xref: /freebsd/sys/vm/vm_page.c (revision e4e9813eb92cd7c4d4b819a8fbed5cbd3d92f5d8)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*-
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/malloc.h>
107 #include <sys/mutex.h>
108 #include <sys/proc.h>
109 #include <sys/sysctl.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 #include <machine/md_var.h>
125 
126 /*
127  *	Associated with page of user-allocatable memory is a
128  *	page structure.
129  */
130 
131 struct mtx vm_page_queue_mtx;
132 struct mtx vm_page_queue_free_mtx;
133 
134 vm_page_t vm_page_array = 0;
135 int vm_page_array_size = 0;
136 long first_page = 0;
137 int vm_page_zero_count = 0;
138 
139 static int boot_pages = UMA_BOOT_PAGES;
140 TUNABLE_INT("vm.boot_pages", &boot_pages);
141 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142 	"number of pages allocated for bootstrapping the VM system");
143 
144 /*
145  *	vm_set_page_size:
146  *
147  *	Sets the page size, perhaps based upon the memory
148  *	size.  Must be called before any use of page-size
149  *	dependent functions.
150  */
151 void
152 vm_set_page_size(void)
153 {
154 	if (cnt.v_page_size == 0)
155 		cnt.v_page_size = PAGE_SIZE;
156 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
157 		panic("vm_set_page_size: page size not a power of two");
158 }
159 
160 /*
161  *	vm_page_blacklist_lookup:
162  *
163  *	See if a physical address in this page has been listed
164  *	in the blacklist tunable.  Entries in the tunable are
165  *	separated by spaces or commas.  If an invalid integer is
166  *	encountered then the rest of the string is skipped.
167  */
168 static int
169 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
170 {
171 	vm_paddr_t bad;
172 	char *cp, *pos;
173 
174 	for (pos = list; *pos != '\0'; pos = cp) {
175 		bad = strtoq(pos, &cp, 0);
176 		if (*cp != '\0') {
177 			if (*cp == ' ' || *cp == ',') {
178 				cp++;
179 				if (cp == pos)
180 					continue;
181 			} else
182 				break;
183 		}
184 		if (pa == trunc_page(bad))
185 			return (1);
186 	}
187 	return (0);
188 }
189 
190 /*
191  *	vm_page_startup:
192  *
193  *	Initializes the resident memory module.
194  *
195  *	Allocates memory for the page cells, and
196  *	for the object/offset-to-page hash table headers.
197  *	Each page cell is initialized and placed on the free list.
198  */
199 vm_offset_t
200 vm_page_startup(vm_offset_t vaddr)
201 {
202 	vm_offset_t mapped;
203 	vm_size_t npages;
204 	vm_paddr_t page_range;
205 	vm_paddr_t new_end;
206 	int i;
207 	vm_paddr_t pa;
208 	int nblocks;
209 	vm_paddr_t last_pa;
210 	char *list;
211 
212 	/* the biggest memory array is the second group of pages */
213 	vm_paddr_t end;
214 	vm_paddr_t biggestsize;
215 	int biggestone;
216 
217 	vm_paddr_t total;
218 
219 	total = 0;
220 	biggestsize = 0;
221 	biggestone = 0;
222 	nblocks = 0;
223 	vaddr = round_page(vaddr);
224 
225 	for (i = 0; phys_avail[i + 1]; i += 2) {
226 		phys_avail[i] = round_page(phys_avail[i]);
227 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
228 	}
229 
230 	for (i = 0; phys_avail[i + 1]; i += 2) {
231 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
232 
233 		if (size > biggestsize) {
234 			biggestone = i;
235 			biggestsize = size;
236 		}
237 		++nblocks;
238 		total += size;
239 	}
240 
241 	end = phys_avail[biggestone+1];
242 
243 	/*
244 	 * Initialize the locks.
245 	 */
246 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
247 	    MTX_RECURSE);
248 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
249 	    MTX_SPIN);
250 
251 	/*
252 	 * Initialize the queue headers for the free queue, the active queue
253 	 * and the inactive queue.
254 	 */
255 	vm_pageq_init();
256 
257 	/*
258 	 * Allocate memory for use when boot strapping the kernel memory
259 	 * allocator.
260 	 */
261 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
262 	new_end = trunc_page(new_end);
263 	mapped = pmap_map(&vaddr, new_end, end,
264 	    VM_PROT_READ | VM_PROT_WRITE);
265 	bzero((void *)mapped, end - new_end);
266 	uma_startup((void *)mapped, boot_pages);
267 
268 #if defined(__amd64__) || defined(__i386__)
269 	/*
270 	 * Allocate a bitmap to indicate that a random physical page
271 	 * needs to be included in a minidump.
272 	 *
273 	 * The amd64 port needs this to indicate which direct map pages
274 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
275 	 *
276 	 * However, i386 still needs this workspace internally within the
277 	 * minidump code.  In theory, they are not needed on i386, but are
278 	 * included should the sf_buf code decide to use them.
279 	 */
280 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
281 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
282 	new_end -= vm_page_dump_size;
283 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
284 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
285 	bzero((void *)vm_page_dump, vm_page_dump_size);
286 #endif
287 	/*
288 	 * Compute the number of pages of memory that will be available for
289 	 * use (taking into account the overhead of a page structure per
290 	 * page).
291 	 */
292 	first_page = phys_avail[0] / PAGE_SIZE;
293 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
294 	npages = (total - (page_range * sizeof(struct vm_page)) -
295 	    (end - new_end)) / PAGE_SIZE;
296 	end = new_end;
297 
298 	/*
299 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
300 	 */
301 	vaddr += PAGE_SIZE;
302 
303 	/*
304 	 * Initialize the mem entry structures now, and put them in the free
305 	 * queue.
306 	 */
307 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
308 	mapped = pmap_map(&vaddr, new_end, end,
309 	    VM_PROT_READ | VM_PROT_WRITE);
310 	vm_page_array = (vm_page_t) mapped;
311 #ifdef __amd64__
312 	/*
313 	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
314 	 * so the pages must be tracked for a crashdump to include this data.
315 	 * This includes the vm_page_array and the early UMA bootstrap pages.
