1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 36 */ 37 38 /*- 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * Resident memory management module. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_vm.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/lock.h> 77 #include <sys/domainset.h> 78 #include <sys/kernel.h> 79 #include <sys/limits.h> 80 #include <sys/linker.h> 81 #include <sys/malloc.h> 82 #include <sys/mman.h> 83 #include <sys/msgbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/proc.h> 86 #include <sys/rwlock.h> 87 #include <sys/sbuf.h> 88 #include <sys/sched.h> 89 #include <sys/smp.h> 90 #include <sys/sysctl.h> 91 #include <sys/vmmeter.h> 92 #include <sys/vnode.h> 93 94 #include <vm/vm.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_param.h> 97 #include <vm/vm_domainset.h> 98 #include <vm/vm_kern.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_object.h> 101 #include <vm/vm_page.h> 102 #include <vm/vm_pageout.h> 103 #include <vm/vm_phys.h> 104 #include <vm/vm_pagequeue.h> 105 #include <vm/vm_pager.h> 106 #include <vm/vm_radix.h> 107 #include <vm/vm_reserv.h> 108 #include <vm/vm_extern.h> 109 #include <vm/uma.h> 110 #include <vm/uma_int.h> 111 112 #include <machine/md_var.h> 113 114 extern int uma_startup_count(int); 115 extern void uma_startup(void *, int); 116 extern int vmem_startup_count(void); 117 118 struct vm_domain vm_dom[MAXMEMDOM]; 119 120 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 121 122 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 123 124 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 125 /* The following fields are protected by the domainset lock. */ 126 domainset_t __exclusive_cache_line vm_min_domains; 127 domainset_t __exclusive_cache_line vm_severe_domains; 128 static int vm_min_waiters; 129 static int vm_severe_waiters; 130 static int vm_pageproc_waiters; 131 132 /* 133 * bogus page -- for I/O to/from partially complete buffers, 134 * or for paging into sparsely invalid regions. 135 */ 136 vm_page_t bogus_page; 137 138 vm_page_t vm_page_array; 139 long vm_page_array_size; 140 long first_page; 141 142 static int boot_pages; 143 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 144 &boot_pages, 0, 145 "number of pages allocated for bootstrapping the VM system"); 146 147 static int pa_tryrelock_restart; 148 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 149 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 150 151 static TAILQ_HEAD(, vm_page) blacklist_head; 152 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 153 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 154 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 155 156 static uma_zone_t fakepg_zone; 157 158 static void vm_page_alloc_check(vm_page_t m); 159 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 160 static void vm_page_dequeue_complete(vm_page_t m); 161 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 162 static void vm_page_init(void *dummy); 163 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 164 vm_pindex_t pindex, vm_page_t mpred); 165 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 166 vm_page_t mpred); 167 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 168 vm_page_t m_run, vm_paddr_t high); 169 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 170 int req); 171 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 172 int flags); 173 static void vm_page_zone_release(void *arg, void **store, int cnt); 174 175 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 176 177 static void 178 vm_page_init(void *dummy) 179 { 180 181 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 182 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 183 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | 184 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 185 } 186 187 /* 188 * The cache page zone is initialized later since we need to be able to allocate 189 * pages before UMA is fully initialized. 190 */ 191 static void 192 vm_page_init_cache_zones(void *dummy __unused) 193 { 194 struct vm_domain *vmd; 195 struct vm_pgcache *pgcache; 196 int domain, pool; 197 198 for (domain = 0; domain < vm_ndomains; domain++) { 199 vmd = VM_DOMAIN(domain); 200 201 /* 202 * Don't allow the page caches to take up more than .25% of 203 * memory. 204 */ 205 if (vmd->vmd_page_count / 400 < 256 * mp_ncpus * VM_NFREEPOOL) 206 continue; 207 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 208 pgcache = &vmd->vmd_pgcache[pool]; 209 pgcache->domain = domain; 210 pgcache->pool = pool; 211 pgcache->zone = uma_zcache_create("vm pgcache", 212 sizeof(struct vm_page), NULL, NULL, NULL, NULL, 213 vm_page_zone_import, vm_page_zone_release, pgcache, 214 UMA_ZONE_MAXBUCKET | UMA_ZONE_VM); 215 (void)uma_zone_set_maxcache(pgcache->zone, 0); 216 } 217 } 218 } 219 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 220 221 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 222 #if PAGE_SIZE == 32768 223 #ifdef CTASSERT 224 CTASSERT(sizeof(u_long) >= 8); 225 #endif 226 #endif 227 228 /* 229 * Try to acquire a physical address lock while a pmap is locked. If we 230 * fail to trylock we unlock and lock the pmap directly and cache the 231 * locked pa in *locked. The caller should then restart their loop in case 232 * the virtual to physical mapping has changed. 233 */ 234 int 235 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 236 { 237 vm_paddr_t lockpa; 238 239 lockpa = *locked; 240 *locked = pa; 241 if (lockpa) { 242 PA_LOCK_ASSERT(lockpa, MA_OWNED); 243 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 244 return (0); 245 PA_UNLOCK(lockpa); 246 } 247 if (PA_TRYLOCK(pa)) 248 return (0); 249 PMAP_UNLOCK(pmap); 250 atomic_add_int(&pa_tryrelock_restart, 1); 251 PA_LOCK(pa); 252 PMAP_LOCK(pmap); 253 return (EAGAIN); 254 } 255 256 /* 257 * vm_set_page_size: 258 * 259 * Sets the page size, perhaps based upon the memory 260 * size. Must be called before any use of page-size 261 * dependent functions. 262 */ 263 void 264 vm_set_page_size(void) 265 { 266 if (vm_cnt.v_page_size == 0) 267 vm_cnt.v_page_size = PAGE_SIZE; 268 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 269 panic("vm_set_page_size: page size not a power of two"); 270 } 271 272 /* 273 * vm_page_blacklist_next: 274 * 275 * Find the next entry in the provided string of blacklist 276 * addresses. Entries are separated by space, comma, or newline. 277 * If an invalid integer is encountered then the rest of the 278 * string is skipped. Updates the list pointer to the next 279 * character, or NULL if the string is exhausted or invalid. 280 */ 281 static vm_paddr_t 282 vm_page_blacklist_next(char **list, char *end) 283 { 284 vm_paddr_t bad; 285 char *cp, *pos; 286 287 if (list == NULL || *list == NULL) 288 return (0); 289 if (**list =='\0') { 290 *list = NULL; 291 return (0); 292 } 293 294 /* 295 * If there's no end pointer then the buffer is coming from 296 * the kenv and we know it's null-terminated. 297 */ 298 if (end == NULL) 299 end = *list + strlen(*list); 300 301 /* Ensure that strtoq() won't walk off the end */ 302 if (*end != '\0') { 303 if (*end == '\n' || *end == ' ' || *end == ',') 304 *end = '\0'; 305 else { 306 printf("Blacklist not terminated, skipping\n"); 307 *list = NULL; 308 return (0); 309 } 310 } 311 312 for (pos = *list; *pos != '\0'; pos = cp) { 313 bad = strtoq(pos, &cp, 0); 314 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 315 if (bad == 0) { 316 if (++cp < end) 317 continue; 318 else 319 break; 320 } 321 } else 322 break; 323 if (*cp == '\0' || ++cp >= end) 324 *list = NULL; 325 else 326 *list = cp; 327 return (trunc_page(bad)); 328 } 329 printf("Garbage in RAM blacklist, skipping\n"); 330 *list = NULL; 331 return (0); 332 } 333 334 bool 335 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 336 { 337 struct vm_domain *vmd; 338 vm_page_t m; 339 int ret; 340 341 m = vm_phys_paddr_to_vm_page(pa); 342 if (m == NULL) 343 return (true); /* page does not exist, no failure */ 344 345 vmd = vm_pagequeue_domain(m); 346 vm_domain_free_lock(vmd); 347 ret = vm_phys_unfree_page(m); 348 vm_domain_free_unlock(vmd); 349 if (ret != 0) { 350 vm_domain_freecnt_inc(vmd, -1); 351 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 352 if (verbose) 353 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 354 } 355 return (ret); 356 } 357 358 /* 359 * vm_page_blacklist_check: 360 * 361 * Iterate through the provided string of blacklist addresses, pulling 362 * each entry out of the physical allocator free list and putting it 363 * onto a list for reporting via the vm.page_blacklist sysctl. 364 */ 365 static void 366 vm_page_blacklist_check(char *list, char *end) 367 { 368 vm_paddr_t pa; 369 char *next; 370 371 next = list; 372 while (next != NULL) { 373 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 374 continue; 375 vm_page_blacklist_add(pa, bootverbose); 376 } 377 } 378 379 /* 380 * vm_page_blacklist_load: 381 * 382 * Search for a special module named "ram_blacklist". It'll be a 383 * plain text file provided by the user via the loader directive 384 * of the same name. 385 */ 386 static void 387 vm_page_blacklist_load(char **list, char **end) 388 { 389 void *mod; 390 u_char *ptr; 391 u_int len; 392 393 mod = NULL; 394 ptr = NULL; 395 396 mod = preload_search_by_type("ram_blacklist"); 397 if (mod != NULL) { 398 ptr = preload_fetch_addr(mod); 399 len = preload_fetch_size(mod); 400 } 401 *list = ptr; 402 if (ptr != NULL) 403 *end = ptr + len; 404 else 405 *end = NULL; 406 return; 407 } 408 409 static int 410 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 411 { 412 vm_page_t m; 413 struct sbuf sbuf; 414 int error, first; 415 416 first = 1; 417 error = sysctl_wire_old_buffer(req, 0); 418 if (error != 0) 419 return (error); 420 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 421 TAILQ_FOREACH(m, &blacklist_head, listq) { 422 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 423 (uintmax_t)m->phys_addr); 424 first = 0; 425 } 426 error = sbuf_finish(&sbuf); 427 sbuf_delete(&sbuf); 428 return (error); 429 } 430 431 /* 432 * Initialize a dummy page for use in scans of the specified paging queue. 433 * In principle, this function only needs to set the flag PG_MARKER. 434 * Nonetheless, it write busies the page as a safety precaution. 435 */ 436 static void 437 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags) 438 { 439 440 bzero(marker, sizeof(*marker)); 441 marker->flags = PG_MARKER; 442 marker->aflags = aflags; 443 marker->busy_lock = VPB_SINGLE_EXCLUSIVER; 444 marker->queue = queue; 445 } 446 447 static void 448 vm_page_domain_init(int domain) 449 { 450 struct vm_domain *vmd; 451 struct vm_pagequeue *pq; 452 int i; 453 454 vmd = VM_DOMAIN(domain); 455 bzero(vmd, sizeof(*vmd)); 456 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 457 "vm inactive pagequeue"; 458 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 459 "vm active pagequeue"; 460 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 461 "vm laundry pagequeue"; 462 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 463 "vm unswappable pagequeue"; 464 vmd->vmd_domain = domain; 465 vmd->vmd_page_count = 0; 466 vmd->vmd_free_count = 0; 467 vmd->vmd_segs = 0; 468 vmd->vmd_oom = FALSE; 469 for (i = 0; i < PQ_COUNT; i++) { 470 pq = &vmd->vmd_pagequeues[i]; 471 TAILQ_INIT(&pq->pq_pl); 472 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 473 MTX_DEF | MTX_DUPOK); 474 pq->pq_pdpages = 0; 475 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 476 } 477 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 478 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 479 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 480 481 /* 482 * inacthead is used to provide FIFO ordering for LRU-bypassing 483 * insertions. 484 */ 485 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 486 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 487 &vmd->vmd_inacthead, plinks.q); 488 489 /* 490 * The clock pages are used to implement active queue scanning without 491 * requeues. Scans start at clock[0], which is advanced after the scan 492 * ends. When the two clock hands meet, they are reset and scanning 493 * resumes from the head of the queue. 494 */ 495 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 496 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 497 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 498 &vmd->vmd_clock[0], plinks.q); 499 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 500 &vmd->vmd_clock[1], plinks.q); 501 } 502 503 /* 504 * Initialize a physical page in preparation for adding it to the free 505 * lists. 506 */ 507 static void 508 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) 509 { 510 511 m->object = NULL; 512 m->wire_count = 0; 513 m->busy_lock = VPB_UNBUSIED; 514 m->flags = m->aflags = 0; 515 m->phys_addr = pa; 516 m->queue = PQ_NONE; 517 m->psind = 0; 518 m->segind = segind; 519 m->order = VM_NFREEORDER; 520 m->pool = VM_FREEPOOL_DEFAULT; 521 m->valid = m->dirty = 0; 522 pmap_page_init(m); 523 } 524 525 /* 526 * vm_page_startup: 527 * 528 * Initializes the resident memory module. Allocates physical memory for 529 * bootstrapping UMA and some data structures that are used to manage 530 * physical pages. Initializes these structures, and populates the free 531 * page queues. 532 */ 533 vm_offset_t 534 vm_page_startup(vm_offset_t vaddr) 535 { 536 struct vm_phys_seg *seg; 537 vm_page_t m; 538 char *list, *listend; 539 vm_offset_t mapped; 540 vm_paddr_t end, high_avail, low_avail, new_end, page_range, size; 541 vm_paddr_t biggestsize, last_pa, pa; 542 u_long pagecount; 543 int biggestone, i, segind; 544 #ifdef WITNESS 545 int witness_size; 546 #endif 547 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 548 long ii; 549 #endif 550 551 biggestsize = 0; 552 biggestone = 0; 553 vaddr = round_page(vaddr); 554 555 for (i = 0; phys_avail[i + 1]; i += 2) { 556 phys_avail[i] = round_page(phys_avail[i]); 557 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 558 } 559 for (i = 0; phys_avail[i + 1]; i += 2) { 560 size = phys_avail[i + 1] - phys_avail[i]; 561 if (size > biggestsize) { 562 biggestone = i; 563 biggestsize = size; 564 } 565 } 566 567 end = phys_avail[biggestone+1]; 568 569 /* 570 * Initialize the page and queue locks. 571 */ 572 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 573 for (i = 0; i < PA_LOCK_COUNT; i++) 574 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 575 for (i = 0; i < vm_ndomains; i++) 576 vm_page_domain_init(i); 577 578 /* 579 * Allocate memory for use when boot strapping the kernel memory 580 * allocator. Tell UMA how many zones we are going to create 581 * before going fully functional. UMA will add its zones. 582 * 583 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP, 584 * KMAP ENTRY, MAP ENTRY, VMSPACE. 585 */ 586 boot_pages = uma_startup_count(8); 587 588 #ifndef UMA_MD_SMALL_ALLOC 589 /* vmem_startup() calls uma_prealloc(). */ 590 boot_pages += vmem_startup_count(); 591 /* vm_map_startup() calls uma_prealloc(). */ 592 boot_pages += howmany(MAX_KMAP, 593 UMA_SLAB_SPACE / sizeof(struct vm_map)); 594 595 /* 596 * Before going fully functional kmem_init() does allocation 597 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem". 598 */ 599 boot_pages += 2; 600 #endif 601 /* 602 * CTFLAG_RDTUN doesn't work during the early boot process, so we must 603 * manually fetch the value. 604 */ 605 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); 606 new_end = end - (boot_pages * UMA_SLAB_SIZE); 607 new_end = trunc_page(new_end); 608 mapped = pmap_map(&vaddr, new_end, end, 609 VM_PROT_READ | VM_PROT_WRITE); 610 bzero((void *)mapped, end - new_end); 611 uma_startup((void *)mapped, boot_pages); 612 613 #ifdef WITNESS 614 witness_size = round_page(witness_startup_count()); 615 new_end -= witness_size; 616 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 617 VM_PROT_READ | VM_PROT_WRITE); 618 bzero((void *)mapped, witness_size); 619 witness_startup((void *)mapped); 620 #endif 621 622 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 623 defined(__i386__) || defined(__mips__) || defined(__riscv) 624 /* 625 * Allocate a bitmap to indicate that a random physical page 626 * needs to be included in a minidump. 