xref: /freebsd/sys/vm/vm_page.c (revision e674ddec0b4138274539587fe9336b577ff1242a)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Resident memory management module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_vm.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/vm_dumpset.h>
112 #include <vm/uma.h>
113 #include <vm/uma_int.h>
114 
115 #include <machine/md_var.h>
116 
117 struct vm_domain vm_dom[MAXMEMDOM];
118 
119 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
120 
121 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
122 
123 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
124 /* The following fields are protected by the domainset lock. */
125 domainset_t __exclusive_cache_line vm_min_domains;
126 domainset_t __exclusive_cache_line vm_severe_domains;
127 static int vm_min_waiters;
128 static int vm_severe_waiters;
129 static int vm_pageproc_waiters;
130 
131 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
132     "VM page statistics");
133 
134 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
135 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
136     CTLFLAG_RD, &pqstate_commit_retries,
137     "Number of failed per-page atomic queue state updates");
138 
139 static COUNTER_U64_DEFINE_EARLY(queue_ops);
140 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
141     CTLFLAG_RD, &queue_ops,
142     "Number of batched queue operations");
143 
144 static COUNTER_U64_DEFINE_EARLY(queue_nops);
145 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
146     CTLFLAG_RD, &queue_nops,
147     "Number of batched queue operations with no effects");
148 
149 /*
150  * bogus page -- for I/O to/from partially complete buffers,
151  * or for paging into sparsely invalid regions.
152  */
153 vm_page_t bogus_page;
154 
155 vm_page_t vm_page_array;
156 long vm_page_array_size;
157 long first_page;
158 
159 struct bitset *vm_page_dump;
160 long vm_page_dump_pages;
161 
162 static TAILQ_HEAD(, vm_page) blacklist_head;
163 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
164 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
165     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
166 
167 static uma_zone_t fakepg_zone;
168 
169 static void vm_page_alloc_check(vm_page_t m);
170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
171     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
173 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
174 static bool vm_page_free_prep(vm_page_t m);
175 static void vm_page_free_toq(vm_page_t m);
176 static void vm_page_init(void *dummy);
177 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
178     vm_pindex_t pindex, vm_page_t mpred);
179 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
180     vm_page_t mpred);
181 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
182     const uint16_t nflag);
183 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
184     vm_page_t m_run, vm_paddr_t high);
185 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
186 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
187     int req);
188 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
189     int flags);
190 static void vm_page_zone_release(void *arg, void **store, int cnt);
191 
192 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
193 
194 static void
195 vm_page_init(void *dummy)
196 {
197 
198 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
199 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
200 	bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED);
201 }
202 
203 /*
204  * The cache page zone is initialized later since we need to be able to allocate
205  * pages before UMA is fully initialized.
206  */
207 static void
208 vm_page_init_cache_zones(void *dummy __unused)
209 {
210 	struct vm_domain *vmd;
211 	struct vm_pgcache *pgcache;
212 	int cache, domain, maxcache, pool;
213 
214 	maxcache = 0;
215 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
216 	maxcache *= mp_ncpus;
217 	for (domain = 0; domain < vm_ndomains; domain++) {
218 		vmd = VM_DOMAIN(domain);
219 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
220 			pgcache = &vmd->vmd_pgcache[pool];
221 			pgcache->domain = domain;
222 			pgcache->pool = pool;
223 			pgcache->zone = uma_zcache_create("vm pgcache",
224 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
225 			    vm_page_zone_import, vm_page_zone_release, pgcache,
226 			    UMA_ZONE_VM);
227 
228 			/*
229 			 * Limit each pool's zone to 0.1% of the pages in the
230 			 * domain.
231 			 */
232 			cache = maxcache != 0 ? maxcache :
233 			    vmd->vmd_page_count / 1000;
234 			uma_zone_set_maxcache(pgcache->zone, cache);
235 		}
236 	}
237 }
238 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
239 
240 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
241 #if PAGE_SIZE == 32768
242 #ifdef CTASSERT
243 CTASSERT(sizeof(u_long) >= 8);
244 #endif
245 #endif
246 
247 /*
248  *	vm_set_page_size:
249  *
250  *	Sets the page size, perhaps based upon the memory
251  *	size.  Must be called before any use of page-size
252  *	dependent functions.
253  */
254 void
255 vm_set_page_size(void)
256 {
257 	if (vm_cnt.v_page_size == 0)
258 		vm_cnt.v_page_size = PAGE_SIZE;
259 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
260 		panic("vm_set_page_size: page size not a power of two");
261 }
262 
263 /*
264  *	vm_page_blacklist_next:
265  *
266  *	Find the next entry in the provided string of blacklist
267  *	addresses.  Entries are separated by space, comma, or newline.
268  *	If an invalid integer is encountered then the rest of the
269  *	string is skipped.  Updates the list pointer to the next
270  *	character, or NULL if the string is exhausted or invalid.
271  */
272 static vm_paddr_t
273 vm_page_blacklist_next(char **list, char *end)
274 {
275 	vm_paddr_t bad;
276 	char *cp, *pos;
277 
278 	if (list == NULL || *list == NULL)
279 		return (0);
280 	if (**list =='\0') {
281 		*list = NULL;
282 		return (0);
283 	}
284 
285 	/*
286 	 * If there's no end pointer then the buffer is coming from
287 	 * the kenv and we know it's null-terminated.
288 	 */
289 	if (end == NULL)
290 		end = *list + strlen(*list);
291 
292 	/* Ensure that strtoq() won't walk off the end */
293 	if (*end != '\0') {
294 		if (*end == '\n' || *end == ' ' || *end  == ',')
295 			*end = '\0';
296 		else {
297 			printf("Blacklist not terminated, skipping\n");
298 			*list = NULL;
299 			return (0);
300 		}
301 	}
302 
303 	for (pos = *list; *pos != '\0'; pos = cp) {
304 		bad = strtoq(pos, &cp, 0);
305 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
306 			if (bad == 0) {
307 				if (++cp < end)
308 					continue;
309 				else
310 					break;
311 			}
312 		} else
313 			break;
314 		if (*cp == '\0' || ++cp >= end)
315 			*list = NULL;
316 		else
317 			*list = cp;
318 		return (trunc_page(bad));
319 	}
320 	printf("Garbage in RAM blacklist, skipping\n");
321 	*list = NULL;
322 	return (0);
323 }
324 
325 bool
326 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
327 {
328 	struct vm_domain *vmd;
329 	vm_page_t m;
330 	int ret;
331 
332 	m = vm_phys_paddr_to_vm_page(pa);
333 	if (m == NULL)
334 		return (true); /* page does not exist, no failure */
335 
336 	vmd = vm_pagequeue_domain(m);
337 	vm_domain_free_lock(vmd);
338 	ret = vm_phys_unfree_page(m);
339 	vm_domain_free_unlock(vmd);
340 	if (ret != 0) {
341 		vm_domain_freecnt_inc(vmd, -1);
342 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
343 		if (verbose)
344 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
345 	}
346 	return (ret);
347 }
348 
349 /*
350  *	vm_page_blacklist_check:
351  *
352  *	Iterate through the provided string of blacklist addresses, pulling
353  *	each entry out of the physical allocator free list and putting it
354  *	onto a list for reporting via the vm.page_blacklist sysctl.
355  */
356 static void
357 vm_page_blacklist_check(char *list, char *end)
358 {
359 	vm_paddr_t pa;
360 	char *next;
361 
362 	next = list;
363 	while (next != NULL) {
364 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
365 			continue;
366 		vm_page_blacklist_add(pa, bootverbose);
367 	}
368 }
369 
370 /*
371  *	vm_page_blacklist_load:
372  *
373  *	Search for a special module named "ram_blacklist".  It'll be a
374  *	plain text file provided by the user via the loader directive
375  *	of the same name.
376  */
377 static void
378 vm_page_blacklist_load(char **list, char **end)
379 {
380 	void *mod;
381 	u_char *ptr;
382 	u_int len;
383 
384 	mod = NULL;
385 	ptr = NULL;
386 
387 	mod = preload_search_by_type("ram_blacklist");
388 	if (mod != NULL) {
389 		ptr = preload_fetch_addr(mod);
390 		len = preload_fetch_size(mod);
391         }
392 	*list = ptr;
393 	if (ptr != NULL)
394 		*end = ptr + len;
395 	else
396 		*end = NULL;
397 	return;
398 }
399 
400 static int
401 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
402 {
403 	vm_page_t m;
404 	struct sbuf sbuf;
405 	int error, first;
406 
407 	first = 1;
408 	error = sysctl_wire_old_buffer(req, 0);
409 	if (error != 0)
410 		return (error);
411 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
412 	TAILQ_FOREACH(m, &blacklist_head, listq) {
413 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
414 		    (uintmax_t)m->phys_addr);
415 		first = 0;
416 	}
417 	error = sbuf_finish(&sbuf);
418 	sbuf_delete(&sbuf);
419 	return (error);
420 }
421 
422 /*
423  * Initialize a dummy page for use in scans of the specified paging queue.
424  * In principle, this function only needs to set the flag PG_MARKER.
425  * Nonetheless, it write busies the page as a safety precaution.
426  */
427 void
428 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
429 {
430 
431 	bzero(marker, sizeof(*marker));
432 	marker->flags = PG_MARKER;
433 	marker->a.flags = aflags;
434 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
435 	marker->a.queue = queue;
436 }
437 
438 static void
439 vm_page_domain_init(int domain)
440 {
441 	struct vm_domain *vmd;
442 	struct vm_pagequeue *pq;
443 	int i;
444 
445 	vmd = VM_DOMAIN(domain);
446 	bzero(vmd, sizeof(*vmd));
447 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
448 	    "vm inactive pagequeue";
449 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
450 	    "vm active pagequeue";
451 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
452 	    "vm laundry pagequeue";
453 	*__DECONST(const char **,
454 	    &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
455 	    "vm unswappable pagequeue";
456 	vmd->vmd_domain = domain;
457 	vmd->vmd_page_count = 0;
458 	vmd->vmd_free_count = 0;
459 	vmd->vmd_segs = 0;
460 	vmd->vmd_oom = FALSE;
461 	for (i = 0; i < PQ_COUNT; i++) {
462 		pq = &vmd->vmd_pagequeues[i];
463 		TAILQ_INIT(&pq->pq_pl);
464 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
465 		    MTX_DEF | MTX_DUPOK);
466 		pq->pq_pdpages = 0;
467 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
468 	}
469 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
470 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
471 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
472 
473 	/*
474 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
475 	 * insertions.
476 	 */
477 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
478 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
479 	    &vmd->vmd_inacthead, plinks.q);
480 
481 	/*
482 	 * The clock pages are used to implement active queue scanning without
483 	 * requeues.  Scans start at clock[0], which is advanced after the scan
484 	 * ends.  When the two clock hands meet, they are reset and scanning
485 	 * resumes from the head of the queue.
486 	 */
487 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
488 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
489 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
490 	    &vmd->vmd_clock[0], plinks.q);
491 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
492 	    &vmd->vmd_clock[1], plinks.q);
493 }
494 
495 /*
496  * Initialize a physical page in preparation for adding it to the free
497  * lists.
498  */
499 void
500 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
501 {
502 
503 	m->object = NULL;
504 	m->ref_count = 0;
505 	m->busy_lock = VPB_FREED;
506 	m->flags = m->a.flags = 0;
507 	m->phys_addr = pa;
508 	m->a.queue = PQ_NONE;
509 	m->psind = 0;
510 	m->segind = segind;
511 	m->order = VM_NFREEORDER;
512 	m->pool = VM_FREEPOOL_DEFAULT;
513 	m->valid = m->dirty = 0;
514 	pmap_page_init(m);
515 }
516 
517 #ifndef PMAP_HAS_PAGE_ARRAY
518 static vm_paddr_t
519 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
520 {
521 	vm_paddr_t new_end;
522 
523 	/*
524 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
525 	 * However, because this page is allocated from KVM, out-of-bounds
526 	 * accesses using the direct map will not be trapped.
527 	 */
528 	*vaddr += PAGE_SIZE;
529 
530 	/*
531 	 * Allocate physical memory for the page structures, and map it.
532 	 */
533 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
534 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
535 	    VM_PROT_READ | VM_PROT_WRITE);
536 	vm_page_array_size = page_range;
537 
538 	return (new_end);
539 }
540 #endif
541 
542 /*
543  *	vm_page_startup:
544  *
545  *	Initializes the resident memory module.  Allocates physical memory for
546  *	bootstrapping UMA and some data structures that are used to manage
547  *	physical pages.  Initializes these structures, and populates the free
548  *	page queues.
549  */
550 vm_offset_t
551 vm_page_startup(vm_offset_t vaddr)
552 {
553 	struct vm_phys_seg *seg;
554 	struct vm_domain *vmd;
555 	vm_page_t m;
556 	char *list, *listend;
557 	vm_paddr_t end, high_avail, low_avail, new_end, size;
558 	vm_paddr_t page_range __unused;
559 	vm_paddr_t last_pa, pa, startp, endp;
560 	u_long pagecount;
561 #if MINIDUMP_PAGE_TRACKING
562 	u_long vm_page_dump_size;
563 #endif
564 	int biggestone, i, segind;
565 #ifdef WITNESS
566 	vm_offset_t mapped;
567 	int witness_size;
568 #endif
569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
570 	long ii;
571 #endif
572 
573 	vaddr = round_page(vaddr);
574 
575 	vm_phys_early_startup();
576 	biggestone = vm_phys_avail_largest();
577 	end = phys_avail[biggestone+1];
578 
579 	/*
580 	 * Initialize the page and queue locks.
581 	 */
582 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
583 	for (i = 0; i < PA_LOCK_COUNT; i++)
584 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
585 	for (i = 0; i < vm_ndomains; i++)
586 		vm_page_domain_init(i);
587 
588 	new_end = end;
589 #ifdef WITNESS
590 	witness_size = round_page(witness_startup_count());
591 	new_end -= witness_size;
592 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
593 	    VM_PROT_READ | VM_PROT_WRITE);
594 	bzero((void *)mapped, witness_size);
595 	witness_startup((void *)mapped);
596 #endif
597 
598 #if MINIDUMP_PAGE_TRACKING
599 	/*
600 	 * Allocate a bitmap to indicate that a random physical page
601 	 * needs to be included in a minidump.
602 	 *
603 	 * The amd64 port needs this to indicate which direct map pages
604 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
605 	 *
606 	 * However, i386 still needs this workspace internally within the
607 	 * minidump code.  In theory, they are not needed on i386, but are
608 	 * included should the sf_buf code decide to use them.
609 	 */
610 	last_pa = 0;
611 	vm_page_dump_pages = 0;
612 	for (i = 0; dump_avail[i + 1] != 0; i += 2) {
613 		vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
614 		    dump_avail[i] / PAGE_SIZE;
615 		if (dump_avail[i + 1] > last_pa)
616 			last_pa = dump_avail[i + 1];
617 	}
618 	vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
619 	new_end -= vm_page_dump_size;
620 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
621 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
622 	bzero((void *)vm_page_dump, vm_page_dump_size);
623 #else
624 	(void)last_pa;
625 #endif
626 #if defined(__aarch64__) || defined(__amd64__) || \
627     defined(__riscv) || defined(__powerpc64__)
628 	/*
629 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
630 	 * in a crash dump.  When pmap_map() uses the direct map, they are
631 	 * not automatically included.
632 	 */
633 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
634 		dump_add_page(pa);
635 #endif
636 	phys_avail[biggestone + 1] = new_end;
637 #ifdef __amd64__
638 	/*
639 	 * Request that the physical pages underlying the message buffer be
640 	 * included in a crash dump.  Since the message buffer is accessed
641 	 * through the direct map, they are not automatically included.
642 	 */
643 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
644 	last_pa = pa + round_page(msgbufsize);
645 	while (pa < last_pa) {
646 		dump_add_page(pa);
647 		pa += PAGE_SIZE;
648 	}
649 #endif
650 	/*
651 	 * Compute the number of pages of memory that will be available for
652 	 * use, taking into account the overhead of a page structure per page.
653 	 * In other words, solve
654 	 *	"available physical memory" - round_page(page_range *
655 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
656 	 * for page_range.
657 	 */
658 	low_avail = phys_avail[0];
659 	high_avail = phys_avail[1];
660 	for (i = 0; i < vm_phys_nsegs; i++) {
661 		if (vm_phys_segs[i].start < low_avail)
662 			low_avail = vm_phys_segs[i].start;
663 		if (vm_phys_segs[i].end > high_avail)
664 			high_avail = vm_phys_segs[i].end;
665 	}
666 	/* Skip the first chunk.  It is already accounted for. */
667 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
668 		if (phys_avail[i] < low_avail)
669 			low_avail = phys_avail[i];
670 		if (phys_avail[i + 1] > high_avail)
671 			high_avail = phys_avail[i + 1];
672 	}
673 	first_page = low_avail / PAGE_SIZE;
674 #ifdef VM_PHYSSEG_SPARSE
675 	size = 0;
676 	for (i = 0; i < vm_phys_nsegs; i++)
677 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
678 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
679 		size += phys_avail[i + 1] - phys_avail[i];
680 #elif defined(VM_PHYSSEG_DENSE)
681 	size = high_avail - low_avail;
682 #else
683 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
684 #endif
685 
686 #ifdef PMAP_HAS_PAGE_ARRAY
687 	pmap_page_array_startup(size / PAGE_SIZE);
688 	biggestone = vm_phys_avail_largest();
689 	end = new_end = phys_avail[biggestone + 1];
690 #else
691 #ifdef VM_PHYSSEG_DENSE
692 	/*
693 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
694 	 * the overhead of a page structure per page only if vm_page_array is
695 	 * allocated from the last physical memory chunk.  Otherwise, we must
696 	 * allocate page structures representing the physical memory
697 	 * underlying vm_page_array, even though they will not be used.
698 	 */
699 	if (new_end != high_avail)
700 		page_range = size / PAGE_SIZE;
701 	else
702 #endif
703 	{
704 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
705 
706 		/*
707 		 * If the partial bytes remaining are large enough for
708 		 * a page (PAGE_SIZE) without a corresponding
709 		 * 'struct vm_page', then new_end will contain an
710 		 * extra page after subtracting the length of the VM
711 		 * page array.  Compensate by subtracting an extra
712 		 * page from new_end.
713 		 */
714 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
715 			if (new_end == high_avail)
716 				high_avail -= PAGE_SIZE;
717 			new_end -= PAGE_SIZE;
718 		}
719 	}
720 	end = new_end;
721 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
722 #endif
723 
724 #if VM_NRESERVLEVEL > 0
725 	/*
726 	 * Allocate physical memory for the reservation management system's
727 	 * data structures, and map it.
728 	 */
729 	new_end = vm_reserv_startup(&vaddr, new_end);
730 #endif
731 #if defined(__aarch64__) || defined(__amd64__) || \
732     defined(__riscv) || defined(__powerpc64__)
733 	/*
734 	 * Include vm_page_array and vm_reserv_array in a crash dump.
735 	 */
736 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
737 		dump_add_page(pa);
738 #endif
739 	phys_avail[biggestone + 1] = new_end;
740 
741 	/*
742 	 * Add physical memory segments corresponding to the available
743 	 * physical pages.
744 	 */
745 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
746 		if (vm_phys_avail_size(i) != 0)
747 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
748 
749 	/*
750 	 * Initialize the physical memory allocator.
751 	 */
752 	vm_phys_init();
753 
754 	/*
755 	 * Initialize the page structures and add every available page to the
756 	 * physical memory allocator's free lists.
757 	 */
758 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
759 	for (ii = 0; ii < vm_page_array_size; ii++) {
760 		m = &vm_page_array[ii];
761 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
762 		m->flags = PG_FICTITIOUS;
763 	}
764 #endif
765 	vm_cnt.v_page_count = 0;
766 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
767 		seg = &vm_phys_segs[segind];
768 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
769 		    m++, pa += PAGE_SIZE)
770 			vm_page_init_page(m, pa, segind);
771 
772 		/*
773 		 * Add the segment's pages that are covered by one of
774 		 * phys_avail's ranges to the free lists.
775 		 */
776 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
777 			if (seg->end <= phys_avail[i] ||
778 			    seg->start >= phys_avail[i + 1])
779 				continue;
780 
781 			startp = MAX(seg->start, phys_avail[i]);
782 			endp = MIN(seg->end, phys_avail[i + 1]);
783 			pagecount = (u_long)atop(endp - startp);
784 			if (pagecount == 0)
785 				continue;
786 
787 			m = seg->first_page + atop(startp - seg->start);
788 			vmd = VM_DOMAIN(seg->domain);
789 			vm_domain_free_lock(vmd);
790 			vm_phys_enqueue_contig(m, pagecount);
791 			vm_domain_free_unlock(vmd);
792 			vm_domain_freecnt_inc(vmd, pagecount);
793 			vm_cnt.v_page_count += (u_int)pagecount;
794 			vmd->vmd_page_count += (u_int)pagecount;
795 			vmd->vmd_segs |= 1UL << segind;
796 		}
797 	}
798 
799 	/*
800 	 * Remove blacklisted pages from the physical memory allocator.