316 	 */
317 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
318 		dump_add_page(pa);
319 #endif
320 	phys_avail[biggestone + 1] = new_end;
321 
322 	/*
323 	 * Clear all of the page structures
324 	 */
325 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
326 	vm_page_array_size = page_range;
327 
328 	/*
329 	 * Construct the free queue(s) in descending order (by physical
330 	 * address) so that the first 16MB of physical memory is allocated
331 	 * last rather than first.  On large-memory machines, this avoids
332 	 * the exhaustion of low physical memory before isa_dma_init has run.
333 	 */
334 	cnt.v_page_count = 0;
335 	cnt.v_free_count = 0;
336 	list = getenv("vm.blacklist");
337 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
338 		pa = phys_avail[i];
339 		last_pa = phys_avail[i + 1];
340 		while (pa < last_pa && npages-- > 0) {
341 			if (list != NULL &&
342 			    vm_page_blacklist_lookup(list, pa))
343 				printf("Skipping page with pa 0x%jx\n",
344 				    (uintmax_t)pa);
345 			else
346 				vm_pageq_add_new_page(pa);
347 			pa += PAGE_SIZE;
348 		}
349 	}
350 	freeenv(list);
351 	return (vaddr);
352 }
353 
354 void
355 vm_page_flag_set(vm_page_t m, unsigned short bits)
356 {
357 
358 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
359 	m->flags |= bits;
360 }
361 
362 void
363 vm_page_flag_clear(vm_page_t m, unsigned short bits)
364 {
365 
366 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
367 	m->flags &= ~bits;
368 }
369 
370 void
371 vm_page_busy(vm_page_t m)
372 {
373 
374 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
375 	KASSERT((m->flags & PG_BUSY) == 0,
376 	    ("vm_page_busy: page already busy!!!"));
377 	vm_page_flag_set(m, PG_BUSY);
378 }
379 
380 /*
381  *      vm_page_flash:
382  *
383  *      wakeup anyone waiting for the page.
384  */
385 void
386 vm_page_flash(vm_page_t m)
387 {
388 
389 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
390 	if (m->flags & PG_WANTED) {
391 		vm_page_flag_clear(m, PG_WANTED);
392 		wakeup(m);
393 	}
394 }
395 
396 /*
397  *      vm_page_wakeup:
398  *
399  *      clear the PG_BUSY flag and wakeup anyone waiting for the
400  *      page.
401  *
402  */
403 void
404 vm_page_wakeup(vm_page_t m)
405 {
406 
407 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
408 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
409 	vm_page_flag_clear(m, PG_BUSY);
410 	vm_page_flash(m);
411 }
412 
413 void
414 vm_page_io_start(vm_page_t m)
415 {
416 
417 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
418 	m->busy++;
419 }
420 
421 void
422 vm_page_io_finish(vm_page_t m)
423 {
424 
425 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
426 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
427 	m->busy--;
428 	if (m->busy == 0)
429 		vm_page_flash(m);
430 }
431 
432 /*
433  * Keep page from being freed by the page daemon
434  * much of the same effect as wiring, except much lower
435  * overhead and should be used only for *very* temporary
436  * holding ("wiring").
437  */
438 void
439 vm_page_hold(vm_page_t mem)
440 {
441 
442 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
443         mem->hold_count++;
444 }
445 
446 void
447 vm_page_unhold(vm_page_t mem)
448 {
449 
450 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
451 	--mem->hold_count;
452 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
453 	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
454 		vm_page_free_toq(mem);
455 }
456 
457 /*
458  *	vm_page_free:
459  *
460  *	Free a page
461  *
462  *	The clearing of PG_ZERO is a temporary safety until the code can be
463  *	reviewed to determine that PG_ZERO is being properly cleared on
464  *	write faults or maps.  PG_ZERO was previously cleared in
465  *	vm_page_alloc().
466  */
467 void
468 vm_page_free(vm_page_t m)
469 {
470 	vm_page_flag_clear(m, PG_ZERO);
471 	vm_page_free_toq(m);
472 	vm_page_zero_idle_wakeup();
473 }
474 
475 /*
476  *	vm_page_free_zero:
477  *
478  *	Free a page to the zerod-pages queue
479  */
480 void
481 vm_page_free_zero(vm_page_t m)
482 {
483 	vm_page_flag_set(m, PG_ZERO);
484 	vm_page_free_toq(m);
485 }
486 
487 /*
488  *	vm_page_sleep_if_busy:
489  *
490  *	Sleep and release the page queues lock if PG_BUSY is set or,
491  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
492  *	thread slept and the page queues lock was released.
493  *	Otherwise, retains the page queues lock and returns FALSE.
494  */
495 int
496 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
497 {
498 
499 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
500 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
501 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
502 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
503 		vm_page_unlock_queues();
504 
505 		/*
506 		 * It's possible that while we sleep, the page will get
507 		 * unbusied and freed.  If we are holding the object
508 		 * lock, we will assume we hold a reference to the object
509 		 * such that even if m->object changes, we can re-lock
510 		 * it.
511 		 */
512 		msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
513 		return (TRUE);
514 	}
515 	return (FALSE);
516 }
517 
518 /*
519  *	vm_page_dirty:
520  *
521  *	make page all dirty
522  */
523 void
524 vm_page_dirty(vm_page_t m)
525 {
526 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
527 	    ("vm_page_dirty: page in cache!"));
528 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
529 	    ("vm_page_dirty: page is free!"));
530 	m->dirty = VM_PAGE_BITS_ALL;
531 }
532 
533 /*
534  *	vm_page_splay:
535  *
536  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
537  *	the vm_page containing the given pindex.  If, however, that
538  *	pindex is not found in the vm_object, returns a vm_page that is
539  *	adjacent to the pindex, coming before or after it.
