1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Resident memory management module. 65 */ 66 67 #include <sys/cdefs.h> 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/counter.h> 73 #include <sys/domainset.h> 74 #include <sys/kernel.h> 75 #include <sys/limits.h> 76 #include <sys/linker.h> 77 #include <sys/lock.h> 78 #include <sys/malloc.h> 79 #include <sys/mman.h> 80 #include <sys/msgbuf.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> 83 #include <sys/rwlock.h> 84 #include <sys/sleepqueue.h> 85 #include <sys/sbuf.h> 86 #include <sys/sched.h> 87 #include <sys/smp.h> 88 #include <sys/sysctl.h> 89 #include <sys/vmmeter.h> 90 #include <sys/vnode.h> 91 92 #include <vm/vm.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_param.h> 95 #include <vm/vm_domainset.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_object.h> 99 #include <vm/vm_page.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/vm_phys.h> 102 #include <vm/vm_pagequeue.h> 103 #include <vm/vm_pager.h> 104 #include <vm/vm_radix.h> 105 #include <vm/vm_reserv.h> 106 #include <vm/vm_extern.h> 107 #include <vm/vm_dumpset.h> 108 #include <vm/uma.h> 109 #include <vm/uma_int.h> 110 111 #include <machine/md_var.h> 112 113 struct vm_domain vm_dom[MAXMEMDOM]; 114 115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 116 117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 118 119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 120 /* The following fields are protected by the domainset lock. */ 121 domainset_t __exclusive_cache_line vm_min_domains; 122 domainset_t __exclusive_cache_line vm_severe_domains; 123 static int vm_min_waiters; 124 static int vm_severe_waiters; 125 static int vm_pageproc_waiters; 126 127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 128 "VM page statistics"); 129 130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries); 131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries, 132 CTLFLAG_RD, &pqstate_commit_retries, 133 "Number of failed per-page atomic queue state updates"); 134 135 static COUNTER_U64_DEFINE_EARLY(queue_ops); 136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops, 137 CTLFLAG_RD, &queue_ops, 138 "Number of batched queue operations"); 139 140 static COUNTER_U64_DEFINE_EARLY(queue_nops); 141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops, 142 CTLFLAG_RD, &queue_nops, 143 "Number of batched queue operations with no effects"); 144 145 /* 146 * bogus page -- for I/O to/from partially complete buffers, 147 * or for paging into sparsely invalid regions. 148 */ 149 vm_page_t bogus_page; 150 151 vm_page_t vm_page_array; 152 long vm_page_array_size; 153 long first_page; 154 155 struct bitset *vm_page_dump; 156 long vm_page_dump_pages; 157 158 static TAILQ_HEAD(, vm_page) blacklist_head; 159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 161 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 162 163 static uma_zone_t fakepg_zone; 164 165 static void vm_page_alloc_check(vm_page_t m); 166 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, 167 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked); 168 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 169 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 170 static bool vm_page_free_prep(vm_page_t m); 171 static void vm_page_free_toq(vm_page_t m); 172 static void vm_page_init(void *dummy); 173 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 174 vm_pindex_t pindex, vm_page_t mpred); 175 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 176 vm_page_t mpred); 177 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue, 178 const uint16_t nflag); 179 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 180 vm_page_t m_run, vm_paddr_t high); 181 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse); 182 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 183 int req); 184 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 185 int