627 * 628 * The amd64 port needs this to indicate which direct map pages 629 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 630 * 631 * However, i386 still needs this workspace internally within the 632 * minidump code. In theory, they are not needed on i386, but are 633 * included should the sf_buf code decide to use them. 634 */ 635 last_pa = 0; 636 for (i = 0; dump_avail[i + 1] != 0; i += 2) 637 if (dump_avail[i + 1] > last_pa) 638 last_pa = dump_avail[i + 1]; 639 page_range = last_pa / PAGE_SIZE; 640 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 641 new_end -= vm_page_dump_size; 642 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 643 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 644 bzero((void *)vm_page_dump, vm_page_dump_size); 645 #else 646 (void)last_pa; 647 #endif 648 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 649 defined(__riscv) 650 /* 651 * Include the UMA bootstrap pages, witness pages and vm_page_dump 652 * in a crash dump. When pmap_map() uses the direct map, they are 653 * not automatically included. 654 */ 655 for (pa = new_end; pa < end; pa += PAGE_SIZE) 656 dump_add_page(pa); 657 #endif 658 phys_avail[biggestone + 1] = new_end; 659 #ifdef __amd64__ 660 /* 661 * Request that the physical pages underlying the message buffer be 662 * included in a crash dump. Since the message buffer is accessed 663 * through the direct map, they are not automatically included. 664 */ 665 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 666 last_pa = pa + round_page(msgbufsize); 667 while (pa < last_pa) { 668 dump_add_page(pa); 669 pa += PAGE_SIZE; 670 } 671 #endif 672 /* 673 * Compute the number of pages of memory that will be available for 674 * use, taking into account the overhead of a page structure per page. 675 * In other words, solve 676 * "available physical memory" - round_page(page_range * 677 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 678 * for page_range. 679 */ 680 low_avail = phys_avail[0]; 681 high_avail = phys_avail[1]; 682 for (i = 0; i < vm_phys_nsegs; i++) { 683 if (vm_phys_segs[i].start < low_avail) 684 low_avail = vm_phys_segs[i].start; 685 if (vm_phys_segs[i].end > high_avail) 686 high_avail = vm_phys_segs[i].end; 687 } 688 /* Skip the first chunk. It is already accounted for. */ 689 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 690 if (phys_avail[i] < low_avail) 691 low_avail = phys_avail[i]; 692 if (phys_avail[i + 1] > high_avail) 693 high_avail = phys_avail[i + 1]; 694 } 695 first_page = low_avail / PAGE_SIZE; 696 #ifdef VM_PHYSSEG_SPARSE 697 size = 0; 698 for (i = 0; i < vm_phys_nsegs; i++) 699 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 700 for (i = 0; phys_avail[i + 1] != 0; i += 2) 701 size += phys_avail[i + 1] - phys_avail[i]; 702 #elif defined(VM_PHYSSEG_DENSE) 703 size = high_avail - low_avail; 704 #else 705 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 706 #endif 707 708 #ifdef VM_PHYSSEG_DENSE 709 /* 710 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 711 * the overhead of a page structure per page only if vm_page_array is 712 * allocated from the last physical memory chunk. Otherwise, we must 713 * allocate page structures representing the physical memory 714 * underlying vm_page_array, even though they will not be used. 715 */ 716 if (new_end != high_avail) 717 page_range = size / PAGE_SIZE; 718 else 719 #endif 720 { 721 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 722 723 /* 724 * If the partial bytes remaining are large enough for 725 * a page (PAGE_SIZE) without a corresponding 726 * 'struct vm_page', then new_end will contain an 727 * extra page after subtracting the length of the VM 728 * page array. Compensate by subtracting an extra 729 * page from new_end. 730 */ 731 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 732 if (new_end == high_avail) 733 high_avail -= PAGE_SIZE; 734 new_end -= PAGE_SIZE; 735 } 736 } 737 end = new_end; 738 739 /* 740 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 741 * However, because this page is allocated from KVM, out-of-bounds 742 * accesses using the direct map will not be trapped. 743 */ 744 vaddr += PAGE_SIZE; 745 746 /* 747 * Allocate physical memory for the page structures, and map it. 748 */ 749 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 750 mapped = pmap_map(&vaddr, new_end, end, 751 VM_PROT_READ | VM_PROT_WRITE); 752 vm_page_array = (vm_page_t)mapped; 753 vm_page_array_size = page_range; 754 755 #if VM_NRESERVLEVEL > 0 756 /* 757 * Allocate physical memory for the reservation management system's 758 * data structures, and map it. 759 */ 760 if (high_avail == end) 761 high_avail = new_end; 762 new_end = vm_reserv_startup(&vaddr, new_end, high_avail); 763 #endif 764 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 765 defined(__riscv) 766 /* 767 * Include vm_page_array and vm_reserv_array in a crash dump. 768 */ 769 for (pa = new_end; pa < end; pa += PAGE_SIZE) 770 dump_add_page(pa); 771 #endif 772 phys_avail[biggestone + 1] = new_end; 773 774 /* 775 * Add physical memory segments corresponding to the available 776 * physical pages. 777 */ 778 for (i = 0; phys_avail[i + 1] != 0; i += 2) 779 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 780 781 /* 782 * Initialize the physical memory allocator. 783 */ 784 vm_phys_init(); 785 786 /* 787 * Initialize the page structures and add every available page to the 788 * physical memory allocator's free lists. 789 */ 790 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 791 for (ii = 0; ii < vm_page_array_size; ii++) { 792 m = &vm_page_array[ii]; 793 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0); 794 m->flags = PG_FICTITIOUS; 795 } 796 #endif 797 vm_cnt.v_page_count = 0; 798 for (segind = 0; segind < vm_phys_nsegs; segind++) { 799 seg = &vm_phys_segs[segind]; 800 for (m = seg->first_page, pa = seg->start; pa < seg->end; 801 m++, pa += PAGE_SIZE) 802 vm_page_init_page(m, pa, segind); 803 804 /* 805 * Add the segment to the free lists only if it is covered by 806 * one of the ranges in phys_avail. Because we've added the 807 * ranges to the vm_phys_segs array, we can assume that each 808 * segment is either entirely contained in one of the ranges, 809 * or doesn't overlap any of them. 810 */ 811 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 812 struct vm_domain *vmd; 813 814 if (seg->start < phys_avail[i] || 815 seg->end > phys_avail[i + 1]) 816 continue; 817 818 m = seg->first_page; 819 pagecount = (u_long)atop(seg->end - seg->start); 820 821 vmd = VM_DOMAIN(seg->domain); 822 vm_domain_free_lock(vmd); 823 vm_phys_enqueue_contig(m, pagecount); 824 vm_domain_free_unlock(vmd); 825 vm_domain_freecnt_inc(vmd, pagecount); 826 vm_cnt.v_page_count += (u_int)pagecount; 827 828 vmd = VM_DOMAIN(seg->domain); 829 vmd->vmd_page_count += (u_int)pagecount; 830 vmd->vmd_segs |= 1UL << m->segind; 831 break; 832 } 833 } 834 835 /* 836 * Remove blacklisted pages from the physical memory allocator. 837 */ 838 TAILQ_INIT(&blacklist_head); 839 vm_page_blacklist_load(&list, &listend); 840 vm_page_blacklist_check(list, listend); 841 842 list = kern_getenv("vm.blacklist"); 843 vm_page_blacklist_check(list, NULL); 844 845 freeenv(list); 846 #if VM_NRESERVLEVEL > 0 847 /* 848 * Initialize the reservation management system. 849 */ 850 vm_reserv_init(); 851 #endif 852 853 return (vaddr); 854 } 855 856 void 857 vm_page_reference(vm_page_t m) 858 { 859 860 vm_page_aflag_set(m, PGA_REFERENCED); 861 } 862 863 /* 864 * vm_page_busy_downgrade: 865 * 866 * Downgrade an exclusive busy page into a single shared busy page. 867 */ 868 void 869 vm_page_busy_downgrade(vm_page_t m) 870 { 871 u_int x; 872 bool locked; 873 874 vm_page_assert_xbusied(m); 875 locked = mtx_owned(vm_page_lockptr(m)); 876 877 for (;;) { 878 x = m->busy_lock; 879 x &= VPB_BIT_WAITERS; 880 if (x != 0 && !locked) 881 vm_page_lock(m); 882 if (atomic_cmpset_rel_int(&m->busy_lock, 883 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1))) 884 break; 885 if (x != 0 && !locked) 886 vm_page_unlock(m); 887 } 888 if (x != 0) { 889 wakeup(m); 890 if (!locked) 891 vm_page_unlock(m); 892 } 893 } 894 895 /* 896 * vm_page_sbusied: 897 * 898 * Return a positive value if the page is shared busied, 0 otherwise. 899 */ 900 int 901 vm_page_sbusied(vm_page_t m) 902 { 903 u_int x; 904 905 x = m->busy_lock; 906 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 907 } 908 909 /* 910 * vm_page_sunbusy: 911 * 912 * Shared unbusy a page. 913 */ 914 void 915 vm_page_sunbusy(vm_page_t m) 916 { 917 u_int x; 918 919 vm_page_lock_assert(m, MA_NOTOWNED); 920 vm_page_assert_sbusied(m); 921 922 for (;;) { 923 x = m->busy_lock; 924 if (VPB_SHARERS(x) > 1) { 925 if (atomic_cmpset_int(&m->busy_lock, x, 926 x - VPB_ONE_SHARER)) 927 break; 928 continue; 929 } 930 if ((x & VPB_BIT_WAITERS) == 0) { 931 KASSERT(x == VPB_SHARERS_WORD(1), 932 ("vm_page_sunbusy: invalid lock state")); 933 if (atomic_cmpset_int(&m->busy_lock, 934 VPB_SHARERS_WORD(1), VPB_UNBUSIED)) 935 break; 936 continue; 937 } 938 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), 939 ("vm_page_sunbusy: invalid lock state for waiters")); 940 941 vm_page_lock(m); 942 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { 943 vm_page_unlock(m); 944 continue; 945 } 946 wakeup(m); 947 vm_page_unlock(m); 948 break; 949 } 950 } 951 952 /* 953 * vm_page_busy_sleep: 954 * 955 * Sleep and release the page lock, using the page pointer as wchan. 956 * This is used to implement the hard-path of busying mechanism. 957 * 958 * The given page must be locked. 959 * 960 * If nonshared is true, sleep only if the page is xbusy. 961 */ 962 void 963 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared) 964 { 965 u_int x; 966 967 vm_page_assert_locked(m); 968 969 x = m->busy_lock; 970 if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) || 971 ((x & VPB_BIT_WAITERS) == 0 && 972 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) { 973 vm_page_unlock(m); 974 return; 975 } 976 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); 977 } 978 979 /* 980 * vm_page_trysbusy: 981 * 982 * Try to shared busy a page. 983 * If the operation succeeds 1 is returned otherwise 0. 984 * The operation never sleeps. 985 */ 986 int 987 vm_page_trysbusy(vm_page_t m) 988 { 989 u_int x; 990 991 for (;;) { 992 x = m->busy_lock; 993 if ((x & VPB_BIT_SHARED) == 0) 994 return (0); 995 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) 996 return (1); 997 } 998 } 999 1000 static void 1001 vm_page_xunbusy_locked(vm_page_t m) 1002 { 1003 1004 vm_page_assert_xbusied(m); 1005 vm_page_assert_locked(m); 1006 1007 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1008 /* There is a waiter, do wakeup() instead of vm_page_flash(). */ 1009 wakeup(m); 1010 } 1011 1012 void 1013 vm_page_xunbusy_maybelocked(vm_page_t m) 1014 { 1015 bool lockacq; 1016 1017 vm_page_assert_xbusied(m); 1018 1019 /* 1020 * Fast path for unbusy. If it succeeds, we know that there 1021 * are no waiters, so we do not need a wakeup. 1022 */ 1023 if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER, 1024 VPB_UNBUSIED)) 1025 return; 1026 1027 lockacq = !mtx_owned(vm_page_lockptr(m)); 1028 if (lockacq) 1029 vm_page_lock(m); 1030 vm_page_xunbusy_locked(m); 1031 if (lockacq) 1032 vm_page_unlock(m); 1033 } 1034 1035 /* 1036 * vm_page_xunbusy_hard: 1037 * 1038 * Called after the first try the exclusive unbusy of a page failed. 1039 * It is assumed that the waiters bit is on. 1040 */ 1041 void 1042 vm_page_xunbusy_hard(vm_page_t m) 1043 { 1044 1045 vm_page_assert_xbusied(m); 1046 1047 vm_page_lock(m); 1048 vm_page_xunbusy_locked(m); 1049 vm_page_unlock(m); 1050 } 1051 1052 /* 1053 * vm_page_flash: 1054 * 1055 * Wakeup anyone waiting for the page. 1056 * The ownership bits do not change. 1057 * 1058 * The given page must be locked. 1059 */ 1060 void 1061 vm_page_flash(vm_page_t m) 1062 { 1063 u_int x; 1064 1065 vm_page_lock_assert(m, MA_OWNED); 1066 1067 for (;;) { 1068 x = m->busy_lock; 1069 if ((x & VPB_BIT_WAITERS) == 0) 1070 return; 1071 if (atomic_cmpset_int(&m->busy_lock, x, 1072 x & (~VPB_BIT_WAITERS))) 1073 break; 1074 } 1075 wakeup(m); 1076 } 1077 1078 /* 1079 * Avoid releasing and reacquiring the same page lock. 1080 */ 1081 void 1082 vm_page_change_lock(vm_page_t m, struct mtx **mtx) 1083 { 1084 struct mtx *mtx1; 1085 1086 mtx1 = vm_page_lockptr(m); 1087 if (*mtx == mtx1) 1088 return; 1089 if (*mtx != NULL) 1090 mtx_unlock(*mtx); 1091 *mtx = mtx1; 1092 mtx_lock(mtx1); 1093 } 1094 1095 /* 1096 * vm_page_unhold_pages: 1097 * 1098 * Unhold each of the pages that is referenced by the given array. 1099 */ 1100 void 1101 vm_page_unhold_pages(vm_page_t *ma, int count) 1102 { 1103 struct mtx *mtx; 1104 1105 mtx = NULL; 1106 for (; count != 0; count--) { 1107 vm_page_change_lock(*ma, &mtx); 1108 if (vm_page_unwire(*ma, PQ_ACTIVE) && (*ma)->object == NULL) 1109 vm_page_free(*ma); 1110 ma++; 1111 } 1112 if (mtx != NULL) 1113 mtx_unlock(mtx); 1114 } 1115 1116 vm_page_t 1117 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1118 { 1119 vm_page_t m; 1120 1121 #ifdef VM_PHYSSEG_SPARSE 1122 m = vm_phys_paddr_to_vm_page(pa); 1123 if (m == NULL) 1124 m = vm_phys_fictitious_to_vm_page(pa); 1125 return (m); 1126 #elif defined(VM_PHYSSEG_DENSE) 1127 long pi; 1128 1129 pi = atop(pa); 1130 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1131 m = &vm_page_array[pi - first_page]; 1132 return (m); 1133 } 1134 return (vm_phys_fictitious_to_vm_page(pa)); 1135 #else 1136 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1137 #endif 1138 } 1139 1140 /* 1141 * vm_page_getfake: 1142 * 1143 * Create a fictitious page with the specified physical address and 1144 * memory attribute. The memory attribute is the only the machine- 1145 * dependent aspect of a fictitious page that must be initialized. 1146 */ 1147 vm_page_t 1148 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1149 { 1150 vm_page_t m; 1151 1152 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1153 vm_page_initfake(m, paddr, memattr); 1154 return (m); 1155 } 1156 1157 void 1158 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1159 { 1160 1161 if ((m->flags & PG_FICTITIOUS) != 0) { 1162 /* 1163 * The page's memattr might have changed since the 1164 * previous initialization. Update the pmap to the 1165 * new memattr. 1166 */ 1167 goto memattr; 1168 } 1169 m->phys_addr = paddr; 1170 m->queue = PQ_NONE; 1171 /* Fictitious pages don't use "segind". */ 1172 m->flags = PG_FICTITIOUS; 1173 /* Fictitious pages don't use "order" or "pool". */ 1174 m->oflags = VPO_UNMANAGED; 1175 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1176 m->wire_count = 1; 1177 pmap_page_init(m); 1178 memattr: 1179 pmap_page_set_memattr(m, memattr); 1180 } 1181 1182 /* 1183 * vm_page_putfake: 1184 * 1185 * Release a fictitious page. 1186 */ 1187 void 1188 vm_page_putfake(vm_page_t m) 1189 { 1190 1191 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1192 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1193 ("vm_page_putfake: bad page %p", m)); 1194 uma_zfree(fakepg_zone, m); 1195 } 1196 1197 /* 1198 * vm_page_updatefake: 1199 * 1200 * Update the given fictitious page to the specified physical address and 1201 * memory attribute. 1202 */ 1203 void 1204 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1205 { 1206 1207 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1208 ("vm_page_updatefake: bad page %p", m)); 1209 m->phys_addr = paddr; 1210 pmap_page_set_memattr(m, memattr); 1211 } 1212 1213 /* 1214 * vm_page_free: 1215 * 1216 * Free a page. 1217 */ 1218 void 1219 vm_page_free(vm_page_t m) 1220 { 1221 1222 m->flags &= ~PG_ZERO; 1223 vm_page_free_toq(m); 1224 } 1225 1226 /* 1227 * vm_page_free_zero: 1228 * 1229 * Free a page to the zerod-pages queue 1230 */ 1231 void 1232 vm_page_free_zero(vm_page_t m) 1233 { 1234 1235 m->flags |= PG_ZERO; 1236 vm_page_free_toq(m); 1237 } 1238 1239 /* 1240 * Unbusy and handle the page queueing for a page from a getpages request that 1241 * was optionally read ahead or behind. 1242 */ 1243 void 1244 vm_page_readahead_finish(vm_page_t m) 1245 { 1246 1247 /* We shouldn't put invalid pages on queues. */ 1248 KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m)); 1249 1250 /* 1251 * Since the page is not the actually needed one, whether it should 1252 * be activated or deactivated is not obvious. Empirical results 1253 * have shown that deactivating the page is usually the best choice, 1254 * unless the page is wanted by another thread. 