540  */
541 vm_page_t
542 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
543 {
544 	struct vm_page dummy;
545 	vm_page_t lefttreemax, righttreemin, y;
546 
547 	if (root == NULL)
548 		return (root);
549 	lefttreemax = righttreemin = &dummy;
550 	for (;; root = y) {
551 		if (pindex < root->pindex) {
552 			if ((y = root->left) == NULL)
553 				break;
554 			if (pindex < y->pindex) {
555 				/* Rotate right. */
556 				root->left = y->right;
557 				y->right = root;
558 				root = y;
559 				if ((y = root->left) == NULL)
560 					break;
561 			}
562 			/* Link into the new root's right tree. */
563 			righttreemin->left = root;
564 			righttreemin = root;
565 		} else if (pindex > root->pindex) {
566 			if ((y = root->right) == NULL)
567 				break;
568 			if (pindex > y->pindex) {
569 				/* Rotate left. */
570 				root->right = y->left;
571 				y->left = root;
572 				root = y;
573 				if ((y = root->right) == NULL)
574 					break;
575 			}
576 			/* Link into the new root's left tree. */
577 			lefttreemax->right = root;
578 			lefttreemax = root;
579 		} else
580 			break;
581 	}
582 	/* Assemble the new root. */
583 	lefttreemax->right = root->left;
584 	righttreemin->left = root->right;
585 	root->left = dummy.right;
586 	root->right = dummy.left;
587 	return (root);
588 }
589 
590 /*
591  *	vm_page_insert:		[ internal use only ]
592  *
593  *	Inserts the given mem entry into the object and object list.
594  *
595  *	The pagetables are not updated but will presumably fault the page
596  *	in if necessary, or if a kernel page the caller will at some point
597  *	enter the page into the kernel's pmap.  We are not allowed to block
598  *	here so we *can't* do this anyway.
599  *
600  *	The object and page must be locked.
601  *	This routine may not block.
602  */
603 void
604 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
605 {
606 	vm_page_t root;
607 
608 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
609 	if (m->object != NULL)
610 		panic("vm_page_insert: page already inserted");
611 
612 	/*
613 	 * Record the object/offset pair in this page
614 	 */
615 	m->object = object;
616 	m->pindex = pindex;
617 
618 	/*
619 	 * Now link into the object's ordered list of backed pages.
620 	 */
621 	root = object->root;
622 	if (root == NULL) {
623 		m->left = NULL;
624 		m->right = NULL;
625 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
626 	} else {
627 		root = vm_page_splay(pindex, root);
628 		if (pindex < root->pindex) {
629 			m->left = root->left;
630 			m->right = root;
631 			root->left = NULL;
632 			TAILQ_INSERT_BEFORE(root, m, listq);
633 		} else if (pindex == root->pindex)
634 			panic("vm_page_insert: offset already allocated");
635 		else {
636 			m->right = root->right;
637 			m->left = root;
638 			root->right = NULL;
639 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
640 		}
641 	}
642 	object->root = m;
643 	object->generation++;
644 
645 	/*
646 	 * show that the object has one more resident page.
647 	 */
648 	object->resident_page_count++;
649 	/*
650 	 * Hold the vnode until the last page is released.
651 	 */
652 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
653 		vhold((struct vnode *)object->handle);
654 
655 	/*
656 	 * Since we are inserting a new and possibly dirty page,
657 	 * update the object's OBJ_MIGHTBEDIRTY flag.
658 	 */
659 	if (m->flags & PG_WRITEABLE)
660 		vm_object_set_writeable_dirty(object);
661 }
662 
663 /*
664  *	vm_page_remove:
665  *				NOTE: used by device pager as well -wfj
666  *
667  *	Removes the given mem entry from the object/offset-page
668  *	table and the object page list, but do not invalidate/terminate
669  *	the backing store.
670  *
671  *	The object and page must be locked.
672  *	The underlying pmap entry (if any) is NOT removed here.
673  *	This routine may not block.
674  */
675 void
676 vm_page_remove(vm_page_t m)
677 {
678 	vm_object_t object;
679 	vm_page_t root;
680 
681 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
682 	if ((object = m->object) == NULL)
683 		return;
684 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
685 	if (m->flags & PG_BUSY) {
686 		vm_page_flag_clear(m, PG_BUSY);
687 		vm_page_flash(m);
688 	}
689 
690 	/*
691 	 * Now remove from the object's list of backed pages.
692 	 */
693 	if (m != object->root)
694 		vm_page_splay(m->pindex, object->root);
695 	if (m->left == NULL)
696 		root = m->right;
697 	else {
698 		root = vm_page_splay(m->pindex, m->left);
699 		root->right = m->right;
700 	}
701 	object->root = root;
702 	TAILQ_REMOVE(&object->memq, m, listq);
703 
704 	/*
705 	 * And show that the object has one fewer resident page.
706 	 */
707 	object->resident_page_count--;
708 	object->generation++;
709 	/*
710 	 * The vnode may now be recycled.
711 	 */
712 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
713 		vdrop((struct vnode *)object->handle);
714 
715 	m->object = NULL;
716 }
717 
718 /*
719  *	vm_page_lookup:
720  *
721  *	Returns the page associated with the object/offset
722  *	pair specified; if none is found, NULL is returned.
723  *
724  *	The object must be locked.
725  *	This routine may not block.
726  *	This is a critical path routine
727  */
728 vm_page_t
729 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
730 {
731 	vm_page_t m;
732 
733 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
734 	if ((m = object->root) != NULL && m->pindex != pindex) {
735 		m = vm_page_splay(pindex, m);
736 		if ((object->root = m)->pindex != pindex)
737 			m = NULL;
738 	}
739 	return (m);
740 }
741 
742 /*
743  *	vm_page_rename:
744  *
745  *	Move the given memory entry from its
746  *	current object to the specified target object/offset.
747  *
748  *	The object must be locked.
749  *	This routine may not block.
750  *
751  *	Note: swap associated with the page must be invalidated by the move.  We
752  *	      have to do this for several reasons:  (1) we aren't freeing the
753  *	      page, (2) we are dirtying the page, (3) the VM system is probably
754  *	      moving the page from object A to B, and will then later move
755  *	      the backing store from A to B and we can't have a conflict.
756  *
757  *	Note: we *always* dirty the page.  It is necessary both for the
758  *	      fact that we moved it, and because we may be invalidating
759  *	      swap.  If the page is on the cache, we have to deactivate it
760  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
761  *	      on the cache.
762  */
763 void
764 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
765 {
766 
767 	vm_page_remove(m);
768 	vm_page_insert(m, new_object, new_pindex);
769 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
770 		vm_page_deactivate(m);
771 	vm_page_dirty(m);
772 }
773 
774 /*
775  *	vm_page_select_cache:
776  *
777  *	Move a page of the given color from the cache queue to the free
778  *	queue.  As pages might be found, but are not applicable, they are
779  *	deactivated.
780  *
781  *	This routine may not block.