flags); 186 static void vm_page_zone_release(void *arg, void **store, int cnt); 187 188 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 189 190 static void 191 vm_page_init(void *dummy) 192 { 193 194 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 195 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED); 197 } 198 199 static int pgcache_zone_max_pcpu; 200 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu, 201 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0, 202 "Per-CPU page cache size"); 203 204 /* 205 * The cache page zone is initialized later since we need to be able to allocate 206 * pages before UMA is fully initialized. 207 */ 208 static void 209 vm_page_init_cache_zones(void *dummy __unused) 210 { 211 struct vm_domain *vmd; 212 struct vm_pgcache *pgcache; 213 int cache, domain, maxcache, pool; 214 215 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu); 216 maxcache = pgcache_zone_max_pcpu * mp_ncpus; 217 for (domain = 0; domain < vm_ndomains; domain++) { 218 vmd = VM_DOMAIN(domain); 219 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 220 pgcache = &vmd->vmd_pgcache[pool]; 221 pgcache->domain = domain; 222 pgcache->pool = pool; 223 pgcache->zone = uma_zcache_create("vm pgcache", 224 PAGE_SIZE, NULL, NULL, NULL, NULL, 225 vm_page_zone_import, vm_page_zone_release, pgcache, 226 UMA_ZONE_VM); 227 228 /* 229 * Limit each pool's zone to 0.1% of the pages in the 230 * domain. 231 */ 232 cache = maxcache != 0 ? maxcache : 233 vmd->vmd_page_count / 1000; 234 uma_zone_set_maxcache(pgcache->zone, cache); 235 } 236 } 237 } 238 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 239 240 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 241 #if PAGE_SIZE == 32768 242 #ifdef CTASSERT 243 CTASSERT(sizeof(u_long) >= 8); 244 #endif 245 #endif 246 247 /* 248 * vm_set_page_size: 249 * 250 * Sets the page size, perhaps based upon the memory 251 * size. Must be called before any use of page-size 252 * dependent functions. 253 */ 254 void 255 vm_set_page_size(void) 256 { 257 if (vm_cnt.v_page_size == 0) 258 vm_cnt.v_page_size = PAGE_SIZE; 259 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 260 panic("vm_set_page_size: page size not a power of two"); 261 } 262 263 /* 264 * vm_page_blacklist_next: 265 * 266 * Find the next entry in the provided string of blacklist 267 * addresses. Entries are separated by space, comma, or newline. 268 * If an invalid integer is encountered then the rest of the 269 * string is skipped. Updates the list pointer to the next 270 * character, or NULL if the string is exhausted or invalid. 271 */ 272 static vm_paddr_t 273 vm_page_blacklist_next(char **list, char *end) 274 { 275 vm_paddr_t bad; 276 char *cp, *pos; 277 278 if (list == NULL || *list == NULL) 279 return (0); 280 if (**list =='\0') { 281 *list = NULL; 282 return (0); 283 } 284 285 /* 286 * If there's no end pointer then the buffer is coming from 287 * the kenv and we know it's null-terminated. 288 */ 289 if (end == NULL) 290 end = *list + strlen(*list); 291 292 /* Ensure that strtoq() won't walk off the end */ 293 if (*end != '\0') { 294 if (*end == '\n' || *end == ' ' || *end == ',') 295 *end = '\0'; 296 else { 297 printf("Blacklist not terminated, skipping\n"); 298 *list = NULL; 299 return (0); 300 } 301 } 302 303 for (pos = *list; *pos != '\0'; pos = cp) { 304 bad = strtoq(pos, &cp, 0); 305 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 306 if (bad == 0) { 307 if (++cp < end) 308 continue; 309 else 310 break; 311 } 312 } else 313 break; 314 if (*cp == '\0' || ++cp >= end) 315 *list = NULL; 316 else 317 *list = cp; 318 return (trunc_page(bad)); 319 } 320 printf("Garbage in RAM blacklist, skipping\n"); 321 *list = NULL; 322 return (0); 323 } 324 325 bool 326 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 327 { 328 struct vm_domain *vmd; 329 vm_page_t m; 330 bool found; 331 332 m = vm_phys_paddr_to_vm_page(pa); 333 if (m == NULL) 334 return (true); /* page does not exist, no failure */ 335 336 vmd = vm_pagequeue_domain(m); 337 vm_domain_free_lock(vmd); 338 found = vm_phys_unfree_page(m); 339 vm_domain_free_unlock(vmd); 340 if (found) { 341 vm_domain_freecnt_inc(vmd, -1); 342 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 343 if (verbose) 344 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 345 } 346 return (found); 347 } 348 349 /* 350 * vm_page_blacklist_check: 351 * 352 * Iterate through the provided string of blacklist addresses, pulling 353 * each entry out of the physical allocator free list and putting it 354 * onto a list for reporting via the vm.page_blacklist sysctl. 355 */ 356 static void 357 vm_page_blacklist_check(char *list, char *end) 358 { 359 vm_paddr_t pa; 360 char *next; 361 362 next = list; 363 while (next != NULL) { 364 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 365 continue; 366 vm_page_blacklist_add(pa, bootverbose); 367 } 368 } 369 370 /* 371 * vm_page_blacklist_load: 372 * 373 * Search for a special module named "ram_blacklist". It'll be a 374 * plain text file provided by the user via the loader directive 375 * of the same name. 376 */ 377 static void 378 vm_page_blacklist_load(char **list, char **end) 379 { 380 void *mod; 381 u_char *ptr; 382 u_int len; 383 384 mod = NULL; 385 ptr = NULL; 386 387 mod = preload_search_by_type("ram_blacklist"); 388 if (mod != NULL) { 389 ptr = preload_fetch_addr(mod); 390 len = preload_fetch_size(mod); 391 } 392 *list = ptr; 393 if (ptr != NULL) 394 *end = ptr + len; 395 else 396 *end = NULL; 397 return; 398 } 399 400 static int 401 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 402 { 403 vm_page_t m; 404 struct sbuf sbuf; 405 int error, first; 406 407 first = 1; 408 error = sysctl_wire_old_buffer(req, 0); 409 if (error != 0) 410 return (error); 411 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 412 TAILQ_FOREACH(m, &blacklist_head, listq) { 413 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 414 (uintmax_t)m->phys_addr); 415 first = 0; 416 } 417 error = sbuf_finish(&sbuf); 418 sbuf_delete(&sbuf); 419 return (error); 420 } 421 422 /* 423 * Initialize a dummy page for use in scans of the specified paging queue. 424 * In principle, this function only needs to set the flag PG_MARKER. 425 * Nonetheless, it write busies the page as a safety precaution. 426 */ 427 void 428 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags) 429 { 430 431 bzero(marker, sizeof(*marker)); 432 marker->flags = PG_MARKER; 433 marker->a.flags = aflags; 434 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 435 marker->a.queue = queue; 436 } 437 438 static void 439 vm_page_domain_init(int domain) 440 { 441 struct vm_domain *vmd; 442 struct vm_pagequeue *pq; 443 int i; 444 445 vmd = VM_DOMAIN(domain); 446 bzero(vmd, sizeof(*vmd)); 447 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 448 "vm inactive pagequeue"; 449 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 450 "vm active pagequeue"; 451 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 452 "vm laundry pagequeue"; 453 *__DECONST(const char **, 454 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 455 "vm unswappable pagequeue"; 456 vmd->vmd_domain = domain; 457 vmd->vmd_page_count = 0; 458 vmd->vmd_free_count = 0; 459 vmd->vmd_segs = 0; 460 vmd->vmd_oom = FALSE; 461 for (i = 0; i < PQ_COUNT; i++) { 462 pq = &vmd->vmd_pagequeues[i]; 463 TAILQ_INIT(&pq->pq_pl); 464 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 465 MTX_DEF | MTX_DUPOK); 466 pq->pq_pdpages = 0; 467 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 468 } 469 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 470 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 471 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 472 473 /* 474 * inacthead is used to provide FIFO ordering for LRU-bypassing 475 * insertions. 