1255 */ 1256 vm_page_lock(m); 1257 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 1258 vm_page_activate(m); 1259 else 1260 vm_page_deactivate(m); 1261 vm_page_unlock(m); 1262 vm_page_xunbusy(m); 1263 } 1264 1265 /* 1266 * vm_page_sleep_if_busy: 1267 * 1268 * Sleep and release the page queues lock if the page is busied. 1269 * Returns TRUE if the thread slept. 1270 * 1271 * The given page must be unlocked and object containing it must 1272 * be locked. 1273 */ 1274 int 1275 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 1276 { 1277 vm_object_t obj; 1278 1279 vm_page_lock_assert(m, MA_NOTOWNED); 1280 VM_OBJECT_ASSERT_WLOCKED(m->object); 1281 1282 if (vm_page_busied(m)) { 1283 /* 1284 * The page-specific object must be cached because page 1285 * identity can change during the sleep, causing the 1286 * re-lock of a different object. 1287 * It is assumed that a reference to the object is already 1288 * held by the callers. 1289 */ 1290 obj = m->object; 1291 vm_page_lock(m); 1292 VM_OBJECT_WUNLOCK(obj); 1293 vm_page_busy_sleep(m, msg, false); 1294 VM_OBJECT_WLOCK(obj); 1295 return (TRUE); 1296 } 1297 return (FALSE); 1298 } 1299 1300 /* 1301 * vm_page_dirty_KBI: [ internal use only ] 1302 * 1303 * Set all bits in the page's dirty field. 1304 * 1305 * The object containing the specified page must be locked if the 1306 * call is made from the machine-independent layer. 1307 * 1308 * See vm_page_clear_dirty_mask(). 1309 * 1310 * This function should only be called by vm_page_dirty(). 1311 */ 1312 void 1313 vm_page_dirty_KBI(vm_page_t m) 1314 { 1315 1316 /* Refer to this operation by its public name. */ 1317 KASSERT(m->valid == VM_PAGE_BITS_ALL, 1318 ("vm_page_dirty: page is invalid!")); 1319 m->dirty = VM_PAGE_BITS_ALL; 1320 } 1321 1322 /* 1323 * vm_page_insert: [ internal use only ] 1324 * 1325 * Inserts the given mem entry into the object and object list. 1326 * 1327 * The object must be locked. 1328 */ 1329 int 1330 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1331 { 1332 vm_page_t mpred; 1333 1334 VM_OBJECT_ASSERT_WLOCKED(object); 1335 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1336 return (vm_page_insert_after(m, object, pindex, mpred)); 1337 } 1338 1339 /* 1340 * vm_page_insert_after: 1341 * 1342 * Inserts the page "m" into the specified object at offset "pindex". 1343 * 1344 * The page "mpred" must immediately precede the offset "pindex" within 1345 * the specified object. 1346 * 1347 * The object must be locked. 1348 */ 1349 static int 1350 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1351 vm_page_t mpred) 1352 { 1353 vm_page_t msucc; 1354 1355 VM_OBJECT_ASSERT_WLOCKED(object); 1356 KASSERT(m->object == NULL, 1357 ("vm_page_insert_after: page already inserted")); 1358 if (mpred != NULL) { 1359 KASSERT(mpred->object == object, 1360 ("vm_page_insert_after: object doesn't contain mpred")); 1361 KASSERT(mpred->pindex < pindex, 1362 ("vm_page_insert_after: mpred doesn't precede pindex")); 1363 msucc = TAILQ_NEXT(mpred, listq); 1364 } else 1365 msucc = TAILQ_FIRST(&object->memq); 1366 if (msucc != NULL) 1367 KASSERT(msucc->pindex > pindex, 1368 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1369 1370 /* 1371 * Record the object/offset pair in this page 1372 */ 1373 m->object = object; 1374 m->pindex = pindex; 1375 1376 /* 1377 * Now link into the object's ordered list of backed pages. 1378 */ 1379 if (vm_radix_insert(&object->rtree, m)) { 1380 m->object = NULL; 1381 m->pindex = 0; 1382 return (1); 1383 } 1384 vm_page_insert_radixdone(m, object, mpred); 1385 return (0); 1386 } 1387 1388 /* 1389 * vm_page_insert_radixdone: 1390 * 1391 * Complete page "m" insertion into the specified object after the 1392 * radix trie hooking. 1393 * 1394 * The page "mpred" must precede the offset "m->pindex" within the 1395 * specified object. 1396 * 1397 * The object must be locked. 1398 */ 1399 static void 1400 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1401 { 1402 1403 VM_OBJECT_ASSERT_WLOCKED(object); 1404 KASSERT(object != NULL && m->object == object, 1405 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1406 if (mpred != NULL) { 1407 KASSERT(mpred->object == object, 1408 ("vm_page_insert_after: object doesn't contain mpred")); 1409 KASSERT(mpred->pindex < m->pindex, 1410 ("vm_page_insert_after: mpred doesn't precede pindex")); 1411 } 1412 1413 if (mpred != NULL) 1414 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1415 else 1416 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1417 1418 /* 1419 * Show that the object has one more resident page. 1420 */ 1421 object->resident_page_count++; 1422 1423 /* 1424 * Hold the vnode until the last page is released. 1425 */ 1426 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1427 vhold(object->handle); 1428 1429 /* 1430 * Since we are inserting a new and possibly dirty page, 1431 * update the object's OBJ_MIGHTBEDIRTY flag. 1432 */ 1433 if (pmap_page_is_write_mapped(m)) 1434 vm_object_set_writeable_dirty(object); 1435 } 1436 1437 /* 1438 * vm_page_remove: 1439 * 1440 * Removes the specified page from its containing object, but does not 1441 * invalidate any backing storage. Return true if the page may be safely 1442 * freed and false otherwise. 1443 * 1444 * The object must be locked. The page must be locked if it is managed. 1445 */ 1446 bool 1447 vm_page_remove(vm_page_t m) 1448 { 1449 vm_object_t object; 1450 vm_page_t mrem; 1451 1452 object = m->object; 1453 1454 if ((m->oflags & VPO_UNMANAGED) == 0) 1455 vm_page_assert_locked(m); 1456 VM_OBJECT_ASSERT_WLOCKED(object); 1457 if (vm_page_xbusied(m)) 1458 vm_page_xunbusy_maybelocked(m); 1459 mrem = vm_radix_remove(&object->rtree, m->pindex); 1460 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1461 1462 /* 1463 * Now remove from the object's list of backed pages. 1464 */ 1465 TAILQ_REMOVE(&object->memq, m, listq); 1466 1467 /* 1468 * And show that the object has one fewer resident page. 1469 */ 1470 object->resident_page_count--; 1471 1472 /* 1473 * The vnode may now be recycled. 1474 */ 1475 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1476 vdrop(object->handle); 1477 1478 m->object = NULL; 1479 return (!vm_page_wired(m)); 1480 } 1481 1482 /* 1483 * vm_page_lookup: 1484 * 1485 * Returns the page associated with the object/offset 1486 * pair specified; if none is found, NULL is returned. 1487 * 1488 * The object must be locked. 1489 */ 1490 vm_page_t 1491 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1492 { 1493 1494 VM_OBJECT_ASSERT_LOCKED(object); 1495 return (vm_radix_lookup(&object->rtree, pindex)); 1496 } 1497 1498 /* 1499 * vm_page_find_least: 1500 * 1501 * Returns the page associated with the object with least pindex 1502 * greater than or equal to the parameter pindex, or NULL. 1503 * 1504 * The object must be locked. 1505 */ 1506 vm_page_t 1507 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1508 { 1509 vm_page_t m; 1510 1511 VM_OBJECT_ASSERT_LOCKED(object); 1512 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1513 m = vm_radix_lookup_ge(&object->rtree, pindex); 1514 return (m); 1515 } 1516 1517 /* 1518 * Returns the given page's successor (by pindex) within the object if it is 1519 * resident; if none is found, NULL is returned. 1520 * 1521 * The object must be locked. 1522 */ 1523 vm_page_t 1524 vm_page_next(vm_page_t m) 1525 { 1526 vm_page_t next; 1527 1528 VM_OBJECT_ASSERT_LOCKED(m->object); 1529 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1530 MPASS(next->object == m->object); 1531 if (next->pindex != m->pindex + 1) 1532 next = NULL; 1533 } 1534 return (next); 1535 } 1536 1537 /* 1538 * Returns the given page's predecessor (by pindex) within the object if it is 1539 * resident; if none is found, NULL is returned. 1540 * 1541 * The object must be locked. 1542 */ 1543 vm_page_t 1544 vm_page_prev(vm_page_t m) 1545 { 1546 vm_page_t prev; 1547 1548 VM_OBJECT_ASSERT_LOCKED(m->object); 1549 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1550 MPASS(prev->object == m->object); 1551 if (prev->pindex != m->pindex - 1) 1552 prev = NULL; 1553 } 1554 return (prev); 1555 } 1556 1557 /* 1558 * Uses the page mnew as a replacement for an existing page at index 1559 * pindex which must be already present in the object. 1560 * 1561 * The existing page must not be on a paging queue. 1562 */ 1563 vm_page_t 1564 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) 1565 { 1566 vm_page_t mold; 1567 1568 VM_OBJECT_ASSERT_WLOCKED(object); 1569 KASSERT(mnew->object == NULL, 1570 ("vm_page_replace: page %p already in object", mnew)); 1571 KASSERT(mnew->queue == PQ_NONE || vm_page_wired(mnew), 1572 ("vm_page_replace: new page %p is on a paging queue", mnew)); 1573 1574 /* 1575 * This function mostly follows vm_page_insert() and 1576 * vm_page_remove() without the radix, object count and vnode 1577 * dance. Double check such functions for more comments. 1578 */ 1579 1580 mnew->object = object; 1581 mnew->pindex = pindex; 1582 mold = vm_radix_replace(&object->rtree, mnew); 1583 KASSERT(mold->queue == PQ_NONE, 1584 ("vm_page_replace: old page %p is on a paging queue", mold)); 1585 1586 /* Keep the resident page list in sorted order. */ 1587 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1588 TAILQ_REMOVE(&object->memq, mold, listq); 1589 1590 mold->object = NULL; 1591 vm_page_xunbusy_maybelocked(mold); 1592 1593 /* 1594 * The object's resident_page_count does not change because we have 1595 * swapped one page for another, but OBJ_MIGHTBEDIRTY. 1596 */ 1597 if (pmap_page_is_write_mapped(mnew)) 1598 vm_object_set_writeable_dirty(object); 1599 return (mold); 1600 } 1601 1602 /* 1603 * vm_page_rename: 1604 * 1605 * Move the given memory entry from its 1606 * current object to the specified target object/offset. 1607 * 1608 * Note: swap associated with the page must be invalidated by the move. We 1609 * have to do this for several reasons: (1) we aren't freeing the 1610 * page, (2) we are dirtying the page, (3) the VM system is probably 1611 * moving the page from object A to B, and will then later move 1612 * the backing store from A to B and we can't have a conflict. 1613 * 1614 * Note: we *always* dirty the page. It is necessary both for the 1615 * fact that we moved it, and because we may be invalidating 1616 * swap. 1617 * 1618 * The objects must be locked. 1619 */ 1620 int 1621 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1622 { 1623 vm_page_t mpred; 1624 vm_pindex_t opidx; 1625 1626 VM_OBJECT_ASSERT_WLOCKED(new_object); 1627 1628 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1629 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1630 ("vm_page_rename: pindex already renamed")); 1631 1632 /* 1633 * Create a custom version of vm_page_insert() which does not depend 1634 * by m_prev and can cheat on the implementation aspects of the 1635 * function. 1636 */ 1637 opidx = m->pindex; 1638 m->pindex = new_pindex; 1639 if (vm_radix_insert(&new_object->rtree, m)) { 1640 m->pindex = opidx; 1641 return (1); 1642 } 1643 1644 /* 1645 * The operation cannot fail anymore. The removal must happen before 1646 * the listq iterator is tainted. 1647 */ 1648 m->pindex = opidx; 1649 vm_page_lock(m); 1650 (void)vm_page_remove(m); 1651 1652 /* Return back to the new pindex to complete vm_page_insert(). */ 1653 m->pindex = new_pindex; 1654 m->object = new_object; 1655 vm_page_unlock(m); 1656 vm_page_insert_radixdone(m, new_object, mpred); 1657 vm_page_dirty(m); 1658 return (0); 1659 } 1660 1661 /* 1662 * vm_page_alloc: 1663 * 1664 * Allocate and return a page that is associated with the specified 1665 * object and offset pair. By default, this page is exclusive busied. 1666 * 1667 * The caller must always specify an allocation class. 1668 * 1669 * allocation classes: 1670 * VM_ALLOC_NORMAL normal process request 1671 * VM_ALLOC_SYSTEM system *really* needs a page 1672 * VM_ALLOC_INTERRUPT interrupt time request 1673 * 1674 * optional allocation flags: 1675 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1676 * intends to allocate 1677 * VM_ALLOC_NOBUSY do not exclusive busy the page 1678 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1679 * VM_ALLOC_NOOBJ page is not associated with an object and 1680 * should not be exclusive busy 1681 * VM_ALLOC_SBUSY shared busy the allocated page 1682 * VM_ALLOC_WIRED wire the allocated page 1683 * VM_ALLOC_ZERO prefer a zeroed page 1684 */ 1685 vm_page_t 1686 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1687 { 1688 1689 return (vm_page_alloc_after(object, pindex, req, object != NULL ? 1690 vm_radix_lookup_le(&object->rtree, pindex) : NULL)); 1691 } 1692 1693 vm_page_t 1694 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1695 int req) 1696 { 1697 1698 return (vm_page_alloc_domain_after(object, pindex, domain, req, 1699 object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : 1700 NULL)); 1701 } 1702 1703 /* 1704 * Allocate a page in the specified object with the given page index. To 1705 * optimize insertion of the page into the object, the caller must also specifiy 1706 * the resident page in the object with largest index smaller than the given 1707 * page index, or NULL if no such page exists. 1708 */ 1709 vm_page_t 1710 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 1711 int req, vm_page_t mpred) 1712 { 1713 struct vm_domainset_iter di; 1714 vm_page_t m; 1715 int domain; 1716 1717 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1718 do { 1719 m = vm_page_alloc_domain_after(object, pindex, domain, req, 1720 mpred); 1721 if (m != NULL) 1722 break; 1723 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1724 1725 return (m); 1726 } 1727 1728 /* 1729 * Returns true if the number of free pages exceeds the minimum 1730 * for the request class and false otherwise. 1731 */ 1732 int 1733 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 1734 { 1735 u_int limit, old, new; 1736 1737 req = req & VM_ALLOC_CLASS_MASK; 1738 1739 /* 1740 * The page daemon is allowed to dig deeper into the free page list. 1741 */ 1742 if (curproc == pageproc && req != VM_ALLOC_INTERRUPT) 1743 req = VM_ALLOC_SYSTEM; 1744 if (req == VM_ALLOC_INTERRUPT) 1745 limit = 0; 1746 else if (req == VM_ALLOC_SYSTEM) 1747 limit = vmd->vmd_interrupt_free_min; 1748 else 1749 limit = vmd->vmd_free_reserved; 1750 1751 /* 1752 * Attempt to reserve the pages. Fail if we're below the limit. 1753 */ 1754 limit += npages; 1755 old = vmd->vmd_free_count; 1756 do { 1757 if (old < limit) 1758 return (0); 1759 new = old - npages; 1760 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 1761 1762 /* Wake the page daemon if we've crossed the threshold. */ 1763 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 1764 pagedaemon_wakeup(vmd->vmd_domain); 1765 1766 /* Only update bitsets on transitions. */ 1767 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 1768 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 1769 vm_domain_set(vmd); 1770 1771 return (1); 1772 } 1773 1774 vm_page_t 1775 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 1776 int req, vm_page_t mpred) 1777 { 1778 struct vm_domain *vmd; 1779 vm_page_t m; 1780 int flags, pool; 1781 1782 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1783 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1784 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1785 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1786 ("inconsistent object(%p)/req(%x)", object, req)); 1787 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1788 ("Can't sleep and retry object insertion.")); 1789 KASSERT(mpred == NULL || mpred->pindex < pindex, 1790 ("mpred %p doesn't precede pindex 0x%jx", mpred, 1791 (uintmax_t)pindex)); 1792 if (object != NULL) 1793 VM_OBJECT_ASSERT_WLOCKED(object); 1794 1795 flags = 0; 1796 m = NULL; 1797 pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT; 1798 again: 1799 #if VM_NRESERVLEVEL > 0 1800 /* 1801 * Can we allocate the page from a reservation? 1802 */ 1803 if (vm_object_reserv(object) && 1804 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != 1805 NULL) { 1806 domain = vm_phys_domain(m); 1807 vmd = VM_DOMAIN(domain); 1808 goto found; 1809 } 1810 #endif 1811 vmd = VM_DOMAIN(domain); 1812 if (vmd->vmd_pgcache[pool].zone != NULL) { 1813 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT); 1814 if (m != NULL) { 1815 flags |= PG_PCPU_CACHE; 1816 goto found; 1817 } 1818 } 1819 if (vm_domain_allocate(vmd, req, 1)) { 1820 /* 1821 * If not, allocate it from the free page queues. 