782  */
783 vm_page_t
784 vm_page_select_cache(int color)
785 {
786 	vm_object_t object;
787 	vm_page_t m;
788 	boolean_t was_trylocked;
789 
790 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
791 	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
792 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
793 		KASSERT(!pmap_page_is_mapped(m),
794 		    ("Found mapped cache page %p", m));
795 		KASSERT((m->flags & PG_UNMANAGED) == 0,
796 		    ("Found unmanaged cache page %p", m));
797 		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
798 		if (m->hold_count == 0 && (object = m->object,
799 		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
800 		    VM_OBJECT_LOCKED(object))) {
801 			KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
802 			    ("Found busy cache page %p", m));
803 			vm_page_free(m);
804 			if (was_trylocked)
805 				VM_OBJECT_UNLOCK(object);
806 			break;
807 		}
808 		vm_page_deactivate(m);
809 	}
810 	return (m);
811 }
812 
813 /*
814  *	vm_page_alloc:
815  *
816  *	Allocate and return a memory cell associated
817  *	with this VM object/offset pair.
818  *
819  *	page_req classes:
820  *	VM_ALLOC_NORMAL		normal process request
821  *	VM_ALLOC_SYSTEM		system *really* needs a page
822  *	VM_ALLOC_INTERRUPT	interrupt time request
823  *	VM_ALLOC_ZERO		zero page
824  *
825  *	This routine may not block.
826  *
827  *	Additional special handling is required when called from an
828  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
829  *	the page cache in this case.
830  */
831 vm_page_t
832 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
833 {
834 	vm_page_t m = NULL;
835 	int color, flags, page_req;
836 
837 	page_req = req & VM_ALLOC_CLASS_MASK;
838 	KASSERT(curthread->td_intr_nesting_level == 0 ||
839 	    page_req == VM_ALLOC_INTERRUPT,
840 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
841 
842 	if ((req & VM_ALLOC_NOOBJ) == 0) {
843 		KASSERT(object != NULL,
844 		    ("vm_page_alloc: NULL object."));
845 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
846 		color = (pindex + object->pg_color) & PQ_COLORMASK;
847 	} else
848 		color = pindex & PQ_COLORMASK;
849 
850 	/*
851 	 * The pager is allowed to eat deeper into the free page list.
852 	 */
853 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
854 		page_req = VM_ALLOC_SYSTEM;
855 	};
856 
857 loop:
858 	mtx_lock_spin(&vm_page_queue_free_mtx);
859 	if (cnt.v_free_count > cnt.v_free_reserved ||
860 	    (page_req == VM_ALLOC_SYSTEM &&
861 	     cnt.v_cache_count == 0 &&
862 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
863 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
864 		/*
865 		 * Allocate from the free queue if the number of free pages
866 		 * exceeds the minimum for the request class.
867 		 */
868 		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
869 	} else if (page_req != VM_ALLOC_INTERRUPT) {
870 		mtx_unlock_spin(&vm_page_queue_free_mtx);
871 		/*
872 		 * Allocatable from cache (non-interrupt only).  On success,
873 		 * we must free the page and try again, thus ensuring that
874 		 * cnt.v_*_free_min counters are replenished.
875 		 */
876 		vm_page_lock_queues();
877 		if ((m = vm_page_select_cache(color)) == NULL) {
878 			KASSERT(cnt.v_cache_count == 0,
879 			    ("vm_page_alloc: cache queue is missing %d pages",
880 			    cnt.v_cache_count));
881 			vm_page_unlock_queues();
882 			atomic_add_int(&vm_pageout_deficit, 1);
883 			pagedaemon_wakeup();
884 
885 			if (page_req != VM_ALLOC_SYSTEM)
886 				return NULL;
887 
888 			mtx_lock_spin(&vm_page_queue_free_mtx);
889 			if (cnt.v_free_count <=  cnt.v_interrupt_free_min) {
890 				mtx_unlock_spin(&vm_page_queue_free_mtx);
891 				return (NULL);
892 			}
893 			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
894 		} else {
895 			vm_page_unlock_queues();
896 			goto loop;
897 		}
898 	} else {
899 		/*
900 		 * Not allocatable from cache from interrupt, give up.
901 		 */
902 		mtx_unlock_spin(&vm_page_queue_free_mtx);
903 		atomic_add_int(&vm_pageout_deficit, 1);
904 		pagedaemon_wakeup();
905 		return (NULL);
906 	}
907 
908 	/*
909 	 *  At this point we had better have found a good page.
910 	 */
911 
912 	KASSERT(
913 	    m != NULL,
914 	    ("vm_page_alloc(): missing page on free queue")
915 	);
916 
917 	/*
918 	 * Remove from free queue
919 	 */
920 	vm_pageq_remove_nowakeup(m);
921 
922 	/*
923 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
924 	 */
925 	flags = PG_BUSY;
926 	if (m->flags & PG_ZERO) {
927 		vm_page_zero_count--;
928 		if (req & VM_ALLOC_ZERO)
929 			flags = PG_ZERO | PG_BUSY;
930 	}
931 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
932 		flags &= ~PG_BUSY;
933 	m->flags = flags;
934 	if (req & VM_ALLOC_WIRED) {
935 		atomic_add_int(&cnt.v_wire_count, 1);
936 		m->wire_count = 1;
937 	} else
938 		m->wire_count = 0;
939 	m->hold_count = 0;
940 	m->act_count = 0;
941 	m->busy = 0;
942 	m->valid = 0;
943 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
944 	mtx_unlock_spin(&vm_page_queue_free_mtx);
945 
946 	if ((req & VM_ALLOC_NOOBJ) == 0)
947 		vm_page_insert(m, object, pindex);
948 	else
949 		m->pindex = pindex;
950 
951 	/*
952 	 * Don't wakeup too often - wakeup the pageout daemon when
953 	 * we would be nearly out of memory.
954 	 */
955 	if (vm_paging_needed())
956 		pagedaemon_wakeup();
957 
958 	return (m);
959 }
960 
961 /*
962  *	vm_wait:	(also see VM_WAIT macro)
963  *
964  *	Block until free pages are available for allocation
965  *	- Called in various places before memory allocations.