476 */ 477 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 478 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 479 &vmd->vmd_inacthead, plinks.q); 480 481 /* 482 * The clock pages are used to implement active queue scanning without 483 * requeues. Scans start at clock[0], which is advanced after the scan 484 * ends. When the two clock hands meet, they are reset and scanning 485 * resumes from the head of the queue. 486 */ 487 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 488 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 489 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 490 &vmd->vmd_clock[0], plinks.q); 491 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 492 &vmd->vmd_clock[1], plinks.q); 493 } 494 495 /* 496 * Initialize a physical page in preparation for adding it to the free 497 * lists. 498 */ 499 void 500 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) 501 { 502 503 m->object = NULL; 504 m->ref_count = 0; 505 m->busy_lock = VPB_FREED; 506 m->flags = m->a.flags = 0; 507 m->phys_addr = pa; 508 m->a.queue = PQ_NONE; 509 m->psind = 0; 510 m->segind = segind; 511 m->order = VM_NFREEORDER; 512 m->pool = VM_FREEPOOL_DEFAULT; 513 m->valid = m->dirty = 0; 514 pmap_page_init(m); 515 } 516 517 #ifndef PMAP_HAS_PAGE_ARRAY 518 static vm_paddr_t 519 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) 520 { 521 vm_paddr_t new_end; 522 523 /* 524 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 525 * However, because this page is allocated from KVM, out-of-bounds 526 * accesses using the direct map will not be trapped. 527 */ 528 *vaddr += PAGE_SIZE; 529 530 /* 531 * Allocate physical memory for the page structures, and map it. 532 */ 533 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 534 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, 535 VM_PROT_READ | VM_PROT_WRITE); 536 vm_page_array_size = page_range; 537 538 return (new_end); 539 } 540 #endif 541 542 /* 543 * vm_page_startup: 544 * 545 * Initializes the resident memory module. Allocates physical memory for 546 * bootstrapping UMA and some data structures that are used to manage 547 * physical pages. Initializes these structures, and populates the free 548 * page queues. 549 */ 550 vm_offset_t 551 vm_page_startup(vm_offset_t vaddr) 552 { 553 struct vm_phys_seg *seg; 554 struct vm_domain *vmd; 555 vm_page_t m; 556 char *list, *listend; 557 vm_paddr_t end, high_avail, low_avail, new_end, size; 558 vm_paddr_t page_range __unused; 559 vm_paddr_t last_pa, pa, startp, endp; 560 u_long pagecount; 561 #if MINIDUMP_PAGE_TRACKING 562 u_long vm_page_dump_size; 563 #endif 564 int biggestone, i, segind; 565 #ifdef WITNESS 566 vm_offset_t mapped; 567 int witness_size; 568 #endif 569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 570 long ii; 571 #endif 572 573 vaddr = round_page(vaddr); 574 575 vm_phys_early_startup(); 576 biggestone = vm_phys_avail_largest(); 577 end = phys_avail[biggestone+1]; 578 579 /* 580 * Initialize the page and queue locks. 581 */ 582 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 583 for (i = 0; i < PA_LOCK_COUNT; i++) 584 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 585 for (i = 0; i < vm_ndomains; i++) 586 vm_page_domain_init(i); 587 588 new_end = end; 589 #ifdef WITNESS 590 witness_size = round_page(witness_startup_count()); 591 new_end -= witness_size; 592 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 593 VM_PROT_READ | VM_PROT_WRITE); 594 bzero((void *)mapped, witness_size); 595 witness_startup((void *)mapped); 596 #endif 597 598 #if MINIDUMP_PAGE_TRACKING 599 /* 600 * Allocate a bitmap to indicate that a random physical page 601 * needs to be included in a minidump. 