801 	 */
802 	TAILQ_INIT(&blacklist_head);
803 	vm_page_blacklist_load(&list, &listend);
804 	vm_page_blacklist_check(list, listend);
805 
806 	list = kern_getenv("vm.blacklist");
807 	vm_page_blacklist_check(list, NULL);
808 
809 	freeenv(list);
810 #if VM_NRESERVLEVEL > 0
811 	/*
812 	 * Initialize the reservation management system.
813 	 */
814 	vm_reserv_init();
815 #endif
816 
817 	return (vaddr);
818 }
819 
820 void
821 vm_page_reference(vm_page_t m)
822 {
823 
824 	vm_page_aflag_set(m, PGA_REFERENCED);
825 }
826 
827 /*
828  *	vm_page_trybusy
829  *
830  *	Helper routine for grab functions to trylock busy.
831  *
832  *	Returns true on success and false on failure.
833  */
834 static bool
835 vm_page_trybusy(vm_page_t m, int allocflags)
836 {
837 
838 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
839 		return (vm_page_trysbusy(m));
840 	else
841 		return (vm_page_tryxbusy(m));
842 }
843 
844 /*
845  *	vm_page_tryacquire
846  *
847  *	Helper routine for grab functions to trylock busy and wire.
848  *
849  *	Returns true on success and false on failure.
850  */
851 static inline bool
852 vm_page_tryacquire(vm_page_t m, int allocflags)
853 {
854 	bool locked;
855 
856 	locked = vm_page_trybusy(m, allocflags);
857 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
858 		vm_page_wire(m);
859 	return (locked);
860 }
861 
862 /*
863  *	vm_page_busy_acquire:
864  *
865  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
866  *	and drop the object lock if necessary.
867  */
868 bool
869 vm_page_busy_acquire(vm_page_t m, int allocflags)
870 {
871 	vm_object_t obj;
872 	bool locked;
873 
874 	/*
875 	 * The page-specific object must be cached because page
876 	 * identity can change during the sleep, causing the
877 	 * re-lock of a different object.
878 	 * It is assumed that a reference to the object is already
879 	 * held by the callers.
880 	 */
881 	obj = atomic_load_ptr(&m->object);
882 	for (;;) {
883 		if (vm_page_tryacquire(m, allocflags))
884 			return (true);
885 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
886 			return (false);
887 		if (obj != NULL)
888 			locked = VM_OBJECT_WOWNED(obj);
889 		else
890 			locked = false;
891 		MPASS(locked || vm_page_wired(m));
892 		if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
893 		    locked) && locked)
894 			VM_OBJECT_WLOCK(obj);
895 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
896 			return (false);
897 		KASSERT(m->object == obj || m->object == NULL,
898 		    ("vm_page_busy_acquire: page %p does not belong to %p",
899 		    m, obj));
900 	}
901 }
902 
903 /*
904  *	vm_page_busy_downgrade:
905  *
906  *	Downgrade an exclusive busy page into a single shared busy page.
907  */
908 void
909 vm_page_busy_downgrade(vm_page_t m)
910 {
911 	u_int x;
912 
913 	vm_page_assert_xbusied(m);
914 
915 	x = vm_page_busy_fetch(m);
916 	for (;;) {
917 		if (atomic_fcmpset_rel_int(&m->busy_lock,
918 		    &x, VPB_SHARERS_WORD(1)))
919 			break;
920 	}
921 	if ((x & VPB_BIT_WAITERS) != 0)
922 		wakeup(m);
923 }
924 
925 /*
926  *
927  *	vm_page_busy_tryupgrade:
928  *
929  *	Attempt to upgrade a single shared busy into an exclusive busy.
930  */
931 int
932 vm_page_busy_tryupgrade(vm_page_t m)
933 {
934 	u_int ce, x;
935 
936 	vm_page_assert_sbusied(m);
937 
938 	x = vm_page_busy_fetch(m);
939 	ce = VPB_CURTHREAD_EXCLUSIVE;
940 	for (;;) {
941 		if (VPB_SHARERS(x) > 1)
942 			return (0);
943 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
944 		    ("vm_page_busy_tryupgrade: invalid lock state"));
945 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
946 		    ce | (x & VPB_BIT_WAITERS)))
947 			continue;
948 		return (1);
949 	}
950 }
951 
952 /*
953  *	vm_page_sbusied:
954  *
955  *	Return a positive value if the page is shared busied, 0 otherwise.
956  */
957 int
958 vm_page_sbusied(vm_page_t m)
959 {
960 	u_int x;
961 
962 	x = vm_page_busy_fetch(m);
963 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
964 }
965 
966 /*
967  *	vm_page_sunbusy:
968  *
969  *	Shared unbusy a page.
970  */
971 void
972 vm_page_sunbusy(vm_page_t m)
973 {
974 	u_int x;
975 
976 	atomic_thread_fence_rel();
977 	x = atomic_fetchadd_int(&m->busy_lock, -VPB_ONE_SHARER);
978 	KASSERT(x != VPB_FREED, ("page %p is freed", m));
979 	KASSERT(x != VPB_UNBUSIED && (x & VPB_BIT_SHARED) != 0,
980 	    ("page %p not sbusied", m));
981 	if (x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS))
982 		wakeup(m);
983 }
984 
985 /*
986  *	vm_page_busy_sleep:
987  *
988  *	Sleep if the page is busy, using the page pointer as wchan.
989  *	This is used to implement the hard-path of the busying mechanism.
990  *
991  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
992  *	will not sleep if the page is shared-busy.
993  *
994  *	The object lock must be held on entry.
995  *
996  *	Returns true if it slept and dropped the object lock, or false
997  *	if there was no sleep and the lock is still held.
998  */
999 bool
1000 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1001 {
1002 	vm_object_t obj;
1003 
1004 	obj = m->object;
1005 	VM_OBJECT_ASSERT_LOCKED(obj);
1006 
1007 	return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1008 	    true));
1009 }
1010 
1011 /*
1012  *	vm_page_busy_sleep_unlocked:
1013  *
1014  *	Sleep if the page is busy, using the page pointer as wchan.
1015  *	This is used to implement the hard-path of busying mechanism.
1016  *
1017  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1018  *	will not sleep if the page is shared-busy.
1019  *
1020  *	The object lock must not be held on entry.  The operation will
1021  *	return if the page changes identity.
1022  */
1023 void
1024 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1025     const char *wmesg, int allocflags)
1026 {
1027 	VM_OBJECT_ASSERT_UNLOCKED(obj);
1028 
1029 	(void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1030 }
1031 
1032 /*
1033  *	_vm_page_busy_sleep:
1034  *
1035  *	Internal busy sleep function.  Verifies the page identity and
1036  *	lockstate against parameters.  Returns true if it sleeps and
1037  *	false otherwise.
1038  *
1039  *	allocflags uses VM_ALLOC_* flags to specify the lock required.
1040  *
1041  *	If locked is true the lock will be dropped for any true returns
1042  *	and held for any false returns.
1043  */
1044 static bool
1045 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1046     const char *wmesg, int allocflags, bool locked)
1047 {
1048 	bool xsleep;
1049 	u_int x;
1050 
1051 	/*
1052 	 * If the object is busy we must wait for that to drain to zero
1053 	 * before trying the page again.
1054 	 */
1055 	if (obj != NULL && vm_object_busied(obj)) {
1056 		if (locked)
1057 			VM_OBJECT_DROP(obj);
1058 		vm_object_busy_wait(obj, wmesg);
1059 		return (true);
1060 	}
1061 
1062 	if (!vm_page_busied(m))
1063 		return (false);
1064 
1065 	xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1066 	sleepq_lock(m);
1067 	x = vm_page_busy_fetch(m);
1068 	do {
1069 		/*
1070 		 * If the page changes objects or becomes unlocked we can
1071 		 * simply return.
1072 		 */
1073 		if (x == VPB_UNBUSIED ||
1074 		    (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1075 		    m->object != obj || m->pindex != pindex) {
1076 			sleepq_release(m);
1077 			return (false);
1078 		}
1079 		if ((x & VPB_BIT_WAITERS) != 0)
1080 			break;
1081 	} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1082 	if (locked)
1083 		VM_OBJECT_DROP(obj);
1084 	DROP_GIANT();
1085 	sleepq_add(m, NULL, wmesg, 0, 0);
1086 	sleepq_wait(m, PVM);
1087 	PICKUP_GIANT();
1088 	return (true);
1089 }
1090 
1091 /*
1092  *	vm_page_trysbusy:
1093  *
1094  *	Try to shared busy a page.
1095  *	If the operation succeeds 1 is returned otherwise 0.
1096  *	The operation never sleeps.
1097  */
1098 int
1099 vm_page_trysbusy(vm_page_t m)
1100 {
1101 	vm_object_t obj;
1102 	u_int x;
1103 
1104 	obj = m->object;
1105 	x = vm_page_busy_fetch(m);
1106 	for (;;) {
1107 		if ((x & VPB_BIT_SHARED) == 0)
1108 			return (0);
1109 		/*
1110 		 * Reduce the window for transient busies that will trigger
1111 		 * false negatives in vm_page_ps_test().
1112 		 */
1113 		if (obj != NULL && vm_object_busied(obj))
1114 			return (0);
1115 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1116 		    x + VPB_ONE_SHARER))
1117 			break;
1118 	}
1119 
1120 	/* Refetch the object now that we're guaranteed that it is stable. */
1121 	obj = m->object;
1122 	if (obj != NULL && vm_object_busied(obj)) {
1123 		vm_page_sunbusy(m);
1124 		return (0);
1125 	}
1126 	return (1);
1127 }
1128 
1129 /*
1130  *	vm_page_tryxbusy:
1131  *
1132  *	Try to exclusive busy a page.
1133  *	If the operation succeeds 1 is returned otherwise 0.
1134  *	The operation never sleeps.
1135  */
1136 int
1137 vm_page_tryxbusy(vm_page_t m)
1138 {
1139 	vm_object_t obj;
1140 
1141         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1142             VPB_CURTHREAD_EXCLUSIVE) == 0)
1143 		return (0);
1144 
1145 	obj = m->object;
1146 	if (obj != NULL && vm_object_busied(obj)) {
1147 		vm_page_xunbusy(m);
1148 		return (0);
1149 	}
1150 	return (1);
1151 }
1152 
1153 static void
1154 vm_page_xunbusy_hard_tail(vm_page_t m)
1155 {
1156 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1157 	/* Wake the waiter. */
1158 	wakeup(m);
1159 }
1160 
1161 /*
1162  *	vm_page_xunbusy_hard:
1163  *
1164  *	Called when unbusy has failed because there is a waiter.
1165  */
1166 void
1167 vm_page_xunbusy_hard(vm_page_t m)
1168 {
1169 	vm_page_assert_xbusied(m);
1170 	vm_page_xunbusy_hard_tail(m);
1171 }
1172 
1173 void
1174 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1175 {
1176 	vm_page_assert_xbusied_unchecked(m);
1177 	vm_page_xunbusy_hard_tail(m);
1178 }
1179 
1180 static void
1181 vm_page_busy_free(vm_page_t m)
1182 {
1183 	u_int x;
1184 
1185 	atomic_thread_fence_rel();
1186 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1187 	if ((x & VPB_BIT_WAITERS) != 0)
1188 		wakeup(m);
1189 }
1190 
1191 /*
1192  *	vm_page_unhold_pages:
1193  *
1194  *	Unhold each of the pages that is referenced by the given array.
1195  */
1196 void
1197 vm_page_unhold_pages(vm_page_t *ma, int count)
1198 {
1199 
1200 	for (; count != 0; count--) {
1201 		vm_page_unwire(*ma, PQ_ACTIVE);
1202 		ma++;
1203 	}
1204 }
1205 
1206 vm_page_t
1207 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1208 {
1209 	vm_page_t m;
1210 
1211 #ifdef VM_PHYSSEG_SPARSE
1212 	m = vm_phys_paddr_to_vm_page(pa);
1213 	if (m == NULL)
1214 		m = vm_phys_fictitious_to_vm_page(pa);
1215 	return (m);
1216 #elif defined(VM_PHYSSEG_DENSE)
1217 	long pi;
1218 
1219 	pi = atop(pa);
1220 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1221 		m = &vm_page_array[pi - first_page];
1222 		return (m);
1223 	}
1224 	return (vm_phys_fictitious_to_vm_page(pa));
1225 #else
1226 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1227 #endif
1228 }
1229 
1230 /*
1231  *	vm_page_getfake:
1232  *
1233  *	Create a fictitious page with the specified physical address and
1234  *	memory attribute.  The memory attribute is the only the machine-
1235  *	dependent aspect of a fictitious page that must be initialized.
1236  */
1237 vm_page_t
1238 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1239 {
1240 	vm_page_t m;
1241 
1242 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1243 	vm_page_initfake(m, paddr, memattr);
1244 	return (m);
1245 }
1246 
1247 void
1248 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1249 {
1250 
1251 	if ((m->flags & PG_FICTITIOUS) != 0) {
1252 		/*
1253 		 * The page's memattr might have changed since the
1254 		 * previous initialization.  Update the pmap to the
1255 		 * new memattr.
1256 		 */
1257 		goto memattr;
1258 	}
1259 	m->phys_addr = paddr;
1260 	m->a.queue = PQ_NONE;
1261 	/* Fictitious pages don't use "segind". */
1262 	m->flags = PG_FICTITIOUS;
1263 	/* Fictitious pages don't use "order" or "pool". */
1264 	m->oflags = VPO_UNMANAGED;
1265 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1266 	/* Fictitious pages are unevictable. */
1267 	m->ref_count = 1;
1268 	pmap_page_init(m);
1269 memattr:
1270 	pmap_page_set_memattr(m, memattr);
1271 }
1272 
1273 /*
1274  *	vm_page_putfake:
1275  *
1276  *	Release a fictitious page.
1277  */
1278 void
1279 vm_page_putfake(vm_page_t m)
1280 {
1281 
1282 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1283 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1284 	    ("vm_page_putfake: bad page %p", m));
1285 	vm_page_assert_xbusied(m);
1286 	vm_page_busy_free(m);
1287 	uma_zfree(fakepg_zone, m);
1288 }
1289 
1290 /*
1291  *	vm_page_updatefake:
1292  *
1293  *	Update the given fictitious page to the specified physical address and
1294  *	memory attribute.
1295  */
1296 void
1297 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1298 {
1299 
1300 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1301 	    ("vm_page_updatefake: bad page %p", m));
1302 	m->phys_addr = paddr;
1303 	pmap_page_set_memattr(m, memattr);
1304 }
1305 
1306 /*
1307  *	vm_page_free:
1308  *
1309  *	Free a page.
1310  */
1311 void
1312 vm_page_free(vm_page_t m)
1313 {
1314 
1315 	m->flags &= ~PG_ZERO;
1316 	vm_page_free_toq(m);
1317 }
1318 
1319 /*
1320  *	vm_page_free_zero:
1321  *
1322  *	Free a page to the zerod-pages queue
1323  */
1324 void
1325 vm_page_free_zero(vm_page_t m)
1326 {
1327 
1328 	m->flags |= PG_ZERO;
1329 	vm_page_free_toq(m);
1330 }
1331 
1332 /*
1333  * Unbusy and handle the page queueing for a page from a getpages request that
1334  * was optionally read ahead or behind.
1335  */
1336 void
1337 vm_page_readahead_finish(vm_page_t m)
1338 {
1339 
1340 	/* We shouldn't put invalid pages on queues. */
1341 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1342 
1343 	/*
1344 	 * Since the page is not the actually needed one, whether it should
1345 	 * be activated or deactivated is not obvious.  Empirical results
1346 	 * have shown that deactivating the page is usually the best choice,
1347 	 * unless the page is wanted by another thread.
1348 	 */
1349 	if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1350 		vm_page_activate(m);
1351 	else
1352 		vm_page_deactivate(m);
1353 	vm_page_xunbusy_unchecked(m);
1354 }
1355 
1356 /*
1357  * Destroy the identity of an invalid page and free it if possible.
1358  * This is intended to be used when reading a page from backing store fails.
1359  */
1360 void
1361 vm_page_free_invalid(vm_page_t m)
1362 {
1363 
1364 	KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1365 	KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1366 	KASSERT(m->object != NULL, ("page %p has no object", m));
1367 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1368 
1369 	/*
1370 	 * We may be attempting to free the page as part of the handling for an
1371 	 * I/O error, in which case the page was xbusied by a different thread.
1372 	 */
1373 	vm_page_xbusy_claim(m);
1374 
1375 	/*
1376 	 * If someone has wired this page while the object lock
1377 	 * was not held, then the thread that unwires is responsible
1378 	 * for freeing the page.  Otherwise just free the page now.
1379 	 * The wire count of this unmapped page cannot change while
1380 	 * we have the page xbusy and the page's object wlocked.
1381 	 */
1382 	if (vm_page_remove(m))
1383 		vm_page_free(m);
1384 }
1385 
1386 /*
1387  *	vm_page_dirty_KBI:		[ internal use only ]
1388  *
1389  *	Set all bits in the page's dirty field.
1390  *
1391  *	The object containing the specified page must be locked if the
1392  *	call is made from the machine-independent layer.
1393  *
1394  *	See vm_page_clear_dirty_mask().
1395  *
1396  *	This function should only be called by vm_page_dirty().
1397  */
1398 void
1399 vm_page_dirty_KBI(vm_page_t m)
1400 {
1401 
1402 	/* Refer to this operation by its public name. */
1403 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1404 	m->dirty = VM_PAGE_BITS_ALL;
1405 }
1406 
1407 /*
1408  *	vm_page_insert:		[ internal use only ]
1409  *
1410  *	Inserts the given mem entry into the object and object list.
1411  *
1412  *	The object must be locked.
1413  */
1414 int
1415 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1416 {
1417 	vm_page_t mpred;
1418 
1419 	VM_OBJECT_ASSERT_WLOCKED(object);
1420 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1421 	return (vm_page_insert_after(m, object, pindex, mpred));
1422 }
1423 
1424 /*
1425  *	vm_page_insert_after:
1426  *
1427  *	Inserts the page "m" into the specified object at offset "pindex".
1428  *
1429  *	The page "mpred" must immediately precede the offset "pindex" within
1430  *	the specified object.
1431  *
1432  *	The object must be locked.
1433  */
1434 static int
1435 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1436     vm_page_t mpred)
1437 {
1438 	vm_page_t msucc;
1439 
1440 	VM_OBJECT_ASSERT_WLOCKED(object);
1441 	KASSERT(m->object == NULL,
1442 	    ("vm_page_insert_after: page already inserted"));
1443 	if (mpred != NULL) {
1444 		KASSERT(mpred->object == object,
1445 		    ("vm_page_insert_after: object doesn't contain mpred"));
1446 		KASSERT(mpred->pindex < pindex,
1447 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1448 		msucc = TAILQ_NEXT(mpred, listq);
1449 	} else
1450 		msucc = TAILQ_FIRST(&object->memq);
1451 	if (msucc != NULL)
1452 		KASSERT(msucc->pindex > pindex,
1453 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1454 
1455 	/*
1456 	 * Record the object/offset pair in this page.
1457 	 */
1458 	m->object = object;
1459 	m->pindex = pindex;
1460 	m->ref_count |= VPRC_OBJREF;
1461 
1462 	/*
1463 	 * Now link into the object's ordered list of backed pages.
1464 	 */
1465 	if (vm_radix_insert(&object->rtree, m)) {
1466 		m->object = NULL;
1467 		m->pindex = 0;
1468 		m->ref_count &= ~VPRC_OBJREF;
1469 		return (1);
1470 	}
1471 	vm_page_insert_radixdone(m, object, mpred);
1472 	return (0);
1473 }
1474 
1475 /*
1476  *	vm_page_insert_radixdone:
1477  *
1478  *	Complete page "m" insertion into the specified object after the
1479  *	radix trie hooking.
1480  *
1481  *	The page "mpred" must precede the offset "m->pindex" within the
1482  *	specified object.
1483  *
1484  *	The object must be locked.
1485  */
1486 static void
1487 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1488 {
1489 
1490 	VM_OBJECT_ASSERT_WLOCKED(object);
1491 	KASSERT(object != NULL && m->object == object,
1492 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1493 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1494 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1495 	if (mpred != NULL) {
1496 		KASSERT(mpred->object == object,
1497 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1498 		KASSERT(mpred->pindex < m->pindex,
1499 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1500 	}
1501 
1502 	if (mpred != NULL)
1503 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1504 	else
1505 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1506 
1507 	/*
1508 	 * Show that the object has one more resident page.
1509 	 */
1510 	object->resident_page_count++;
1511 
1512 	/*
1513 	 * Hold the vnode until the last page is released.
1514 	 */
1515 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1516 		vhold(object->handle);
1517 
1518 	/*
1519 	 * Since we are inserting a new and possibly dirty page,
1520 	 * update the object's generation count.
1521 	 */
1522 	if (pmap_page_is_write_mapped(m))
1523 		vm_object_set_writeable_dirty(object);
1524 }
1525 
1526 /*
1527  * Do the work to remove a page from its object.  The caller is responsible for
1528  * updating the page's fields to reflect this removal.