966  */
967 void
968 vm_wait(void)
969 {
970 
971 	vm_page_lock_queues();
972 	if (curproc == pageproc) {
973 		vm_pageout_pages_needed = 1;
974 		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
975 		    PDROP | PSWP, "VMWait", 0);
976 	} else {
977 		if (!vm_pages_needed) {
978 			vm_pages_needed = 1;
979 			wakeup(&vm_pages_needed);
980 		}
981 		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
982 		    "vmwait", 0);
983 	}
984 }
985 
986 /*
987  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
988  *
989  *	Block until free pages are available for allocation
990  *	- Called only in vm_fault so that processes page faulting
991  *	  can be easily tracked.
992  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
993  *	  processes will be able to grab memory first.  Do not change
994  *	  this balance without careful testing first.
995  */
996 void
997 vm_waitpfault(void)
998 {
999 
1000 	vm_page_lock_queues();
1001 	if (!vm_pages_needed) {
1002 		vm_pages_needed = 1;
1003 		wakeup(&vm_pages_needed);
1004 	}
1005 	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
1006 	    "pfault", 0);
1007 }
1008 
1009 /*
1010  *	vm_page_activate:
1011  *
1012  *	Put the specified page on the active list (if appropriate).
1013  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1014  *	mess with it.
1015  *
1016  *	The page queues must be locked.
1017  *	This routine may not block.
1018  */
1019 void
1020 vm_page_activate(vm_page_t m)
1021 {
1022 
1023 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1024 	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1025 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1026 			cnt.v_reactivated++;
1027 		vm_pageq_remove(m);
1028 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1029 			if (m->act_count < ACT_INIT)
1030 				m->act_count = ACT_INIT;
1031 			vm_pageq_enqueue(PQ_ACTIVE, m);
1032 		}
1033 	} else {
1034 		if (m->act_count < ACT_INIT)
1035 			m->act_count = ACT_INIT;
1036 	}
1037 }
1038 
1039 /*
1040  *	vm_page_free_wakeup:
1041  *
1042  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1043  *	routine is called when a page has been added to the cache or free
1044  *	queues.
1045  *
1046  *	The page queues must be locked.
1047  *	This routine may not block.
1048  */
1049 static inline void
1050 vm_page_free_wakeup(void)
1051 {
1052 
1053 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1054 	/*
1055 	 * if pageout daemon needs pages, then tell it that there are
1056 	 * some free.
1057 	 */
1058 	if (vm_pageout_pages_needed &&
1059 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1060 		wakeup(&vm_pageout_pages_needed);
1061 		vm_pageout_pages_needed = 0;
1062 	}
1063 	/*
1064 	 * wakeup processes that are waiting on memory if we hit a
1065 	 * high water mark. And wakeup scheduler process if we have
1066 	 * lots of memory. this process will swapin processes.
1067 	 */
1068 	if (vm_pages_needed && !vm_page_count_min()) {
1069 		vm_pages_needed = 0;
1070 		wakeup(&cnt.v_free_count);
1071 	}
1072 }
1073 
1074 /*
1075  *	vm_page_free_toq:
1076  *
1077  *	Returns the given page to the PQ_FREE list,
1078  *	disassociating it with any VM object.
1079  *
1080  *	Object and page must be locked prior to entry.
1081  *	This routine may not block.
1082  */
1083 
1084 void
1085 vm_page_free_toq(vm_page_t m)
1086 {
1087 	struct vpgqueues *pq;
1088 
1089 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1090 	KASSERT(!pmap_page_is_mapped(m),
1091 	    ("vm_page_free_toq: freeing mapped page %p", m));
1092 	cnt.v_tfree++;
1093 
1094 	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1095 		printf(
1096 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1097 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1098 		    m->hold_count);
1099 		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1100 			panic("vm_page_free: freeing free page");
1101 		else
1102 			panic("vm_page_free: freeing busy page");
1103 	}
1104 
1105 	/*
1106 	 * unqueue, then remove page.  Note that we cannot destroy
1107 	 * the page here because we do not want to call the pager's
1108 	 * callback routine until after we've put the page on the
1109 	 * appropriate free queue.
1110 	 */
1111 	vm_pageq_remove_nowakeup(m);
1112 	vm_page_remove(m);
1113 
1114 	/*
1115 	 * If fictitious remove object association and
1116 	 * return, otherwise delay object association removal.
1117 	 */
1118 	if ((m->flags & PG_FICTITIOUS) != 0) {
1119 		return;
1120 	}
1121 
1122 	m->valid = 0;
1123 	vm_page_undirty(m);
1124 
1125 	if (m->wire_count != 0) {
1126 		if (m->wire_count > 1) {
1127 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1128 				m->wire_count, (long)m->pindex);
1129 		}
1130 		panic("vm_page_free: freeing wired page");
1131 	}
1132 
1133 	/*
1134 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1135 	 */
1136 	if (m->flags & PG_UNMANAGED) {
1137 		m->flags &= ~PG_UNMANAGED;
1138 	}
1139 
1140 	if (m->hold_count != 0) {
1141 		m->flags &= ~PG_ZERO;
1142 		VM_PAGE_SETQUEUE2(m, PQ_HOLD);
1143 	} else
1144 		VM_PAGE_SETQUEUE1(m, PQ_FREE);
1145 	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1146 	mtx_lock_spin(&vm_page_queue_free_mtx);
1147 	pq->lcnt++;
1148 	++(*pq->cnt);
1149 
1150 	/*
1151 	 * Put zero'd pages on the end ( where we look for zero'd pages
1152 	 * first ) and non-zerod pages at the head.
1153 	 */
1154 	if (m->flags & PG_ZERO) {
1155 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1156 		++vm_page_zero_count;
1157 	} else {
1158 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1159 	}
1160 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1161 	vm_page_free_wakeup();
1162 }
1163 
1164 /*
1165  *	vm_page_unmanage:
1166  *
1167  * 	Prevent PV management from being done on the page.  The page is
1168  *	removed from the paging queues as if it were wired, and as a
1169  *	consequence of no longer being managed the pageout daemon will not
1170  *	touch it (since there is no way to locate the pte mappings for the
1171  *	page).  madvise() calls that mess with the pmap will also no longer
1172  *	operate on the page.
1173  *
1174  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1175  *	will clear the flag.
1176  *
1177  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1178  *	physical memory as backing store rather then swap-backed memory and
1179  *	will eventually be extended to support 4MB unmanaged physical
1180  *	mappings.