1822 */ 1823 vm_domain_free_lock(vmd); 1824 m = vm_phys_alloc_pages(domain, pool, 0); 1825 vm_domain_free_unlock(vmd); 1826 if (m == NULL) { 1827 vm_domain_freecnt_inc(vmd, 1); 1828 #if VM_NRESERVLEVEL > 0 1829 if (vm_reserv_reclaim_inactive(domain)) 1830 goto again; 1831 #endif 1832 } 1833 } 1834 if (m == NULL) { 1835 /* 1836 * Not allocatable, give up. 1837 */ 1838 if (vm_domain_alloc_fail(vmd, object, req)) 1839 goto again; 1840 return (NULL); 1841 } 1842 1843 /* 1844 * At this point we had better have found a good page. 1845 */ 1846 found: 1847 vm_page_dequeue(m); 1848 vm_page_alloc_check(m); 1849 1850 /* 1851 * Initialize the page. Only the PG_ZERO flag is inherited. 1852 */ 1853 if ((req & VM_ALLOC_ZERO) != 0) 1854 flags |= (m->flags & PG_ZERO); 1855 if ((req & VM_ALLOC_NODUMP) != 0) 1856 flags |= PG_NODUMP; 1857 m->flags = flags; 1858 m->aflags = 0; 1859 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1860 VPO_UNMANAGED : 0; 1861 m->busy_lock = VPB_UNBUSIED; 1862 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1863 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1864 if ((req & VM_ALLOC_SBUSY) != 0) 1865 m->busy_lock = VPB_SHARERS_WORD(1); 1866 if (req & VM_ALLOC_WIRED) { 1867 /* 1868 * The page lock is not required for wiring a page until that 1869 * page is inserted into the object. 1870 */ 1871 vm_wire_add(1); 1872 m->wire_count = 1; 1873 } 1874 m->act_count = 0; 1875 1876 if (object != NULL) { 1877 if (vm_page_insert_after(m, object, pindex, mpred)) { 1878 if (req & VM_ALLOC_WIRED) { 1879 vm_wire_sub(1); 1880 m->wire_count = 0; 1881 } 1882 KASSERT(m->object == NULL, ("page %p has object", m)); 1883 m->oflags = VPO_UNMANAGED; 1884 m->busy_lock = VPB_UNBUSIED; 1885 /* Don't change PG_ZERO. */ 1886 vm_page_free_toq(m); 1887 if (req & VM_ALLOC_WAITFAIL) { 1888 VM_OBJECT_WUNLOCK(object); 1889 vm_radix_wait(); 1890 VM_OBJECT_WLOCK(object); 1891 } 1892 return (NULL); 1893 } 1894 1895 /* Ignore device objects; the pager sets "memattr" for them. */ 1896 if (object->memattr != VM_MEMATTR_DEFAULT && 1897 (object->flags & OBJ_FICTITIOUS) == 0) 1898 pmap_page_set_memattr(m, object->memattr); 1899 } else 1900 m->pindex = pindex; 1901 1902 return (m); 1903 } 1904 1905 /* 1906 * vm_page_alloc_contig: 1907 * 1908 * Allocate a contiguous set of physical pages of the given size "npages" 1909 * from the free lists. All of the physical pages must be at or above 1910 * the given physical address "low" and below the given physical address 1911 * "high". The given value "alignment" determines the alignment of the 1912 * first physical page in the set. If the given value "boundary" is 1913 * non-zero, then the set of physical pages cannot cross any physical 1914 * address boundary that is a multiple of that value. Both "alignment" 1915 * and "boundary" must be a power of two. 1916 * 1917 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1918 * then the memory attribute setting for the physical pages is configured 1919 * to the object's memory attribute setting. Otherwise, the memory 1920 * attribute setting for the physical pages is configured to "memattr", 1921 * overriding the object's memory attribute setting. However, if the 1922 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1923 * memory attribute setting for the physical pages cannot be configured 1924 * to VM_MEMATTR_DEFAULT. 1925 * 1926 * The specified object may not contain fictitious pages. 1927 * 1928 * The caller must always specify an allocation class. 1929 * 1930 * allocation classes: 1931 * VM_ALLOC_NORMAL normal process request 1932 * VM_ALLOC_SYSTEM system *really* needs a page 1933 * VM_ALLOC_INTERRUPT interrupt time request 1934 * 1935 * optional allocation flags: 1936 * VM_ALLOC_NOBUSY do not exclusive busy the page 1937 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1938 * VM_ALLOC_NOOBJ page is not associated with an object and 1939 * should not be exclusive busy 1940 * VM_ALLOC_SBUSY shared busy the allocated page 1941 * VM_ALLOC_WIRED wire the allocated page 1942 * VM_ALLOC_ZERO prefer a zeroed page 1943 */ 1944 vm_page_t 1945 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1946 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1947 vm_paddr_t boundary, vm_memattr_t memattr) 1948 { 1949 struct vm_domainset_iter di; 1950 vm_page_t m; 1951 int domain; 1952 1953 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1954 do { 1955 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 1956 npages, low, high, alignment, boundary, memattr); 1957 if (m != NULL) 1958 break; 1959 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1960 1961 return (m); 1962 } 1963 1964 vm_page_t 1965 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1966 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1967 vm_paddr_t boundary, vm_memattr_t memattr) 1968 { 1969 struct vm_domain *vmd; 1970 vm_page_t m, m_ret, mpred; 1971 u_int busy_lock, flags, oflags; 1972 1973 mpred = NULL; /* XXX: pacify gcc */ 1974 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1975 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1976 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1977 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1978 ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object, 1979 req)); 1980 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1981 ("Can't sleep and retry object insertion.")); 1982 if (object != NULL) { 1983 VM_OBJECT_ASSERT_WLOCKED(object); 1984 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 1985 ("vm_page_alloc_contig: object %p has fictitious pages", 1986 object)); 1987 } 1988 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1989 1990 if (object != NULL) { 1991 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1992 KASSERT(mpred == NULL || mpred->pindex != pindex, 1993 ("vm_page_alloc_contig: pindex already allocated")); 1994 } 1995 1996 /* 1997 * Can we allocate the pages without the number of free pages falling 1998 * below the lower bound for the allocation class? 1999 */ 2000 m_ret = NULL; 2001 again: 2002 #if VM_NRESERVLEVEL > 0 2003 /* 2004 * Can we allocate the pages from a reservation? 2005 */ 2006 if (vm_object_reserv(object) && 2007 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, 2008 mpred, npages, low, high, alignment, boundary)) != NULL) { 2009 domain = vm_phys_domain(m_ret); 2010 vmd = VM_DOMAIN(domain); 2011 goto found; 2012 } 2013 #endif 2014 vmd = VM_DOMAIN(domain); 2015 if (vm_domain_allocate(vmd, req, npages)) { 2016 /* 2017 * allocate them from the free page queues. 2018 */ 2019 vm_domain_free_lock(vmd); 2020 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2021 alignment, boundary); 2022 vm_domain_free_unlock(vmd); 2023 if (m_ret == NULL) { 2024 vm_domain_freecnt_inc(vmd, npages); 2025 #if VM_NRESERVLEVEL > 0 2026 if (vm_reserv_reclaim_contig(domain, npages, low, 2027 high, alignment, boundary)) 2028 goto again; 2029 #endif 2030 } 2031 } 2032 if (m_ret == NULL) { 2033 if (vm_domain_alloc_fail(vmd, object, req)) 2034 goto again; 2035 return (NULL); 2036 } 2037 #if VM_NRESERVLEVEL > 0 2038 found: 2039 #endif 2040 for (m = m_ret; m < &m_ret[npages]; m++) { 2041 vm_page_dequeue(m); 2042 vm_page_alloc_check(m); 2043 } 2044 2045 /* 2046 * Initialize the pages. Only the PG_ZERO flag is inherited. 2047 */ 2048 flags = 0; 2049 if ((req & VM_ALLOC_ZERO) != 0) 2050 flags = PG_ZERO; 2051 if ((req & VM_ALLOC_NODUMP) != 0) 2052 flags |= PG_NODUMP; 2053 oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 2054 VPO_UNMANAGED : 0; 2055 busy_lock = VPB_UNBUSIED; 2056 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 2057 busy_lock = VPB_SINGLE_EXCLUSIVER; 2058 if ((req & VM_ALLOC_SBUSY) != 0) 2059 busy_lock = VPB_SHARERS_WORD(1); 2060 if ((req & VM_ALLOC_WIRED) != 0) 2061 vm_wire_add(npages); 2062 if (object != NULL) { 2063 if (object->memattr != VM_MEMATTR_DEFAULT && 2064 memattr == VM_MEMATTR_DEFAULT) 2065 memattr = object->memattr; 2066 } 2067 for (m = m_ret; m < &m_ret[npages]; m++) { 2068 m->aflags = 0; 2069 m->flags = (m->flags | PG_NODUMP) & flags; 2070 m->busy_lock = busy_lock; 2071 if ((req & VM_ALLOC_WIRED) != 0) 2072 m->wire_count = 1; 2073 m->act_count = 0; 2074 m->oflags = oflags; 2075 if (object != NULL) { 2076 if (vm_page_insert_after(m, object, pindex, mpred)) { 2077 if ((req & VM_ALLOC_WIRED) != 0) 2078 vm_wire_sub(npages); 2079 KASSERT(m->object == NULL, 2080 ("page %p has object", m)); 2081 mpred = m; 2082 for (m = m_ret; m < &m_ret[npages]; m++) { 2083 if (m <= mpred && 2084 (req & VM_ALLOC_WIRED) != 0) 2085 m->wire_count = 0; 2086 m->oflags = VPO_UNMANAGED; 2087 m->busy_lock = VPB_UNBUSIED; 2088 /* Don't change PG_ZERO. */ 2089 vm_page_free_toq(m); 2090 } 2091 if (req & VM_ALLOC_WAITFAIL) { 2092 VM_OBJECT_WUNLOCK(object); 2093 vm_radix_wait(); 2094 VM_OBJECT_WLOCK(object); 2095 } 2096 return (NULL); 2097 } 2098 mpred = m; 2099 } else 2100 m->pindex = pindex; 2101 if (memattr != VM_MEMATTR_DEFAULT) 2102 pmap_page_set_memattr(m, memattr); 2103 pindex++; 2104 } 2105 return (m_ret); 2106 } 2107 2108 /* 2109 * Check a page that has been freshly dequeued from a freelist. 2110 */ 2111 static void 2112 vm_page_alloc_check(vm_page_t m) 2113 { 2114 2115 KASSERT(m->object == NULL, ("page %p has object", m)); 2116 KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0, 2117 ("page %p has unexpected queue %d, flags %#x", 2118 m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK))); 2119 KASSERT(!vm_page_wired(m), ("page %p is wired", m)); 2120 KASSERT(!vm_page_busied(m), ("page %p is busy", m)); 2121 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2122 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2123 ("page %p has unexpected memattr %d", 2124 m, pmap_page_get_memattr(m))); 2125 KASSERT(m->valid == 0, ("free page %p is valid", m)); 2126 } 2127 2128 /* 2129 * vm_page_alloc_freelist: 2130 * 2131 * Allocate a physical page from the specified free page list. 2132 * 2133 * The caller must always specify an allocation class. 2134 * 2135 * allocation classes: 2136 * VM_ALLOC_NORMAL normal process request 2137 * VM_ALLOC_SYSTEM system *really* needs a page 2138 * VM_ALLOC_INTERRUPT interrupt time request 2139 * 2140 * optional allocation flags: 2141 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2142 * intends to allocate 2143 * VM_ALLOC_WIRED wire the allocated page 2144 * VM_ALLOC_ZERO prefer a zeroed page 2145 */ 2146 vm_page_t 2147 vm_page_alloc_freelist(int freelist, int req) 2148 { 2149 struct vm_domainset_iter di; 2150 vm_page_t m; 2151 int domain; 2152 2153 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2154 do { 2155 m = vm_page_alloc_freelist_domain(domain, freelist, req); 2156 if (m != NULL) 2157 break; 2158 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2159 2160 return (m); 2161 } 2162 2163 vm_page_t 2164 vm_page_alloc_freelist_domain(int domain, int freelist, int req) 2165 { 2166 struct vm_domain *vmd; 2167 vm_page_t m; 2168 u_int flags; 2169 2170 m = NULL; 2171 vmd = VM_DOMAIN(domain); 2172 again: 2173 if (vm_domain_allocate(vmd, req, 1)) { 2174 vm_domain_free_lock(vmd); 2175 m = vm_phys_alloc_freelist_pages(domain, freelist, 2176 VM_FREEPOOL_DIRECT, 0); 2177 vm_domain_free_unlock(vmd); 2178 if (m == NULL) 2179 vm_domain_freecnt_inc(vmd, 1); 2180 } 2181 if (m == NULL) { 2182 if (vm_domain_alloc_fail(vmd, NULL, req)) 2183 goto again; 2184 return (NULL); 2185 } 2186 vm_page_dequeue(m); 2187 vm_page_alloc_check(m); 2188 2189 /* 2190 * Initialize the page. Only the PG_ZERO flag is inherited. 2191 */ 2192 m->aflags = 0; 2193 flags = 0; 2194 if ((req & VM_ALLOC_ZERO) != 0) 2195 flags = PG_ZERO; 2196 m->flags &= flags; 2197 if ((req & VM_ALLOC_WIRED) != 0) { 2198 /* 2199 * The page lock is not required for wiring a page that does 2200 * not belong to an object. 2201 */ 2202 vm_wire_add(1); 2203 m->wire_count = 1; 2204 } 2205 /* Unmanaged pages don't use "act_count". */ 2206 m->oflags = VPO_UNMANAGED; 2207 return (m); 2208 } 2209 2210 static int 2211 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2212 { 2213 struct vm_domain *vmd; 2214 struct vm_pgcache *pgcache; 2215 int i; 2216 2217 pgcache = arg; 2218 vmd = VM_DOMAIN(pgcache->domain); 2219 /* Only import if we can bring in a full bucket. */ 2220 if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2221 return (0); 2222 domain = vmd->vmd_domain; 2223 vm_domain_free_lock(vmd); 2224 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2225 (vm_page_t *)store); 2226 vm_domain_free_unlock(vmd); 2227 if (cnt != i) 2228 vm_domain_freecnt_inc(vmd, cnt - i); 2229 2230 return (i); 2231 } 2232 2233 static void 2234 vm_page_zone_release(void *arg, void **store, int cnt) 2235 { 2236 struct vm_domain *vmd; 2237 struct vm_pgcache *pgcache; 2238 vm_page_t m; 2239 int i; 2240 2241 pgcache = arg; 2242 vmd = VM_DOMAIN(pgcache->domain); 2243 vm_domain_free_lock(vmd); 2244 for (i = 0; i < cnt; i++) { 2245 m = (vm_page_t)store[i]; 2246 vm_phys_free_pages(m, 0); 2247 } 2248 vm_domain_free_unlock(vmd); 2249 vm_domain_freecnt_inc(vmd, cnt); 2250 } 2251 2252 #define VPSC_ANY 0 /* No restrictions. */ 2253 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2254 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2255 2256 /* 2257 * vm_page_scan_contig: 2258 * 2259 * Scan vm_page_array[] between the specified entries "m_start" and 2260 * "m_end" for a run of contiguous physical pages that satisfy the 2261 * specified conditions, and return the lowest page in the run. The 2262 * specified "alignment" determines the alignment of the lowest physical 2263 * page in the run. If the specified "boundary" is non-zero, then the 2264 * run of physical pages cannot span a physical address that is a 2265 * multiple of "boundary". 2266 * 2267 * "m_end" is never dereferenced, so it need not point to a vm_page 2268 * structure within vm_page_array[]. 2269 * 2270 * "npages" must be greater than zero. "m_start" and "m_end" must not 2271 * span a hole (or discontiguity) in the physical address space. Both 2272 * "alignment" and "boundary" must be a power of two. 2273 */ 2274 vm_page_t 2275 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2276 u_long alignment, vm_paddr_t boundary, int options) 2277 { 2278 struct mtx *m_mtx; 2279 vm_object_t object; 2280 vm_paddr_t pa; 2281 vm_page_t m, m_run; 2282 #if VM_NRESERVLEVEL > 0 2283 int level; 2284 #endif 2285 int m_inc, order, run_ext, run_len; 2286 2287 KASSERT(npages > 0, ("npages is 0")); 2288 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2289 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2290 m_run = NULL; 2291 run_len = 0; 2292 m_mtx = NULL; 2293 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2294 KASSERT((m->flags & PG_MARKER) == 0, 2295 ("page %p is PG_MARKER", m)); 2296 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1, 2297 ("fictitious page %p has invalid wire count", m)); 2298 2299 /* 2300 * If the current page would be the start of a run, check its 2301 * physical address against the end, alignment, and boundary 2302 * conditions. If it doesn't satisfy these conditions, either 2303 * terminate the scan or advance to the next page that 2304 * satisfies the failed condition. 2305 */ 2306 if (run_len == 0) { 2307 KASSERT(m_run == NULL, ("m_run != NULL")); 2308 if (m + npages > m_end) 2309 break; 2310 pa = VM_PAGE_TO_PHYS(m); 2311 if ((pa & (alignment - 1)) != 0) { 2312 m_inc = atop(roundup2(pa, alignment) - pa); 2313 continue; 2314 } 2315 if (rounddown2(pa ^ (pa + ptoa(npages) - 1), 2316 boundary) != 0) { 2317 m_inc = atop(roundup2(pa, boundary) - pa); 2318 continue; 2319 } 2320 } else 2321 KASSERT(m_run != NULL, ("m_run == NULL")); 2322 2323 vm_page_change_lock(m, &m_mtx); 2324 m_inc = 1; 2325 retry: 2326 if (vm_page_wired(m)) 2327 run_ext = 0; 2328 #if VM_NRESERVLEVEL > 0 2329 else if ((level = vm_reserv_level(m)) >= 0 && 2330 (options & VPSC_NORESERV) != 0) { 2331 run_ext = 0; 2332 /* Advance to the end of the reservation. */ 2333 pa = VM_PAGE_TO_PHYS(m); 2334 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2335 pa); 2336 } 2337 #endif 2338 else if ((object = m->object) != NULL) { 2339 /* 2340 * The page is considered eligible for relocation if 2341 * and only if it could be laundered or reclaimed by 2342 * the page daemon. 