1529  */
1530 static void
1531 vm_page_object_remove(vm_page_t m)
1532 {
1533 	vm_object_t object;
1534 	vm_page_t mrem __diagused;
1535 
1536 	vm_page_assert_xbusied(m);
1537 	object = m->object;
1538 	VM_OBJECT_ASSERT_WLOCKED(object);
1539 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1540 	    ("page %p is missing its object ref", m));
1541 
1542 	/* Deferred free of swap space. */
1543 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1544 		vm_pager_page_unswapped(m);
1545 
1546 	m->object = NULL;
1547 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1548 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1549 
1550 	/*
1551 	 * Now remove from the object's list of backed pages.
1552 	 */
1553 	TAILQ_REMOVE(&object->memq, m, listq);
1554 
1555 	/*
1556 	 * And show that the object has one fewer resident page.
1557 	 */
1558 	object->resident_page_count--;
1559 
1560 	/*
1561 	 * The vnode may now be recycled.
1562 	 */
1563 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1564 		vdrop(object->handle);
1565 }
1566 
1567 /*
1568  *	vm_page_remove:
1569  *
1570  *	Removes the specified page from its containing object, but does not
1571  *	invalidate any backing storage.  Returns true if the object's reference
1572  *	was the last reference to the page, and false otherwise.
1573  *
1574  *	The object must be locked and the page must be exclusively busied.
1575  *	The exclusive busy will be released on return.  If this is not the
1576  *	final ref and the caller does not hold a wire reference it may not
1577  *	continue to access the page.
1578  */
1579 bool
1580 vm_page_remove(vm_page_t m)
1581 {
1582 	bool dropped;
1583 
1584 	dropped = vm_page_remove_xbusy(m);
1585 	vm_page_xunbusy(m);
1586 
1587 	return (dropped);
1588 }
1589 
1590 /*
1591  *	vm_page_remove_xbusy
1592  *
1593  *	Removes the page but leaves the xbusy held.  Returns true if this
1594  *	removed the final ref and false otherwise.
1595  */
1596 bool
1597 vm_page_remove_xbusy(vm_page_t m)
1598 {
1599 
1600 	vm_page_object_remove(m);
1601 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1602 }
1603 
1604 /*
1605  *	vm_page_lookup:
1606  *
1607  *	Returns the page associated with the object/offset
1608  *	pair specified; if none is found, NULL is returned.
1609  *
1610  *	The object must be locked.
1611  */
1612 vm_page_t
1613 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1614 {
1615 
1616 	VM_OBJECT_ASSERT_LOCKED(object);
1617 	return (vm_radix_lookup(&object->rtree, pindex));
1618 }
1619 
1620 /*
1621  *	vm_page_lookup_unlocked:
1622  *
1623  *	Returns the page associated with the object/offset pair specified;
1624  *	if none is found, NULL is returned.  The page may be no longer be
1625  *	present in the object at the time that this function returns.  Only
1626  *	useful for opportunistic checks such as inmem().
1627  */
1628 vm_page_t
1629 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1630 {
1631 
1632 	return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1633 }
1634 
1635 /*
1636  *	vm_page_relookup:
1637  *
1638  *	Returns a page that must already have been busied by
1639  *	the caller.  Used for bogus page replacement.
1640  */
1641 vm_page_t
1642 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1643 {
1644 	vm_page_t m;
1645 
1646 	m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1647 	KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1648 	    m->object == object && m->pindex == pindex,
1649 	    ("vm_page_relookup: Invalid page %p", m));
1650 	return (m);
1651 }
1652 
1653 /*
1654  * This should only be used by lockless functions for releasing transient
1655  * incorrect acquires.  The page may have been freed after we acquired a
1656  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1657  * further to do.
1658  */
1659 static void
1660 vm_page_busy_release(vm_page_t m)
1661 {
1662 	u_int x;
1663 
1664 	x = vm_page_busy_fetch(m);
1665 	for (;;) {
1666 		if (x == VPB_FREED)
1667 			break;
1668 		if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1669 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1670 			    x - VPB_ONE_SHARER))
1671 				break;
1672 			continue;
1673 		}
1674 		KASSERT((x & VPB_BIT_SHARED) != 0 ||
1675 		    (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1676 		    ("vm_page_busy_release: %p xbusy not owned.", m));
1677 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1678 			continue;
1679 		if ((x & VPB_BIT_WAITERS) != 0)
1680 			wakeup(m);
1681 		break;
1682 	}
1683 }
1684 
1685 /*
1686  *	vm_page_find_least:
1687  *
1688  *	Returns the page associated with the object with least pindex
1689  *	greater than or equal to the parameter pindex, or NULL.
1690  *
1691  *	The object must be locked.
1692  */
1693 vm_page_t
1694 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1695 {
1696 	vm_page_t m;
1697 
1698 	VM_OBJECT_ASSERT_LOCKED(object);
1699 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1700 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1701 	return (m);
1702 }
1703 
1704 /*
1705  * Returns the given page's successor (by pindex) within the object if it is
1706  * resident; if none is found, NULL is returned.
1707  *
1708  * The object must be locked.
1709  */
1710 vm_page_t
1711 vm_page_next(vm_page_t m)
1712 {
1713 	vm_page_t next;
1714 
1715 	VM_OBJECT_ASSERT_LOCKED(m->object);
1716 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1717 		MPASS(next->object == m->object);
1718 		if (next->pindex != m->pindex + 1)
1719 			next = NULL;
1720 	}
1721 	return (next);
1722 }
1723 
1724 /*
1725  * Returns the given page's predecessor (by pindex) within the object if it is
1726  * resident; if none is found, NULL is returned.
1727  *
1728  * The object must be locked.
1729  */
1730 vm_page_t
1731 vm_page_prev(vm_page_t m)
1732 {
1733 	vm_page_t prev;
1734 
1735 	VM_OBJECT_ASSERT_LOCKED(m->object);
1736 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1737 		MPASS(prev->object == m->object);
1738 		if (prev->pindex != m->pindex - 1)
1739 			prev = NULL;
1740 	}
1741 	return (prev);
1742 }
1743 
1744 /*
1745  * Uses the page mnew as a replacement for an existing page at index
1746  * pindex which must be already present in the object.
1747  *
1748  * Both pages must be exclusively busied on enter.  The old page is
1749  * unbusied on exit.
1750  *
1751  * A return value of true means mold is now free.  If this is not the
1752  * final ref and the caller does not hold a wire reference it may not
1753  * continue to access the page.
1754  */
1755 static bool
1756 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1757     vm_page_t mold)
1758 {
1759 	vm_page_t mret __diagused;
1760 	bool dropped;
1761 
1762 	VM_OBJECT_ASSERT_WLOCKED(object);
1763 	vm_page_assert_xbusied(mold);
1764 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1765 	    ("vm_page_replace: page %p already in object", mnew));
1766 
1767 	/*
1768 	 * This function mostly follows vm_page_insert() and
1769 	 * vm_page_remove() without the radix, object count and vnode
1770 	 * dance.  Double check such functions for more comments.
1771 	 */
1772 
1773 	mnew->object = object;
1774 	mnew->pindex = pindex;
1775 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1776 	mret = vm_radix_replace(&object->rtree, mnew);
1777 	KASSERT(mret == mold,
1778 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1779 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
1780 	    (mnew->oflags & VPO_UNMANAGED),
1781 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
1782 
1783 	/* Keep the resident page list in sorted order. */
1784 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1785 	TAILQ_REMOVE(&object->memq, mold, listq);
1786 	mold->object = NULL;
1787 
1788 	/*
1789 	 * The object's resident_page_count does not change because we have
1790 	 * swapped one page for another, but the generation count should
1791 	 * change if the page is dirty.
1792 	 */
1793 	if (pmap_page_is_write_mapped(mnew))
1794 		vm_object_set_writeable_dirty(object);
1795 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1796 	vm_page_xunbusy(mold);
1797 
1798 	return (dropped);
1799 }
1800 
1801 void
1802 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1803     vm_page_t mold)
1804 {
1805 
1806 	vm_page_assert_xbusied(mnew);
1807 
1808 	if (vm_page_replace_hold(mnew, object, pindex, mold))
1809 		vm_page_free(mold);
1810 }
1811 
1812 /*
1813  *	vm_page_rename:
1814  *
1815  *	Move the given memory entry from its
1816  *	current object to the specified target object/offset.
1817  *
1818  *	Note: swap associated with the page must be invalidated by the move.  We
1819  *	      have to do this for several reasons:  (1) we aren't freeing the
1820  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1821  *	      moving the page from object A to B, and will then later move
1822  *	      the backing store from A to B and we can't have a conflict.
1823  *
1824  *	Note: we *always* dirty the page.  It is necessary both for the
1825  *	      fact that we moved it, and because we may be invalidating
1826  *	      swap.
1827  *
1828  *	The objects must be locked.
1829  */
1830 int
1831 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1832 {
1833 	vm_page_t mpred;
1834 	vm_pindex_t opidx;
1835 
1836 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1837 
1838 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1839 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1840 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1841 	    ("vm_page_rename: pindex already renamed"));
1842 
1843 	/*
1844 	 * Create a custom version of vm_page_insert() which does not depend
1845 	 * by m_prev and can cheat on the implementation aspects of the
1846 	 * function.
1847 	 */
1848 	opidx = m->pindex;
1849 	m->pindex = new_pindex;
1850 	if (vm_radix_insert(&new_object->rtree, m)) {
1851 		m->pindex = opidx;
1852 		return (1);
1853 	}
1854 
1855 	/*
1856 	 * The operation cannot fail anymore.  The removal must happen before
1857 	 * the listq iterator is tainted.
1858 	 */
1859 	m->pindex = opidx;
1860 	vm_page_object_remove(m);
1861 
1862 	/* Return back to the new pindex to complete vm_page_insert(). */
1863 	m->pindex = new_pindex;
1864 	m->object = new_object;
1865 
1866 	vm_page_insert_radixdone(m, new_object, mpred);
1867 	vm_page_dirty(m);
1868 	return (0);
1869 }
1870 
1871 /*
1872  *	vm_page_alloc:
1873  *
1874  *	Allocate and return a page that is associated with the specified
1875  *	object and offset pair.  By default, this page is exclusive busied.
1876  *
1877  *	The caller must always specify an allocation class.
1878  *
1879  *	allocation classes:
1880  *	VM_ALLOC_NORMAL		normal process request
1881  *	VM_ALLOC_SYSTEM		system *really* needs a page
1882  *	VM_ALLOC_INTERRUPT	interrupt time request
1883  *
1884  *	optional allocation flags:
1885  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1886  *				intends to allocate
1887  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1888  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1889  *	VM_ALLOC_SBUSY		shared busy the allocated page
1890  *	VM_ALLOC_WIRED		wire the allocated page
1891  *	VM_ALLOC_ZERO		prefer a zeroed page
1892  */
1893 vm_page_t
1894 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1895 {
1896 
1897 	return (vm_page_alloc_after(object, pindex, req,
1898 	    vm_radix_lookup_le(&object->rtree, pindex)));
1899 }
1900 
1901 vm_page_t
1902 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1903     int req)
1904 {
1905 
1906 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1907 	    vm_radix_lookup_le(&object->rtree, pindex)));
1908 }
1909 
1910 /*
1911  * Allocate a page in the specified object with the given page index.  To
1912  * optimize insertion of the page into the object, the caller must also specifiy
1913  * the resident page in the object with largest index smaller than the given
1914  * page index, or NULL if no such page exists.
1915  */
1916 vm_page_t
1917 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1918     int req, vm_page_t mpred)
1919 {
1920 	struct vm_domainset_iter di;
1921 	vm_page_t m;
1922 	int domain;
1923 
1924 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1925 	do {
1926 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1927 		    mpred);
1928 		if (m != NULL)
1929 			break;
1930 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1931 
1932 	return (m);
1933 }
1934 
1935 /*
1936  * Returns true if the number of free pages exceeds the minimum
1937  * for the request class and false otherwise.
1938  */
1939 static int
1940 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1941 {
1942 	u_int limit, old, new;
1943 
1944 	if (req_class == VM_ALLOC_INTERRUPT)
1945 		limit = 0;
1946 	else if (req_class == VM_ALLOC_SYSTEM)
1947 		limit = vmd->vmd_interrupt_free_min;
1948 	else
1949 		limit = vmd->vmd_free_reserved;
1950 
1951 	/*
1952 	 * Attempt to reserve the pages.  Fail if we're below the limit.
1953 	 */
1954 	limit += npages;
1955 	old = vmd->vmd_free_count;
1956 	do {
1957 		if (old < limit)
1958 			return (0);
1959 		new = old - npages;
1960 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1961 
1962 	/* Wake the page daemon if we've crossed the threshold. */
1963 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1964 		pagedaemon_wakeup(vmd->vmd_domain);
1965 
1966 	/* Only update bitsets on transitions. */
1967 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1968 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1969 		vm_domain_set(vmd);
1970 
1971 	return (1);
1972 }
1973 
1974 int
1975 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1976 {
1977 	int req_class;
1978 
1979 	/*
1980 	 * The page daemon is allowed to dig deeper into the free page list.
1981 	 */
1982 	req_class = req & VM_ALLOC_CLASS_MASK;
1983 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1984 		req_class = VM_ALLOC_SYSTEM;
1985 	return (_vm_domain_allocate(vmd, req_class, npages));
1986 }
1987 
1988 vm_page_t
1989 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1990     int req, vm_page_t mpred)
1991 {
1992 	struct vm_domain *vmd;
1993 	vm_page_t m;
1994 	int flags;
1995 
1996 #define	VPA_FLAGS	(VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |	\
1997 			 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY |		\
1998 			 VM_ALLOC_SBUSY | VM_ALLOC_WIRED |		\
1999 			 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
2000 	KASSERT((req & ~VPA_FLAGS) == 0,
2001 	    ("invalid request %#x", req));
2002 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2003 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2004 	    ("invalid request %#x", req));
2005 	KASSERT(mpred == NULL || mpred->pindex < pindex,
2006 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
2007 	    (uintmax_t)pindex));
2008 	VM_OBJECT_ASSERT_WLOCKED(object);
2009 
2010 	flags = 0;
2011 	m = NULL;
2012 again:
2013 #if VM_NRESERVLEVEL > 0
2014 	/*
2015 	 * Can we allocate the page from a reservation?
2016 	 */
2017 	if (vm_object_reserv(object) &&
2018 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2019 	    NULL) {
2020 		goto found;
2021 	}
2022 #endif
2023 	vmd = VM_DOMAIN(domain);
2024 	if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2025 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2026 		    M_NOWAIT | M_NOVM);
2027 		if (m != NULL) {
2028 			flags |= PG_PCPU_CACHE;
2029 			goto found;
2030 		}
2031 	}
2032 	if (vm_domain_allocate(vmd, req, 1)) {
2033 		/*
2034 		 * If not, allocate it from the free page queues.
2035 		 */
2036 		vm_domain_free_lock(vmd);
2037 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2038 		vm_domain_free_unlock(vmd);
2039 		if (m == NULL) {
2040 			vm_domain_freecnt_inc(vmd, 1);
2041 #if VM_NRESERVLEVEL > 0
2042 			if (vm_reserv_reclaim_inactive(domain))
2043 				goto again;
2044 #endif
2045 		}
2046 	}
2047 	if (m == NULL) {
2048 		/*
2049 		 * Not allocatable, give up.
2050 		 */
2051 		if (vm_domain_alloc_fail(vmd, object, req))
2052 			goto again;
2053 		return (NULL);
2054 	}
2055 
2056 	/*
2057 	 * At this point we had better have found a good page.
2058 	 */
2059 found:
2060 	vm_page_dequeue(m);
2061 	vm_page_alloc_check(m);
2062 
2063 	/*
2064 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2065 	 */
2066 	flags |= m->flags & PG_ZERO;
2067 	if ((req & VM_ALLOC_NODUMP) != 0)
2068 		flags |= PG_NODUMP;
2069 	m->flags = flags;
2070 	m->a.flags = 0;
2071 	m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2072 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2073 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2074 	else if ((req & VM_ALLOC_SBUSY) != 0)
2075 		m->busy_lock = VPB_SHARERS_WORD(1);
2076 	else
2077 		m->busy_lock = VPB_UNBUSIED;
2078 	if (req & VM_ALLOC_WIRED) {
2079 		vm_wire_add(1);
2080 		m->ref_count = 1;
2081 	}
2082 	m->a.act_count = 0;
2083 
2084 	if (vm_page_insert_after(m, object, pindex, mpred)) {
2085 		if (req & VM_ALLOC_WIRED) {
2086 			vm_wire_sub(1);
2087 			m->ref_count = 0;
2088 		}
2089 		KASSERT(m->object == NULL, ("page %p has object", m));
2090 		m->oflags = VPO_UNMANAGED;
2091 		m->busy_lock = VPB_UNBUSIED;
2092 		/* Don't change PG_ZERO. */
2093 		vm_page_free_toq(m);
2094 		if (req & VM_ALLOC_WAITFAIL) {
2095 			VM_OBJECT_WUNLOCK(object);
2096 			vm_radix_wait();
2097 			VM_OBJECT_WLOCK(object);
2098 		}
2099 		return (NULL);
2100 	}
2101 
2102 	/* Ignore device objects; the pager sets "memattr" for them. */
2103 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2104 	    (object->flags & OBJ_FICTITIOUS) == 0)
2105 		pmap_page_set_memattr(m, object->memattr);
2106 
2107 	return (m);
2108 }
2109 
2110 /*
2111  *	vm_page_alloc_contig:
2112  *
2113  *	Allocate a contiguous set of physical pages of the given size "npages"
2114  *	from the free lists.  All of the physical pages must be at or above
2115  *	the given physical address "low" and below the given physical address
2116  *	"high".  The given value "alignment" determines the alignment of the
2117  *	first physical page in the set.  If the given value "boundary" is
2118  *	non-zero, then the set of physical pages cannot cross any physical
2119  *	address boundary that is a multiple of that value.  Both "alignment"
2120  *	and "boundary" must be a power of two.
2121  *
2122  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2123  *	then the memory attribute setting for the physical pages is configured
2124  *	to the object's memory attribute setting.  Otherwise, the memory
2125  *	attribute setting for the physical pages is configured to "memattr",
2126  *	overriding the object's memory attribute setting.  However, if the
2127  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2128  *	memory attribute setting for the physical pages cannot be configured
2129  *	to VM_MEMATTR_DEFAULT.
2130  *
2131  *	The specified object may not contain fictitious pages.
2132  *
2133  *	The caller must always specify an allocation class.
2134  *
2135  *	allocation classes:
2136  *	VM_ALLOC_NORMAL		normal process request
2137  *	VM_ALLOC_SYSTEM		system *really* needs a page
2138  *	VM_ALLOC_INTERRUPT	interrupt time request
2139  *
2140  *	optional allocation flags:
2141  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2142  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2143  *	VM_ALLOC_SBUSY		shared busy the allocated page
2144  *	VM_ALLOC_WIRED		wire the allocated page
2145  *	VM_ALLOC_ZERO		prefer a zeroed page
2146  */
2147 vm_page_t
2148 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2149     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2150     vm_paddr_t boundary, vm_memattr_t memattr)
2151 {
2152 	struct vm_domainset_iter di;
2153 	vm_page_t m;
2154 	int domain;
2155 
2156 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2157 	do {
2158 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2159 		    npages, low, high, alignment, boundary, memattr);
2160 		if (m != NULL)
2161 			break;
2162 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2163 
2164 	return (m);
2165 }
2166 
2167 static vm_page_t
2168 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2169     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2170 {
2171 	struct vm_domain *vmd;
2172 	vm_page_t m_ret;
2173 
2174 	/*
2175 	 * Can we allocate the pages without the number of free pages falling
2176 	 * below the lower bound for the allocation class?
2177 	 */
2178 	vmd = VM_DOMAIN(domain);
2179 	if (!vm_domain_allocate(vmd, req, npages))
2180 		return (NULL);
2181 	/*
2182 	 * Try to allocate the pages from the free page queues.
2183 	 */
2184 	vm_domain_free_lock(vmd);
2185 	m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2186 	    alignment, boundary);
2187 	vm_domain_free_unlock(vmd);
2188 	if (m_ret != NULL)
2189 		return (m_ret);
2190 #if VM_NRESERVLEVEL > 0
2191 	/*
2192 	 * Try to break a reservation to allocate the pages.
2193 	 */
2194 	if ((req & VM_ALLOC_NORECLAIM) == 0) {
2195 		m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2196 	            high, alignment, boundary);
2197 		if (m_ret != NULL)
2198 			return (m_ret);
2199 	}
2200 #endif
2201 	vm_domain_freecnt_inc(vmd, npages);
2202 	return (NULL);
2203 }
2204 
2205 vm_page_t
2206 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2207     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2208     vm_paddr_t boundary, vm_memattr_t memattr)
2209 {
2210 	vm_page_t m, m_ret, mpred;
2211 	u_int busy_lock, flags, oflags;
2212 
2213 #define	VPAC_FLAGS	(VPA_FLAGS | VM_ALLOC_NORECLAIM)
2214 	KASSERT((req & ~VPAC_FLAGS) == 0,
2215 	    ("invalid request %#x", req));
2216 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2217 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2218 	    ("invalid request %#x", req));
2219 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2220 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2221 	    ("invalid request %#x", req));
2222 	VM_OBJECT_ASSERT_WLOCKED(object);
2223 	KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2224 	    ("vm_page_alloc_contig: object %p has fictitious pages",
2225 	    object));
2226 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2227 
2228 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
2229 	KASSERT(mpred == NULL || mpred->pindex != pindex,
2230 	    ("vm_page_alloc_contig: pindex already allocated"));
2231 	for (;;) {
2232 #if VM_NRESERVLEVEL > 0
2233 		/*
2234 		 * Can we allocate the pages from a reservation?