1181  */
1182 void
1183 vm_page_unmanage(vm_page_t m)
1184 {
1185 
1186 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1187 	if ((m->flags & PG_UNMANAGED) == 0) {
1188 		if (m->wire_count == 0)
1189 			vm_pageq_remove(m);
1190 	}
1191 	vm_page_flag_set(m, PG_UNMANAGED);
1192 }
1193 
1194 /*
1195  *	vm_page_wire:
1196  *
1197  *	Mark this page as wired down by yet
1198  *	another map, removing it from paging queues
1199  *	as necessary.
1200  *
1201  *	The page queues must be locked.
1202  *	This routine may not block.
1203  */
1204 void
1205 vm_page_wire(vm_page_t m)
1206 {
1207 
1208 	/*
1209 	 * Only bump the wire statistics if the page is not already wired,
1210 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1211 	 * it is already off the queues).
1212 	 */
1213 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1214 	if (m->flags & PG_FICTITIOUS)
1215 		return;
1216 	if (m->wire_count == 0) {
1217 		if ((m->flags & PG_UNMANAGED) == 0)
1218 			vm_pageq_remove(m);
1219 		atomic_add_int(&cnt.v_wire_count, 1);
1220 	}
1221 	m->wire_count++;
1222 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1223 }
1224 
1225 /*
1226  *	vm_page_unwire:
1227  *
1228  *	Release one wiring of this page, potentially
1229  *	enabling it to be paged again.
1230  *
1231  *	Many pages placed on the inactive queue should actually go
1232  *	into the cache, but it is difficult to figure out which.  What
1233  *	we do instead, if the inactive target is well met, is to put
1234  *	clean pages at the head of the inactive queue instead of the tail.
1235  *	This will cause them to be moved to the cache more quickly and
1236  *	if not actively re-referenced, freed more quickly.  If we just
1237  *	stick these pages at the end of the inactive queue, heavy filesystem
1238  *	meta-data accesses can cause an unnecessary paging load on memory bound
1239  *	processes.  This optimization causes one-time-use metadata to be
1240  *	reused more quickly.
1241  *
1242  *	BUT, if we are in a low-memory situation we have no choice but to
1243  *	put clean pages on the cache queue.
1244  *
1245  *	A number of routines use vm_page_unwire() to guarantee that the page
1246  *	will go into either the inactive or active queues, and will NEVER
1247  *	be placed in the cache - for example, just after dirtying a page.
1248  *	dirty pages in the cache are not allowed.
1249  *
1250  *	The page queues must be locked.
1251  *	This routine may not block.
1252  */
1253 void
1254 vm_page_unwire(vm_page_t m, int activate)
1255 {
1256 
1257 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1258 	if (m->flags & PG_FICTITIOUS)
1259 		return;
1260 	if (m->wire_count > 0) {
1261 		m->wire_count--;
1262 		if (m->wire_count == 0) {
1263 			atomic_subtract_int(&cnt.v_wire_count, 1);
1264 			if (m->flags & PG_UNMANAGED) {
1265 				;
1266 			} else if (activate)
1267 				vm_pageq_enqueue(PQ_ACTIVE, m);
1268 			else {
1269 				vm_page_flag_clear(m, PG_WINATCFLS);
1270 				vm_pageq_enqueue(PQ_INACTIVE, m);
1271 			}
1272 		}
1273 	} else {
1274 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1275 	}
1276 }
1277 
1278 
1279 /*
1280  * Move the specified page to the inactive queue.  If the page has
1281  * any associated swap, the swap is deallocated.
1282  *
1283  * Normally athead is 0 resulting in LRU operation.  athead is set
1284  * to 1 if we want this page to be 'as if it were placed in the cache',
1285  * except without unmapping it from the process address space.
1286  *
1287  * This routine may not block.
1288  */
1289 static inline void
1290 _vm_page_deactivate(vm_page_t m, int athead)
1291 {
1292 
1293 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1294 
1295 	/*
1296 	 * Ignore if already inactive.
1297 	 */
1298 	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1299 		return;
1300 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1301 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1302 			cnt.v_reactivated++;
1303 		vm_page_flag_clear(m, PG_WINATCFLS);
1304 		vm_pageq_remove(m);
1305 		if (athead)
1306 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1307 		else
1308 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1309 		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1310 		vm_page_queues[PQ_INACTIVE].lcnt++;
1311 		cnt.v_inactive_count++;
1312 	}
1313 }
1314 
1315 void
1316 vm_page_deactivate(vm_page_t m)
1317 {
1318     _vm_page_deactivate(m, 0);
1319 }
1320 
1321 /*
1322  * vm_page_try_to_cache:
1323  *
1324  * Returns 0 on failure, 1 on success
1325  */
1326 int
1327 vm_page_try_to_cache(vm_page_t m)
1328 {
1329 
1330 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1331 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1332 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1333 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1334 		return (0);
1335 	}
1336 	pmap_remove_all(m);
1337 	if (m->dirty)
1338 		return (0);
1339 	vm_page_cache(m);
1340 	return (1);
1341 }
1342 
1343 /*
1344  * vm_page_try_to_free()
1345  *
1346  *	Attempt to free the page.  If we cannot free it, we do nothing.
1347  *	1 is returned on success, 0 on failure.
1348  */
1349 int
1350 vm_page_try_to_free(vm_page_t m)
1351 {
1352 
1353 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1354 	if (m->object != NULL)
1355 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1356 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1357 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1358 		return (0);
1359 	}
1360 	pmap_remove_all(m);
1361 	if (m->dirty)
1362 		return (0);
1363 	vm_page_free(m);
1364 	return (1);
1365 }
1366 
1367 /*
1368  * vm_page_cache
1369  *
1370  * Put the specified page onto the page cache queue (if appropriate).
1371  *
1372  * This routine may not block.
1373  */
1374 void
1375 vm_page_cache(vm_page_t m)
1376 {
1377 
1378 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1379 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1380 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1381 	    m->hold_count || m->wire_count) {
1382 		printf("vm_page_cache: attempting to cache busy page\n");
1383 		return;
1384 	}
1385 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1386 		return;
1387 
1388 	/*
1389 	 * Remove all pmaps and indicate that the page is not
1390 	 * writeable or mapped.
1391 	 */
1392 	pmap_remove_all(m);
1393 	if (m->dirty != 0) {
1394 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1395 			(long)m->pindex);
1396 	}
1397 	vm_pageq_remove_nowakeup(m);
1398 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1399 	vm_page_free_wakeup();
1400 }
1401 
1402 /*
1403  * vm_page_dontneed
1404  *
1405  *	Cache, deactivate, or do nothing as appropriate.  This routine
1406  *	is typically used by madvise() MADV_DONTNEED.