602 * 603 * The amd64 port needs this to indicate which direct map pages 604 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 605 * 606 * However, i386 still needs this workspace internally within the 607 * minidump code. In theory, they are not needed on i386, but are 608 * included should the sf_buf code decide to use them. 609 */ 610 last_pa = 0; 611 vm_page_dump_pages = 0; 612 for (i = 0; dump_avail[i + 1] != 0; i += 2) { 613 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) - 614 dump_avail[i] / PAGE_SIZE; 615 if (dump_avail[i + 1] > last_pa) 616 last_pa = dump_avail[i + 1]; 617 } 618 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages)); 619 new_end -= vm_page_dump_size; 620 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 621 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 622 bzero((void *)vm_page_dump, vm_page_dump_size); 623 #else 624 (void)last_pa; 625 #endif 626 #if defined(__aarch64__) || defined(__amd64__) || \ 627 defined(__riscv) || defined(__powerpc64__) 628 /* 629 * Include the UMA bootstrap pages, witness pages and vm_page_dump 630 * in a crash dump. When pmap_map() uses the direct map, they are 631 * not automatically included. 632 */ 633 for (pa = new_end; pa < end; pa += PAGE_SIZE) 634 dump_add_page(pa); 635 #endif 636 phys_avail[biggestone + 1] = new_end; 637 #ifdef __amd64__ 638 /* 639 * Request that the physical pages underlying the message buffer be 640 * included in a crash dump. Since the message buffer is accessed 641 * through the direct map, they are not automatically included. 642 */ 643 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 644 last_pa = pa + round_page(msgbufsize); 645 while (pa < last_pa) { 646 dump_add_page(pa); 647 pa += PAGE_SIZE; 648 } 649 #endif 650 /* 651 * Compute the number of pages of memory that will be available for 652 * use, taking into account the overhead of a page structure per page. 653 * In other words, solve 654 * "available physical memory" - round_page(page_range * 655 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 656 * for page_range. 657 */ 658 low_avail = phys_avail[0]; 659 high_avail = phys_avail[1]; 660 for (i = 0; i < vm_phys_nsegs; i++) { 661 if (vm_phys_segs[i].start < low_avail) 662 low_avail = vm_phys_segs[i].start; 663 if (vm_phys_segs[i].end > high_avail) 664 high_avail = vm_phys_segs[i].end; 665 } 666 /* Skip the first chunk. It is already accounted for. */ 667 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 668 if (phys_avail[i] < low_avail) 669 low_avail = phys_avail[i]; 670 if (phys_avail[i + 1] > high_avail) 671 high_avail = phys_avail[i + 1]; 672 } 673 first_page = low_avail / PAGE_SIZE; 674 #ifdef VM_PHYSSEG_SPARSE 675 size = 0; 676 for (i = 0; i < vm_phys_nsegs; i++) 677 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 678 for (i = 0; phys_avail[i + 1] != 0; i += 2) 679 size += phys_avail[i + 1] - phys_avail[i]; 680 #elif defined(VM_PHYSSEG_DENSE) 681 size = high_avail - low_avail; 682 #else 683 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 684 #endif 685 686 #ifdef PMAP_HAS_PAGE_ARRAY 687 pmap_page_array_startup(size / PAGE_SIZE); 688 biggestone = vm_phys_avail_largest(); 689 end = new_end = phys_avail[biggestone + 1]; 690 #else 691 #ifdef VM_PHYSSEG_DENSE 692 /* 693 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 694 * the overhead of a page structure per page only if vm_page_array is 695 * allocated from the last physical memory chunk. Otherwise, we must 696 * allocate page structures representing the physical memory 697 * underlying vm_page_array, even though they will not be used. 698 */ 699 if (new_end != high_avail) 700 page_range = size / PAGE_SIZE; 701 else 702 #endif 703 { 704 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 705 706 /* 707 * If the partial bytes remaining are large enough for 708 * a page (PAGE_SIZE) without a corresponding 709 * 'struct vm_page', then new_end will contain an 710 * extra page after subtracting the length of the VM 711 * page array. Compensate by subtracting an extra 712 * page from new_end. 713 */ 714 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 715 if (new_end == high_avail) 716 high_avail -= PAGE_SIZE; 717 new_end -= PAGE_SIZE; 718 } 719 } 720 end = new_end; 721 new_end = vm_page_array_alloc(&vaddr, end, page_range); 722 #endif 723 724 #if VM_NRESERVLEVEL > 0 725 /* 726 * Allocate physical memory for the reservation management system's 727 * data structures, and map it. 728 */ 729 new_end = vm_reserv_startup(&vaddr, new_end); 730 #endif 731 #if defined(__aarch64__) || defined(__amd64__) || \ 732 defined(__riscv) || defined(__powerpc64__) 733 /* 734 * Include vm_page_array and vm_reserv_array in a crash dump. 735 */ 736 for (pa = new_end; pa < end; pa += PAGE_SIZE) 737 dump_add_page(pa); 738 #endif 739 phys_avail[biggestone + 1] = new_end; 740 741 /* 742 * Add physical memory segments corresponding to the available 743 * physical pages. 744 */ 745 for (i = 0; phys_avail[i + 1] != 0; i += 2) 746 if (vm_phys_avail_size(i) != 0) 747 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 748 749 /* 750 * Initialize the physical memory allocator. 751 */ 752 vm_phys_init(); 753 754 /* 755 * Initialize the page structures and add every available page to the 756 * physical memory allocator's free lists. 757 */ 758 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 759 for (ii = 0; ii < vm_page_array_size; ii++) { 760 m = &vm_page_array[ii]; 761 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0); 762 m->flags = PG_FICTITIOUS; 763 } 764 #endif 765 vm_cnt.v_page_count = 0; 766 for (segind = 0; segind < vm_phys_nsegs; segind++) { 767 seg = &vm_phys_segs[segind]; 768 for (m = seg->first_page, pa = seg->start; pa < seg->end; 769 m++, pa += PAGE_SIZE) 770 vm_page_init_page(m, pa, segind); 771 772 /* 773 * Add the segment's pages that are covered by one of 774 * phys_avail's ranges to the free lists. 775 */ 776 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 777 if (seg->end <= phys_avail[i] || 778 seg->start >= phys_avail[i + 1]) 779 continue; 780 781 startp = MAX(seg->start, phys_avail[i]); 782 endp = MIN(seg->end, phys_avail[i + 1]); 783 pagecount = (u_long)atop(endp - startp); 784 if (pagecount == 0) 785 continue; 786 787 m = seg->first_page + atop(startp - seg->start); 788 vmd = VM_DOMAIN(seg->domain); 789 vm_domain_free_lock(vmd); 790 vm_phys_enqueue_contig(m, pagecount); 791 vm_domain_free_unlock(vmd); 792 vm_domain_freecnt_inc(vmd, pagecount); 793 vm_cnt.v_page_count += (u_int)pagecount; 794 vmd->vmd_page_count += (u_int)pagecount; 795 vmd->vmd_segs |= 1UL << segind; 796 } 797 } 798 799 /* 800 * Remove blacklisted pages from the physical memory allocator. 801 */ 802 TAILQ_INIT(&blacklist_head); 803 vm_page_blacklist_load(&list, &listend); 804 vm_page_blacklist_check(list, listend); 805 806 list = kern_getenv("vm.blacklist"); 807 vm_page_blacklist_check(list, NULL); 808 809 freeenv(list); 810 #if VM_NRESERVLEVEL > 0 811 /* 812 * Initialize the reservation management system. 813 */ 814 vm_reserv_init(); 815 #endif 816 817 return (vaddr); 818 } 819 820 void 821 vm_page_reference(vm_page_t m) 822 { 823 824 vm_page_aflag_set(m, PGA_REFERENCED); 825 } 826 827 /* 828 * vm_page_trybusy 829 * 830 * Helper routine for grab functions to trylock busy. 831 * 832 * Returns true on success and false on failure. 833 */ 834 static bool 835 vm_page_trybusy(vm_page_t m, int allocflags) 836 { 837 838 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0) 839 return (vm_page_trysbusy(m)); 840 else 841 return (vm_page_tryxbusy(m)); 842 } 843 844 /* 845 * vm_page_tryacquire 846 * 847 * Helper routine for grab functions to trylock busy and wire. 848 * 849 * Returns true on success and false on failure. 850 */ 851 static inline bool 852 vm_page_tryacquire(vm_page_t m, int allocflags) 853 { 854 bool locked; 855 856 locked = vm_page_trybusy(m, allocflags); 857 if (locked && (allocflags & VM_ALLOC_WIRED) != 0) 858 vm_page_wire(m); 859 return (locked); 860 } 861 862 /* 863 * vm_page_busy_acquire: 864 * 865 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop 866 * and drop the object lock if necessary. 