				 */
4454 				if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4455 					vm_page_aflag_set(m, PGA_REFERENCED);
4456 				vm_page_busy_sleep(m, "grbmaw", (allocflags &
4457 				    VM_ALLOC_IGN_SBUSY) != 0);
4458 				VM_OBJECT_WLOCK(object);
4459 				goto retrylookup;
4460 			}
4461 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4462 				vm_page_wire(m);
4463 		} else {
4464 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4465 				break;
4466 			m = vm_page_alloc_after(object, pindex + i,
4467 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4468 			if (m == NULL) {
4469 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4470 					break;
4471 				goto retrylookup;
4472 			}
4473 		}
4474 		if (vm_page_none_valid(m) &&
4475 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4476 			if ((m->flags & PG_ZERO) == 0)
4477 				pmap_zero_page(m);
4478 			vm_page_valid(m);
4479 		}
4480 		if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4481 			if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4482 				vm_page_sunbusy(m);
4483 			else
4484 				vm_page_xunbusy(m);
4485 		}
4486 		ma[i] = mpred = m;
4487 		m = vm_page_next(m);
4488 	}
4489 	return (i);
4490 }
4491 
4492 /*
4493  * Mapping function for valid or dirty bits in a page.
4494  *
4495  * Inputs are required to range within a page.
4496  */
4497 vm_page_bits_t
4498 vm_page_bits(int base, int size)
4499 {
4500 	int first_bit;
4501 	int last_bit;
4502 
4503 	KASSERT(
4504 	    base + size <= PAGE_SIZE,
4505 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
4506 	);
4507 
4508 	if (size == 0)		/* handle degenerate case */
4509 		return (0);
4510 
4511 	first_bit = base >> DEV_BSHIFT;
4512 	last_bit = (base + size - 1) >> DEV_BSHIFT;
4513 
4514 	return (((vm_page_bits_t)2 << last_bit) -
4515 	    ((vm_page_bits_t)1 << first_bit));
4516 }
4517 
4518 static inline void
4519 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4520 {
4521 
4522 #if PAGE_SIZE == 32768
4523 	atomic_set_64((uint64_t *)bits, set);
4524 #elif PAGE_SIZE == 16384
4525 	atomic_set_32((uint32_t *)bits, set);
4526 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4527 	atomic_set_16((uint16_t *)bits, set);
4528 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4529 	atomic_set_8((uint8_t *)bits, set);
4530 #else		/* PAGE_SIZE <= 8192 */
4531 	uintptr_t addr;
4532 	int shift;
4533 
4534 	addr = (uintptr_t)bits;
4535 	/*
4536 	 * Use a trick to perform a 32-bit atomic on the
4537 	 * containing aligned word, to not depend on the existence
4538 	 * of atomic_{set, clear}_{8, 16}.
4539 	 */
4540 	shift = addr & (sizeof(uint32_t) - 1);
4541 #if BYTE_ORDER == BIG_ENDIAN
4542 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4543 #else
4544 	shift *= NBBY;
4545 #endif
4546 	addr &= ~(sizeof(uint32_t) - 1);
4547 	atomic_set_32((uint32_t *)addr, set << shift);
4548 #endif		/* PAGE_SIZE */
4549 }
4550 
4551 static inline void
4552 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4553 {
4554 
4555 #if PAGE_SIZE == 32768
4556 	atomic_clear_64((uint64_t *)bits, clear);
4557 #elif PAGE_SIZE == 16384
4558 	atomic_clear_32((uint32_t *)bits, clear);
4559 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4560 	atomic_clear_16((uint16_t *)bits, clear);
4561 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4562 	atomic_clear_8((uint8_t *)bits, clear);
4563 #else		/* PAGE_SIZE <= 8192 */
4564 	uintptr_t addr;
4565 	int shift;
4566 
4567 	addr = (uintptr_t)bits;
4568 	/*
4569 	 * Use a trick to perform a 32-bit atomic on the
4570 	 * containing aligned word, to not depend on the existence
4571 	 * of atomic_{set, clear}_{8, 16}.