2235 		 */
2236 		if (vm_object_reserv(object) &&
2237 		    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2238 		    mpred, npages, low, high, alignment, boundary)) != NULL) {
2239 			break;
2240 		}
2241 #endif
2242 		if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2243 		    low, high, alignment, boundary)) != NULL)
2244 			break;
2245 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2246 			return (NULL);
2247 	}
2248 	for (m = m_ret; m < &m_ret[npages]; m++) {
2249 		vm_page_dequeue(m);
2250 		vm_page_alloc_check(m);
2251 	}
2252 
2253 	/*
2254 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2255 	 */
2256 	flags = PG_ZERO;
2257 	if ((req & VM_ALLOC_NODUMP) != 0)
2258 		flags |= PG_NODUMP;
2259 	oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2260 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2261 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2262 	else if ((req & VM_ALLOC_SBUSY) != 0)
2263 		busy_lock = VPB_SHARERS_WORD(1);
2264 	else
2265 		busy_lock = VPB_UNBUSIED;
2266 	if ((req & VM_ALLOC_WIRED) != 0)
2267 		vm_wire_add(npages);
2268 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2269 	    memattr == VM_MEMATTR_DEFAULT)
2270 		memattr = object->memattr;
2271 	for (m = m_ret; m < &m_ret[npages]; m++) {
2272 		m->a.flags = 0;
2273 		m->flags = (m->flags | PG_NODUMP) & flags;
2274 		m->busy_lock = busy_lock;
2275 		if ((req & VM_ALLOC_WIRED) != 0)
2276 			m->ref_count = 1;
2277 		m->a.act_count = 0;
2278 		m->oflags = oflags;
2279 		if (vm_page_insert_after(m, object, pindex, mpred)) {
2280 			if ((req & VM_ALLOC_WIRED) != 0)
2281 				vm_wire_sub(npages);
2282 			KASSERT(m->object == NULL,
2283 			    ("page %p has object", m));
2284 			mpred = m;
2285 			for (m = m_ret; m < &m_ret[npages]; m++) {
2286 				if (m <= mpred &&
2287 				    (req & VM_ALLOC_WIRED) != 0)
2288 					m->ref_count = 0;
2289 				m->oflags = VPO_UNMANAGED;
2290 				m->busy_lock = VPB_UNBUSIED;
2291 				/* Don't change PG_ZERO. */
2292 				vm_page_free_toq(m);
2293 			}
2294 			if (req & VM_ALLOC_WAITFAIL) {
2295 				VM_OBJECT_WUNLOCK(object);
2296 				vm_radix_wait();
2297 				VM_OBJECT_WLOCK(object);
2298 			}
2299 			return (NULL);
2300 		}
2301 		mpred = m;
2302 		if (memattr != VM_MEMATTR_DEFAULT)
2303 			pmap_page_set_memattr(m, memattr);
2304 		pindex++;
2305 	}
2306 	return (m_ret);
2307 }
2308 
2309 /*
2310  * Allocate a physical page that is not intended to be inserted into a VM
2311  * object.  If the "freelist" parameter is not equal to VM_NFREELIST, then only
2312  * pages from the specified vm_phys freelist will be returned.
2313  */
2314 static __always_inline vm_page_t
2315 _vm_page_alloc_noobj_domain(int domain, const int freelist, int req)
2316 {
2317 	struct vm_domain *vmd;
2318 	vm_page_t m;
2319 	int flags;
2320 
2321 #define	VPAN_FLAGS	(VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |      \
2322 			 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |		\
2323 			 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED |		\
2324 			 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
2325 	KASSERT((req & ~VPAN_FLAGS) == 0,
2326 	    ("invalid request %#x", req));
2327 
2328 	flags = (req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0;
2329 	vmd = VM_DOMAIN(domain);
2330 again:
2331 	if (freelist == VM_NFREELIST &&
2332 	    vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2333 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2334 		    M_NOWAIT | M_NOVM);
2335 		if (m != NULL) {
2336 			flags |= PG_PCPU_CACHE;
2337 			goto found;
2338 		}
2339 	}
2340 
2341 	if (vm_domain_allocate(vmd, req, 1)) {
2342 		vm_domain_free_lock(vmd);
2343 		if (freelist == VM_NFREELIST)
2344 			m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2345 		else
2346 			m = vm_phys_alloc_freelist_pages(domain, freelist,
2347 			    VM_FREEPOOL_DIRECT, 0);
2348 		vm_domain_free_unlock(vmd);
2349 		if (m == NULL) {
2350 			vm_domain_freecnt_inc(vmd, 1);
2351 #if VM_NRESERVLEVEL > 0
2352 			if (freelist == VM_NFREELIST &&
2353 			    vm_reserv_reclaim_inactive(domain))
2354 				goto again;
2355 #endif
2356 		}
2357 	}
2358 	if (m == NULL) {
2359 		if (vm_domain_alloc_fail(vmd, NULL, req))
2360 			goto again;
2361 		return (NULL);
2362 	}
2363 
2364 found:
2365 	vm_page_dequeue(m);
2366 	vm_page_alloc_check(m);
2367 
2368 	/*
2369 	 * Consumers should not rely on a useful default pindex value.
2370 	 */
2371 	m->pindex = 0xdeadc0dedeadc0de;
2372 	m->flags = (m->flags & PG_ZERO) | flags;
2373 	m->a.flags = 0;
2374 	m->oflags = VPO_UNMANAGED;
2375 	m->busy_lock = VPB_UNBUSIED;
2376 	if ((req & VM_ALLOC_WIRED) != 0) {
2377 		vm_wire_add(1);
2378 		m->ref_count = 1;
2379 	}
2380 
2381 	if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2382 		pmap_zero_page(m);
2383 
2384 	return (m);
2385 }
2386 
2387 vm_page_t
2388 vm_page_alloc_freelist(int freelist, int req)
2389 {
2390 	struct vm_domainset_iter di;
2391 	vm_page_t m;
2392 	int domain;
2393 
2394 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2395 	do {
2396 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2397 		if (m != NULL)
2398 			break;
2399 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2400 
2401 	return (m);
2402 }
2403 
2404 vm_page_t
2405 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2406 {
2407 	KASSERT(freelist >= 0 && freelist < VM_NFREELIST,
2408 	    ("%s: invalid freelist %d", __func__, freelist));
2409 
2410 	return (_vm_page_alloc_noobj_domain(domain, freelist, req));
2411 }
2412 
2413 vm_page_t
2414 vm_page_alloc_noobj(int req)
2415 {
2416 	struct vm_domainset_iter di;
2417 	vm_page_t m;
2418 	int domain;
2419 
2420 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2421 	do {
2422 		m = vm_page_alloc_noobj_domain(domain, req);
2423 		if (m != NULL)
2424 			break;
2425 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2426 
2427 	return (m);
2428 }
2429 
2430 vm_page_t
2431 vm_page_alloc_noobj_domain(int domain, int req)
2432 {
2433 	return (_vm_page_alloc_noobj_domain(domain, VM_NFREELIST, req));
2434 }
2435 
2436 vm_page_t
2437 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2438     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2439     vm_memattr_t memattr)
2440 {
2441 	struct vm_domainset_iter di;
2442 	vm_page_t m;
2443 	int domain;
2444 
2445 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2446 	do {
2447 		m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2448 		    high, alignment, boundary, memattr);
2449 		if (m != NULL)
2450 			break;
2451 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2452 
2453 	return (m);
2454 }
2455 
2456 vm_page_t
2457 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2458     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2459     vm_memattr_t memattr)
2460 {
2461 	vm_page_t m, m_ret;
2462 	u_int flags;
2463 
2464 #define	VPANC_FLAGS	(VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2465 	KASSERT((req & ~VPANC_FLAGS) == 0,
2466 	    ("invalid request %#x", req));
2467 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2468 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2469 	    ("invalid request %#x", req));
2470 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2471 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2472 	    ("invalid request %#x", req));
2473 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2474 
2475 	while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2476 	    low, high, alignment, boundary)) == NULL) {
2477 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2478 			return (NULL);
2479 	}
2480 
2481 	/*
2482 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2483 	 */
2484 	flags = PG_ZERO;
2485 	if ((req & VM_ALLOC_NODUMP) != 0)
2486 		flags |= PG_NODUMP;
2487 	if ((req & VM_ALLOC_WIRED) != 0)
2488 		vm_wire_add(npages);
2489 	for (m = m_ret; m < &m_ret[npages]; m++) {
2490 		vm_page_dequeue(m);
2491 		vm_page_alloc_check(m);
2492 
2493 		/*
2494 		 * Consumers should not rely on a useful default pindex value.
2495 		 */
2496 		m->pindex = 0xdeadc0dedeadc0de;
2497 		m->a.flags = 0;
2498 		m->flags = (m->flags | PG_NODUMP) & flags;
2499 		m->busy_lock = VPB_UNBUSIED;
2500 		if ((req & VM_ALLOC_WIRED) != 0)
2501 			m->ref_count = 1;
2502 		m->a.act_count = 0;
2503 		m->oflags = VPO_UNMANAGED;
2504 
2505 		/*
2506 		 * Zero the page before updating any mappings since the page is
2507 		 * not yet shared with any devices which might require the
2508 		 * non-default memory attribute.  pmap_page_set_memattr()
2509 		 * flushes data caches before returning.
2510 		 */
2511 		if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2512 			pmap_zero_page(m);
2513 		if (memattr != VM_MEMATTR_DEFAULT)
2514 			pmap_page_set_memattr(m, memattr);
2515 	}
2516 	return (m_ret);
2517 }
2518 
2519 /*
2520  * Check a page that has been freshly dequeued from a freelist.
2521  */
2522 static void
2523 vm_page_alloc_check(vm_page_t m)
2524 {
2525 
2526 	KASSERT(m->object == NULL, ("page %p has object", m));
2527 	KASSERT(m->a.queue == PQ_NONE &&
2528 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2529 	    ("page %p has unexpected queue %d, flags %#x",
2530 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2531 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2532 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2533 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2534 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2535 	    ("page %p has unexpected memattr %d",
2536 	    m, pmap_page_get_memattr(m)));
2537 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2538 	pmap_vm_page_alloc_check(m);
2539 }
2540 
2541 static int
2542 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2543 {
2544 	struct vm_domain *vmd;
2545 	struct vm_pgcache *pgcache;
2546 	int i;
2547 
2548 	pgcache = arg;
2549 	vmd = VM_DOMAIN(pgcache->domain);
2550 
2551 	/*
2552 	 * The page daemon should avoid creating extra memory pressure since its
2553 	 * main purpose is to replenish the store of free pages.
2554 	 */
2555 	if (vmd->vmd_severeset || curproc == pageproc ||
2556 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2557 		return (0);
2558 	domain = vmd->vmd_domain;
2559 	vm_domain_free_lock(vmd);
2560 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2561 	    (vm_page_t *)store);
2562 	vm_domain_free_unlock(vmd);
2563 	if (cnt != i)
2564 		vm_domain_freecnt_inc(vmd, cnt - i);
2565 
2566 	return (i);
2567 }
2568 
2569 static void
2570 vm_page_zone_release(void *arg, void **store, int cnt)
2571 {
2572 	struct vm_domain *vmd;
2573 	struct vm_pgcache *pgcache;
2574 	vm_page_t m;
2575 	int i;
2576 
2577 	pgcache = arg;
2578 	vmd = VM_DOMAIN(pgcache->domain);
2579 	vm_domain_free_lock(vmd);
2580 	for (i = 0; i < cnt; i++) {
2581 		m = (vm_page_t)store[i];
2582 		vm_phys_free_pages(m, 0);
2583 	}
2584 	vm_domain_free_unlock(vmd);
2585 	vm_domain_freecnt_inc(vmd, cnt);
2586 }
2587 
2588 #define	VPSC_ANY	0	/* No restrictions. */
2589 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2590 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2591 
2592 /*
2593  *	vm_page_scan_contig:
2594  *
2595  *	Scan vm_page_array[] between the specified entries "m_start" and
2596  *	"m_end" for a run of contiguous physical pages that satisfy the
2597  *	specified conditions, and return the lowest page in the run.  The
2598  *	specified "alignment" determines the alignment of the lowest physical
2599  *	page in the run.  If the specified "boundary" is non-zero, then the
2600  *	run of physical pages cannot span a physical address that is a
2601  *	multiple of "boundary".
2602  *
2603  *	"m_end" is never dereferenced, so it need not point to a vm_page
2604  *	structure within vm_page_array[].
2605  *
2606  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2607  *	span a hole (or discontiguity) in the physical address space.  Both
2608  *	"alignment" and "boundary" must be a power of two.
2609  */
2610 vm_page_t
2611 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2612     u_long alignment, vm_paddr_t boundary, int options)
2613 {
2614 	vm_object_t object;
2615 	vm_paddr_t pa;
2616 	vm_page_t m, m_run;
2617 #if VM_NRESERVLEVEL > 0
2618 	int level;
2619 #endif
2620 	int m_inc, order, run_ext, run_len;
2621 
2622 	KASSERT(npages > 0, ("npages is 0"));
2623 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2624 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2625 	m_run = NULL;
2626 	run_len = 0;
2627 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2628 		KASSERT((m->flags & PG_MARKER) == 0,
2629 		    ("page %p is PG_MARKER", m));
2630 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2631 		    ("fictitious page %p has invalid ref count", m));
2632 
2633 		/*
2634 		 * If the current page would be the start of a run, check its
2635 		 * physical address against the end, alignment, and boundary
2636 		 * conditions.  If it doesn't satisfy these conditions, either
2637 		 * terminate the scan or advance to the next page that
2638 		 * satisfies the failed condition.
2639 		 */
2640 		if (run_len == 0) {
2641 			KASSERT(m_run == NULL, ("m_run != NULL"));
2642 			if (m + npages > m_end)
2643 				break;
2644 			pa = VM_PAGE_TO_PHYS(m);
2645 			if (!vm_addr_align_ok(pa, alignment)) {
2646 				m_inc = atop(roundup2(pa, alignment) - pa);
2647 				continue;
2648 			}
2649 			if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2650 				m_inc = atop(roundup2(pa, boundary) - pa);
2651 				continue;
2652 			}
2653 		} else
2654 			KASSERT(m_run != NULL, ("m_run == NULL"));
2655 
2656 retry:
2657 		m_inc = 1;
2658 		if (vm_page_wired(m))
2659 			run_ext = 0;
2660 #if VM_NRESERVLEVEL > 0
2661 		else if ((level = vm_reserv_level(m)) >= 0 &&
2662 		    (options & VPSC_NORESERV) != 0) {
2663 			run_ext = 0;
2664 			/* Advance to the end of the reservation. */
2665 			pa = VM_PAGE_TO_PHYS(m);
2666 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2667 			    pa);
2668 		}
2669 #endif
2670 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2671 			/*
2672 			 * The page is considered eligible for relocation if
2673 			 * and only if it could be laundered or reclaimed by
2674 			 * the page daemon.
2675 			 */
2676 			VM_OBJECT_RLOCK(object);
2677 			if (object != m->object) {
2678 				VM_OBJECT_RUNLOCK(object);
2679 				goto retry;
2680 			}
2681 			/* Don't care: PG_NODUMP, PG_ZERO. */
2682 			if ((object->flags & OBJ_SWAP) == 0 &&
2683 			    object->type != OBJT_VNODE) {
2684 				run_ext = 0;
2685 #if VM_NRESERVLEVEL > 0
2686 			} else if ((options & VPSC_NOSUPER) != 0 &&
2687 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2688 				run_ext = 0;
2689 				/* Advance to the end of the superpage. */
2690 				pa = VM_PAGE_TO_PHYS(m);
2691 				m_inc = atop(roundup2(pa + 1,
2692 				    vm_reserv_size(level)) - pa);
2693 #endif
2694 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2695 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2696 				/*
2697 				 * The page is allocated but eligible for
2698 				 * relocation.  Extend the current run by one
2699 				 * page.
2700 				 */
2701 				KASSERT(pmap_page_get_memattr(m) ==
2702 				    VM_MEMATTR_DEFAULT,
2703 				    ("page %p has an unexpected memattr", m));
2704 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2705 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2706 				    ("page %p has unexpected oflags", m));
2707 				/* Don't care: PGA_NOSYNC. */
2708 				run_ext = 1;
2709 			} else
2710 				run_ext = 0;
2711 			VM_OBJECT_RUNLOCK(object);
2712 #if VM_NRESERVLEVEL > 0
2713 		} else if (level >= 0) {
2714 			/*
2715 			 * The page is reserved but not yet allocated.  In
2716 			 * other words, it is still free.  Extend the current
2717 			 * run by one page.
2718 			 */
2719 			run_ext = 1;
2720 #endif
2721 		} else if ((order = m->order) < VM_NFREEORDER) {
2722 			/*
2723 			 * The page is enqueued in the physical memory
2724 			 * allocator's free page queues.  Moreover, it is the
2725 			 * first page in a power-of-two-sized run of
2726 			 * contiguous free pages.  Add these pages to the end
2727 			 * of the current run, and jump ahead.
2728 			 */
2729 			run_ext = 1 << order;
2730 			m_inc = 1 << order;
2731 		} else {
2732 			/*
2733 			 * Skip the page for one of the following reasons: (1)
2734 			 * It is enqueued in the physical memory allocator's
2735 			 * free page queues.  However, it is not the first
2736 			 * page in a run of contiguous free pages.  (This case
2737 			 * rarely occurs because the scan is performed in
2738 			 * ascending order.) (2) It is not reserved, and it is
2739 			 * transitioning from free to allocated.  (Conversely,
2740 			 * the transition from allocated to free for managed
2741 			 * pages is blocked by the page busy lock.) (3) It is
2742 			 * allocated but not contained by an object and not
2743 			 * wired, e.g., allocated by Xen's balloon driver.
2744 			 */
2745 			run_ext = 0;
2746 		}
2747 
2748 		/*
2749 		 * Extend or reset the current run of pages.
2750 		 */
2751 		if (run_ext > 0) {
2752 			if (run_len == 0)
2753 				m_run = m;
2754 			run_len += run_ext;
2755 		} else {
2756 			if (run_len > 0) {
2757 				m_run = NULL;
2758 				run_len = 0;
2759 			}
2760 		}
2761 	}
2762 	if (run_len >= npages)
2763 		return (m_run);
2764 	return (NULL);
2765 }
2766 
2767 /*
2768  *	vm_page_reclaim_run:
2769  *
2770  *	Try to relocate each of the allocated virtual pages within the
2771  *	specified run of physical pages to a new physical address.  Free the
2772  *	physical pages underlying the relocated virtual pages.  A virtual page
2773  *	is relocatable if and only if it could be laundered or reclaimed by
2774  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2775  *	physical address above "high".
2776  *
2777  *	Returns 0 if every physical page within the run was already free or
2778  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2779  *	value indicating why the last attempt to relocate a virtual page was
2780  *	unsuccessful.
2781  *
2782  *	"req_class" must be an allocation class.
2783  */
2784 static int
2785 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2786     vm_paddr_t high)
2787 {
2788 	struct vm_domain *vmd;
2789 	struct spglist free;
2790 	vm_object_t object;
2791 	vm_paddr_t pa;
2792 	vm_page_t m, m_end, m_new;
2793 	int error, order, req;
2794 
2795 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2796 	    ("req_class is not an allocation class"));
2797 	SLIST_INIT(&free);
2798 	error = 0;
2799 	m = m_run;
2800 	m_end = m_run + npages;
2801 	for (; error == 0 && m < m_end; m++) {
2802 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2803 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2804 
2805 		/*
2806 		 * Racily check for wirings.  Races are handled once the object
2807 		 * lock is held and the page is unmapped.
2808 		 */
2809 		if (vm_page_wired(m))
2810 			error = EBUSY;
2811 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2812 			/*
2813 			 * The page is relocated if and only if it could be
2814 			 * laundered or reclaimed by the page daemon.