1407  *
1408  *	Generally speaking we want to move the page into the cache so
1409  *	it gets reused quickly.  However, this can result in a silly syndrome
1410  *	due to the page recycling too quickly.  Small objects will not be
1411  *	fully cached.  On the otherhand, if we move the page to the inactive
1412  *	queue we wind up with a problem whereby very large objects
1413  *	unnecessarily blow away our inactive and cache queues.
1414  *
1415  *	The solution is to move the pages based on a fixed weighting.  We
1416  *	either leave them alone, deactivate them, or move them to the cache,
1417  *	where moving them to the cache has the highest weighting.
1418  *	By forcing some pages into other queues we eventually force the
1419  *	system to balance the queues, potentially recovering other unrelated
1420  *	space from active.  The idea is to not force this to happen too
1421  *	often.
1422  */
1423 void
1424 vm_page_dontneed(vm_page_t m)
1425 {
1426 	static int dnweight;
1427 	int dnw;
1428 	int head;
1429 
1430 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1431 	dnw = ++dnweight;
1432 
1433 	/*
1434 	 * occassionally leave the page alone
1435 	 */
1436 	if ((dnw & 0x01F0) == 0 ||
1437 	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1438 	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1439 	) {
1440 		if (m->act_count >= ACT_INIT)
1441 			--m->act_count;
1442 		return;
1443 	}
1444 
1445 	if (m->dirty == 0 && pmap_is_modified(m))
1446 		vm_page_dirty(m);
1447 
1448 	if (m->dirty || (dnw & 0x0070) == 0) {
1449 		/*
1450 		 * Deactivate the page 3 times out of 32.
1451 		 */
1452 		head = 0;
1453 	} else {
1454 		/*
1455 		 * Cache the page 28 times out of every 32.  Note that
1456 		 * the page is deactivated instead of cached, but placed
1457 		 * at the head of the queue instead of the tail.
1458 		 */
1459 		head = 1;
1460 	}
1461 	_vm_page_deactivate(m, head);
1462 }
1463 
1464 /*
1465  * Grab a page, waiting until we are waken up due to the page
1466  * changing state.  We keep on waiting, if the page continues
1467  * to be in the object.  If the page doesn't exist, first allocate it
1468  * and then conditionally zero it.
1469  *
1470  * This routine may block.
1471  */
1472 vm_page_t
1473 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1474 {
1475 	vm_page_t m;
1476 
1477 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1478 retrylookup:
1479 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1480 		vm_page_lock_queues();
1481 		if (m->busy || (m->flags & PG_BUSY)) {
1482 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1483 			vm_page_unlock_queues();
1484 			msleep(m, VM_OBJECT_MTX(m->object), PVM, "pgrbwt", 0);
1485 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1486 				return (NULL);
1487 			goto retrylookup;
1488 		} else {
1489 			if (allocflags & VM_ALLOC_WIRED)
1490 				vm_page_wire(m);
1491 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1492 				vm_page_busy(m);
1493 			vm_page_unlock_queues();
1494 			return (m);
1495 		}
1496 	}
1497 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1498 	if (m == NULL) {
1499 		VM_OBJECT_UNLOCK(object);
1500 		VM_WAIT;
1501 		VM_OBJECT_LOCK(object);
1502 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1503 			return (NULL);
1504 		goto retrylookup;
1505 	}
1506 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1507 		pmap_zero_page(m);
1508 	return (m);
1509 }
1510 
1511 /*
1512  * Mapping function for valid bits or for dirty bits in
1513  * a page.  May not block.
1514  *
1515  * Inputs are required to range within a page.
1516  */
1517 inline int
1518 vm_page_bits(int base, int size)
1519 {
1520 	int first_bit;
1521 	int last_bit;
1522 
1523 	KASSERT(
1524 	    base + size <= PAGE_SIZE,
1525 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1526 	);
1527 
1528 	if (size == 0)		/* handle degenerate case */
1529 		return (0);
1530 
1531 	first_bit = base >> DEV_BSHIFT;
1532 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1533 
1534 	return ((2 << last_bit) - (1 << first_bit));
1535 }
1536 
1537 /*
1538  *	vm_page_set_validclean:
1539  *
1540  *	Sets portions of a page valid and clean.  The arguments are expected
1541  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1542  *	of any partial chunks touched by the range.  The invalid portion of
1543  *	such chunks will be zero'd.
1544  *
1545  *	This routine may not block.
1546  *
1547  *	(base + size) must be less then or equal to PAGE_SIZE.
1548  */
1549 void
1550 vm_page_set_validclean(vm_page_t m, int base, int size)
1551 {
1552 	int pagebits;
1553 	int frag;
1554 	int endoff;
1555 
1556 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1557 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1558 	if (size == 0)	/* handle degenerate case */
1559 		return;
1560 
1561 	/*
1562 	 * If the base is not DEV_BSIZE aligned and the valid
1563 	 * bit is clear, we have to zero out a portion of the
1564 	 * first block.
1565 	 */
1566 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1567 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1568 		pmap_zero_page_area(m, frag, base - frag);
1569 
1570 	/*
1571 	 * If the ending offset is not DEV_BSIZE aligned and the
1572 	 * valid bit is clear, we have to zero out a portion of
1573 	 * the last block.
1574 	 */
1575 	endoff = base + size;
1576 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1577 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1578 		pmap_zero_page_area(m, endoff,
1579 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1580 
1581 	/*
1582 	 * Set valid, clear dirty bits.  If validating the entire
1583 	 * page we can safely clear the pmap modify bit.  We also
1584 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1585 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1586 	 * be set again.
1587 	 *
1588 	 * We set valid bits inclusive of any overlap, but we can only
1589 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1590 	 * the range.