4572 	 */
4573 	shift = addr & (sizeof(uint32_t) - 1);
4574 #if BYTE_ORDER == BIG_ENDIAN
4575 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4576 #else
4577 	shift *= NBBY;
4578 #endif
4579 	addr &= ~(sizeof(uint32_t) - 1);
4580 	atomic_clear_32((uint32_t *)addr, clear << shift);
4581 #endif		/* PAGE_SIZE */
4582 }
4583 
4584 /*
4585  *	vm_page_set_valid_range:
4586  *
4587  *	Sets portions of a page valid.  The arguments are expected
4588  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4589  *	of any partial chunks touched by the range.  The invalid portion of
4590  *	such chunks will be zeroed.
4591  *
4592  *	(base + size) must be less then or equal to PAGE_SIZE.
4593  */
4594 void
4595 vm_page_set_valid_range(vm_page_t m, int base, int size)
4596 {
4597 	int endoff, frag;
4598 	vm_page_bits_t pagebits;
4599 
4600 	vm_page_assert_busied(m);
4601 	if (size == 0)	/* handle degenerate case */
4602 		return;
4603 
4604 	/*
4605 	 * If the base is not DEV_BSIZE aligned and the valid
4606 	 * bit is clear, we have to zero out a portion of the
4607 	 * first block.
4608 	 */
4609 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4610 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4611 		pmap_zero_page_area(m, frag, base - frag);
4612 
4613 	/*
4614 	 * If the ending offset is not DEV_BSIZE aligned and the
4615 	 * valid bit is clear, we have to zero out a portion of
4616 	 * the last block.
4617 	 */
4618 	endoff = base + size;
4619 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4620 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4621 		pmap_zero_page_area(m, endoff,
4622 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4623 
4624 	/*
4625 	 * Assert that no previously invalid block that is now being validated
4626 	 * is already dirty.
4627 	 */
4628 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4629 	    ("vm_page_set_valid_range: page %p is dirty", m));
4630 
4631 	/*
4632 	 * Set valid bits inclusive of any overlap.
4633 	 */
4634 	pagebits = vm_page_bits(base, size);
4635 	if (vm_page_xbusied(m))
4636 		m->valid |= pagebits;
4637 	else
4638 		vm_page_bits_set(m, &m->valid, pagebits);
4639 }
4640 
4641 /*
4642  * Clear the given bits from the specified page's dirty field.
4643  */
4644 static __inline void
4645 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4646 {
4647 
4648 	vm_page_assert_busied(m);
4649 
4650 	/*
4651 	 * If the page is xbusied and not write mapped we are the
4652 	 * only thread that can modify dirty bits.  Otherwise, The pmap
4653 	 * layer can call vm_page_dirty() without holding a distinguished
4654 	 * lock.  The combination of page busy and atomic operations
4655 	 * suffice to guarantee consistency of the page dirty field.
4656 	 */
4657 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4658 		m->dirty &= ~pagebits;
4659 	else
4660 		vm_page_bits_clear(m, &m->dirty, pagebits);
4661 }
4662 
4663 /*
4664  *	vm_page_set_validclean:
4665  *
4666  *	Sets portions of a page valid and clean.  The arguments are expected
4667  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4668  *	of any partial chunks touched by the range.  The invalid portion of
4669  *	such chunks will be zero'd.
4670  *
4671  *	(base + size) must be less then or equal to PAGE_SIZE.
4672  */
4673 void
4674 vm_page_set_validclean(vm_page_t m, int base, int size)
4675 {
4676 	vm_page_bits_t oldvalid, pagebits;
4677 	int endoff, frag;
4678 
4679 	vm_page_assert_busied(m);
4680 	if (size == 0)	/* handle degenerate case */
4681 		return;
4682 
4683 	/*
4684 	 * If the base is not DEV_BSIZE aligned and the valid
4685 	 * bit is clear, we have to zero out a portion of the
4686 	 * first block.