2815 			 */
2816 			VM_OBJECT_WLOCK(object);
2817 			/* Don't care: PG_NODUMP, PG_ZERO. */
2818 			if (m->object != object ||
2819 			    ((object->flags & OBJ_SWAP) == 0 &&
2820 			    object->type != OBJT_VNODE))
2821 				error = EINVAL;
2822 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2823 				error = EINVAL;
2824 			else if (vm_page_queue(m) != PQ_NONE &&
2825 			    vm_page_tryxbusy(m) != 0) {
2826 				if (vm_page_wired(m)) {
2827 					vm_page_xunbusy(m);
2828 					error = EBUSY;
2829 					goto unlock;
2830 				}
2831 				KASSERT(pmap_page_get_memattr(m) ==
2832 				    VM_MEMATTR_DEFAULT,
2833 				    ("page %p has an unexpected memattr", m));
2834 				KASSERT(m->oflags == 0,
2835 				    ("page %p has unexpected oflags", m));
2836 				/* Don't care: PGA_NOSYNC. */
2837 				if (!vm_page_none_valid(m)) {
2838 					/*
2839 					 * First, try to allocate a new page
2840 					 * that is above "high".  Failing
2841 					 * that, try to allocate a new page
2842 					 * that is below "m_run".  Allocate
2843 					 * the new page between the end of
2844 					 * "m_run" and "high" only as a last
2845 					 * resort.
2846 					 */
2847 					req = req_class;
2848 					if ((m->flags & PG_NODUMP) != 0)
2849 						req |= VM_ALLOC_NODUMP;
2850 					if (trunc_page(high) !=
2851 					    ~(vm_paddr_t)PAGE_MASK) {
2852 						m_new =
2853 						    vm_page_alloc_noobj_contig(
2854 						    req, 1, round_page(high),
2855 						    ~(vm_paddr_t)0, PAGE_SIZE,
2856 						    0, VM_MEMATTR_DEFAULT);
2857 					} else
2858 						m_new = NULL;
2859 					if (m_new == NULL) {
2860 						pa = VM_PAGE_TO_PHYS(m_run);
2861 						m_new =
2862 						    vm_page_alloc_noobj_contig(
2863 						    req, 1, 0, pa - 1,
2864 						    PAGE_SIZE, 0,
2865 						    VM_MEMATTR_DEFAULT);
2866 					}
2867 					if (m_new == NULL) {
2868 						pa += ptoa(npages);
2869 						m_new =
2870 						    vm_page_alloc_noobj_contig(
2871 						    req, 1, pa, high, PAGE_SIZE,
2872 						    0, VM_MEMATTR_DEFAULT);
2873 					}
2874 					if (m_new == NULL) {
2875 						vm_page_xunbusy(m);
2876 						error = ENOMEM;
2877 						goto unlock;
2878 					}
2879 
2880 					/*
2881 					 * Unmap the page and check for new
2882 					 * wirings that may have been acquired
2883 					 * through a pmap lookup.
2884 					 */
2885 					if (object->ref_count != 0 &&
2886 					    !vm_page_try_remove_all(m)) {
2887 						vm_page_xunbusy(m);
2888 						vm_page_free(m_new);
2889 						error = EBUSY;
2890 						goto unlock;
2891 					}
2892 
2893 					/*
2894 					 * Replace "m" with the new page.  For
2895 					 * vm_page_replace(), "m" must be busy
2896 					 * and dequeued.  Finally, change "m"
2897 					 * as if vm_page_free() was called.
2898 					 */
2899 					m_new->a.flags = m->a.flags &
2900 					    ~PGA_QUEUE_STATE_MASK;
2901 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2902 					    ("page %p is managed", m_new));
2903 					m_new->oflags = 0;
2904 					pmap_copy_page(m, m_new);
2905 					m_new->valid = m->valid;
2906 					m_new->dirty = m->dirty;
2907 					m->flags &= ~PG_ZERO;
2908 					vm_page_dequeue(m);
2909 					if (vm_page_replace_hold(m_new, object,
2910 					    m->pindex, m) &&
2911 					    vm_page_free_prep(m))
2912 						SLIST_INSERT_HEAD(&free, m,
2913 						    plinks.s.ss);
2914 
2915 					/*
2916 					 * The new page must be deactivated
2917 					 * before the object is unlocked.
2918 					 */
2919 					vm_page_deactivate(m_new);
2920 				} else {
2921 					m->flags &= ~PG_ZERO;
2922 					vm_page_dequeue(m);
2923 					if (vm_page_free_prep(m))
2924 						SLIST_INSERT_HEAD(&free, m,
2925 						    plinks.s.ss);
2926 					KASSERT(m->dirty == 0,
2927 					    ("page %p is dirty", m));
2928 				}
2929 			} else
2930 				error = EBUSY;
2931 unlock:
2932 			VM_OBJECT_WUNLOCK(object);
2933 		} else {
2934 			MPASS(vm_page_domain(m) == domain);
2935 			vmd = VM_DOMAIN(domain);
2936 			vm_domain_free_lock(vmd);
2937 			order = m->order;
2938 			if (order < VM_NFREEORDER) {
2939 				/*
2940 				 * The page is enqueued in the physical memory
2941 				 * allocator's free page queues.  Moreover, it
2942 				 * is the first page in a power-of-two-sized
2943 				 * run of contiguous free pages.  Jump ahead
2944 				 * to the last page within that run, and
2945 				 * continue from there.
2946 				 */
2947 				m += (1 << order) - 1;
2948 			}
2949 #if VM_NRESERVLEVEL > 0
2950 			else if (vm_reserv_is_page_free(m))
2951 				order = 0;
2952 #endif
2953 			vm_domain_free_unlock(vmd);
2954 			if (order == VM_NFREEORDER)
2955 				error = EINVAL;
2956 		}
2957 	}
2958 	if ((m = SLIST_FIRST(&free)) != NULL) {
2959 		int cnt;
2960 
2961 		vmd = VM_DOMAIN(domain);
2962 		cnt = 0;
2963 		vm_domain_free_lock(vmd);
2964 		do {
2965 			MPASS(vm_page_domain(m) == domain);
2966 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2967 			vm_phys_free_pages(m, 0);
2968 			cnt++;
2969 		} while ((m = SLIST_FIRST(&free)) != NULL);
2970 		vm_domain_free_unlock(vmd);
2971 		vm_domain_freecnt_inc(vmd, cnt);
2972 	}
2973 	return (error);
2974 }
2975 
2976 #define	NRUNS	16
2977 
2978 CTASSERT(powerof2(NRUNS));
2979 
2980 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2981 
2982 #define	MIN_RECLAIM	8
2983 
2984 /*
2985  *	vm_page_reclaim_contig:
2986  *
2987  *	Reclaim allocated, contiguous physical memory satisfying the specified
2988  *	conditions by relocating the virtual pages using that physical memory.
2989  *	Returns true if reclamation is successful and false otherwise.  Since
2990  *	relocation requires the allocation of physical pages, reclamation may
2991  *	fail due to a shortage of free pages.  When reclamation fails, callers
2992  *	are expected to perform vm_wait() before retrying a failed allocation
2993  *	operation, e.g., vm_page_alloc_contig().
2994  *
2995  *	The caller must always specify an allocation class through "req".
2996  *
2997  *	allocation classes:
2998  *	VM_ALLOC_NORMAL		normal process request
2999  *	VM_ALLOC_SYSTEM		system *really* needs a page
3000  *	VM_ALLOC_INTERRUPT	interrupt time request
3001  *
3002  *	The optional allocation flags are ignored.
3003  *
3004  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
3005  *	must be a power of two.
3006  */
3007 bool
3008 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3009     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3010 {
3011 	struct vm_domain *vmd;
3012 	vm_paddr_t curr_low;
3013 	vm_page_t m_run, m_runs[NRUNS];
3014 	u_long count, minalign, reclaimed;
3015 	int error, i, options, req_class;
3016 
3017 	KASSERT(npages > 0, ("npages is 0"));
3018 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3019 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3020 
3021 	/*
3022 	 * The caller will attempt an allocation after some runs have been
3023 	 * reclaimed and added to the vm_phys buddy lists.  Due to limitations
3024 	 * of vm_phys_alloc_contig(), round up the requested length to the next
3025 	 * power of two or maximum chunk size, and ensure that each run is
3026 	 * suitably aligned.
3027 	 */
3028 	minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3029 	npages = roundup2(npages, minalign);
3030 	if (alignment < ptoa(minalign))
3031 		alignment = ptoa(minalign);
3032 
3033 	/*
3034 	 * The page daemon is allowed to dig deeper into the free page list.
3035 	 */
3036 	req_class = req & VM_ALLOC_CLASS_MASK;
3037 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3038 		req_class = VM_ALLOC_SYSTEM;
3039 
3040 	/*
3041 	 * Return if the number of free pages cannot satisfy the requested
3042 	 * allocation.
3043 	 */
3044 	vmd = VM_DOMAIN(domain);
3045 	count = vmd->vmd_free_count;
3046 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
3047 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3048 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
3049 		return (false);
3050 
3051 	/*
3052 	 * Scan up to three times, relaxing the restrictions ("options") on
3053 	 * the reclamation of reservations and superpages each time.
3054 	 */
3055 	for (options = VPSC_NORESERV;;) {
3056 		/*
3057 		 * Find the highest runs that satisfy the given constraints
3058 		 * and restrictions, and record them in "m_runs".
3059 		 */
3060 		curr_low = low;
3061 		count = 0;
3062 		for (;;) {
3063 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
3064 			    high, alignment, boundary, options);
3065 			if (m_run == NULL)
3066 				break;
3067 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
3068 			m_runs[RUN_INDEX(count)] = m_run;
3069 			count++;
3070 		}
3071 
3072 		/*
3073 		 * Reclaim the highest runs in LIFO (descending) order until
3074 		 * the number of reclaimed pages, "reclaimed", is at least
3075 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
3076 		 * reclamation is idempotent, and runs will (likely) recur
3077 		 * from one scan to the next as restrictions are relaxed.
3078 		 */
3079 		reclaimed = 0;
3080 		for (i = 0; count > 0 && i < NRUNS; i++) {
3081 			count--;
3082 			m_run = m_runs[RUN_INDEX(count)];
3083 			error = vm_page_reclaim_run(req_class, domain, npages,
3084 			    m_run, high);
3085 			if (error == 0) {
3086 				reclaimed += npages;
3087 				if (reclaimed >= MIN_RECLAIM)
3088 					return (true);
3089 			}
3090 		}
3091 
3092 		/*
3093 		 * Either relax the restrictions on the next scan or return if
3094 		 * the last scan had no restrictions.
3095 		 */
3096 		if (options == VPSC_NORESERV)
3097 			options = VPSC_NOSUPER;
3098 		else if (options == VPSC_NOSUPER)
3099 			options = VPSC_ANY;
3100 		else if (options == VPSC_ANY)
3101 			return (reclaimed != 0);
3102 	}
3103 }
3104 
3105 bool
3106 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3107     u_long alignment, vm_paddr_t boundary)
3108 {
3109 	struct vm_domainset_iter di;
3110 	int domain;
3111 	bool ret;
3112 
3113 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3114 	do {
3115 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3116 		    high, alignment, boundary);
3117 		if (ret)
3118 			break;
3119 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3120 
3121 	return (ret);
3122 }
3123 
3124 /*
3125  * Set the domain in the appropriate page level domainset.
3126  */
3127 void
3128 vm_domain_set(struct vm_domain *vmd)
3129 {
3130 
3131 	mtx_lock(&vm_domainset_lock);
3132 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3133 		vmd->vmd_minset = 1;
3134 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3135 	}
3136 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3137 		vmd->vmd_severeset = 1;
3138 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3139 	}
3140 	mtx_unlock(&vm_domainset_lock);
3141 }
3142 
3143 /*
3144  * Clear the domain from the appropriate page level domainset.
3145  */
3146 void
3147 vm_domain_clear(struct vm_domain *vmd)
3148 {
3149 
3150 	mtx_lock(&vm_domainset_lock);
3151 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3152 		vmd->vmd_minset = 0;
3153 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3154 		if (vm_min_waiters != 0) {
3155 			vm_min_waiters = 0;
3156 			wakeup(&vm_min_domains);
3157 		}
3158 	}
3159 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3160 		vmd->vmd_severeset = 0;
3161 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3162 		if (vm_severe_waiters != 0) {
3163 			vm_severe_waiters = 0;
3164 			wakeup(&vm_severe_domains);
3165 		}
3166 	}
3167 
3168 	/*
3169 	 * If pageout daemon needs pages, then tell it that there are
3170 	 * some free.
3171 	 */
3172 	if (vmd->vmd_pageout_pages_needed &&
3173 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3174 		wakeup(&vmd->vmd_pageout_pages_needed);
3175 		vmd->vmd_pageout_pages_needed = 0;
3176 	}
3177 
3178 	/* See comments in vm_wait_doms(). */
3179 	if (vm_pageproc_waiters) {
3180 		vm_pageproc_waiters = 0;
3181 		wakeup(&vm_pageproc_waiters);
3182 	}
3183 	mtx_unlock(&vm_domainset_lock);
3184 }
3185 
3186 /*
3187  * Wait for free pages to exceed the min threshold globally.
3188  */
3189 void
3190 vm_wait_min(void)
3191 {
3192 
3193 	mtx_lock(&vm_domainset_lock);
3194 	while (vm_page_count_min()) {
3195 		vm_min_waiters++;
3196 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3197 	}
3198 	mtx_unlock(&vm_domainset_lock);
3199 }
3200 
3201 /*
3202  * Wait for free pages to exceed the severe threshold globally.
3203  */
3204 void
3205 vm_wait_severe(void)
3206 {
3207 
3208 	mtx_lock(&vm_domainset_lock);
3209 	while (vm_page_count_severe()) {
3210 		vm_severe_waiters++;
3211 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3212 		    "vmwait", 0);
3213 	}
3214 	mtx_unlock(&vm_domainset_lock);
3215 }
3216 
3217 u_int
3218 vm_wait_count(void)
3219 {
3220 
3221 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3222 }
3223 
3224 int
3225 vm_wait_doms(const domainset_t *wdoms, int mflags)
3226 {
3227 	int error;
3228 
3229 	error = 0;
3230 
3231 	/*
3232 	 * We use racey wakeup synchronization to avoid expensive global
3233 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3234 	 * To handle this, we only sleep for one tick in this instance.  It
3235 	 * is expected that most allocations for the pageproc will come from
3236 	 * kmem or vm_page_grab* which will use the more specific and
3237 	 * race-free vm_wait_domain().
3238 	 */
3239 	if (curproc == pageproc) {
3240 		mtx_lock(&vm_domainset_lock);
3241 		vm_pageproc_waiters++;
3242 		error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3243 		    PVM | PDROP | mflags, "pageprocwait", 1);
3244 	} else {
3245 		/*
3246 		 * XXX Ideally we would wait only until the allocation could
3247 		 * be satisfied.  This condition can cause new allocators to
3248 		 * consume all freed pages while old allocators wait.
3249 		 */
3250 		mtx_lock(&vm_domainset_lock);
3251 		if (vm_page_count_min_set(wdoms)) {
3252 			if (pageproc == NULL)
3253 				panic("vm_wait in early boot");
3254 			vm_min_waiters++;
3255 			error = msleep(&vm_min_domains, &vm_domainset_lock,
3256 			    PVM | PDROP | mflags, "vmwait", 0);
3257 		} else
3258 			mtx_unlock(&vm_domainset_lock);
3259 	}
3260 	return (error);
3261 }
3262 
3263 /*
3264  *	vm_wait_domain:
3265  *
3266  *	Sleep until free pages are available for allocation.
3267  *	- Called in various places after failed memory allocations.
3268  */
3269 void
3270 vm_wait_domain(int domain)
3271 {
3272 	struct vm_domain *vmd;
3273 	domainset_t wdom;
3274 
3275 	vmd = VM_DOMAIN(domain);
3276 	vm_domain_free_assert_unlocked(vmd);
3277 
3278 	if (curproc == pageproc) {
3279 		mtx_lock(&vm_domainset_lock);
3280 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3281 			vmd->vmd_pageout_pages_needed = 1;
3282 			msleep(&vmd->vmd_pageout_pages_needed,
3283 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3284 		} else
3285 			mtx_unlock(&vm_domainset_lock);
3286 	} else {
3287 		DOMAINSET_ZERO(&wdom);
3288 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3289 		vm_wait_doms(&wdom, 0);
3290 	}
3291 }
3292 
3293 static int
3294 vm_wait_flags(vm_object_t obj, int mflags)
3295 {
3296 	struct domainset *d;
3297 
3298 	d = NULL;
3299 
3300 	/*
3301 	 * Carefully fetch pointers only once: the struct domainset
3302 	 * itself is ummutable but the pointer might change.
3303 	 */
3304 	if (obj != NULL)
3305 		d = obj->domain.dr_policy;
3306 	if (d == NULL)
3307 		d = curthread->td_domain.dr_policy;
3308 
3309 	return (vm_wait_doms(&d->ds_mask, mflags));
3310 }
3311 
3312 /*
3313  *	vm_wait:
3314  *
3315  *	Sleep until free pages are available for allocation in the
3316  *	affinity domains of the obj.  If obj is NULL, the domain set
3317  *	for the calling thread is used.
3318  *	Called in various places after failed memory allocations.
3319  */
3320 void
3321 vm_wait(vm_object_t obj)
3322 {
3323 	(void)vm_wait_flags(obj, 0);
3324 }
3325 
3326 int
3327 vm_wait_intr(vm_object_t obj)
3328 {
3329 	return (vm_wait_flags(obj, PCATCH));
3330 }
3331 
3332 /*
3333  *	vm_domain_alloc_fail:
3334  *
3335  *	Called when a page allocation function fails.  Informs the
3336  *	pagedaemon and performs the requested wait.  Requires the
3337  *	domain_free and object lock on entry.  Returns with the
3338  *	object lock held and free lock released.  Returns an error when
3339  *	retry is necessary.
3340  *
3341  */
3342 static int
3343 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3344 {
3345 
3346 	vm_domain_free_assert_unlocked(vmd);
3347 
3348 	atomic_add_int(&vmd->vmd_pageout_deficit,
3349 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3350 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3351 		if (object != NULL)
3352 			VM_OBJECT_WUNLOCK(object);
3353 		vm_wait_domain(vmd->vmd_domain);
3354 		if (object != NULL)
3355 			VM_OBJECT_WLOCK(object);
3356 		if (req & VM_ALLOC_WAITOK)
3357 			return (EAGAIN);
3358 	}
3359 
3360 	return (0);
3361 }
3362 
3363 /*
3364  *	vm_waitpfault:
3365  *
3366  *	Sleep until free pages are available for allocation.
3367  *	- Called only in vm_fault so that processes page faulting
3368  *	  can be easily tracked.
3369  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3370  *	  processes will be able to grab memory first.  Do not change
3371  *	  this balance without careful testing first.
3372  */
3373 void
3374 vm_waitpfault(struct domainset *dset, int timo)
3375 {
3376 
3377 	/*
3378 	 * XXX Ideally we would wait only until the allocation could
3379 	 * be satisfied.  This condition can cause new allocators to
3380 	 * consume all freed pages while old allocators wait.
3381 	 */
3382 	mtx_lock(&vm_domainset_lock);
3383 	if (vm_page_count_min_set(&dset->ds_mask)) {
3384 		vm_min_waiters++;
3385 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3386 		    "pfault", timo);
3387 	} else
3388 		mtx_unlock(&vm_domainset_lock);
3389 }
3390 
3391 static struct vm_pagequeue *
3392 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3393 {
3394 
3395 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3396 }
3397 
3398 #ifdef INVARIANTS
3399 static struct vm_pagequeue *
3400 vm_page_pagequeue(vm_page_t m)
3401 {
3402 
3403 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3404 }
3405 #endif
3406 
3407 static __always_inline bool
3408 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3409 {
3410 	vm_page_astate_t tmp;
3411 
3412 	tmp = *old;
3413 	do {
3414 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3415 			return (true);
3416 		counter_u64_add(pqstate_commit_retries, 1);
3417 	} while (old->_bits == tmp._bits);
3418 
3419 	return (false);
3420 }
3421 
3422 /*
3423  * Do the work of committing a queue state update that moves the page out of
3424  * its current queue.
3425  */
3426 static bool
3427 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3428     vm_page_astate_t *old, vm_page_astate_t new)
3429 {
3430 	vm_page_t next;
3431 
3432 	vm_pagequeue_assert_locked(pq);
3433 	KASSERT(vm_page_pagequeue(m) == pq,
3434 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3435 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3436 	    ("%s: invalid queue indices %d %d",
3437 	    __func__, old->queue, new.queue));
3438 
3439 	/*
3440 	 * Once the queue index of the page changes there is nothing
3441 	 * synchronizing with further updates to the page's physical
3442 	 * queue state.  Therefore we must speculatively remove the page
3443 	 * from the queue now and be prepared to roll back if the queue
3444 	 * state update fails.  If the page is not physically enqueued then
3445 	 * we just update its queue index.
3446 	 */
3447 	if ((old->flags & PGA_ENQUEUED) != 0) {
3448 		new.flags &= ~PGA_ENQUEUED;
3449 		next = TAILQ_NEXT(m, plinks.q);
3450 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3451 		vm_pagequeue_cnt_dec(pq);
3452 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3453 			if (next == NULL)
3454 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3455 			else
3456 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3457 			vm_pagequeue_cnt_inc(pq);
3458 			return (false);
3459 		} else {
3460 			return (true);
3461 		}
3462 	} else {
3463 		return (vm_page_pqstate_fcmpset(m, old, new));
3464 	}
3465 }
3466 
3467 static bool
3468 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3469     vm_page_astate_t new)
3470 {
3471 	struct vm_pagequeue *pq;
3472 	vm_page_astate_t as;
3473 	bool ret;
3474 
3475 	pq = _vm_page_pagequeue(m, old->queue);
3476 
3477 	/*
3478 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3479 	 * corresponding page queue lock is held.