1591 	 */
1592 	pagebits = vm_page_bits(base, size);
1593 	m->valid |= pagebits;
1594 #if 0	/* NOT YET */
1595 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1596 		frag = DEV_BSIZE - frag;
1597 		base += frag;
1598 		size -= frag;
1599 		if (size < 0)
1600 			size = 0;
1601 	}
1602 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1603 #endif
1604 	m->dirty &= ~pagebits;
1605 	if (base == 0 && size == PAGE_SIZE) {
1606 		pmap_clear_modify(m);
1607 		vm_page_flag_clear(m, PG_NOSYNC);
1608 	}
1609 }
1610 
1611 void
1612 vm_page_clear_dirty(vm_page_t m, int base, int size)
1613 {
1614 
1615 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1616 	m->dirty &= ~vm_page_bits(base, size);
1617 }
1618 
1619 /*
1620  *	vm_page_set_invalid:
1621  *
1622  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1623  *	valid and dirty bits for the effected areas are cleared.
1624  *
1625  *	May not block.
1626  */
1627 void
1628 vm_page_set_invalid(vm_page_t m, int base, int size)
1629 {
1630 	int bits;
1631 
1632 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1633 	bits = vm_page_bits(base, size);
1634 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1635 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1636 		pmap_remove_all(m);
1637 	m->valid &= ~bits;
1638 	m->dirty &= ~bits;
1639 	m->object->generation++;
1640 }
1641 
1642 /*
1643  * vm_page_zero_invalid()
1644  *
1645  *	The kernel assumes that the invalid portions of a page contain
1646  *	garbage, but such pages can be mapped into memory by user code.
1647  *	When this occurs, we must zero out the non-valid portions of the
1648  *	page so user code sees what it expects.
1649  *
1650  *	Pages are most often semi-valid when the end of a file is mapped
1651  *	into memory and the file's size is not page aligned.
1652  */
1653 void
1654 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1655 {
1656 	int b;
1657 	int i;
1658 
1659 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1660 	/*
1661 	 * Scan the valid bits looking for invalid sections that
1662 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1663 	 * valid bit may be set ) have already been zerod by
1664 	 * vm_page_set_validclean().
1665 	 */
1666 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1667 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1668 		    (m->valid & (1 << i))
1669 		) {
1670 			if (i > b) {
1671 				pmap_zero_page_area(m,
1672 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1673 			}
1674 			b = i + 1;
1675 		}
1676 	}
1677 
1678 	/*
1679 	 * setvalid is TRUE when we can safely set the zero'd areas
1680 	 * as being valid.  We can do this if there are no cache consistancy
1681 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1682 	 */
1683 	if (setvalid)
1684 		m->valid = VM_PAGE_BITS_ALL;
1685 }
1686 
1687 /*
1688  *	vm_page_is_valid:
1689  *
1690  *	Is (partial) page valid?  Note that the case where size == 0
1691  *	will return FALSE in the degenerate case where the page is
1692  *	entirely invalid, and TRUE otherwise.
1693  *
1694  *	May not block.
1695  */
1696 int
1697 vm_page_is_valid(vm_page_t m, int base, int size)
1698 {
1699 	int bits = vm_page_bits(base, size);
1700 
1701 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1702 	if (m->valid && ((m->valid & bits) == bits))
1703 		return 1;
1704 	else
1705 		return 0;
1706 }
1707 
1708 /*
1709  * update dirty bits from pmap/mmu.  May not block.
1710  */
1711 void
1712 vm_page_test_dirty(vm_page_t m)
1713 {
1714 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1715 		vm_page_dirty(m);
1716 	}
1717 }
1718 
1719 int so_zerocp_fullpage = 0;
1720 
1721 void
1722 vm_page_cowfault(vm_page_t m)
1723 {
1724 	vm_page_t mnew;
1725 	vm_object_t object;
1726 	vm_pindex_t pindex;
1727 
1728 	object = m->object;
1729 	pindex = m->pindex;
1730 
1731  retry_alloc:
1732 	pmap_remove_all(m);
1733 	vm_page_remove(m);
1734 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1735 	if (mnew == NULL) {
1736 		vm_page_insert(m, object, pindex);
1737 		vm_page_unlock_queues();
1738 		VM_OBJECT_UNLOCK(object);
1739 		VM_WAIT;
1740 		VM_OBJECT_LOCK(object);
1741 		vm_page_lock_queues();
1742 		goto retry_alloc;
1743 	}
1744 
1745 	if (m->cow == 0) {
1746 		/*
1747 		 * check to see if we raced with an xmit complete when
1748 		 * waiting to allocate a page.  If so, put things back
1749 		 * the way they were
1750 		 */
1751 		vm_page_free(mnew);
1752 		vm_page_insert(m, object, pindex);
1753 	} else { /* clear COW & copy page */
1754 		if (!so_zerocp_fullpage)
1755 			pmap_copy_page(m, mnew);
1756 		mnew->valid = VM_PAGE_BITS_ALL;
1757 		vm_page_dirty(mnew);
1758 		vm_page_flag_clear(mnew, PG_BUSY);
1759 		mnew->wire_count = m->wire_count - m->cow;
1760 		m->wire_count = m->cow;
1761 	}
1762 }
1763 
1764 void
1765 vm_page_cowclear(vm_page_t m)
1766 {
1767 
1768 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1769 	if (m->cow) {
1770 		m->cow--;
1771 		/*
1772 		 * let vm_fault add back write permission  lazily
1773 		 */
1774 	}
1775 	/*
1776 	 *  sf_buf_free() will free the page, so we needn't do it here
1777 	 */
1778 }
1779 
1780 void
1781 vm_page_cowsetup(vm_page_t m)
1782 {
1783 
1784 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1785 	m->cow++;
1786 	pmap_remove_write(m);
1787 }
1788 
1789 #include "opt_ddb.h"
1790 #ifdef DDB
1791 #include <sys/kernel.h>
1792 
1793 #include <ddb/ddb.h>
1794 
1795 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1796 {
1797 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1798 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1799 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1800 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1801 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1802 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1803 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1804 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1805 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1806 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1807 }
1808 
1809 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1810 {
1811 	int i;
1812 	db_printf("PQ_FREE:");
1813 	for (i = 0; i < PQ_NUMCOLORS; i++) {
1814 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1815 	}
1816 	db_printf("\n");
1817 
1818 	db_printf("PQ_CACHE:");
1819 	for (i = 0; i < PQ_NUMCOLORS; i++) {
1820 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1821 	}
1822 	db_printf("\n");
1823 
1824 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1825 		vm_page_queues[PQ_ACTIVE].lcnt,
1826 		vm_page_queues[PQ_INACTIVE].lcnt);
1827 }
1828 #endif /* DDB */
1829