2343 */ 2344 if (!VM_OBJECT_TRYRLOCK(object)) { 2345 mtx_unlock(m_mtx); 2346 VM_OBJECT_RLOCK(object); 2347 mtx_lock(m_mtx); 2348 if (m->object != object) { 2349 /* 2350 * The page may have been freed. 2351 */ 2352 VM_OBJECT_RUNLOCK(object); 2353 goto retry; 2354 } else if (vm_page_wired(m)) { 2355 run_ext = 0; 2356 goto unlock; 2357 } 2358 } 2359 /* Don't care: PG_NODUMP, PG_ZERO. */ 2360 if (object->type != OBJT_DEFAULT && 2361 object->type != OBJT_SWAP && 2362 object->type != OBJT_VNODE) { 2363 run_ext = 0; 2364 #if VM_NRESERVLEVEL > 0 2365 } else if ((options & VPSC_NOSUPER) != 0 && 2366 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2367 run_ext = 0; 2368 /* Advance to the end of the superpage. */ 2369 pa = VM_PAGE_TO_PHYS(m); 2370 m_inc = atop(roundup2(pa + 1, 2371 vm_reserv_size(level)) - pa); 2372 #endif 2373 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2374 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) { 2375 /* 2376 * The page is allocated but eligible for 2377 * relocation. Extend the current run by one 2378 * page. 2379 */ 2380 KASSERT(pmap_page_get_memattr(m) == 2381 VM_MEMATTR_DEFAULT, 2382 ("page %p has an unexpected memattr", m)); 2383 KASSERT((m->oflags & (VPO_SWAPINPROG | 2384 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2385 ("page %p has unexpected oflags", m)); 2386 /* Don't care: VPO_NOSYNC. */ 2387 run_ext = 1; 2388 } else 2389 run_ext = 0; 2390 unlock: 2391 VM_OBJECT_RUNLOCK(object); 2392 #if VM_NRESERVLEVEL > 0 2393 } else if (level >= 0) { 2394 /* 2395 * The page is reserved but not yet allocated. In 2396 * other words, it is still free. Extend the current 2397 * run by one page. 2398 */ 2399 run_ext = 1; 2400 #endif 2401 } else if ((order = m->order) < VM_NFREEORDER) { 2402 /* 2403 * The page is enqueued in the physical memory 2404 * allocator's free page queues. Moreover, it is the 2405 * first page in a power-of-two-sized run of 2406 * contiguous free pages. Add these pages to the end 2407 * of the current run, and jump ahead. 2408 */ 2409 run_ext = 1 << order; 2410 m_inc = 1 << order; 2411 } else { 2412 /* 2413 * Skip the page for one of the following reasons: (1) 2414 * It is enqueued in the physical memory allocator's 2415 * free page queues. However, it is not the first 2416 * page in a run of contiguous free pages. (This case 2417 * rarely occurs because the scan is performed in 2418 * ascending order.) (2) It is not reserved, and it is 2419 * transitioning from free to allocated. (Conversely, 2420 * the transition from allocated to free for managed 2421 * pages is blocked by the page lock.) (3) It is 2422 * allocated but not contained by an object and not 2423 * wired, e.g., allocated by Xen's balloon driver. 2424 */ 2425 run_ext = 0; 2426 } 2427 2428 /* 2429 * Extend or reset the current run of pages. 2430 */ 2431 if (run_ext > 0) { 2432 if (run_len == 0) 2433 m_run = m; 2434 run_len += run_ext; 2435 } else { 2436 if (run_len > 0) { 2437 m_run = NULL; 2438 run_len = 0; 2439 } 2440 } 2441 } 2442 if (m_mtx != NULL) 2443 mtx_unlock(m_mtx); 2444 if (run_len >= npages) 2445 return (m_run); 2446 return (NULL); 2447 } 2448 2449 /* 2450 * vm_page_reclaim_run: 2451 * 2452 * Try to relocate each of the allocated virtual pages within the 2453 * specified run of physical pages to a new physical address. Free the 2454 * physical pages underlying the relocated virtual pages. A virtual page 2455 * is relocatable if and only if it could be laundered or reclaimed by 2456 * the page daemon. Whenever possible, a virtual page is relocated to a 2457 * physical address above "high". 2458 * 2459 * Returns 0 if every physical page within the run was already free or 2460 * just freed by a successful relocation. Otherwise, returns a non-zero 2461 * value indicating why the last attempt to relocate a virtual page was 2462 * unsuccessful. 2463 * 2464 * "req_class" must be an allocation class. 2465 */ 2466 static int 2467 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2468 vm_paddr_t high) 2469 { 2470 struct vm_domain *vmd; 2471 struct mtx *m_mtx; 2472 struct spglist free; 2473 vm_object_t object; 2474 vm_paddr_t pa; 2475 vm_page_t m, m_end, m_new; 2476 int error, order, req; 2477 2478 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2479 ("req_class is not an allocation class")); 2480 SLIST_INIT(&free); 2481 error = 0; 2482 m = m_run; 2483 m_end = m_run + npages; 2484 m_mtx = NULL; 2485 for (; error == 0 && m < m_end; m++) { 2486 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2487 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2488 2489 /* 2490 * Avoid releasing and reacquiring the same page lock. 2491 */ 2492 vm_page_change_lock(m, &m_mtx); 2493 retry: 2494 if (vm_page_wired(m)) 2495 error = EBUSY; 2496 else if ((object = m->object) != NULL) { 2497 /* 2498 * The page is relocated if and only if it could be 2499 * laundered or reclaimed by the page daemon. 2500 */ 2501 if (!VM_OBJECT_TRYWLOCK(object)) { 2502 mtx_unlock(m_mtx); 2503 VM_OBJECT_WLOCK(object); 2504 mtx_lock(m_mtx); 2505 if (m->object != object) { 2506 /* 2507 * The page may have been freed. 2508 */ 2509 VM_OBJECT_WUNLOCK(object); 2510 goto retry; 2511 } else if (vm_page_wired(m)) { 2512 error = EBUSY; 2513 goto unlock; 2514 } 2515 } 2516 /* Don't care: PG_NODUMP, PG_ZERO. */ 2517 if (object->type != OBJT_DEFAULT && 2518 object->type != OBJT_SWAP && 2519 object->type != OBJT_VNODE) 2520 error = EINVAL; 2521 else if (object->memattr != VM_MEMATTR_DEFAULT) 2522 error = EINVAL; 2523 else if (vm_page_queue(m) != PQ_NONE && 2524 !vm_page_busied(m)) { 2525 KASSERT(pmap_page_get_memattr(m) == 2526 VM_MEMATTR_DEFAULT, 2527 ("page %p has an unexpected memattr", m)); 2528 KASSERT((m->oflags & (VPO_SWAPINPROG | 2529 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2530 ("page %p has unexpected oflags", m)); 2531 /* Don't care: VPO_NOSYNC. */ 2532 if (m->valid != 0) { 2533 /* 2534 * First, try to allocate a new page 2535 * that is above "high". Failing 2536 * that, try to allocate a new page 2537 * that is below "m_run". Allocate 2538 * the new page between the end of 2539 * "m_run" and "high" only as a last 2540 * resort. 2541 */ 2542 req = req_class | VM_ALLOC_NOOBJ; 2543 if ((m->flags & PG_NODUMP) != 0) 2544 req |= VM_ALLOC_NODUMP; 2545 if (trunc_page(high) != 2546 ~(vm_paddr_t)PAGE_MASK) { 2547 m_new = vm_page_alloc_contig( 2548 NULL, 0, req, 1, 2549 round_page(high), 2550 ~(vm_paddr_t)0, 2551 PAGE_SIZE, 0, 2552 VM_MEMATTR_DEFAULT); 2553 } else 2554 m_new = NULL; 2555 if (m_new == NULL) { 2556 pa = VM_PAGE_TO_PHYS(m_run); 2557 m_new = vm_page_alloc_contig( 2558 NULL, 0, req, 1, 2559 0, pa - 1, PAGE_SIZE, 0, 2560 VM_MEMATTR_DEFAULT); 2561 } 2562 if (m_new == NULL) { 2563 pa += ptoa(npages); 2564 m_new = vm_page_alloc_contig( 2565 NULL, 0, req, 1, 2566 pa, high, PAGE_SIZE, 0, 2567 VM_MEMATTR_DEFAULT); 2568 } 2569 if (m_new == NULL) { 2570 error = ENOMEM; 2571 goto unlock; 2572 } 2573 KASSERT(!vm_page_wired(m_new), 2574 ("page %p is wired", m_new)); 2575 2576 /* 2577 * Replace "m" with the new page. For 2578 * vm_page_replace(), "m" must be busy 2579 * and dequeued. Finally, change "m" 2580 * as if vm_page_free() was called. 2581 */ 2582 if (object->ref_count != 0) 2583 pmap_remove_all(m); 2584 m_new->aflags = m->aflags & 2585 ~PGA_QUEUE_STATE_MASK; 2586 KASSERT(m_new->oflags == VPO_UNMANAGED, 2587 ("page %p is managed", m_new)); 2588 m_new->oflags = m->oflags & VPO_NOSYNC; 2589 pmap_copy_page(m, m_new); 2590 m_new->valid = m->valid; 2591 m_new->dirty = m->dirty; 2592 m->flags &= ~PG_ZERO; 2593 vm_page_xbusy(m); 2594 vm_page_dequeue(m); 2595 vm_page_replace_checked(m_new, object, 2596 m->pindex, m); 2597 if (vm_page_free_prep(m)) 2598 SLIST_INSERT_HEAD(&free, m, 2599 plinks.s.ss); 2600 2601 /* 2602 * The new page must be deactivated 2603 * before the object is unlocked. 2604 */ 2605 vm_page_change_lock(m_new, &m_mtx); 2606 vm_page_deactivate(m_new); 2607 } else { 2608 m->flags &= ~PG_ZERO; 2609 vm_page_dequeue(m); 2610 if (vm_page_free_prep(m)) 2611 SLIST_INSERT_HEAD(&free, m, 2612 plinks.s.ss); 2613 KASSERT(m->dirty == 0, 2614 ("page %p is dirty", m)); 2615 } 2616 } else 2617 error = EBUSY; 2618 unlock: 2619 VM_OBJECT_WUNLOCK(object); 2620 } else { 2621 MPASS(vm_phys_domain(m) == domain); 2622 vmd = VM_DOMAIN(domain); 2623 vm_domain_free_lock(vmd); 2624 order = m->order; 2625 if (order < VM_NFREEORDER) { 2626 /* 2627 * The page is enqueued in the physical memory 2628 * allocator's free page queues. Moreover, it 2629 * is the first page in a power-of-two-sized 2630 * run of contiguous free pages. Jump ahead 2631 * to the last page within that run, and 2632 * continue from there. 2633 */ 2634 m += (1 << order) - 1; 2635 } 2636 #if VM_NRESERVLEVEL > 0 2637 else if (vm_reserv_is_page_free(m)) 2638 order = 0; 2639 #endif 2640 vm_domain_free_unlock(vmd); 2641 if (order == VM_NFREEORDER) 2642 error = EINVAL; 2643 } 2644 } 2645 if (m_mtx != NULL) 2646 mtx_unlock(m_mtx); 2647 if ((m = SLIST_FIRST(&free)) != NULL) { 2648 int cnt; 2649 2650 vmd = VM_DOMAIN(domain); 2651 cnt = 0; 2652 vm_domain_free_lock(vmd); 2653 do { 2654 MPASS(vm_phys_domain(m) == domain); 2655 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 2656 vm_phys_free_pages(m, 0); 2657 cnt++; 2658 } while ((m = SLIST_FIRST(&free)) != NULL); 2659 vm_domain_free_unlock(vmd); 2660 vm_domain_freecnt_inc(vmd, cnt); 2661 } 2662 return (error); 2663 } 2664 2665 #define NRUNS 16 2666 2667 CTASSERT(powerof2(NRUNS)); 2668 2669 #define RUN_INDEX(count) ((count) & (NRUNS - 1)) 2670 2671 #define MIN_RECLAIM 8 2672 2673 /* 2674 * vm_page_reclaim_contig: 2675 * 2676 * Reclaim allocated, contiguous physical memory satisfying the specified 2677 * conditions by relocating the virtual pages using that physical memory. 2678 * Returns true if reclamation is successful and false otherwise. Since 2679 * relocation requires the allocation of physical pages, reclamation may 2680 * fail due to a shortage of free pages. When reclamation fails, callers 2681 * are expected to perform vm_wait() before retrying a failed allocation 2682 * operation, e.g., vm_page_alloc_contig(). 2683 * 2684 * The caller must always specify an allocation class through "req". 2685 * 2686 * allocation classes: 2687 * VM_ALLOC_NORMAL normal process request 2688 * VM_ALLOC_SYSTEM system *really* needs a page 2689 * VM_ALLOC_INTERRUPT interrupt time request 2690 * 2691 * The optional allocation flags are ignored. 2692 * 2693 * "npages" must be greater than zero. Both "alignment" and "boundary" 2694 * must be a power of two. 2695 */ 2696 bool 2697 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 2698 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2699 { 2700 struct vm_domain *vmd; 2701 vm_paddr_t curr_low; 2702 vm_page_t m_run, m_runs[NRUNS]; 2703 u_long count, reclaimed; 2704 int error, i, options, req_class; 2705 2706 KASSERT(npages > 0, ("npages is 0")); 2707 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2708 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2709 req_class = req & VM_ALLOC_CLASS_MASK; 2710 2711 /* 2712 * The page daemon is allowed to dig deeper into the free page list. 2713 */ 2714 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2715 req_class = VM_ALLOC_SYSTEM; 2716 2717 /* 2718 * Return if the number of free pages cannot satisfy the requested 2719 * allocation. 2720 */ 2721 vmd = VM_DOMAIN(domain); 2722 count = vmd->vmd_free_count; 2723 if (count < npages + vmd->vmd_free_reserved || (count < npages + 2724 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 2725 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 2726 return (false); 2727 2728 /* 2729 * Scan up to three times, relaxing the restrictions ("options") on 2730 * the reclamation of reservations and superpages each time. 2731 */ 2732 for (options = VPSC_NORESERV;;) { 2733 /* 2734 * Find the highest runs that satisfy the given constraints 2735 * and restrictions, and record them in "m_runs". 2736 */ 2737 curr_low = low; 2738 count = 0; 2739 for (;;) { 2740 m_run = vm_phys_scan_contig(domain, npages, curr_low, 2741 high, alignment, boundary, options); 2742 if (m_run == NULL) 2743 break; 2744 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); 2745 m_runs[RUN_INDEX(count)] = m_run; 2746 count++; 2747 } 2748 2749 /* 2750 * Reclaim the highest runs in LIFO (descending) order until 2751 * the number of reclaimed pages, "reclaimed", is at least 2752 * MIN_RECLAIM. Reset "reclaimed" each time because each 2753 * reclamation is idempotent, and runs will (likely) recur 2754 * from one scan to the next as restrictions are relaxed. 2755 */ 2756 reclaimed = 0; 2757 for (i = 0; count > 0 && i < NRUNS; i++) { 2758 count--; 2759 m_run = m_runs[RUN_INDEX(count)]; 2760 error = vm_page_reclaim_run(req_class, domain, npages, 2761 m_run, high); 2762 if (error == 0) { 2763 reclaimed += npages; 2764 if (reclaimed >= MIN_RECLAIM) 2765 return (true); 2766 } 2767 } 2768 2769 /* 2770 * Either relax the restrictions on the next scan or return if 2771 * the last scan had no restrictions. 2772 */ 2773 if (options == VPSC_NORESERV) 2774 options = VPSC_NOSUPER; 2775 else if (options == VPSC_NOSUPER) 2776 options = VPSC_ANY; 2777 else if (options == VPSC_ANY) 2778 return (reclaimed != 0); 2779 } 2780 } 2781 2782 bool 2783 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 2784 u_long alignment, vm_paddr_t boundary) 2785 { 2786 struct vm_domainset_iter di; 2787 int domain; 2788 bool ret; 2789 2790 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2791 do { 2792 ret = vm_page_reclaim_contig_domain(domain, req, npages, low, 2793 high, alignment, boundary); 2794 if (ret) 2795 break; 2796 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2797 2798 return (ret); 2799 } 2800 2801 /* 2802 * Set the domain in the appropriate page level domainset. 2803 */ 2804 void 2805 vm_domain_set(struct vm_domain *vmd) 2806 { 2807 2808 mtx_lock(&vm_domainset_lock); 2809 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 2810 vmd->vmd_minset = 1; 2811 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 2812 } 2813 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 2814 vmd->vmd_severeset = 1; 2815 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 2816 } 2817 mtx_unlock(&vm_domainset_lock); 2818 } 2819 2820 /* 2821 * Clear the domain from the appropriate page level domainset. 2822 */ 2823 void 2824 vm_domain_clear(struct vm_domain *vmd) 2825 { 2826 2827 mtx_lock(&vm_domainset_lock); 2828 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 2829 vmd->vmd_minset = 0; 2830 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 2831 if (vm_min_waiters != 0) { 2832 vm_min_waiters = 0; 2833 wakeup(&vm_min_domains); 2834 } 2835 } 2836 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 2837 vmd->vmd_severeset = 0; 2838 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 2839 if (vm_severe_waiters != 0) { 2840 vm_severe_waiters = 0; 2841 wakeup(&vm_severe_domains); 2842 } 2843 } 2844 2845 /* 2846 * If pageout daemon needs pages, then tell it that there are 2847 * some free. 2848 */ 2849 if (vmd->vmd_pageout_pages_needed && 2850 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 2851 wakeup(&vmd->vmd_pageout_pages_needed); 2852 vmd->vmd_pageout_pages_needed = 0; 2853 } 2854 2855 /* See comments in vm_wait_doms(). */ 2856 if (vm_pageproc_waiters) { 2857 vm_pageproc_waiters = 0; 2858 wakeup(&vm_pageproc_waiters); 2859 } 2860 mtx_unlock(&vm_domainset_lock); 2861 } 2862 2863 /* 2864 * Wait for free pages to exceed the min threshold globally. 2865 */ 2866 void 2867 vm_wait_min(void) 2868 { 2869 2870 mtx_lock(&vm_domainset_lock); 2871 while (vm_page_count_min()) { 2872 vm_min_waiters++; 2873 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 2874 } 2875 mtx_unlock(&vm_domainset_lock); 2876 } 2877 2878 /* 2879 * Wait for free pages to exceed the severe threshold globally. 2880 */ 2881 void 2882 vm_wait_severe(void) 2883 { 2884 2885 mtx_lock(&vm_domainset_lock); 2886 while (vm_page_count_severe()) { 2887 vm_severe_waiters++; 2888 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 2889 "vmwait", 0); 2890 } 2891 mtx_unlock(&vm_domainset_lock); 2892 } 2893 2894 u_int 2895 vm_wait_count(void) 2896 { 2897 2898 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 2899 } 2900 2901 void 2902 vm_wait_doms(const domainset_t *wdoms) 2903 { 2904 2905 /* 2906 * We use racey wakeup synchronization to avoid expensive global 2907 * locking for the pageproc when sleeping with a non-specific vm_wait. 2908 * To handle this, we only sleep for one tick in this instance. It 2909 * is expected that most allocations for the pageproc will come from 2910 * kmem or vm_page_grab* which will use the more specific and 2911 * race-free vm_wait_domain(). 