3480 	 */
3481 	vm_pagequeue_lock(pq);
3482 	as = vm_page_astate_load(m);
3483 	if (__predict_false(as._bits != old->_bits)) {
3484 		*old = as;
3485 		ret = false;
3486 	} else {
3487 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3488 	}
3489 	vm_pagequeue_unlock(pq);
3490 	return (ret);
3491 }
3492 
3493 /*
3494  * Commit a queue state update that enqueues or requeues a page.
3495  */
3496 static bool
3497 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3498     vm_page_astate_t *old, vm_page_astate_t new)
3499 {
3500 	struct vm_domain *vmd;
3501 
3502 	vm_pagequeue_assert_locked(pq);
3503 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3504 	    ("%s: invalid queue indices %d %d",
3505 	    __func__, old->queue, new.queue));
3506 
3507 	new.flags |= PGA_ENQUEUED;
3508 	if (!vm_page_pqstate_fcmpset(m, old, new))
3509 		return (false);
3510 
3511 	if ((old->flags & PGA_ENQUEUED) != 0)
3512 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3513 	else
3514 		vm_pagequeue_cnt_inc(pq);
3515 
3516 	/*
3517 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3518 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3519 	 * applied, even if it was set first.
3520 	 */
3521 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3522 		vmd = vm_pagequeue_domain(m);
3523 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3524 		    ("%s: invalid page queue for page %p", __func__, m));
3525 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3526 	} else {
3527 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3528 	}
3529 	return (true);
3530 }
3531 
3532 /*
3533  * Commit a queue state update that encodes a request for a deferred queue
3534  * operation.
3535  */
3536 static bool
3537 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3538     vm_page_astate_t new)
3539 {
3540 
3541 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3542 	    ("%s: invalid state, queue %d flags %x",
3543 	    __func__, new.queue, new.flags));
3544 
3545 	if (old->_bits != new._bits &&
3546 	    !vm_page_pqstate_fcmpset(m, old, new))
3547 		return (false);
3548 	vm_page_pqbatch_submit(m, new.queue);
3549 	return (true);
3550 }
3551 
3552 /*
3553  * A generic queue state update function.  This handles more cases than the
3554  * specialized functions above.
3555  */
3556 bool
3557 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3558 {
3559 
3560 	if (old->_bits == new._bits)
3561 		return (true);
3562 
3563 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3564 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3565 			return (false);
3566 		if (new.queue != PQ_NONE)
3567 			vm_page_pqbatch_submit(m, new.queue);
3568 	} else {
3569 		if (!vm_page_pqstate_fcmpset(m, old, new))
3570 			return (false);
3571 		if (new.queue != PQ_NONE &&
3572 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3573 			vm_page_pqbatch_submit(m, new.queue);
3574 	}
3575 	return (true);
3576 }
3577 
3578 /*
3579  * Apply deferred queue state updates to a page.
3580  */
3581 static inline void
3582 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3583 {
3584 	vm_page_astate_t new, old;
3585 
3586 	CRITICAL_ASSERT(curthread);
3587 	vm_pagequeue_assert_locked(pq);
3588 	KASSERT(queue < PQ_COUNT,
3589 	    ("%s: invalid queue index %d", __func__, queue));
3590 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3591 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3592 
3593 	for (old = vm_page_astate_load(m);;) {
3594 		if (__predict_false(old.queue != queue ||
3595 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3596 			counter_u64_add(queue_nops, 1);
3597 			break;
3598 		}
3599 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3600 		    ("%s: page %p is unmanaged", __func__, m));
3601 
3602 		new = old;
3603 		if ((old.flags & PGA_DEQUEUE) != 0) {
3604 			new.flags &= ~PGA_QUEUE_OP_MASK;
3605 			new.queue = PQ_NONE;
3606 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3607 			    m, &old, new))) {
3608 				counter_u64_add(queue_ops, 1);
3609 				break;
3610 			}
3611 		} else {
3612 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3613 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3614 			    m, &old, new))) {
3615 				counter_u64_add(queue_ops, 1);
3616 				break;
3617 			}
3618 		}
3619 	}
3620 }
3621 
3622 static void
3623 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3624     uint8_t queue)
3625 {
3626 	int i;
3627 
3628 	for (i = 0; i < bq->bq_cnt; i++)
3629 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3630 	vm_batchqueue_init(bq);
3631 }
3632 
3633 /*
3634  *	vm_page_pqbatch_submit:		[ internal use only ]
3635  *
3636  *	Enqueue a page in the specified page queue's batched work queue.
3637  *	The caller must have encoded the requested operation in the page
3638  *	structure's a.flags field.
3639  */
3640 void
3641 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3642 {
3643 	struct vm_batchqueue *bq;
3644 	struct vm_pagequeue *pq;
3645 	int domain;
3646 
3647 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3648 
3649 	domain = vm_page_domain(m);
3650 	critical_enter();
3651 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3652 	if (vm_batchqueue_insert(bq, m)) {
3653 		critical_exit();
3654 		return;
3655 	}
3656 	critical_exit();
3657 
3658 	pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3659 	vm_pagequeue_lock(pq);
3660 	critical_enter();
3661 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3662 	vm_pqbatch_process(pq, bq, queue);
3663 	vm_pqbatch_process_page(pq, m, queue);
3664 	vm_pagequeue_unlock(pq);
3665 	critical_exit();
3666 }
3667 
3668 /*
3669  *	vm_page_pqbatch_drain:		[ internal use only ]
3670  *
3671  *	Force all per-CPU page queue batch queues to be drained.  This is
3672  *	intended for use in severe memory shortages, to ensure that pages
3673  *	do not remain stuck in the batch queues.
3674  */
3675 void
3676 vm_page_pqbatch_drain(void)
3677 {
3678 	struct thread *td;
3679 	struct vm_domain *vmd;
3680 	struct vm_pagequeue *pq;
3681 	int cpu, domain, queue;
3682 
3683 	td = curthread;
3684 	CPU_FOREACH(cpu) {
3685 		thread_lock(td);
3686 		sched_bind(td, cpu);
3687 		thread_unlock(td);
3688 
3689 		for (domain = 0; domain < vm_ndomains; domain++) {
3690 			vmd = VM_DOMAIN(domain);
3691 			for (queue = 0; queue < PQ_COUNT; queue++) {
3692 				pq = &vmd->vmd_pagequeues[queue];
3693 				vm_pagequeue_lock(pq);
3694 				critical_enter();
3695 				vm_pqbatch_process(pq,
3696 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3697 				critical_exit();
3698 				vm_pagequeue_unlock(pq);
3699 			}
3700 		}
3701 	}
3702 	thread_lock(td);
3703 	sched_unbind(td);
3704 	thread_unlock(td);
3705 }
3706 
3707 /*
3708  *	vm_page_dequeue_deferred:	[ internal use only ]
3709  *
3710  *	Request removal of the given page from its current page
3711  *	queue.  Physical removal from the queue may be deferred
3712  *	indefinitely.
3713  */
3714 void
3715 vm_page_dequeue_deferred(vm_page_t m)
3716 {
3717 	vm_page_astate_t new, old;
3718 
3719 	old = vm_page_astate_load(m);
3720 	do {
3721 		if (old.queue == PQ_NONE) {
3722 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3723 			    ("%s: page %p has unexpected queue state",
3724 			    __func__, m));
3725 			break;
3726 		}
3727 		new = old;
3728 		new.flags |= PGA_DEQUEUE;
3729 	} while (!vm_page_pqstate_commit_request(m, &old, new));
3730 }
3731 
3732 /*
3733  *	vm_page_dequeue:
3734  *
3735  *	Remove the page from whichever page queue it's in, if any, before
3736  *	returning.
3737  */
3738 void
3739 vm_page_dequeue(vm_page_t m)
3740 {
3741 	vm_page_astate_t new, old;
3742 
3743 	old = vm_page_astate_load(m);
3744 	do {
3745 		if (old.queue == PQ_NONE) {
3746 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3747 			    ("%s: page %p has unexpected queue state",
3748 			    __func__, m));
3749 			break;
3750 		}
3751 		new = old;
3752 		new.flags &= ~PGA_QUEUE_OP_MASK;
3753 		new.queue = PQ_NONE;
3754 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3755 
3756 }
3757 
3758 /*
3759  * Schedule the given page for insertion into the specified page queue.
3760  * Physical insertion of the page may be deferred indefinitely.
3761  */
3762 static void
3763 vm_page_enqueue(vm_page_t m, uint8_t queue)
3764 {
3765 
3766 	KASSERT(m->a.queue == PQ_NONE &&
3767 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3768 	    ("%s: page %p is already enqueued", __func__, m));
3769 	KASSERT(m->ref_count > 0,
3770 	    ("%s: page %p does not carry any references", __func__, m));
3771 
3772 	m->a.queue = queue;
3773 	if ((m->a.flags & PGA_REQUEUE) == 0)
3774 		vm_page_aflag_set(m, PGA_REQUEUE);
3775 	vm_page_pqbatch_submit(m, queue);
3776 }
3777 
3778 /*
3779  *	vm_page_free_prep:
3780  *
3781  *	Prepares the given page to be put on the free list,
3782  *	disassociating it from any VM object. The caller may return
3783  *	the page to the free list only if this function returns true.
3784  *
3785  *	The object, if it exists, must be locked, and then the page must
3786  *	be xbusy.  Otherwise the page must be not busied.  A managed
3787  *	page must be unmapped.
3788  */
3789 static bool
3790 vm_page_free_prep(vm_page_t m)
3791 {
3792 
3793 	/*
3794 	 * Synchronize with threads that have dropped a reference to this
3795 	 * page.
3796 	 */
3797 	atomic_thread_fence_acq();
3798 
3799 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3800 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3801 		uint64_t *p;
3802 		int i;
3803 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3804 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3805 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3806 			    m, i, (uintmax_t)*p));
3807 	}
3808 #endif
3809 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3810 		KASSERT(!pmap_page_is_mapped(m),
3811 		    ("vm_page_free_prep: freeing mapped page %p", m));
3812 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3813 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3814 	} else {
3815 		KASSERT(m->a.queue == PQ_NONE,
3816 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3817 	}
3818 	VM_CNT_INC(v_tfree);
3819 
3820 	if (m->object != NULL) {
3821 		KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3822 		    ((m->object->flags & OBJ_UNMANAGED) != 0),
3823 		    ("vm_page_free_prep: managed flag mismatch for page %p",
3824 		    m));
3825 		vm_page_assert_xbusied(m);
3826 
3827 		/*
3828 		 * The object reference can be released without an atomic
3829 		 * operation.
3830 		 */
3831 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3832 		    m->ref_count == VPRC_OBJREF,
3833 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3834 		    m, m->ref_count));
3835 		vm_page_object_remove(m);
3836 		m->ref_count -= VPRC_OBJREF;
3837 	} else
3838 		vm_page_assert_unbusied(m);
3839 
3840 	vm_page_busy_free(m);
3841 
3842 	/*
3843 	 * If fictitious remove object association and
3844 	 * return.
3845 	 */
3846 	if ((m->flags & PG_FICTITIOUS) != 0) {
3847 		KASSERT(m->ref_count == 1,
3848 		    ("fictitious page %p is referenced", m));
3849 		KASSERT(m->a.queue == PQ_NONE,
3850 		    ("fictitious page %p is queued", m));
3851 		return (false);
3852 	}
3853 
3854 	/*
3855 	 * Pages need not be dequeued before they are returned to the physical
3856 	 * memory allocator, but they must at least be marked for a deferred
3857 	 * dequeue.
3858 	 */
3859 	if ((m->oflags & VPO_UNMANAGED) == 0)
3860 		vm_page_dequeue_deferred(m);
3861 
3862 	m->valid = 0;
3863 	vm_page_undirty(m);
3864 
3865 	if (m->ref_count != 0)
3866 		panic("vm_page_free_prep: page %p has references", m);
3867 
3868 	/*
3869 	 * Restore the default memory attribute to the page.
3870 	 */
3871 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3872 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3873 
3874 #if VM_NRESERVLEVEL > 0
3875 	/*
3876 	 * Determine whether the page belongs to a reservation.  If the page was
3877 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3878 	 * as an optimization, we avoid the check in that case.
3879 	 */
3880 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3881 		return (false);
3882 #endif
3883 
3884 	return (true);
3885 }
3886 
3887 /*
3888  *	vm_page_free_toq:
3889  *
3890  *	Returns the given page to the free list, disassociating it
3891  *	from any VM object.
3892  *
3893  *	The object must be locked.  The page must be exclusively busied if it
3894  *	belongs to an object.
3895  */
3896 static void
3897 vm_page_free_toq(vm_page_t m)
3898 {
3899 	struct vm_domain *vmd;
3900 	uma_zone_t zone;
3901 
3902 	if (!vm_page_free_prep(m))
3903 		return;
3904 
3905 	vmd = vm_pagequeue_domain(m);
3906 	zone = vmd->vmd_pgcache[m->pool].zone;
3907 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3908 		uma_zfree(zone, m);
3909 		return;
3910 	}
3911 	vm_domain_free_lock(vmd);
3912 	vm_phys_free_pages(m, 0);
3913 	vm_domain_free_unlock(vmd);
3914 	vm_domain_freecnt_inc(vmd, 1);
3915 }
3916 
3917 /*
3918  *	vm_page_free_pages_toq:
3919  *
3920  *	Returns a list of pages to the free list, disassociating it
3921  *	from any VM object.  In other words, this is equivalent to
3922  *	calling vm_page_free_toq() for each page of a list of VM objects.
3923  */
3924 void
3925 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3926 {
3927 	vm_page_t m;
3928 	int count;
3929 
3930 	if (SLIST_EMPTY(free))
3931 		return;
3932 
3933 	count = 0;
3934 	while ((m = SLIST_FIRST(free)) != NULL) {
3935 		count++;
3936 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3937 		vm_page_free_toq(m);
3938 	}
3939 
3940 	if (update_wire_count)
3941 		vm_wire_sub(count);
3942 }
3943 
3944 /*
3945  * Mark this page as wired down.  For managed pages, this prevents reclamation
3946  * by the page daemon, or when the containing object, if any, is destroyed.
3947  */
3948 void
3949 vm_page_wire(vm_page_t m)
3950 {
3951 	u_int old;
3952 
3953 #ifdef INVARIANTS
3954 	if (m->object != NULL && !vm_page_busied(m) &&
3955 	    !vm_object_busied(m->object))
3956 		VM_OBJECT_ASSERT_LOCKED(m->object);
3957 #endif
3958 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3959 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
3960 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
3961 
3962 	old = atomic_fetchadd_int(&m->ref_count, 1);
3963 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3964 	    ("vm_page_wire: counter overflow for page %p", m));
3965 	if (VPRC_WIRE_COUNT(old) == 0) {
3966 		if ((m->oflags & VPO_UNMANAGED) == 0)
3967 			vm_page_aflag_set(m, PGA_DEQUEUE);
3968 		vm_wire_add(1);
3969 	}
3970 }
3971 
3972 /*
3973  * Attempt to wire a mapped page following a pmap lookup of that page.
3974  * This may fail if a thread is concurrently tearing down mappings of the page.
3975  * The transient failure is acceptable because it translates to the
3976  * failure of the caller pmap_extract_and_hold(), which should be then
3977  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3978  */
3979 bool
3980 vm_page_wire_mapped(vm_page_t m)
3981 {
3982 	u_int old;
3983 
3984 	old = m->ref_count;
3985 	do {
3986 		KASSERT(old > 0,
3987 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3988 		if ((old & VPRC_BLOCKED) != 0)
3989 			return (false);
3990 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3991 
3992 	if (VPRC_WIRE_COUNT(old) == 0) {
3993 		if ((m->oflags & VPO_UNMANAGED) == 0)
3994 			vm_page_aflag_set(m, PGA_DEQUEUE);
3995 		vm_wire_add(1);
3996 	}
3997 	return (true);
3998 }
3999 
4000 /*
4001  * Release a wiring reference to a managed page.  If the page still belongs to
4002  * an object, update its position in the page queues to reflect the reference.
4003  * If the wiring was the last reference to the page, free the page.
4004  */
4005 static void
4006 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4007 {
4008 	u_int old;
4009 
4010 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4011 	    ("%s: page %p is unmanaged", __func__, m));
4012 
4013 	/*
4014 	 * Update LRU state before releasing the wiring reference.
4015 	 * Use a release store when updating the reference count to
4016 	 * synchronize with vm_page_free_prep().
4017 	 */
4018 	old = m->ref_count;
4019 	do {
4020 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
4021 		    ("vm_page_unwire: wire count underflow for page %p", m));
4022 
4023 		if (old > VPRC_OBJREF + 1) {
4024 			/*
4025 			 * The page has at least one other wiring reference.  An
4026 			 * earlier iteration of this loop may have called
4027 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4028 			 * re-set it if necessary.
4029 			 */
4030 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4031 				vm_page_aflag_set(m, PGA_DEQUEUE);
4032 		} else if (old == VPRC_OBJREF + 1) {
4033 			/*
4034 			 * This is the last wiring.  Clear PGA_DEQUEUE and
4035 			 * update the page's queue state to reflect the
4036 			 * reference.  If the page does not belong to an object
4037 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4038 			 * clear leftover queue state.
4039 			 */
4040 			vm_page_release_toq(m, nqueue, noreuse);
4041 		} else if (old == 1) {
4042 			vm_page_aflag_clear(m, PGA_DEQUEUE);
4043 		}
4044 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4045 
4046 	if (VPRC_WIRE_COUNT(old) == 1) {
4047 		vm_wire_sub(1);
4048 		if (old == 1)
4049 			vm_page_free(m);
4050 	}
4051 }
4052 
4053 /*
4054  * Release one wiring of the specified page, potentially allowing it to be
4055  * paged out.
4056  *
4057  * Only managed pages belonging to an object can be paged out.  If the number
4058  * of wirings transitions to zero and the page is eligible for page out, then
4059  * the page is added to the specified paging queue.  If the released wiring
4060  * represented the last reference to the page, the page is freed.
4061  */
4062 void
4063 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4064 {
4065 
4066 	KASSERT(nqueue < PQ_COUNT,
4067 	    ("vm_page_unwire: invalid queue %u request for page %p",
4068 	    nqueue, m));
4069 
4070 	if ((m->oflags & VPO_UNMANAGED) != 0) {
4071 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
4072 			vm_page_free(m);
4073 		return;
4074 	}
4075 	vm_page_unwire_managed(m, nqueue, false);
4076 }
4077 
4078 /*
4079  * Unwire a page without (re-)inserting it into a page queue.  It is up
4080  * to the caller to enqueue, requeue, or free the page as appropriate.
4081  * In most cases involving managed pages, vm_page_unwire() should be used
4082  * instead.
4083  */
4084 bool
4085 vm_page_unwire_noq(vm_page_t m)
4086 {
4087 	u_int old;
4088 
4089 	old = vm_page_drop(m, 1);
4090 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
4091 	    ("%s: counter underflow for page %p", __func__,  m));
4092 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4093 	    ("%s: missing ref on fictitious page %p", __func__, m));
4094 
4095 	if (VPRC_WIRE_COUNT(old) > 1)
4096 		return (false);
4097 	if ((m->oflags & VPO_UNMANAGED) == 0)
4098 		vm_page_aflag_clear(m, PGA_DEQUEUE);
4099 	vm_wire_sub(1);
4100 	return (true);
4101 }
4102 
4103 /*
4104  * Ensure that the page ends up in the specified page queue.  If the page is
4105  * active or being moved to the active queue, ensure that its act_count is
4106  * at least ACT_INIT but do not otherwise mess with it.
4107  */
4108 static __always_inline void
4109 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4110 {
4111 	vm_page_astate_t old, new;
4112 
4113 	KASSERT(m->ref_count > 0,
4114 	    ("%s: page %p does not carry any references", __func__, m));
4115 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4116 	    ("%s: invalid flags %x", __func__, nflag));
4117 
4118 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4119 		return;
4120 
4121 	old = vm_page_astate_load(m);
4122 	do {
4123 		if ((old.flags & PGA_DEQUEUE) != 0)
4124 			break;
4125 		new = old;
4126 		new.flags &= ~PGA_QUEUE_OP_MASK;
4127 		if (nqueue == PQ_ACTIVE)
4128 			new.act_count = max(old.act_count, ACT_INIT);
4129 		if (old.queue == nqueue) {
4130 			if (nqueue != PQ_ACTIVE)
4131 				new.flags |= nflag;
4132 		} else {
4133 			new.flags |= nflag;
4134 			new.queue = nqueue;
4135 		}
4136 	} while (!vm_page_pqstate_commit(m, &old, new));
4137 }
4138 
4139 /*
4140  * Put the specified page on the active list (if appropriate).
4141  */
4142 void
4143 vm_page_activate(vm_page_t m)
4144 {
4145 
4146 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4147 }
4148 
4149 /*
4150  * Move the specified page to the tail of the inactive queue, or requeue
4151  * the page if it is already in the inactive queue.