4687 	 */
4688 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4689 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4690 		pmap_zero_page_area(m, frag, base - frag);
4691 
4692 	/*
4693 	 * If the ending offset is not DEV_BSIZE aligned and the
4694 	 * valid bit is clear, we have to zero out a portion of
4695 	 * the last block.
4696 	 */
4697 	endoff = base + size;
4698 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4699 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4700 		pmap_zero_page_area(m, endoff,
4701 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4702 
4703 	/*
4704 	 * Set valid, clear dirty bits.  If validating the entire
4705 	 * page we can safely clear the pmap modify bit.  We also
4706 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4707 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
4708 	 * be set again.
4709 	 *
4710 	 * We set valid bits inclusive of any overlap, but we can only
4711 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
4712 	 * the range.
4713 	 */
4714 	oldvalid = m->valid;
4715 	pagebits = vm_page_bits(base, size);
4716 	if (vm_page_xbusied(m))
4717 		m->valid |= pagebits;
4718 	else
4719 		vm_page_bits_set(m, &m->valid, pagebits);
4720 #if 0	/* NOT YET */
4721 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4722 		frag = DEV_BSIZE - frag;
4723 		base += frag;
4724 		size -= frag;
4725 		if (size < 0)
4726 			size = 0;
4727 	}
4728 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4729 #endif
4730 	if (base == 0 && size == PAGE_SIZE) {
4731 		/*
4732 		 * The page can only be modified within the pmap if it is
4733 		 * mapped, and it can only be mapped if it was previously
4734 		 * fully valid.
4735 		 */
4736 		if (oldvalid == VM_PAGE_BITS_ALL)
4737 			/*
4738 			 * Perform the pmap_clear_modify() first.  Otherwise,
4739 			 * a concurrent pmap operation, such as
4740 			 * pmap_protect(), could clear a modification in the
4741 			 * pmap and set the dirty field on the page before
4742 			 * pmap_clear_modify() had begun and after the dirty
4743 			 * field was cleared here.
4744 			 */
4745 			pmap_clear_modify(m);
4746 		m->dirty = 0;
4747 		vm_page_aflag_clear(m, PGA_NOSYNC);
4748 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4749 		m->dirty &= ~pagebits;
4750 	else
4751 		vm_page_clear_dirty_mask(m, pagebits);
4752 }
4753 
4754 void
4755 vm_page_clear_dirty(vm_page_t m, int base, int size)
4756 {
4757 
4758 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4759 }
4760 
4761 /*
4762  *	vm_page_set_invalid:
4763  *
4764  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
4765  *	valid and dirty bits for the effected areas are cleared.
4766  */
4767 void
4768 vm_page_set_invalid(vm_page_t m, int base, int size)
4769 {
4770 	vm_page_bits_t bits;
4771 	vm_object_t object;
4772 
4773 	/*
4774 	 * The object lock is required so that pages can't be mapped
4775 	 * read-only while we're in the process of invalidating them.
4776 	 */
4777 	object = m->object;
4778 	VM_OBJECT_ASSERT_WLOCKED(object);
4779 	vm_page_assert_busied(m);
4780 
4781 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4782 	    size >= object->un_pager.vnp.vnp_size)
4783 		bits = VM_PAGE_BITS_ALL;
4784 	else
4785 		bits = vm_page_bits(base, size);
4786 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4787 		pmap_remove_all(m);
4788 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4789 	    !pmap_page_is_mapped(m),
4790 	    ("vm_page_set_invalid: page %p is mapped", m));
4791 	if (vm_page_xbusied(m)) {
4792 		m->valid &= ~bits;
4793 		m->dirty &= ~bits;
4794 	} else {
4795 		vm_page_bits_clear(m, &m->valid, bits);
4796 		vm_page_bits_clear(m, &m->dirty, bits);
4797 	}
4798 }
4799 
4800 /*
4801  *	vm_page_invalid:
4802  *
4803  *	Invalidates the entire page.  The page must be busy, unmapped, and
4804  *	the enclosing object must be locked.  The object locks protects
4805  *	against concurrent read-only pmap enter which is done without
4806  *	busy.