2912 */ 2913 if (curproc == pageproc) { 2914 mtx_lock(&vm_domainset_lock); 2915 vm_pageproc_waiters++; 2916 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP, 2917 "pageprocwait", 1); 2918 } else { 2919 /* 2920 * XXX Ideally we would wait only until the allocation could 2921 * be satisfied. This condition can cause new allocators to 2922 * consume all freed pages while old allocators wait. 2923 */ 2924 mtx_lock(&vm_domainset_lock); 2925 if (vm_page_count_min_set(wdoms)) { 2926 vm_min_waiters++; 2927 msleep(&vm_min_domains, &vm_domainset_lock, 2928 PVM | PDROP, "vmwait", 0); 2929 } else 2930 mtx_unlock(&vm_domainset_lock); 2931 } 2932 } 2933 2934 /* 2935 * vm_wait_domain: 2936 * 2937 * Sleep until free pages are available for allocation. 2938 * - Called in various places after failed memory allocations. 2939 */ 2940 void 2941 vm_wait_domain(int domain) 2942 { 2943 struct vm_domain *vmd; 2944 domainset_t wdom; 2945 2946 vmd = VM_DOMAIN(domain); 2947 vm_domain_free_assert_unlocked(vmd); 2948 2949 if (curproc == pageproc) { 2950 mtx_lock(&vm_domainset_lock); 2951 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 2952 vmd->vmd_pageout_pages_needed = 1; 2953 msleep(&vmd->vmd_pageout_pages_needed, 2954 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 2955 } else 2956 mtx_unlock(&vm_domainset_lock); 2957 } else { 2958 if (pageproc == NULL) 2959 panic("vm_wait in early boot"); 2960 DOMAINSET_ZERO(&wdom); 2961 DOMAINSET_SET(vmd->vmd_domain, &wdom); 2962 vm_wait_doms(&wdom); 2963 } 2964 } 2965 2966 /* 2967 * vm_wait: 2968 * 2969 * Sleep until free pages are available for allocation in the 2970 * affinity domains of the obj. If obj is NULL, the domain set 2971 * for the calling thread is used. 2972 * Called in various places after failed memory allocations. 2973 */ 2974 void 2975 vm_wait(vm_object_t obj) 2976 { 2977 struct domainset *d; 2978 2979 d = NULL; 2980 2981 /* 2982 * Carefully fetch pointers only once: the struct domainset 2983 * itself is ummutable but the pointer might change. 2984 */ 2985 if (obj != NULL) 2986 d = obj->domain.dr_policy; 2987 if (d == NULL) 2988 d = curthread->td_domain.dr_policy; 2989 2990 vm_wait_doms(&d->ds_mask); 2991 } 2992 2993 /* 2994 * vm_domain_alloc_fail: 2995 * 2996 * Called when a page allocation function fails. Informs the 2997 * pagedaemon and performs the requested wait. Requires the 2998 * domain_free and object lock on entry. Returns with the 2999 * object lock held and free lock released. Returns an error when 3000 * retry is necessary. 3001 * 3002 */ 3003 static int 3004 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3005 { 3006 3007 vm_domain_free_assert_unlocked(vmd); 3008 3009 atomic_add_int(&vmd->vmd_pageout_deficit, 3010 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3011 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3012 if (object != NULL) 3013 VM_OBJECT_WUNLOCK(object); 3014 vm_wait_domain(vmd->vmd_domain); 3015 if (object != NULL) 3016 VM_OBJECT_WLOCK(object); 3017 if (req & VM_ALLOC_WAITOK) 3018 return (EAGAIN); 3019 } 3020 3021 return (0); 3022 } 3023 3024 /* 3025 * vm_waitpfault: 3026 * 3027 * Sleep until free pages are available for allocation. 3028 * - Called only in vm_fault so that processes page faulting 3029 * can be easily tracked. 3030 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3031 * processes will be able to grab memory first. Do not change 3032 * this balance without careful testing first. 3033 */ 3034 void 3035 vm_waitpfault(struct domainset *dset) 3036 { 3037 3038 /* 3039 * XXX Ideally we would wait only until the allocation could 3040 * be satisfied. This condition can cause new allocators to 3041 * consume all freed pages while old allocators wait. 3042 */ 3043 mtx_lock(&vm_domainset_lock); 3044 if (vm_page_count_min_set(&dset->ds_mask)) { 3045 vm_min_waiters++; 3046 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3047 "pfault", 0); 3048 } else 3049 mtx_unlock(&vm_domainset_lock); 3050 } 3051 3052 struct vm_pagequeue * 3053 vm_page_pagequeue(vm_page_t m) 3054 { 3055 3056 return (&vm_pagequeue_domain(m)->vmd_pagequeues[m->queue]); 3057 } 3058 3059 static struct mtx * 3060 vm_page_pagequeue_lockptr(vm_page_t m) 3061 { 3062 uint8_t queue; 3063 3064 if ((queue = atomic_load_8(&m->queue)) == PQ_NONE) 3065 return (NULL); 3066 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue].pq_mutex); 3067 } 3068 3069 static inline void 3070 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m) 3071 { 3072 struct vm_domain *vmd; 3073 uint8_t qflags; 3074 3075 CRITICAL_ASSERT(curthread); 3076 vm_pagequeue_assert_locked(pq); 3077 3078 /* 3079 * The page daemon is allowed to set m->queue = PQ_NONE without 3080 * the page queue lock held. In this case it is about to free the page, 3081 * which must not have any queue state. 3082 */ 3083 qflags = atomic_load_8(&m->aflags) & PGA_QUEUE_STATE_MASK; 3084 KASSERT(pq == vm_page_pagequeue(m) || qflags == 0, 3085 ("page %p doesn't belong to queue %p but has queue state %#x", 3086 m, pq, qflags)); 3087 3088 if ((qflags & PGA_DEQUEUE) != 0) { 3089 if (__predict_true((qflags & PGA_ENQUEUED) != 0)) { 3090 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3091 vm_pagequeue_cnt_dec(pq); 3092 } 3093 vm_page_dequeue_complete(m); 3094 } else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) { 3095 if ((qflags & PGA_ENQUEUED) != 0) 3096 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3097 else { 3098 vm_pagequeue_cnt_inc(pq); 3099 vm_page_aflag_set(m, PGA_ENQUEUED); 3100 } 3101 if ((qflags & PGA_REQUEUE_HEAD) != 0) { 3102 KASSERT(m->queue == PQ_INACTIVE, 3103 ("head enqueue not supported for page %p", m)); 3104 vmd = vm_pagequeue_domain(m); 3105 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3106 } else 3107 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3108 3109 /* 3110 * PGA_REQUEUE and PGA_REQUEUE_HEAD must be cleared after 3111 * setting PGA_ENQUEUED in order to synchronize with the 3112 * page daemon. 3113 */ 3114 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD); 3115 } 3116 } 3117 3118 static void 3119 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3120 uint8_t queue) 3121 { 3122 vm_page_t m; 3123 int i; 3124 3125 for (i = 0; i < bq->bq_cnt; i++) { 3126 m = bq->bq_pa[i]; 3127 if (__predict_false(m->queue != queue)) 3128 continue; 3129 vm_pqbatch_process_page(pq, m); 3130 } 3131 vm_batchqueue_init(bq); 3132 } 3133 3134 static void 3135 vm_pqbatch_submit_page(vm_page_t m, uint8_t queue) 3136 { 3137 struct vm_batchqueue *bq; 3138 struct vm_pagequeue *pq; 3139 int domain; 3140 3141 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3142 ("page %p is unmanaged", m)); 3143 KASSERT(mtx_owned(vm_page_lockptr(m)) || 3144 (m->object == NULL && (m->aflags & PGA_DEQUEUE) != 0), 3145 ("missing synchronization for page %p", m)); 3146 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 3147 3148 domain = vm_phys_domain(m); 3149 pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue]; 3150 3151 critical_enter(); 3152 bq = DPCPU_PTR(pqbatch[domain][queue]); 3153 if (vm_batchqueue_insert(bq, m)) { 3154 critical_exit(); 3155 return; 3156 } 3157 if (!vm_pagequeue_trylock(pq)) { 3158 critical_exit(); 3159 vm_pagequeue_lock(pq); 3160 critical_enter(); 3161 bq = DPCPU_PTR(pqbatch[domain][queue]); 3162 } 3163 vm_pqbatch_process(pq, bq, queue); 3164 3165 /* 3166 * The page may have been logically dequeued before we acquired the 3167 * page queue lock. In this case, since we either hold the page lock 3168 * or the page is being freed, a different thread cannot be concurrently 3169 * enqueuing the page. 3170 */ 3171 if (__predict_true(m->queue == queue)) 3172 vm_pqbatch_process_page(pq, m); 3173 else { 3174 KASSERT(m->queue == PQ_NONE, 3175 ("invalid queue transition for page %p", m)); 3176 KASSERT((m->aflags & PGA_ENQUEUED) == 0, 3177 ("page %p is enqueued with invalid queue index", m)); 3178 vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK); 3179 } 3180 vm_pagequeue_unlock(pq); 3181 critical_exit(); 3182 } 3183 3184 /* 3185 * vm_page_drain_pqbatch: [ internal use only ] 3186 * 3187 * Force all per-CPU page queue batch queues to be drained. This is 3188 * intended for use in severe memory shortages, to ensure that pages 3189 * do not remain stuck in the batch queues. 3190 */ 3191 void 3192 vm_page_drain_pqbatch(void) 3193 { 3194 struct thread *td; 3195 struct vm_domain *vmd; 3196 struct vm_pagequeue *pq; 3197 int cpu, domain, queue; 3198 3199 td = curthread; 3200 CPU_FOREACH(cpu) { 3201 thread_lock(td); 3202 sched_bind(td, cpu); 3203 thread_unlock(td); 3204 3205 for (domain = 0; domain < vm_ndomains; domain++) { 3206 vmd = VM_DOMAIN(domain); 3207 for (queue = 0; queue < PQ_COUNT; queue++) { 3208 pq = &vmd->vmd_pagequeues[queue]; 3209 vm_pagequeue_lock(pq); 3210 critical_enter(); 3211 vm_pqbatch_process(pq, 3212 DPCPU_PTR(pqbatch[domain][queue]), queue); 3213 critical_exit(); 3214 vm_pagequeue_unlock(pq); 3215 } 3216 } 3217 } 3218 thread_lock(td); 3219 sched_unbind(td); 3220 thread_unlock(td); 3221 } 3222 3223 /* 3224 * Complete the logical removal of a page from a page queue. We must be 3225 * careful to synchronize with the page daemon, which may be concurrently 3226 * examining the page with only the page lock held. The page must not be 3227 * in a state where it appears to be logically enqueued. 3228 */ 3229 static void 3230 vm_page_dequeue_complete(vm_page_t m) 3231 { 3232 3233 m->queue = PQ_NONE; 3234 atomic_thread_fence_rel(); 3235 vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK); 3236 } 3237 3238 /* 3239 * vm_page_dequeue_deferred: [ internal use only ] 3240 * 3241 * Request removal of the given page from its current page 3242 * queue. Physical removal from the queue may be deferred 3243 * indefinitely. 3244 * 3245 * The page must be locked. 3246 */ 3247 void 3248 vm_page_dequeue_deferred(vm_page_t m) 3249 { 3250 uint8_t queue; 3251 3252 vm_page_assert_locked(m); 3253 3254 if ((queue = vm_page_queue(m)) == PQ_NONE) 3255 return; 3256 vm_page_aflag_set(m, PGA_DEQUEUE); 3257 vm_pqbatch_submit_page(m, queue); 3258 } 3259 3260 /* 3261 * A variant of vm_page_dequeue_deferred() that does not assert the page 3262 * lock and is only to be called from vm_page_free_prep(). It is just an 3263 * open-coded implementation of vm_page_dequeue_deferred(). Because the 3264 * page is being freed, we can assume that nothing else is scheduling queue 3265 * operations on this page, so we get for free the mutual exclusion that 3266 * is otherwise provided by the page lock. 3267 */ 3268 static void 3269 vm_page_dequeue_deferred_free(vm_page_t m) 3270 { 3271 uint8_t queue; 3272 3273 KASSERT(m->object == NULL, ("page %p has an object reference", m)); 3274 3275 if ((m->aflags & PGA_DEQUEUE) != 0) 3276 return; 3277 atomic_thread_fence_acq(); 3278 if ((queue = m->queue) == PQ_NONE) 3279 return; 3280 vm_page_aflag_set(m, PGA_DEQUEUE); 3281 vm_pqbatch_submit_page(m, queue); 3282 } 3283 3284 /* 3285 * vm_page_dequeue: 3286 * 3287 * Remove the page from whichever page queue it's in, if any. 3288 * The page must either be locked or unallocated. This constraint 3289 * ensures that the queue state of the page will remain consistent 3290 * after this function returns. 3291 */ 3292 void 3293 vm_page_dequeue(vm_page_t m) 3294 { 3295 struct mtx *lock, *lock1; 3296 struct vm_pagequeue *pq; 3297 uint8_t aflags; 3298 3299 KASSERT(mtx_owned(vm_page_lockptr(m)) || m->order == VM_NFREEORDER, 3300 ("page %p is allocated and unlocked", m)); 3301 3302 for (;;) { 3303 lock = vm_page_pagequeue_lockptr(m); 3304 if (lock == NULL) { 3305 /* 3306 * A thread may be concurrently executing 3307 * vm_page_dequeue_complete(). Ensure that all queue 3308 * state is cleared before we return. 3309 */ 3310 aflags = atomic_load_8(&m->aflags); 3311 if ((aflags & PGA_QUEUE_STATE_MASK) == 0) 3312 return; 3313 KASSERT((aflags & PGA_DEQUEUE) != 0, 3314 ("page %p has unexpected queue state flags %#x", 3315 m, aflags)); 3316 3317 /* 3318 * Busy wait until the thread updating queue state is 3319 * finished. Such a thread must be executing in a 3320 * critical section. 3321 */ 3322 cpu_spinwait(); 3323 continue; 3324 } 3325 mtx_lock(lock); 3326 if ((lock1 = vm_page_pagequeue_lockptr(m)) == lock) 3327 break; 3328 mtx_unlock(lock); 3329 lock = lock1; 3330 } 3331 KASSERT(lock == vm_page_pagequeue_lockptr(m), 3332 ("%s: page %p migrated directly between queues", __func__, m)); 3333 KASSERT((m->aflags & PGA_DEQUEUE) != 0 || 3334 mtx_owned(vm_page_lockptr(m)), 3335 ("%s: queued unlocked page %p", __func__, m)); 3336 3337 if ((m->aflags & PGA_ENQUEUED) != 0) { 3338 pq = vm_page_pagequeue(m); 3339 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3340 vm_pagequeue_cnt_dec(pq); 3341 } 3342 vm_page_dequeue_complete(m); 3343 mtx_unlock(lock); 3344 } 3345 3346 /* 3347 * Schedule the given page for insertion into the specified page queue. 3348 * Physical insertion of the page may be deferred indefinitely. 3349 */ 3350 static void 3351 vm_page_enqueue(vm_page_t m, uint8_t queue) 3352 { 3353 3354 vm_page_assert_locked(m); 3355 KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0, 3356 ("%s: page %p is already enqueued", __func__, m)); 3357 3358 m->queue = queue; 3359 if ((m->aflags & PGA_REQUEUE) == 0) 3360 vm_page_aflag_set(m, PGA_REQUEUE); 3361 vm_pqbatch_submit_page(m, queue); 3362 } 3363 3364 /* 3365 * vm_page_requeue: [ internal use only ] 3366 * 3367 * Schedule a requeue of the given page. 3368 * 3369 * The page must be locked. 3370 */ 3371 void 3372 vm_page_requeue(vm_page_t m) 3373 { 3374 3375 vm_page_assert_locked(m); 3376 KASSERT(vm_page_queue(m) != PQ_NONE, 3377 ("%s: page %p is not logically enqueued", __func__, m)); 3378 3379 if ((m->aflags & PGA_REQUEUE) == 0) 3380 vm_page_aflag_set(m, PGA_REQUEUE); 3381 vm_pqbatch_submit_page(m, atomic_load_8(&m->queue)); 3382 } 3383 3384 /* 3385 * vm_page_free_prep: 3386 * 3387 * Prepares the given page to be put on the free list, 3388 * disassociating it from any VM object. The caller may return 3389 * the page to the free list only if this function returns true. 3390 * 3391 * The object must be locked. The page must be locked if it is 3392 * managed. 3393 */ 3394 bool 3395 vm_page_free_prep(vm_page_t m) 3396 { 3397 3398 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 3399 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 3400 uint64_t *p; 3401 int i; 3402 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 3403 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 3404 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 3405 m, i, (uintmax_t)*p)); 3406 } 3407 #endif 3408 if ((m->oflags & VPO_UNMANAGED) == 0) { 3409 vm_page_lock_assert(m, MA_OWNED); 3410 KASSERT(!pmap_page_is_mapped(m), 3411 ("vm_page_free_prep: freeing mapped page %p", m)); 3412 } else 3413 KASSERT(m->queue == PQ_NONE, 3414 ("vm_page_free_prep: unmanaged page %p is queued", m)); 3415 VM_CNT_INC(v_tfree); 3416 3417 if (vm_page_sbusied(m)) 3418 panic("vm_page_free_prep: freeing busy page %p", m); 3419 3420 if (m->object != NULL) 3421 (void)vm_page_remove(m); 3422 3423 /* 3424 * If fictitious remove object association and 3425 * return. 3426 */ 3427 if ((m->flags & PG_FICTITIOUS) != 0) { 3428 KASSERT(m->wire_count == 1, 3429 ("fictitious page %p is not wired", m)); 3430 KASSERT(m->queue == PQ_NONE, 3431 ("fictitious page %p is queued", m)); 3432 return (false); 3433 } 3434 3435 /* 3436 * Pages need not be dequeued before they are returned to the physical 3437 * memory allocator, but they must at least be marked for a deferred 3438 * dequeue. 3439 */ 3440 if ((m->oflags & VPO_UNMANAGED) == 0) 3441 vm_page_dequeue_deferred_free(m); 3442 3443 m->valid = 0; 3444 vm_page_undirty(m); 3445 3446 if (vm_page_wired(m) != 0) 3447 panic("vm_page_free_prep: freeing wired page %p", m); 3448 3449 /* 3450 * Restore the default memory attribute to the page. 3451 */ 3452 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 3453 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 3454 3455 #if VM_NRESERVLEVEL > 0 3456 /* 3457 * Determine whether the page belongs to a reservation. If the page was 3458 * allocated from a per-CPU cache, it cannot belong to a reservation, so 3459 * as an optimization, we avoid the check in that case. 3460 */ 3461 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 3462 return (false); 3463 #endif 3464 3465 return (true); 3466 } 3467 3468 /* 3469 * vm_page_free_toq: 3470 * 3471 * Returns the given page to the free list, disassociating it 3472 * from any VM object. 