4152  */
4153 void
4154 vm_page_deactivate(vm_page_t m)
4155 {
4156 
4157 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4158 }
4159 
4160 void
4161 vm_page_deactivate_noreuse(vm_page_t m)
4162 {
4163 
4164 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4165 }
4166 
4167 /*
4168  * Put a page in the laundry, or requeue it if it is already there.
4169  */
4170 void
4171 vm_page_launder(vm_page_t m)
4172 {
4173 
4174 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4175 }
4176 
4177 /*
4178  * Put a page in the PQ_UNSWAPPABLE holding queue.
4179  */
4180 void
4181 vm_page_unswappable(vm_page_t m)
4182 {
4183 
4184 	KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4185 	    ("page %p already unswappable", m));
4186 
4187 	vm_page_dequeue(m);
4188 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4189 }
4190 
4191 /*
4192  * Release a page back to the page queues in preparation for unwiring.
4193  */
4194 static void
4195 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4196 {
4197 	vm_page_astate_t old, new;
4198 	uint16_t nflag;
4199 
4200 	/*
4201 	 * Use a check of the valid bits to determine whether we should
4202 	 * accelerate reclamation of the page.  The object lock might not be
4203 	 * held here, in which case the check is racy.  At worst we will either
4204 	 * accelerate reclamation of a valid page and violate LRU, or
4205 	 * unnecessarily defer reclamation of an invalid page.
4206 	 *
4207 	 * If we were asked to not cache the page, place it near the head of the
4208 	 * inactive queue so that is reclaimed sooner.
4209 	 */
4210 	if (noreuse || m->valid == 0) {
4211 		nqueue = PQ_INACTIVE;
4212 		nflag = PGA_REQUEUE_HEAD;
4213 	} else {
4214 		nflag = PGA_REQUEUE;
4215 	}
4216 
4217 	old = vm_page_astate_load(m);
4218 	do {
4219 		new = old;
4220 
4221 		/*
4222 		 * If the page is already in the active queue and we are not
4223 		 * trying to accelerate reclamation, simply mark it as
4224 		 * referenced and avoid any queue operations.
4225 		 */
4226 		new.flags &= ~PGA_QUEUE_OP_MASK;
4227 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4228 			new.flags |= PGA_REFERENCED;
4229 		else {
4230 			new.flags |= nflag;
4231 			new.queue = nqueue;
4232 		}
4233 	} while (!vm_page_pqstate_commit(m, &old, new));
4234 }
4235 
4236 /*
4237  * Unwire a page and either attempt to free it or re-add it to the page queues.
4238  */
4239 void
4240 vm_page_release(vm_page_t m, int flags)
4241 {
4242 	vm_object_t object;
4243 
4244 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4245 	    ("vm_page_release: page %p is unmanaged", m));
4246 
4247 	if ((flags & VPR_TRYFREE) != 0) {
4248 		for (;;) {
4249 			object = atomic_load_ptr(&m->object);
4250 			if (object == NULL)
4251 				break;
4252 			/* Depends on type-stability. */
4253 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4254 				break;
4255 			if (object == m->object) {
4256 				vm_page_release_locked(m, flags);
4257 				VM_OBJECT_WUNLOCK(object);
4258 				return;
4259 			}
4260 			VM_OBJECT_WUNLOCK(object);
4261 		}
4262 	}
4263 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4264 }
4265 
4266 /* See vm_page_release(). */
4267 void
4268 vm_page_release_locked(vm_page_t m, int flags)
4269 {
4270 
4271 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4272 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4273 	    ("vm_page_release_locked: page %p is unmanaged", m));
4274 
4275 	if (vm_page_unwire_noq(m)) {
4276 		if ((flags & VPR_TRYFREE) != 0 &&
4277 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4278 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4279 			/*
4280 			 * An unlocked lookup may have wired the page before the
4281 			 * busy lock was acquired, in which case the page must
4282 			 * not be freed.
4283 			 */
4284 			if (__predict_true(!vm_page_wired(m))) {
4285 				vm_page_free(m);
4286 				return;
4287 			}
4288 			vm_page_xunbusy(m);
4289 		} else {
4290 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4291 		}
4292 	}
4293 }
4294 
4295 static bool
4296 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4297 {
4298 	u_int old;
4299 
4300 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4301 	    ("vm_page_try_blocked_op: page %p has no object", m));
4302 	KASSERT(vm_page_busied(m),
4303 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4304 	VM_OBJECT_ASSERT_LOCKED(m->object);
4305 
4306 	old = m->ref_count;
4307 	do {
4308 		KASSERT(old != 0,
4309 		    ("vm_page_try_blocked_op: page %p has no references", m));
4310 		if (VPRC_WIRE_COUNT(old) != 0)
4311 			return (false);
4312 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4313 
4314 	(op)(m);
4315 
4316 	/*
4317 	 * If the object is read-locked, new wirings may be created via an
4318 	 * object lookup.
4319 	 */
4320 	old = vm_page_drop(m, VPRC_BLOCKED);
4321 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4322 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4323 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4324 	    old, m));
4325 	return (true);
4326 }
4327 
4328 /*
4329  * Atomically check for wirings and remove all mappings of the page.
4330  */
4331 bool
4332 vm_page_try_remove_all(vm_page_t m)
4333 {
4334 
4335 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4336 }
4337 
4338 /*
4339  * Atomically check for wirings and remove all writeable mappings of the page.
4340  */
4341 bool
4342 vm_page_try_remove_write(vm_page_t m)
4343 {
4344 
4345 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4346 }
4347 
4348 /*
4349  * vm_page_advise
4350  *
4351  * 	Apply the specified advice to the given page.
4352  */
4353 void
4354 vm_page_advise(vm_page_t m, int advice)
4355 {
4356 
4357 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4358 	vm_page_assert_xbusied(m);
4359 
4360 	if (advice == MADV_FREE)
4361 		/*
4362 		 * Mark the page clean.  This will allow the page to be freed
4363 		 * without first paging it out.  MADV_FREE pages are often
4364 		 * quickly reused by malloc(3), so we do not do anything that
4365 		 * would result in a page fault on a later access.
4366 		 */
4367 		vm_page_undirty(m);
4368 	else if (advice != MADV_DONTNEED) {
4369 		if (advice == MADV_WILLNEED)
4370 			vm_page_activate(m);
4371 		return;
4372 	}
4373 
4374 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4375 		vm_page_dirty(m);
4376 
4377 	/*
4378 	 * Clear any references to the page.  Otherwise, the page daemon will
4379 	 * immediately reactivate the page.
4380 	 */
4381 	vm_page_aflag_clear(m, PGA_REFERENCED);
4382 
4383 	/*
4384 	 * Place clean pages near the head of the inactive queue rather than
4385 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4386 	 * the page will be reused quickly.  Dirty pages not already in the
4387 	 * laundry are moved there.
4388 	 */
4389 	if (m->dirty == 0)
4390 		vm_page_deactivate_noreuse(m);
4391 	else if (!vm_page_in_laundry(m))
4392 		vm_page_launder(m);
4393 }
4394 
4395 /*
4396  *	vm_page_grab_release
4397  *
4398  *	Helper routine for grab functions to release busy on return.
4399  */
4400 static inline void
4401 vm_page_grab_release(vm_page_t m, int allocflags)
4402 {
4403 
4404 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4405 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4406 			vm_page_sunbusy(m);
4407 		else
4408 			vm_page_xunbusy(m);
4409 	}
4410 }
4411 
4412 /*
4413  *	vm_page_grab_sleep
4414  *
4415  *	Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4416  *	if the caller should retry and false otherwise.
4417  *
4418  *	If the object is locked on entry the object will be unlocked with
4419  *	false returns and still locked but possibly having been dropped
4420  *	with true returns.
4421  */
4422 static bool
4423 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4424     const char *wmesg, int allocflags, bool locked)
4425 {
4426 
4427 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4428 		return (false);
4429 
4430 	/*
4431 	 * Reference the page before unlocking and sleeping so that
4432 	 * the page daemon is less likely to reclaim it.
4433 	 */
4434 	if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4435 		vm_page_reference(m);
4436 
4437 	if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4438 	    locked)
4439 		VM_OBJECT_WLOCK(object);
4440 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4441 		return (false);
4442 
4443 	return (true);
4444 }
4445 
4446 /*
4447  * Assert that the grab flags are valid.
4448  */
4449 static inline void
4450 vm_page_grab_check(int allocflags)
4451 {
4452 
4453 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4454 	    (allocflags & VM_ALLOC_WIRED) != 0,
4455 	    ("vm_page_grab*: the pages must be busied or wired"));
4456 
4457 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4458 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4459 	    ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4460 }
4461 
4462 /*
4463  * Calculate the page allocation flags for grab.
4464  */
4465 static inline int
4466 vm_page_grab_pflags(int allocflags)
4467 {
4468 	int pflags;
4469 
4470 	pflags = allocflags &
4471 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4472 	    VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4473 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4474 		pflags |= VM_ALLOC_WAITFAIL;
4475 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4476 		pflags |= VM_ALLOC_SBUSY;
4477 
4478 	return (pflags);
4479 }
4480 
4481 /*
4482  * Grab a page, waiting until we are waken up due to the page
4483  * changing state.  We keep on waiting, if the page continues
4484  * to be in the object.  If the page doesn't exist, first allocate it
4485  * and then conditionally zero it.
4486  *
4487  * This routine may sleep.
4488  *
4489  * The object must be locked on entry.  The lock will, however, be released
4490  * and reacquired if the routine sleeps.
4491  */
4492 vm_page_t
4493 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4494 {
4495 	vm_page_t m;
4496 
4497 	VM_OBJECT_ASSERT_WLOCKED(object);
4498 	vm_page_grab_check(allocflags);
4499 
4500 retrylookup:
4501 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4502 		if (!vm_page_tryacquire(m, allocflags)) {
4503 			if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4504 			    allocflags, true))
4505 				goto retrylookup;
4506 			return (NULL);
4507 		}
4508 		goto out;
4509 	}
4510 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4511 		return (NULL);
4512 	m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4513 	if (m == NULL) {
4514 		if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4515 			return (NULL);
4516 		goto retrylookup;
4517 	}
4518 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4519 		pmap_zero_page(m);
4520 
4521 out:
4522 	vm_page_grab_release(m, allocflags);
4523 
4524 	return (m);
4525 }
4526 
4527 /*
4528  * Locklessly attempt to acquire a page given a (object, pindex) tuple
4529  * and an optional previous page to avoid the radix lookup.  The resulting
4530  * page will be validated against the identity tuple and busied or wired
4531  * as requested.  A NULL *mp return guarantees that the page was not in
4532  * radix at the time of the call but callers must perform higher level
4533  * synchronization or retry the operation under a lock if they require
4534  * an atomic answer.  This is the only lock free validation routine,
4535  * other routines can depend on the resulting page state.
4536  *
4537  * The return value indicates whether the operation failed due to caller
4538  * flags.  The return is tri-state with mp:
4539  *
4540  * (true, *mp != NULL) - The operation was successful.
4541  * (true, *mp == NULL) - The page was not found in tree.
4542  * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4543  */
4544 static bool
4545 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4546     vm_page_t prev, vm_page_t *mp, int allocflags)
4547 {
4548 	vm_page_t m;
4549 
4550 	vm_page_grab_check(allocflags);
4551 	MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4552 
4553 	*mp = NULL;
4554 	for (;;) {
4555 		/*
4556 		 * We may see a false NULL here because the previous page
4557 		 * has been removed or just inserted and the list is loaded
4558 		 * without barriers.  Switch to radix to verify.
4559 		 */
4560 		if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4561 		    QMD_IS_TRASHED(m) || m->pindex != pindex ||
4562 		    atomic_load_ptr(&m->object) != object) {
4563 			prev = NULL;
4564 			/*
4565 			 * This guarantees the result is instantaneously
4566 			 * correct.
4567 			 */
4568 			m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4569 		}
4570 		if (m == NULL)
4571 			return (true);
4572 		if (vm_page_trybusy(m, allocflags)) {
4573 			if (m->object == object && m->pindex == pindex)
4574 				break;
4575 			/* relookup. */
4576 			vm_page_busy_release(m);
4577 			cpu_spinwait();
4578 			continue;
4579 		}
4580 		if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4581 		    allocflags, false))
4582 			return (false);
4583 	}
4584 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4585 		vm_page_wire(m);
4586 	vm_page_grab_release(m, allocflags);
4587 	*mp = m;
4588 	return (true);
4589 }
4590 
4591 /*
4592  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4593  * is not set.
4594  */
4595 vm_page_t
4596 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4597 {
4598 	vm_page_t m;
4599 
4600 	vm_page_grab_check(allocflags);
4601 
4602 	if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4603 		return (NULL);
4604 	if (m != NULL)
4605 		return (m);
4606 
4607 	/*
4608 	 * The radix lockless lookup should never return a false negative
4609 	 * errors.  If the user specifies NOCREAT they are guaranteed there
4610 	 * was no page present at the instant of the call.  A NOCREAT caller
4611 	 * must handle create races gracefully.
4612 	 */
4613 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4614 		return (NULL);
4615 
4616 	VM_OBJECT_WLOCK(object);
4617 	m = vm_page_grab(object, pindex, allocflags);
4618 	VM_OBJECT_WUNLOCK(object);
4619 
4620 	return (m);
4621 }
4622 
4623 /*
4624  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4625  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4626  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4627  * in simultaneously.  Additional pages will be left on a paging queue but
4628  * will neither be wired nor busy regardless of allocflags.
4629  */
4630 int
4631 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4632 {
4633 	vm_page_t m;
4634 	vm_page_t ma[VM_INITIAL_PAGEIN];
4635 	int after, i, pflags, rv;
4636 
4637 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4638 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4639 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4640 	KASSERT((allocflags &
4641 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4642 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4643 	VM_OBJECT_ASSERT_WLOCKED(object);
4644 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4645 	    VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4646 	pflags |= VM_ALLOC_WAITFAIL;
4647 
4648 retrylookup:
4649 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4650 		/*
4651 		 * If the page is fully valid it can only become invalid
4652 		 * with the object lock held.  If it is not valid it can
4653 		 * become valid with the busy lock held.  Therefore, we
4654 		 * may unnecessarily lock the exclusive busy here if we
4655 		 * race with I/O completion not using the object lock.
4656 		 * However, we will not end up with an invalid page and a
4657 		 * shared lock.
4658 		 */
4659 		if (!vm_page_trybusy(m,
4660 		    vm_page_all_valid(m) ? allocflags : 0)) {
4661 			(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4662 			    allocflags, true);
4663 			goto retrylookup;
4664 		}
4665 		if (vm_page_all_valid(m))
4666 			goto out;
4667 		if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4668 			vm_page_busy_release(m);
4669 			*mp = NULL;
4670 			return (VM_PAGER_FAIL);
4671 		}
4672 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4673 		*mp = NULL;
4674 		return (VM_PAGER_FAIL);
4675 	} else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4676 		goto retrylookup;
4677 	}
4678 
4679 	vm_page_assert_xbusied(m);
4680 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
4681 		after = MIN(after, VM_INITIAL_PAGEIN);
4682 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4683 		after = MAX(after, 1);
4684 		ma[0] = m;
4685 		for (i = 1; i < after; i++) {
4686 			if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4687 				if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4688 					break;
4689 			} else {
4690 				ma[i] = vm_page_alloc(object, m->pindex + i,
4691 				    VM_ALLOC_NORMAL);
4692 				if (ma[i] == NULL)
4693 					break;
4694 			}
4695 		}
4696 		after = i;
4697 		vm_object_pip_add(object, after);
4698 		VM_OBJECT_WUNLOCK(object);
4699 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4700 		VM_OBJECT_WLOCK(object);
4701 		vm_object_pip_wakeupn(object, after);
4702 		/* Pager may have replaced a page. */
4703 		m = ma[0];
4704 		if (rv != VM_PAGER_OK) {
4705 			for (i = 0; i < after; i++) {
4706 				if (!vm_page_wired(ma[i]))
4707 					vm_page_free(ma[i]);
4708 				else
4709 					vm_page_xunbusy(ma[i]);
4710 			}
4711 			*mp = NULL;
4712 			return (rv);
4713 		}
4714 		for (i = 1; i < after; i++)
4715 			vm_page_readahead_finish(ma[i]);
4716 		MPASS(vm_page_all_valid(m));
4717 	} else {
4718 		vm_page_zero_invalid(m, TRUE);
4719 	}
4720 out:
4721 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4722 		vm_page_wire(m);
4723 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4724 		vm_page_busy_downgrade(m);
4725 	else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4726 		vm_page_busy_release(m);
4727 	*mp = m;
4728 	return (VM_PAGER_OK);
4729 }
4730 
4731 /*
4732  * Locklessly grab a valid page.  If the page is not valid or not yet
4733  * allocated this will fall back to the object lock method.
4734  */
4735 int
4736 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4737     vm_pindex_t pindex, int allocflags)
4738 {
4739 	vm_page_t m;
4740 	int flags;
4741 	int error;
4742 
4743 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4744 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4745 	    ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4746 	    "mismatch"));
4747 	KASSERT((allocflags &
4748 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4749 	    ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4750 
4751 	/*
4752 	 * Attempt a lockless lookup and busy.  We need at least an sbusy
4753 	 * before we can inspect the valid field and return a wired page.
4754 	 */
4755 	flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4756 	if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4757 		return (VM_PAGER_FAIL);
4758 	if ((m = *mp) != NULL) {
4759 		if (vm_page_all_valid(m)) {
4760 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4761 				vm_page_wire(m);
4762 			vm_page_grab_release(m, allocflags);
4763 			return (VM_PAGER_OK);
4764 		}
4765 		vm_page_busy_release(m);
4766 	}
4767 	if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4768 		*mp = NULL;
4769 		return (VM_PAGER_FAIL);
4770 	}
4771 	VM_OBJECT_WLOCK(object);
4772 	error = vm_page_grab_valid(mp, object, pindex, allocflags);
4773 	VM_OBJECT_WUNLOCK(object);
4774 
4775 	return (error);
4776 }
4777 
4778 /*
4779  * Return the specified range of pages from the given object.  For each
4780  * page offset within the range, if a page already exists within the object
4781  * at that offset and it is busy, then wait for it to change state.  If,
4782  * instead, the page doesn't exist, then allocate it.
4783  *
4784  * The caller must always specify an allocation class.
4785  *
4786  * allocation classes:
4787  *	VM_ALLOC_NORMAL		normal process request
4788  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4789  *
4790  * The caller must always specify that the pages are to be busied and/or
4791  * wired.
4792  *
4793  * optional allocation flags:
4794  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4795  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4796  *	VM_ALLOC_NOWAIT		do not sleep
4797  *	VM_ALLOC_SBUSY		set page to sbusy state
4798  *	VM_ALLOC_WIRED		wire the pages
4799  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4800  *
4801  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4802  * may return a partial prefix of the requested range.
4803  */
4804 int
4805 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4806     vm_page_t *ma, int count)
4807 {
4808 	vm_page_t m, mpred;
4809 	int pflags;
4810 	int i;
4811 
4812 	VM_OBJECT_ASSERT_WLOCKED(object);
4813 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4814 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4815 	KASSERT(count > 0,
4816 	    ("vm_page_grab_pages: invalid page count %d", count));
4817 	vm_page_grab_check(allocflags);
4818 
4819 	pflags = vm_page_grab_pflags(allocflags);
4820 	i = 0;
4821 retrylookup:
4822 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4823 	if (m == NULL || m->pindex != pindex + i) {
4824 		mpred = m;
4825 		m = NULL;
4826 	} else
4827 		mpred = TAILQ_PREV(m, pglist, listq);
4828 	for (; i < count; i++) {
4829 		if (m != NULL) {
4830 			if (!vm_page_tryacquire(m, allocflags)) {
4831 				if (vm_page_grab_sleep(object, m, pindex + i,
4832 				    "grbmaw", allocflags, true))
4833 					goto retrylookup;
4834 				break;
4835 			}
4836 		} else {
4837 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4838 				break;
4839 			m = vm_page_alloc_after(object, pindex + i,
4840 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4841 			if (m == NULL) {
4842 				if ((allocflags & (VM_ALLOC_NOWAIT |
4843 				    VM_ALLOC_WAITFAIL)) != 0)
4844 					break;
4845 				goto retrylookup;
4846 			}
4847 		}
4848 		if (vm_page_none_valid(m) &&
4849 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4850 			if ((m->flags & PG_ZERO) == 0)
4851 				pmap_zero_page(m);
4852 			vm_page_valid(m);
4853 		}
4854 		vm_page_grab_release(m, allocflags);
4855 		ma[i] = mpred = m;
4856 		m = vm_page_next(m);
4857 	}
4858 	return (i);
4859 }
4860 
4861 /*
4862  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
4863  * and will fall back to the locked variant to handle allocation.