4807  */
4808 void
4809 vm_page_invalid(vm_page_t m)
4810 {
4811 
4812 	vm_page_assert_busied(m);
4813 	VM_OBJECT_ASSERT_LOCKED(m->object);
4814 	MPASS(!pmap_page_is_mapped(m));
4815 
4816 	if (vm_page_xbusied(m))
4817 		m->valid = 0;
4818 	else
4819 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4820 }
4821 
4822 /*
4823  * vm_page_zero_invalid()
4824  *
4825  *	The kernel assumes that the invalid portions of a page contain
4826  *	garbage, but such pages can be mapped into memory by user code.
4827  *	When this occurs, we must zero out the non-valid portions of the
4828  *	page so user code sees what it expects.
4829  *
4830  *	Pages are most often semi-valid when the end of a file is mapped
4831  *	into memory and the file's size is not page aligned.
4832  */
4833 void
4834 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4835 {
4836 	int b;
4837 	int i;
4838 
4839 	/*
4840 	 * Scan the valid bits looking for invalid sections that
4841 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4842 	 * valid bit may be set ) have already been zeroed by
4843 	 * vm_page_set_validclean().
4844 	 */
4845 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4846 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
4847 		    (m->valid & ((vm_page_bits_t)1 << i))) {
4848 			if (i > b) {
4849 				pmap_zero_page_area(m,
4850 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4851 			}
4852 			b = i + 1;
4853 		}
4854 	}
4855 
4856 	/*
4857 	 * setvalid is TRUE when we can safely set the zero'd areas
4858 	 * as being valid.  We can do this if there are no cache consistancy
4859 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4860 	 */
4861 	if (setvalid)
4862 		vm_page_valid(m);
4863 }
4864 
4865 /*
4866  *	vm_page_is_valid:
4867  *
4868  *	Is (partial) page valid?  Note that the case where size == 0
4869  *	will return FALSE in the degenerate case where the page is
4870  *	entirely invalid, and TRUE otherwise.
4871  *
4872  *	Some callers envoke this routine without the busy lock held and
4873  *	handle races via higher level locks.  Typical callers should
4874  *	hold a busy lock to prevent invalidation.
4875  */
4876 int
4877 vm_page_is_valid(vm_page_t m, int base, int size)
4878 {
4879 	vm_page_bits_t bits;
4880 
4881 	bits = vm_page_bits(base, size);
4882 	return (m->valid != 0 && (m->valid & bits) == bits);
4883 }
4884 
4885 /*
4886  * Returns true if all of the specified predicates are true for the entire
4887  * (super)page and false otherwise.
4888  */
4889 bool
4890 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4891 {
4892 	vm_object_t object;
4893 	int i, npages;
4894 
4895 	object = m->object;
4896 	if (skip_m != NULL && skip_m->object != object)
4897 		return (false);
4898 	VM_OBJECT_ASSERT_LOCKED(object);
4899 	npages = atop(pagesizes[m->psind]);
4900 
4901 	/*
4902 	 * The physically contiguous pages that make up a superpage, i.e., a
4903 	 * page with a page size index ("psind") greater than zero, will
4904 	 * occupy adjacent entries in vm_page_array[].
4905 	 */
4906 	for (i = 0; i < npages; i++) {
4907 		/* Always test object consistency, including "skip_m". */
4908 		if (m[i].object != object)
4909 			return (false);
4910 		if (&m[i] == skip_m)
4911 			continue;
4912 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4913 			return (false);
4914 		if ((flags & PS_ALL_DIRTY) != 0) {
4915 			/*
4916 			 * Calling vm_page_test_dirty() or pmap_is_modified()
4917 			 * might stop this case from spuriously returning
4918 			 * "false".  However, that would require a write lock
4919 			 * on the object containing "m[i]".