3473 * 3474 * The object must be locked. The page must be locked if it is 3475 * managed. 3476 */ 3477 void 3478 vm_page_free_toq(vm_page_t m) 3479 { 3480 struct vm_domain *vmd; 3481 uma_zone_t zone; 3482 3483 if (!vm_page_free_prep(m)) 3484 return; 3485 3486 vmd = vm_pagequeue_domain(m); 3487 zone = vmd->vmd_pgcache[m->pool].zone; 3488 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 3489 uma_zfree(zone, m); 3490 return; 3491 } 3492 vm_domain_free_lock(vmd); 3493 vm_phys_free_pages(m, 0); 3494 vm_domain_free_unlock(vmd); 3495 vm_domain_freecnt_inc(vmd, 1); 3496 } 3497 3498 /* 3499 * vm_page_free_pages_toq: 3500 * 3501 * Returns a list of pages to the free list, disassociating it 3502 * from any VM object. In other words, this is equivalent to 3503 * calling vm_page_free_toq() for each page of a list of VM objects. 3504 * 3505 * The objects must be locked. The pages must be locked if it is 3506 * managed. 3507 */ 3508 void 3509 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 3510 { 3511 vm_page_t m; 3512 int count; 3513 3514 if (SLIST_EMPTY(free)) 3515 return; 3516 3517 count = 0; 3518 while ((m = SLIST_FIRST(free)) != NULL) { 3519 count++; 3520 SLIST_REMOVE_HEAD(free, plinks.s.ss); 3521 vm_page_free_toq(m); 3522 } 3523 3524 if (update_wire_count) 3525 vm_wire_sub(count); 3526 } 3527 3528 /* 3529 * vm_page_wire: 3530 * 3531 * Mark this page as wired down. If the page is fictitious, then 3532 * its wire count must remain one. 3533 * 3534 * The page must be locked. 3535 */ 3536 void 3537 vm_page_wire(vm_page_t m) 3538 { 3539 3540 vm_page_assert_locked(m); 3541 if ((m->flags & PG_FICTITIOUS) != 0) { 3542 KASSERT(m->wire_count == 1, 3543 ("vm_page_wire: fictitious page %p's wire count isn't one", 3544 m)); 3545 return; 3546 } 3547 if (!vm_page_wired(m)) { 3548 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 3549 m->queue == PQ_NONE, 3550 ("vm_page_wire: unmanaged page %p is queued", m)); 3551 vm_wire_add(1); 3552 } 3553 m->wire_count++; 3554 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 3555 } 3556 3557 /* 3558 * vm_page_unwire: 3559 * 3560 * Release one wiring of the specified page, potentially allowing it to be 3561 * paged out. Returns TRUE if the number of wirings transitions to zero and 3562 * FALSE otherwise. 3563 * 3564 * Only managed pages belonging to an object can be paged out. If the number 3565 * of wirings transitions to zero and the page is eligible for page out, then 3566 * the page is added to the specified paging queue (unless PQ_NONE is 3567 * specified, in which case the page is dequeued if it belongs to a paging 3568 * queue). 3569 * 3570 * If a page is fictitious, then its wire count must always be one. 3571 * 3572 * A managed page must be locked. 3573 */ 3574 bool 3575 vm_page_unwire(vm_page_t m, uint8_t queue) 3576 { 3577 bool unwired; 3578 3579 KASSERT(queue < PQ_COUNT || queue == PQ_NONE, 3580 ("vm_page_unwire: invalid queue %u request for page %p", 3581 queue, m)); 3582 if ((m->oflags & VPO_UNMANAGED) == 0) 3583 vm_page_assert_locked(m); 3584 3585 unwired = vm_page_unwire_noq(m); 3586 if (!unwired || (m->oflags & VPO_UNMANAGED) != 0 || m->object == NULL) 3587 return (unwired); 3588 3589 if (vm_page_queue(m) == queue) { 3590 if (queue == PQ_ACTIVE) 3591 vm_page_reference(m); 3592 else if (queue != PQ_NONE) 3593 vm_page_requeue(m); 3594 } else { 3595 vm_page_dequeue(m); 3596 if (queue != PQ_NONE) { 3597 vm_page_enqueue(m, queue); 3598 if (queue == PQ_ACTIVE) 3599 /* Initialize act_count. */ 3600 vm_page_activate(m); 3601 } 3602 } 3603 return (unwired); 3604 } 3605 3606 /* 3607 * 3608 * vm_page_unwire_noq: 3609 * 3610 * Unwire a page without (re-)inserting it into a page queue. It is up 3611 * to the caller to enqueue, requeue, or free the page as appropriate. 3612 * In most cases, vm_page_unwire() should be used instead. 3613 */ 3614 bool 3615 vm_page_unwire_noq(vm_page_t m) 3616 { 3617 3618 if ((m->oflags & VPO_UNMANAGED) == 0) 3619 vm_page_assert_locked(m); 3620 if ((m->flags & PG_FICTITIOUS) != 0) { 3621 KASSERT(m->wire_count == 1, 3622 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 3623 return (false); 3624 } 3625 if (!vm_page_wired(m)) 3626 panic("vm_page_unwire: page %p's wire count is zero", m); 3627 m->wire_count--; 3628 if (m->wire_count == 0) { 3629 vm_wire_sub(1); 3630 return (true); 3631 } else 3632 return (false); 3633 } 3634 3635 /* 3636 * vm_page_activate: 3637 * 3638 * Put the specified page on the active list (if appropriate). 3639 * Ensure that act_count is at least ACT_INIT but do not otherwise 3640 * mess with it. 3641 * 3642 * The page must be locked. 3643 */ 3644 void 3645 vm_page_activate(vm_page_t m) 3646 { 3647 3648 vm_page_assert_locked(m); 3649 3650 if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0) 3651 return; 3652 if (vm_page_queue(m) == PQ_ACTIVE) { 3653 if (m->act_count < ACT_INIT) 3654 m->act_count = ACT_INIT; 3655 return; 3656 } 3657 3658 vm_page_dequeue(m); 3659 if (m->act_count < ACT_INIT) 3660 m->act_count = ACT_INIT; 3661 vm_page_enqueue(m, PQ_ACTIVE); 3662 } 3663 3664 /* 3665 * Move the specified page to the tail of the inactive queue, or requeue 3666 * the page if it is already in the inactive queue. 3667 * 3668 * The page must be locked. 3669 */ 3670 void 3671 vm_page_deactivate(vm_page_t m) 3672 { 3673 3674 vm_page_assert_locked(m); 3675 3676 if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0) 3677 return; 3678 3679 if (!vm_page_inactive(m)) { 3680 vm_page_dequeue(m); 3681 vm_page_enqueue(m, PQ_INACTIVE); 3682 } else 3683 vm_page_requeue(m); 3684 } 3685 3686 /* 3687 * Move the specified page close to the head of the inactive queue, 3688 * bypassing LRU. A marker page is used to maintain FIFO ordering. 3689 * As with regular enqueues, we use a per-CPU batch queue to reduce 3690 * contention on the page queue lock. 3691 * 3692 * The page must be locked. 3693 */ 3694 void 3695 vm_page_deactivate_noreuse(vm_page_t m) 3696 { 3697 3698 vm_page_assert_locked(m); 3699 3700 if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0) 3701 return; 3702 3703 if (!vm_page_inactive(m)) { 3704 vm_page_dequeue(m); 3705 m->queue = PQ_INACTIVE; 3706 } 3707 if ((m->aflags & PGA_REQUEUE_HEAD) == 0) 3708 vm_page_aflag_set(m, PGA_REQUEUE_HEAD); 3709 vm_pqbatch_submit_page(m, PQ_INACTIVE); 3710 } 3711 3712 /* 3713 * vm_page_launder 3714 * 3715 * Put a page in the laundry, or requeue it if it is already there. 3716 */ 3717 void 3718 vm_page_launder(vm_page_t m) 3719 { 3720 3721 vm_page_assert_locked(m); 3722 if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0) 3723 return; 3724 3725 if (vm_page_in_laundry(m)) 3726 vm_page_requeue(m); 3727 else { 3728 vm_page_dequeue(m); 3729 vm_page_enqueue(m, PQ_LAUNDRY); 3730 } 3731 } 3732 3733 /* 3734 * vm_page_unswappable 3735 * 3736 * Put a page in the PQ_UNSWAPPABLE holding queue. 3737 */ 3738 void 3739 vm_page_unswappable(vm_page_t m) 3740 { 3741 3742 vm_page_assert_locked(m); 3743 KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0, 3744 ("page %p already unswappable", m)); 3745 3746 vm_page_dequeue(m); 3747 vm_page_enqueue(m, PQ_UNSWAPPABLE); 3748 } 3749 3750 static void 3751 vm_page_release_toq(vm_page_t m, int flags) 3752 { 3753 3754 /* 3755 * Use a check of the valid bits to determine whether we should 3756 * accelerate reclamation of the page. The object lock might not be 3757 * held here, in which case the check is racy. At worst we will either 3758 * accelerate reclamation of a valid page and violate LRU, or 3759 * unnecessarily defer reclamation of an invalid page. 3760 * 3761 * If we were asked to not cache the page, place it near the head of the 3762 * inactive queue so that is reclaimed sooner. 3763 */ 3764 if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0) 3765 vm_page_deactivate_noreuse(m); 3766 else if (vm_page_active(m)) 3767 vm_page_reference(m); 3768 else 3769 vm_page_deactivate(m); 3770 } 3771 3772 /* 3773 * Unwire a page and either attempt to free it or re-add it to the page queues. 3774 */ 3775 void 3776 vm_page_release(vm_page_t m, int flags) 3777 { 3778 vm_object_t object; 3779 bool freed; 3780 3781 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3782 ("vm_page_release: page %p is unmanaged", m)); 3783 3784 vm_page_lock(m); 3785 if (m->object != NULL) 3786 VM_OBJECT_ASSERT_UNLOCKED(m->object); 3787 if (vm_page_unwire_noq(m)) { 3788 if ((object = m->object) == NULL) { 3789 vm_page_free(m); 3790 } else { 3791 freed = false; 3792 if ((flags & VPR_TRYFREE) != 0 && !vm_page_busied(m) && 3793 /* Depends on type stability. */ 3794 VM_OBJECT_TRYWLOCK(object)) { 3795 /* 3796 * Only free unmapped pages. The busy test from 3797 * before the object was locked cannot be relied 3798 * upon. 3799 */ 3800 if ((object->ref_count == 0 || 3801 !pmap_page_is_mapped(m)) && m->dirty == 0 && 3802 !vm_page_busied(m)) { 3803 vm_page_free(m); 3804 freed = true; 3805 } 3806 VM_OBJECT_WUNLOCK(object); 3807 } 3808 3809 if (!freed) 3810 vm_page_release_toq(m, flags); 3811 } 3812 } 3813 vm_page_unlock(m); 3814 } 3815 3816 /* See vm_page_release(). */ 3817 void 3818 vm_page_release_locked(vm_page_t m, int flags) 3819 { 3820 3821 VM_OBJECT_ASSERT_WLOCKED(m->object); 3822 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3823 ("vm_page_release_locked: page %p is unmanaged", m)); 3824 3825 vm_page_lock(m); 3826 if (vm_page_unwire_noq(m)) { 3827 if ((flags & VPR_TRYFREE) != 0 && 3828 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 3829 m->dirty == 0 && !vm_page_busied(m)) { 3830 vm_page_free(m); 3831 } else { 3832 vm_page_release_toq(m, flags); 3833 } 3834 } 3835 vm_page_unlock(m); 3836 } 3837 3838 /* 3839 * vm_page_advise 3840 * 3841 * Apply the specified advice to the given page. 3842 * 3843 * The object and page must be locked. 3844 */ 3845 void 3846 vm_page_advise(vm_page_t m, int advice) 3847 { 3848 3849 vm_page_assert_locked(m); 3850 VM_OBJECT_ASSERT_WLOCKED(m->object); 3851 if (advice == MADV_FREE) 3852 /* 3853 * Mark the page clean. This will allow the page to be freed 3854 * without first paging it out. MADV_FREE pages are often 3855 * quickly reused by malloc(3), so we do not do anything that 3856 * would result in a page fault on a later access. 3857 */ 3858 vm_page_undirty(m); 3859 else if (advice != MADV_DONTNEED) { 3860 if (advice == MADV_WILLNEED) 3861 vm_page_activate(m); 3862 return; 3863 } 3864 3865 /* 3866 * Clear any references to the page. Otherwise, the page daemon will 3867 * immediately reactivate the page. 3868 */ 3869 vm_page_aflag_clear(m, PGA_REFERENCED); 3870 3871 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 3872 vm_page_dirty(m); 3873 3874 /* 3875 * Place clean pages near the head of the inactive queue rather than 3876 * the tail, thus defeating the queue's LRU operation and ensuring that 3877 * the page will be reused quickly. Dirty pages not already in the 3878 * laundry are moved there. 3879 */ 3880 if (m->dirty == 0) 3881 vm_page_deactivate_noreuse(m); 3882 else if (!vm_page_in_laundry(m)) 3883 vm_page_launder(m); 3884 } 3885 3886 /* 3887 * Grab a page, waiting until we are waken up due to the page 3888 * changing state. We keep on waiting, if the page continues 3889 * to be in the object. If the page doesn't exist, first allocate it 3890 * and then conditionally zero it. 3891 * 3892 * This routine may sleep. 3893 * 3894 * The object must be locked on entry. The lock will, however, be released 3895 * and reacquired if the routine sleeps. 3896 */ 3897 vm_page_t 3898 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 3899 { 3900 vm_page_t m; 3901 int sleep; 3902 int pflags; 3903 3904 VM_OBJECT_ASSERT_WLOCKED(object); 3905 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 3906 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 3907 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 3908 pflags = allocflags & 3909 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL); 3910 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 3911 pflags |= VM_ALLOC_WAITFAIL; 3912 retrylookup: 3913 if ((m = vm_page_lookup(object, pindex)) != NULL) { 3914 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 3915 vm_page_xbusied(m) : vm_page_busied(m); 3916 if (sleep) { 3917 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3918 return (NULL); 3919 /* 3920 * Reference the page before unlocking and 3921 * sleeping so that the page daemon is less 3922 * likely to reclaim it. 3923 */ 3924 vm_page_aflag_set(m, PGA_REFERENCED); 3925 vm_page_lock(m); 3926 VM_OBJECT_WUNLOCK(object); 3927 vm_page_busy_sleep(m, "pgrbwt", (allocflags & 3928 VM_ALLOC_IGN_SBUSY) != 0); 3929 VM_OBJECT_WLOCK(object); 3930 goto retrylookup; 3931 } else { 3932 if ((allocflags & VM_ALLOC_WIRED) != 0) { 3933 vm_page_lock(m); 3934 vm_page_wire(m); 3935 vm_page_unlock(m); 3936 } 3937 if ((allocflags & 3938 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 3939 vm_page_xbusy(m); 3940 if ((allocflags & VM_ALLOC_SBUSY) != 0) 3941 vm_page_sbusy(m); 3942 return (m); 3943 } 3944 } 3945 m = vm_page_alloc(object, pindex, pflags); 3946 if (m == NULL) { 3947 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3948 return (NULL); 3949 goto retrylookup; 3950 } 3951 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 3952 pmap_zero_page(m); 3953 return (m); 3954 } 3955 3956 /* 3957 * Return the specified range of pages from the given object. For each 3958 * page offset within the range, if a page already exists within the object 3959 * at that offset and it is busy, then wait for it to change state. If, 3960 * instead, the page doesn't exist, then allocate it. 3961 * 3962 * The caller must always specify an allocation class. 3963 * 3964 * allocation classes: 3965 * VM_ALLOC_NORMAL normal process request 3966 * VM_ALLOC_SYSTEM system *really* needs the pages 3967 * 3968 * The caller must always specify that the pages are to be busied and/or 3969 * wired. 3970 * 3971 * optional allocation flags: 3972 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 3973 * VM_ALLOC_NOBUSY do not exclusive busy the page 3974 * VM_ALLOC_NOWAIT do not sleep 3975 * VM_ALLOC_SBUSY set page to sbusy state 3976 * VM_ALLOC_WIRED wire the pages 3977 * VM_ALLOC_ZERO zero and validate any invalid pages 3978 * 3979 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 3980 * may return a partial prefix of the requested range. 