4864  */
4865 int
4866 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4867     int allocflags, vm_page_t *ma, int count)
4868 {
4869 	vm_page_t m, pred;
4870 	int flags;
4871 	int i;
4872 
4873 	KASSERT(count > 0,
4874 	    ("vm_page_grab_pages_unlocked: invalid page count %d", count));
4875 	vm_page_grab_check(allocflags);
4876 
4877 	/*
4878 	 * Modify flags for lockless acquire to hold the page until we
4879 	 * set it valid if necessary.
4880 	 */
4881 	flags = allocflags & ~VM_ALLOC_NOBUSY;
4882 	pred = NULL;
4883 	for (i = 0; i < count; i++, pindex++) {
4884 		if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
4885 			return (i);
4886 		if (m == NULL)
4887 			break;
4888 		if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
4889 			if ((m->flags & PG_ZERO) == 0)
4890 				pmap_zero_page(m);
4891 			vm_page_valid(m);
4892 		}
4893 		/* m will still be wired or busy according to flags. */
4894 		vm_page_grab_release(m, allocflags);
4895 		pred = ma[i] = m;
4896 	}
4897 	if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
4898 		return (i);
4899 	count -= i;
4900 	VM_OBJECT_WLOCK(object);
4901 	i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
4902 	VM_OBJECT_WUNLOCK(object);
4903 
4904 	return (i);
4905 }
4906 
4907 /*
4908  * Mapping function for valid or dirty bits in a page.
4909  *
4910  * Inputs are required to range within a page.
4911  */
4912 vm_page_bits_t
4913 vm_page_bits(int base, int size)
4914 {
4915 	int first_bit;
4916 	int last_bit;
4917 
4918 	KASSERT(
4919 	    base + size <= PAGE_SIZE,
4920 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
4921 	);
4922 
4923 	if (size == 0)		/* handle degenerate case */
4924 		return (0);
4925 
4926 	first_bit = base >> DEV_BSHIFT;
4927 	last_bit = (base + size - 1) >> DEV_BSHIFT;
4928 
4929 	return (((vm_page_bits_t)2 << last_bit) -
4930 	    ((vm_page_bits_t)1 << first_bit));
4931 }
4932 
4933 void
4934 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4935 {
4936 
4937 #if PAGE_SIZE == 32768
4938 	atomic_set_64((uint64_t *)bits, set);
4939 #elif PAGE_SIZE == 16384
4940 	atomic_set_32((uint32_t *)bits, set);
4941 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4942 	atomic_set_16((uint16_t *)bits, set);
4943 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4944 	atomic_set_8((uint8_t *)bits, set);
4945 #else		/* PAGE_SIZE <= 8192 */
4946 	uintptr_t addr;
4947 	int shift;
4948 
4949 	addr = (uintptr_t)bits;
4950 	/*
4951 	 * Use a trick to perform a 32-bit atomic on the
4952 	 * containing aligned word, to not depend on the existence
4953 	 * of atomic_{set, clear}_{8, 16}.
4954 	 */
4955 	shift = addr & (sizeof(uint32_t) - 1);
4956 #if BYTE_ORDER == BIG_ENDIAN
4957 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4958 #else
4959 	shift *= NBBY;
4960 #endif
4961 	addr &= ~(sizeof(uint32_t) - 1);
4962 	atomic_set_32((uint32_t *)addr, set << shift);
4963 #endif		/* PAGE_SIZE */
4964 }
4965 
4966 static inline void
4967 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4968 {
4969 
4970 #if PAGE_SIZE == 32768
4971 	atomic_clear_64((uint64_t *)bits, clear);
4972 #elif PAGE_SIZE == 16384
4973 	atomic_clear_32((uint32_t *)bits, clear);
4974 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4975 	atomic_clear_16((uint16_t *)bits, clear);
4976 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4977 	atomic_clear_8((uint8_t *)bits, clear);
4978 #else		/* PAGE_SIZE <= 8192 */
4979 	uintptr_t addr;
4980 	int shift;
4981 
4982 	addr = (uintptr_t)bits;
4983 	/*
4984 	 * Use a trick to perform a 32-bit atomic on the
4985 	 * containing aligned word, to not depend on the existence
4986 	 * of atomic_{set, clear}_{8, 16}.
4987 	 */
4988 	shift = addr & (sizeof(uint32_t) - 1);
4989 #if BYTE_ORDER == BIG_ENDIAN
4990 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4991 #else
4992 	shift *= NBBY;
4993 #endif
4994 	addr &= ~(sizeof(uint32_t) - 1);
4995 	atomic_clear_32((uint32_t *)addr, clear << shift);
4996 #endif		/* PAGE_SIZE */
4997 }
4998 
4999 static inline vm_page_bits_t
5000 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5001 {
5002 #if PAGE_SIZE == 32768
5003 	uint64_t old;
5004 
5005 	old = *bits;
5006 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5007 	return (old);
5008 #elif PAGE_SIZE == 16384
5009 	uint32_t old;
5010 
5011 	old = *bits;
5012 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5013 	return (old);
5014 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5015 	uint16_t old;
5016 
5017 	old = *bits;
5018 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5019 	return (old);
5020 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5021 	uint8_t old;
5022 
5023 	old = *bits;
5024 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5025 	return (old);
5026 #else		/* PAGE_SIZE <= 4096*/
5027 	uintptr_t addr;
5028 	uint32_t old, new, mask;
5029 	int shift;
5030 
5031 	addr = (uintptr_t)bits;
5032 	/*
5033 	 * Use a trick to perform a 32-bit atomic on the
5034 	 * containing aligned word, to not depend on the existence
5035 	 * of atomic_{set, swap, clear}_{8, 16}.
5036 	 */
5037 	shift = addr & (sizeof(uint32_t) - 1);
5038 #if BYTE_ORDER == BIG_ENDIAN
5039 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5040 #else
5041 	shift *= NBBY;
5042 #endif
5043 	addr &= ~(sizeof(uint32_t) - 1);
5044 	mask = VM_PAGE_BITS_ALL << shift;
5045 
5046 	old = *bits;
5047 	do {
5048 		new = old & ~mask;
5049 		new |= newbits << shift;
5050 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5051 	return (old >> shift);
5052 #endif		/* PAGE_SIZE */
5053 }
5054 
5055 /*
5056  *	vm_page_set_valid_range:
5057  *
5058  *	Sets portions of a page valid.  The arguments are expected
5059  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5060  *	of any partial chunks touched by the range.  The invalid portion of
5061  *	such chunks will be zeroed.
5062  *
5063  *	(base + size) must be less then or equal to PAGE_SIZE.
5064  */
5065 void
5066 vm_page_set_valid_range(vm_page_t m, int base, int size)
5067 {
5068 	int endoff, frag;
5069 	vm_page_bits_t pagebits;
5070 
5071 	vm_page_assert_busied(m);
5072 	if (size == 0)	/* handle degenerate case */
5073 		return;
5074 
5075 	/*
5076 	 * If the base is not DEV_BSIZE aligned and the valid
5077 	 * bit is clear, we have to zero out a portion of the
5078 	 * first block.
5079 	 */
5080 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5081 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5082 		pmap_zero_page_area(m, frag, base - frag);
5083 
5084 	/*
5085 	 * If the ending offset is not DEV_BSIZE aligned and the
5086 	 * valid bit is clear, we have to zero out a portion of
5087 	 * the last block.
5088 	 */
5089 	endoff = base + size;
5090 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5091 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5092 		pmap_zero_page_area(m, endoff,
5093 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5094 
5095 	/*
5096 	 * Assert that no previously invalid block that is now being validated
5097 	 * is already dirty.
5098 	 */
5099 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5100 	    ("vm_page_set_valid_range: page %p is dirty", m));
5101 
5102 	/*
5103 	 * Set valid bits inclusive of any overlap.
5104 	 */
5105 	pagebits = vm_page_bits(base, size);
5106 	if (vm_page_xbusied(m))
5107 		m->valid |= pagebits;
5108 	else
5109 		vm_page_bits_set(m, &m->valid, pagebits);
5110 }
5111 
5112 /*
5113  * Set the page dirty bits and free the invalid swap space if
5114  * present.  Returns the previous dirty bits.
5115  */
5116 vm_page_bits_t
5117 vm_page_set_dirty(vm_page_t m)
5118 {
5119 	vm_page_bits_t old;
5120 
5121 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
5122 
5123 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5124 		old = m->dirty;
5125 		m->dirty = VM_PAGE_BITS_ALL;
5126 	} else
5127 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5128 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5129 		vm_pager_page_unswapped(m);
5130 
5131 	return (old);
5132 }
5133 
5134 /*
5135  * Clear the given bits from the specified page's dirty field.
5136  */
5137 static __inline void
5138 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5139 {
5140 
5141 	vm_page_assert_busied(m);
5142 
5143 	/*
5144 	 * If the page is xbusied and not write mapped we are the
5145 	 * only thread that can modify dirty bits.  Otherwise, The pmap
5146 	 * layer can call vm_page_dirty() without holding a distinguished
5147 	 * lock.  The combination of page busy and atomic operations
5148 	 * suffice to guarantee consistency of the page dirty field.
5149 	 */
5150 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5151 		m->dirty &= ~pagebits;
5152 	else
5153 		vm_page_bits_clear(m, &m->dirty, pagebits);
5154 }
5155 
5156 /*
5157  *	vm_page_set_validclean:
5158  *
5159  *	Sets portions of a page valid and clean.  The arguments are expected
5160  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5161  *	of any partial chunks touched by the range.  The invalid portion of
5162  *	such chunks will be zero'd.
5163  *
5164  *	(base + size) must be less then or equal to PAGE_SIZE.
5165  */
5166 void
5167 vm_page_set_validclean(vm_page_t m, int base, int size)
5168 {
5169 	vm_page_bits_t oldvalid, pagebits;
5170 	int endoff, frag;
5171 
5172 	vm_page_assert_busied(m);
5173 	if (size == 0)	/* handle degenerate case */
5174 		return;
5175 
5176 	/*
5177 	 * If the base is not DEV_BSIZE aligned and the valid
5178 	 * bit is clear, we have to zero out a portion of the
5179 	 * first block.
5180 	 */
5181 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5182 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5183 		pmap_zero_page_area(m, frag, base - frag);
5184 
5185 	/*
5186 	 * If the ending offset is not DEV_BSIZE aligned and the
5187 	 * valid bit is clear, we have to zero out a portion of
5188 	 * the last block.
5189 	 */
5190 	endoff = base + size;
5191 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5192 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5193 		pmap_zero_page_area(m, endoff,
5194 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5195 
5196 	/*
5197 	 * Set valid, clear dirty bits.  If validating the entire
5198 	 * page we can safely clear the pmap modify bit.  We also
5199 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5200 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
5201 	 * be set again.
5202 	 *
5203 	 * We set valid bits inclusive of any overlap, but we can only
5204 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
5205 	 * the range.
5206 	 */
5207 	oldvalid = m->valid;
5208 	pagebits = vm_page_bits(base, size);
5209 	if (vm_page_xbusied(m))
5210 		m->valid |= pagebits;
5211 	else
5212 		vm_page_bits_set(m, &m->valid, pagebits);
5213 #if 0	/* NOT YET */
5214 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5215 		frag = DEV_BSIZE - frag;
5216 		base += frag;
5217 		size -= frag;
5218 		if (size < 0)
5219 			size = 0;
5220 	}
5221 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5222 #endif
5223 	if (base == 0 && size == PAGE_SIZE) {
5224 		/*
5225 		 * The page can only be modified within the pmap if it is
5226 		 * mapped, and it can only be mapped if it was previously
5227 		 * fully valid.
5228 		 */
5229 		if (oldvalid == VM_PAGE_BITS_ALL)
5230 			/*
5231 			 * Perform the pmap_clear_modify() first.  Otherwise,
5232 			 * a concurrent pmap operation, such as
5233 			 * pmap_protect(), could clear a modification in the
5234 			 * pmap and set the dirty field on the page before
5235 			 * pmap_clear_modify() had begun and after the dirty
5236 			 * field was cleared here.
5237 			 */
5238 			pmap_clear_modify(m);
5239 		m->dirty = 0;
5240 		vm_page_aflag_clear(m, PGA_NOSYNC);
5241 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5242 		m->dirty &= ~pagebits;
5243 	else
5244 		vm_page_clear_dirty_mask(m, pagebits);
5245 }
5246 
5247 void
5248 vm_page_clear_dirty(vm_page_t m, int base, int size)
5249 {
5250 
5251 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5252 }
5253 
5254 /*
5255  *	vm_page_set_invalid:
5256  *
5257  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
5258  *	valid and dirty bits for the effected areas are cleared.
5259  */
5260 void
5261 vm_page_set_invalid(vm_page_t m, int base, int size)
5262 {
5263 	vm_page_bits_t bits;
5264 	vm_object_t object;
5265 
5266 	/*
5267 	 * The object lock is required so that pages can't be mapped
5268 	 * read-only while we're in the process of invalidating them.
5269 	 */
5270 	object = m->object;
5271 	VM_OBJECT_ASSERT_WLOCKED(object);
5272 	vm_page_assert_busied(m);
5273 
5274 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5275 	    size >= object->un_pager.vnp.vnp_size)
5276 		bits = VM_PAGE_BITS_ALL;
5277 	else
5278 		bits = vm_page_bits(base, size);
5279 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5280 		pmap_remove_all(m);
5281 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5282 	    !pmap_page_is_mapped(m),
5283 	    ("vm_page_set_invalid: page %p is mapped", m));
5284 	if (vm_page_xbusied(m)) {
5285 		m->valid &= ~bits;
5286 		m->dirty &= ~bits;
5287 	} else {
5288 		vm_page_bits_clear(m, &m->valid, bits);
5289 		vm_page_bits_clear(m, &m->dirty, bits);
5290 	}
5291 }
5292 
5293 /*
5294  *	vm_page_invalid:
5295  *
5296  *	Invalidates the entire page.  The page must be busy, unmapped, and
5297  *	the enclosing object must be locked.  The object locks protects
5298  *	against concurrent read-only pmap enter which is done without
5299  *	busy.
5300  */
5301 void
5302 vm_page_invalid(vm_page_t m)
5303 {
5304 
5305 	vm_page_assert_busied(m);
5306 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5307 	MPASS(!pmap_page_is_mapped(m));
5308 
5309 	if (vm_page_xbusied(m))
5310 		m->valid = 0;
5311 	else
5312 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5313 }
5314 
5315 /*
5316  * vm_page_zero_invalid()
5317  *
5318  *	The kernel assumes that the invalid portions of a page contain
5319  *	garbage, but such pages can be mapped into memory by user code.
5320  *	When this occurs, we must zero out the non-valid portions of the
5321  *	page so user code sees what it expects.
5322  *
5323  *	Pages are most often semi-valid when the end of a file is mapped
5324  *	into memory and the file's size is not page aligned.
5325  */
5326 void
5327 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5328 {
5329 	int b;
5330 	int i;
5331 
5332 	/*
5333 	 * Scan the valid bits looking for invalid sections that
5334 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5335 	 * valid bit may be set ) have already been zeroed by
5336 	 * vm_page_set_validclean().
5337 	 */
5338 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5339 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
5340 		    (m->valid & ((vm_page_bits_t)1 << i))) {
5341 			if (i > b) {
5342 				pmap_zero_page_area(m,
5343 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5344 			}
5345 			b = i + 1;
5346 		}
5347 	}
5348 
5349 	/*
5350 	 * setvalid is TRUE when we can safely set the zero'd areas
5351 	 * as being valid.  We can do this if there are no cache consistency
5352 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5353 	 */
5354 	if (setvalid)
5355 		vm_page_valid(m);
5356 }
5357 
5358 /*
5359  *	vm_page_is_valid:
5360  *
5361  *	Is (partial) page valid?  Note that the case where size == 0
5362  *	will return FALSE in the degenerate case where the page is
5363  *	entirely invalid, and TRUE otherwise.
5364  *
5365  *	Some callers envoke this routine without the busy lock held and
5366  *	handle races via higher level locks.  Typical callers should
5367  *	hold a busy lock to prevent invalidation.
5368  */
5369 int
5370 vm_page_is_valid(vm_page_t m, int base, int size)
5371 {
5372 	vm_page_bits_t bits;
5373 
5374 	bits = vm_page_bits(base, size);
5375 	return (m->valid != 0 && (m->valid & bits) == bits);
5376 }
5377 
5378 /*
5379  * Returns true if all of the specified predicates are true for the entire
5380  * (super)page and false otherwise.
5381  */
5382 bool
5383 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5384 {
5385 	vm_object_t object;
5386 	int i, npages;
5387 
5388 	object = m->object;
5389 	if (skip_m != NULL && skip_m->object != object)
5390 		return (false);
5391 	VM_OBJECT_ASSERT_LOCKED(object);
5392 	npages = atop(pagesizes[m->psind]);
5393 
5394 	/*
5395 	 * The physically contiguous pages that make up a superpage, i.e., a
5396 	 * page with a page size index ("psind") greater than zero, will
5397 	 * occupy adjacent entries in vm_page_array[].
5398 	 */
5399 	for (i = 0; i < npages; i++) {
5400 		/* Always test object consistency, including "skip_m". */
5401 		if (m[i].object != object)
5402 			return (false);
5403 		if (&m[i] == skip_m)
5404 			continue;
5405 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5406 			return (false);
5407 		if ((flags & PS_ALL_DIRTY) != 0) {
5408 			/*
5409 			 * Calling vm_page_test_dirty() or pmap_is_modified()
5410 			 * might stop this case from spuriously returning
5411 			 * "false".  However, that would require a write lock
5412 			 * on the object containing "m[i]".
5413 			 */
5414 			if (m[i].dirty != VM_PAGE_BITS_ALL)
5415 				return (false);
5416 		}
5417 		if ((flags & PS_ALL_VALID) != 0 &&
5418 		    m[i].valid != VM_PAGE_BITS_ALL)
5419 			return (false);
5420 	}
5421 	return (true);
5422 }
5423 
5424 /*
5425  * Set the page's dirty bits if the page is modified.
5426  */
5427 void
5428 vm_page_test_dirty(vm_page_t m)
5429 {
5430 
5431 	vm_page_assert_busied(m);
5432 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5433 		vm_page_dirty(m);
5434 }
5435 
5436 void
5437 vm_page_valid(vm_page_t m)
5438 {
5439 
5440 	vm_page_assert_busied(m);
5441 	if (vm_page_xbusied(m))
5442 		m->valid = VM_PAGE_BITS_ALL;
5443 	else
5444 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5445 }
5446 
5447 void
5448 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5449 {
5450 
5451 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5452 }
5453 
5454 void
5455 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5456 {
5457 
5458 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5459 }
5460 
5461 int
5462 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5463 {
5464 
5465 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5466 }
5467 
5468 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5469 void
5470 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5471 {
5472 
5473 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5474 }
5475 
5476 void
5477 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5478 {
5479 
5480 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5481 }
5482 #endif
5483 
5484 #ifdef INVARIANTS
5485 void
5486 vm_page_object_busy_assert(vm_page_t m)
5487 {
5488 
5489 	/*
5490 	 * Certain of the page's fields may only be modified by the
5491 	 * holder of a page or object busy.
5492 	 */
5493 	if (m->object != NULL && !vm_page_busied(m))
5494 		VM_OBJECT_ASSERT_BUSY(m->object);
5495 }
5496 
5497 void
5498 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5499 {
5500 
5501 	if ((bits & PGA_WRITEABLE) == 0)
5502 		return;
5503 
5504 	/*
5505 	 * The PGA_WRITEABLE flag can only be set if the page is
5506 	 * managed, is exclusively busied or the object is locked.
5507 	 * Currently, this flag is only set by pmap_enter().
5508 	 */
5509 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5510 	    ("PGA_WRITEABLE on unmanaged page"));
5511 	if (!vm_page_xbusied(m))
5512 		VM_OBJECT_ASSERT_BUSY(m->object);
5513 }
5514 #endif
5515 
5516 #include "opt_ddb.h"
5517 #ifdef DDB
5518 #include <sys/kernel.h>
5519 
5520 #include <ddb/ddb.h>
5521 
5522 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5523 {
5524 
5525 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5526 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5527 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5528 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5529 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5530 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5531 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5532 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5533 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5534 }
5535 
5536 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5537 {
5538 	int dom;
5539 
5540 	db_printf("pq_free %d\n", vm_free_count());
5541 	for (dom = 0; dom < vm_ndomains; dom++) {
5542 		db_printf(
5543     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5544 		    dom,
5545 		    vm_dom[dom].vmd_page_count,
5546 		    vm_dom[dom].vmd_free_count,
5547 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5548 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5549 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5550 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5551 	}
5552 }
5553 
5554 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5555 {
5556 	vm_page_t m;
5557 	boolean_t phys, virt;
5558 
5559 	if (!have_addr) {
5560 		db_printf("show pginfo addr\n");
5561 		return;
5562 	}
5563 
5564 	phys = strchr(modif, 'p') != NULL;
5565 	virt = strchr(modif, 'v') != NULL;
5566 	if (virt)
5567 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5568 	else if (phys)
5569 		m = PHYS_TO_VM_PAGE(addr);
5570 	else
5571 		m = (vm_page_t)addr;
5572 	db_printf(
5573     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5574     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5575 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5576 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5577 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5578 }
5579 #endif /* DDB */
5580