4920 			 */
4921 			if (m[i].dirty != VM_PAGE_BITS_ALL)
4922 				return (false);
4923 		}
4924 		if ((flags & PS_ALL_VALID) != 0 &&
4925 		    m[i].valid != VM_PAGE_BITS_ALL)
4926 			return (false);
4927 	}
4928 	return (true);
4929 }
4930 
4931 /*
4932  * Set the page's dirty bits if the page is modified.
4933  */
4934 void
4935 vm_page_test_dirty(vm_page_t m)
4936 {
4937 
4938 	vm_page_assert_busied(m);
4939 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
4940 		vm_page_dirty(m);
4941 }
4942 
4943 void
4944 vm_page_valid(vm_page_t m)
4945 {
4946 
4947 	vm_page_assert_busied(m);
4948 	if (vm_page_xbusied(m))
4949 		m->valid = VM_PAGE_BITS_ALL;
4950 	else
4951 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
4952 }
4953 
4954 void
4955 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
4956 {
4957 
4958 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
4959 }
4960 
4961 void
4962 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
4963 {
4964 
4965 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
4966 }
4967 
4968 int
4969 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
4970 {
4971 
4972 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
4973 }
4974 
4975 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
4976 void
4977 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
4978 {
4979 
4980 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
4981 }
4982 
4983 void
4984 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
4985 {
4986 
4987 	mtx_assert_(vm_page_lockptr(m), a, file, line);
4988 }
4989 #endif
4990 
4991 #ifdef INVARIANTS
4992 void
4993 vm_page_object_busy_assert(vm_page_t m)
4994 {
4995 
4996 	/*
4997 	 * Certain of the page's fields may only be modified by the
4998 	 * holder of a page or object busy.
4999 	 */
5000 	if (m->object != NULL && !vm_page_busied(m))
5001 		VM_OBJECT_ASSERT_BUSY(m->object);
5002 }
5003 
5004 void
5005 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
5006 {
5007 
5008 	if ((bits & PGA_WRITEABLE) == 0)
5009 		return;
5010 
5011 	/*
5012 	 * The PGA_WRITEABLE flag can only be set if the page is
5013 	 * managed, is exclusively busied or the object is locked.
5014 	 * Currently, this flag is only set by pmap_enter().
5015 	 */
5016 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5017 	    ("PGA_WRITEABLE on unmanaged page"));
5018 	if (!vm_page_xbusied(m))
5019 		VM_OBJECT_ASSERT_BUSY(m->object);
5020 }
5021 #endif
5022 
5023 #include "opt_ddb.h"
5024 #ifdef DDB
5025 #include <sys/kernel.h>
5026 
5027 #include <ddb/ddb.h>
5028 
5029 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5030 {
5031 
5032 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5033 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5034 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5035 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5036 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5037 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5038 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5039 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5040 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5041 }
5042 
5043 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5044 {
5045 	int dom;
5046 
5047 	db_printf("pq_free %d\n", vm_free_count());
5048 	for (dom = 0; dom < vm_ndomains; dom++) {
5049 		db_printf(
5050     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5051 		    dom,
5052 		    vm_dom[dom].vmd_page_count,
5053 		    vm_dom[dom].vmd_free_count,
5054 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5055 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5056 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5057 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5058 	}
5059 }
5060 
5061 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5062 {
5063 	vm_page_t m;
5064 	boolean_t phys, virt;
5065 
5066 	if (!have_addr) {
5067 		db_printf("show pginfo addr\n");
5068 		return;
5069 	}
5070 
5071 	phys = strchr(modif, 'p') != NULL;
5072 	virt = strchr(modif, 'v') != NULL;
5073 	if (virt)
5074 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5075 	else if (phys)
5076 		m = PHYS_TO_VM_PAGE(addr);
5077 	else
5078 		m = (vm_page_t)addr;
5079 	db_printf(
5080     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5081     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5082 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5083 	    m->queue, m->ref_count, m->aflags, m->oflags,
5084 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
5085 }
5086 #endif /* DDB */
5087