3981 */ 3982 int 3983 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 3984 vm_page_t *ma, int count) 3985 { 3986 vm_page_t m, mpred; 3987 int pflags; 3988 int i; 3989 bool sleep; 3990 3991 VM_OBJECT_ASSERT_WLOCKED(object); 3992 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 3993 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 3994 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 3995 (allocflags & VM_ALLOC_WIRED) != 0, 3996 ("vm_page_grab_pages: the pages must be busied or wired")); 3997 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 3998 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 3999 ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch")); 4000 if (count == 0) 4001 return (0); 4002 pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | 4003 VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY); 4004 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4005 pflags |= VM_ALLOC_WAITFAIL; 4006 i = 0; 4007 retrylookup: 4008 m = vm_radix_lookup_le(&object->rtree, pindex + i); 4009 if (m == NULL || m->pindex != pindex + i) { 4010 mpred = m; 4011 m = NULL; 4012 } else 4013 mpred = TAILQ_PREV(m, pglist, listq); 4014 for (; i < count; i++) { 4015 if (m != NULL) { 4016 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 4017 vm_page_xbusied(m) : vm_page_busied(m); 4018 if (sleep) { 4019 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4020 break; 4021 /* 4022 * Reference the page before unlocking and 4023 * sleeping so that the page daemon is less 4024 * likely to reclaim it. 4025 */ 4026 vm_page_aflag_set(m, PGA_REFERENCED); 4027 vm_page_lock(m); 4028 VM_OBJECT_WUNLOCK(object); 4029 vm_page_busy_sleep(m, "grbmaw", (allocflags & 4030 VM_ALLOC_IGN_SBUSY) != 0); 4031 VM_OBJECT_WLOCK(object); 4032 goto retrylookup; 4033 } 4034 if ((allocflags & VM_ALLOC_WIRED) != 0) { 4035 vm_page_lock(m); 4036 vm_page_wire(m); 4037 vm_page_unlock(m); 4038 } 4039 if ((allocflags & (VM_ALLOC_NOBUSY | 4040 VM_ALLOC_SBUSY)) == 0) 4041 vm_page_xbusy(m); 4042 if ((allocflags & VM_ALLOC_SBUSY) != 0) 4043 vm_page_sbusy(m); 4044 } else { 4045 m = vm_page_alloc_after(object, pindex + i, 4046 pflags | VM_ALLOC_COUNT(count - i), mpred); 4047 if (m == NULL) { 4048 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4049 break; 4050 goto retrylookup; 4051 } 4052 } 4053 if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) { 4054 if ((m->flags & PG_ZERO) == 0) 4055 pmap_zero_page(m); 4056 m->valid = VM_PAGE_BITS_ALL; 4057 } 4058 ma[i] = mpred = m; 4059 m = vm_page_next(m); 4060 } 4061 return (i); 4062 } 4063 4064 /* 4065 * Mapping function for valid or dirty bits in a page. 4066 * 4067 * Inputs are required to range within a page. 4068 */ 4069 vm_page_bits_t 4070 vm_page_bits(int base, int size) 4071 { 4072 int first_bit; 4073 int last_bit; 4074 4075 KASSERT( 4076 base + size <= PAGE_SIZE, 4077 ("vm_page_bits: illegal base/size %d/%d", base, size) 4078 ); 4079 4080 if (size == 0) /* handle degenerate case */ 4081 return (0); 4082 4083 first_bit = base >> DEV_BSHIFT; 4084 last_bit = (base + size - 1) >> DEV_BSHIFT; 4085 4086 return (((vm_page_bits_t)2 << last_bit) - 4087 ((vm_page_bits_t)1 << first_bit)); 4088 } 4089 4090 /* 4091 * vm_page_set_valid_range: 4092 * 4093 * Sets portions of a page valid. The arguments are expected 4094 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4095 * of any partial chunks touched by the range. The invalid portion of 4096 * such chunks will be zeroed. 4097 * 4098 * (base + size) must be less then or equal to PAGE_SIZE. 4099 */ 4100 void 4101 vm_page_set_valid_range(vm_page_t m, int base, int size) 4102 { 4103 int endoff, frag; 4104 4105 VM_OBJECT_ASSERT_WLOCKED(m->object); 4106 if (size == 0) /* handle degenerate case */ 4107 return; 4108 4109 /* 4110 * If the base is not DEV_BSIZE aligned and the valid 4111 * bit is clear, we have to zero out a portion of the 4112 * first block. 4113 */ 4114 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4115 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 4116 pmap_zero_page_area(m, frag, base - frag); 4117 4118 /* 4119 * If the ending offset is not DEV_BSIZE aligned and the 4120 * valid bit is clear, we have to zero out a portion of 4121 * the last block. 4122 */ 4123 endoff = base + size; 4124 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4125 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 4126 pmap_zero_page_area(m, endoff, 4127 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4128 4129 /* 4130 * Assert that no previously invalid block that is now being validated 4131 * is already dirty. 4132 */ 4133 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 4134 ("vm_page_set_valid_range: page %p is dirty", m)); 4135 4136 /* 4137 * Set valid bits inclusive of any overlap. 4138 */ 4139 m->valid |= vm_page_bits(base, size); 4140 } 4141 4142 /* 4143 * Clear the given bits from the specified page's dirty field. 4144 */ 4145 static __inline void 4146 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 4147 { 4148 uintptr_t addr; 4149 #if PAGE_SIZE < 16384 4150 int shift; 4151 #endif 4152 4153 /* 4154 * If the object is locked and the page is neither exclusive busy nor 4155 * write mapped, then the page's dirty field cannot possibly be 4156 * set by a concurrent pmap operation. 4157 */ 4158 VM_OBJECT_ASSERT_WLOCKED(m->object); 4159 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 4160 m->dirty &= ~pagebits; 4161 else { 4162 /* 4163 * The pmap layer can call vm_page_dirty() without 4164 * holding a distinguished lock. The combination of 4165 * the object's lock and an atomic operation suffice 4166 * to guarantee consistency of the page dirty field. 4167 * 4168 * For PAGE_SIZE == 32768 case, compiler already 4169 * properly aligns the dirty field, so no forcible 4170 * alignment is needed. Only require existence of 4171 * atomic_clear_64 when page size is 32768. 4172 */ 4173 addr = (uintptr_t)&m->dirty; 4174 #if PAGE_SIZE == 32768 4175 atomic_clear_64((uint64_t *)addr, pagebits); 4176 #elif PAGE_SIZE == 16384 4177 atomic_clear_32((uint32_t *)addr, pagebits); 4178 #else /* PAGE_SIZE <= 8192 */ 4179 /* 4180 * Use a trick to perform a 32-bit atomic on the 4181 * containing aligned word, to not depend on the existence 4182 * of atomic_clear_{8, 16}. 4183 */ 4184 shift = addr & (sizeof(uint32_t) - 1); 4185 #if BYTE_ORDER == BIG_ENDIAN 4186 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 4187 #else 4188 shift *= NBBY; 4189 #endif 4190 addr &= ~(sizeof(uint32_t) - 1); 4191 atomic_clear_32((uint32_t *)addr, pagebits << shift); 4192 #endif /* PAGE_SIZE */ 4193 } 4194 } 4195 4196 /* 4197 * vm_page_set_validclean: 4198 * 4199 * Sets portions of a page valid and clean. The arguments are expected 4200 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4201 * of any partial chunks touched by the range. The invalid portion of 4202 * such chunks will be zero'd. 4203 * 4204 * (base + size) must be less then or equal to PAGE_SIZE. 4205 */ 4206 void 4207 vm_page_set_validclean(vm_page_t m, int base, int size) 4208 { 4209 vm_page_bits_t oldvalid, pagebits; 4210 int endoff, frag; 4211 4212 VM_OBJECT_ASSERT_WLOCKED(m->object); 4213 if (size == 0) /* handle degenerate case */ 4214 return; 4215 4216 /* 4217 * If the base is not DEV_BSIZE aligned and the valid 4218 * bit is clear, we have to zero out a portion of the 4219 * first block. 4220 */ 4221 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4222 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 4223 pmap_zero_page_area(m, frag, base - frag); 4224 4225 /* 4226 * If the ending offset is not DEV_BSIZE aligned and the 4227 * valid bit is clear, we have to zero out a portion of 4228 * the last block. 4229 */ 4230 endoff = base + size; 4231 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4232 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 4233 pmap_zero_page_area(m, endoff, 4234 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4235 4236 /* 4237 * Set valid, clear dirty bits. If validating the entire 4238 * page we can safely clear the pmap modify bit. We also 4239 * use this opportunity to clear the VPO_NOSYNC flag. If a process 4240 * takes a write fault on a MAP_NOSYNC memory area the flag will 4241 * be set again. 4242 * 4243 * We set valid bits inclusive of any overlap, but we can only 4244 * clear dirty bits for DEV_BSIZE chunks that are fully within 4245 * the range. 4246 */ 4247 oldvalid = m->valid; 4248 pagebits = vm_page_bits(base, size); 4249 m->valid |= pagebits; 4250 #if 0 /* NOT YET */ 4251 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 4252 frag = DEV_BSIZE - frag; 4253 base += frag; 4254 size -= frag; 4255 if (size < 0) 4256 size = 0; 4257 } 4258 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 4259 #endif 4260 if (base == 0 && size == PAGE_SIZE) { 4261 /* 4262 * The page can only be modified within the pmap if it is 4263 * mapped, and it can only be mapped if it was previously 4264 * fully valid. 4265 */ 4266 if (oldvalid == VM_PAGE_BITS_ALL) 4267 /* 4268 * Perform the pmap_clear_modify() first. Otherwise, 4269 * a concurrent pmap operation, such as 4270 * pmap_protect(), could clear a modification in the 4271 * pmap and set the dirty field on the page before 4272 * pmap_clear_modify() had begun and after the dirty 4273 * field was cleared here. 4274 */ 4275 pmap_clear_modify(m); 4276 m->dirty = 0; 4277 m->oflags &= ~VPO_NOSYNC; 4278 } else if (oldvalid != VM_PAGE_BITS_ALL) 4279 m->dirty &= ~pagebits; 4280 else 4281 vm_page_clear_dirty_mask(m, pagebits); 4282 } 4283 4284 void 4285 vm_page_clear_dirty(vm_page_t m, int base, int size) 4286 { 4287 4288 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 4289 } 4290 4291 /* 4292 * vm_page_set_invalid: 4293 * 4294 * Invalidates DEV_BSIZE'd chunks within a page. Both the 4295 * valid and dirty bits for the effected areas are cleared. 4296 */ 4297 void 4298 vm_page_set_invalid(vm_page_t m, int base, int size) 4299 { 4300 vm_page_bits_t bits; 4301 vm_object_t object; 4302 4303 object = m->object; 4304 VM_OBJECT_ASSERT_WLOCKED(object); 4305 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 4306 size >= object->un_pager.vnp.vnp_size) 4307 bits = VM_PAGE_BITS_ALL; 4308 else 4309 bits = vm_page_bits(base, size); 4310 if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL && 4311 bits != 0) 4312 pmap_remove_all(m); 4313 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || 4314 !pmap_page_is_mapped(m), 4315 ("vm_page_set_invalid: page %p is mapped", m)); 4316 m->valid &= ~bits; 4317 m->dirty &= ~bits; 4318 } 4319 4320 /* 4321 * vm_page_zero_invalid() 4322 * 4323 * The kernel assumes that the invalid portions of a page contain 4324 * garbage, but such pages can be mapped into memory by user code. 4325 * When this occurs, we must zero out the non-valid portions of the 4326 * page so user code sees what it expects. 4327 * 4328 * Pages are most often semi-valid when the end of a file is mapped 4329 * into memory and the file's size is not page aligned. 4330 */ 4331 void 4332 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 4333 { 4334 int b; 4335 int i; 4336 4337 VM_OBJECT_ASSERT_WLOCKED(m->object); 4338 /* 4339 * Scan the valid bits looking for invalid sections that 4340 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 4341 * valid bit may be set ) have already been zeroed by 4342 * vm_page_set_validclean(). 4343 */ 4344 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 4345 if (i == (PAGE_SIZE / DEV_BSIZE) || 4346 (m->valid & ((vm_page_bits_t)1 << i))) { 4347 if (i > b) { 4348 pmap_zero_page_area(m, 4349 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 4350 } 4351 b = i + 1; 4352 } 4353 } 4354 4355 /* 4356 * setvalid is TRUE when we can safely set the zero'd areas 4357 * as being valid. We can do this if there are no cache consistancy 4358 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 4359 */ 4360 if (setvalid) 4361 m->valid = VM_PAGE_BITS_ALL; 4362 } 4363 4364 /* 4365 * vm_page_is_valid: 4366 * 4367 * Is (partial) page valid? Note that the case where size == 0 4368 * will return FALSE in the degenerate case where the page is 4369 * entirely invalid, and TRUE otherwise. 4370 */ 4371 int 4372 vm_page_is_valid(vm_page_t m, int base, int size) 4373 { 4374 vm_page_bits_t bits; 4375 4376 VM_OBJECT_ASSERT_LOCKED(m->object); 4377 bits = vm_page_bits(base, size); 4378 return (m->valid != 0 && (m->valid & bits) == bits); 4379 } 4380 4381 /* 4382 * Returns true if all of the specified predicates are true for the entire 4383 * (super)page and false otherwise. 4384 */ 4385 bool 4386 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) 4387 { 4388 vm_object_t object; 4389 int i, npages; 4390 4391 object = m->object; 4392 if (skip_m != NULL && skip_m->object != object) 4393 return (false); 4394 VM_OBJECT_ASSERT_LOCKED(object); 4395 npages = atop(pagesizes[m->psind]); 4396 4397 /* 4398 * The physically contiguous pages that make up a superpage, i.e., a 4399 * page with a page size index ("psind") greater than zero, will 4400 * occupy adjacent entries in vm_page_array[]. 4401 */ 4402 for (i = 0; i < npages; i++) { 4403 /* Always test object consistency, including "skip_m". */ 4404 if (m[i].object != object) 4405 return (false); 4406 if (&m[i] == skip_m) 4407 continue; 4408 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 4409 return (false); 4410 if ((flags & PS_ALL_DIRTY) != 0) { 4411 /* 4412 * Calling vm_page_test_dirty() or pmap_is_modified() 4413 * might stop this case from spuriously returning 4414 * "false". However, that would require a write lock 4415 * on the object containing "m[i]". 4416 */ 4417 if (m[i].dirty != VM_PAGE_BITS_ALL) 4418 return (false); 4419 } 4420 if ((flags & PS_ALL_VALID) != 0 && 4421 m[i].valid != VM_PAGE_BITS_ALL) 4422 return (false); 4423 } 4424 return (true); 4425 } 4426 4427 /* 4428 * Set the page's dirty bits if the page is modified. 4429 */ 4430 void 4431 vm_page_test_dirty(vm_page_t m) 4432 { 4433 4434 VM_OBJECT_ASSERT_WLOCKED(m->object); 4435 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 4436 vm_page_dirty(m); 4437 } 4438 4439 void 4440 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 4441 { 4442 4443 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 4444 } 4445 4446 void 4447 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 4448 { 4449 4450 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 4451 } 4452 4453 int 4454 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 4455 { 4456 4457 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 4458 } 4459 4460 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 4461 void 4462 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 4463 { 4464 4465 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 4466 } 4467 4468 void 4469 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 4470 { 4471 4472 mtx_assert_(vm_page_lockptr(m), a, file, line); 4473 } 4474 #endif 4475 4476 #ifdef INVARIANTS 4477 void 4478 vm_page_object_lock_assert(vm_page_t m) 4479 { 4480 4481 /* 4482 * Certain of the page's fields may only be modified by the 4483 * holder of the containing object's lock or the exclusive busy. 4484 * holder. Unfortunately, the holder of the write busy is 4485 * not recorded, and thus cannot be checked here. 4486 */ 4487 if (m->object != NULL && !vm_page_xbusied(m)) 4488 VM_OBJECT_ASSERT_WLOCKED(m->object); 4489 } 4490 4491 void 4492 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) 4493 { 4494 4495 if ((bits & PGA_WRITEABLE) == 0) 4496 return; 4497 4498 /* 4499 * The PGA_WRITEABLE flag can only be set if the page is 4500 * managed, is exclusively busied or the object is locked. 4501 * Currently, this flag is only set by pmap_enter(). 4502 */ 4503 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4504 ("PGA_WRITEABLE on unmanaged page")); 4505 if (!vm_page_xbusied(m)) 4506 VM_OBJECT_ASSERT_LOCKED(m->object); 4507 } 4508 #endif 4509 4510 #include "opt_ddb.h" 4511 #ifdef DDB 4512 #include <sys/kernel.h> 4513 4514 #include <ddb/ddb.h> 4515 4516 DB_SHOW_COMMAND(page, vm_page_print_page_info) 4517 { 4518 4519 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 4520 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 4521 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 4522 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 4523 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 4524 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 4525 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 4526 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 4527 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 4528 } 4529 4530 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 4531 { 4532 int dom; 4533 4534 db_printf("pq_free %d\n", vm_free_count()); 4535 for (dom = 0; dom < vm_ndomains; dom++) { 4536 db_printf( 4537 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 4538 dom, 4539 vm_dom[dom].vmd_page_count, 4540 vm_dom[dom].vmd_free_count, 4541 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 4542 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 4543 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 4544 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 4545 } 4546 } 4547 4548 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 4549 { 4550 vm_page_t m; 4551 boolean_t phys, virt; 4552 4553 if (!have_addr) { 4554 db_printf("show pginfo addr\n"); 4555 return; 4556 } 4557 4558 phys = strchr(modif, 'p') != NULL; 4559 virt = strchr(modif, 'v') != NULL; 4560 if (virt) 4561 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 4562 else if (phys) 4563 m = PHYS_TO_VM_PAGE(addr); 4564 else 4565 m = (vm_page_t)addr; 4566 db_printf( 4567 "page %p obj %p pidx 0x%jx phys 0x%jx q %d wire %d\n" 4568 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 4569 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 4570 m->queue, m->wire_count, m->aflags, m->oflags, 4571 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); 4572 } 4573 #endif /* DDB */ 4574