867 */ 868 bool 869 vm_page_busy_acquire(vm_page_t m, int allocflags) 870 { 871 vm_object_t obj; 872 bool locked; 873 874 /* 875 * The page-specific object must be cached because page 876 * identity can change during the sleep, causing the 877 * re-lock of a different object. 878 * It is assumed that a reference to the object is already 879 * held by the callers. 880 */ 881 obj = atomic_load_ptr(&m->object); 882 for (;;) { 883 if (vm_page_tryacquire(m, allocflags)) 884 return (true); 885 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 886 return (false); 887 if (obj != NULL) 888 locked = VM_OBJECT_WOWNED(obj); 889 else 890 locked = false; 891 MPASS(locked || vm_page_wired(m)); 892 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags, 893 locked) && locked) 894 VM_OBJECT_WLOCK(obj); 895 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 896 return (false); 897 KASSERT(m->object == obj || m->object == NULL, 898 ("vm_page_busy_acquire: page %p does not belong to %p", 899 m, obj)); 900 } 901 } 902 903 /* 904 * vm_page_busy_downgrade: 905 * 906 * Downgrade an exclusive busy page into a single shared busy page. 907 */ 908 void 909 vm_page_busy_downgrade(vm_page_t m) 910 { 911 u_int x; 912 913 vm_page_assert_xbusied(m); 914 915 x = vm_page_busy_fetch(m); 916 for (;;) { 917 if (atomic_fcmpset_rel_int(&m->busy_lock, 918 &x, VPB_SHARERS_WORD(1))) 919 break; 920 } 921 if ((x & VPB_BIT_WAITERS) != 0) 922 wakeup(m); 923 } 924 925 /* 926 * 927 * vm_page_busy_tryupgrade: 928 * 929 * Attempt to upgrade a single shared busy into an exclusive busy. 930 */ 931 int 932 vm_page_busy_tryupgrade(vm_page_t m) 933 { 934 u_int ce, x; 935 936 vm_page_assert_sbusied(m); 937 938 x = vm_page_busy_fetch(m); 939 ce = VPB_CURTHREAD_EXCLUSIVE; 940 for (;;) { 941 if (VPB_SHARERS(x) > 1) 942 return (0); 943 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 944 ("vm_page_busy_tryupgrade: invalid lock state")); 945 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x, 946 ce | (x & VPB_BIT_WAITERS))) 947 continue; 948 return (1); 949 } 950 } 951 952 /* 953 * vm_page_sbusied: 954 * 955 * Return a positive value if the page is shared busied, 0 otherwise. 956 */ 957 int 958 vm_page_sbusied(vm_page_t m) 959 { 960 u_int x; 961 962 x = vm_page_busy_fetch(m); 963 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 964 } 965 966 /* 967 * vm_page_sunbusy: 968 * 969 * Shared unbusy a page. 970 */ 971 void 972 vm_page_sunbusy(vm_page_t m) 973 { 974 u_int x; 975 976 vm_page_assert_sbusied(m); 977 978 x = vm_page_busy_fetch(m); 979 for (;;) { 980 KASSERT(x != VPB_FREED, 981 ("vm_page_sunbusy: Unlocking freed page.")); 982 if (VPB_SHARERS(x) > 1) { 983 if (atomic_fcmpset_int(&m->busy_lock, &x, 984 x - VPB_ONE_SHARER)) 985 break; 986 continue; 987 } 988 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 989 ("vm_page_sunbusy: invalid lock state")); 990 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 991 continue; 992 if ((x & VPB_BIT_WAITERS) == 0) 993 break; 994 wakeup(m); 995 break; 996 } 997 } 998 999 /* 1000 * vm_page_busy_sleep: 1001 * 1002 * Sleep if the page is busy, using the page pointer as wchan. 1003 * This is used to implement the hard-path of the busying mechanism. 1004 * 1005 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1006 * will not sleep if the page is shared-busy. 1007 * 1008 * The object lock must be held on entry. 1009 * 1010 * Returns true if it slept and dropped the object lock, or false 1011 * if there was no sleep and the lock is still held. 1012 */ 1013 bool 1014 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags) 1015 { 1016 vm_object_t obj; 1017 1018 obj = m->object; 1019 VM_OBJECT_ASSERT_LOCKED(obj); 1020 1021 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags, 1022 true)); 1023 } 1024 1025 /* 1026 * vm_page_busy_sleep_unlocked: 1027 * 1028 * Sleep if the page is busy, using the page pointer as wchan. 1029 * This is used to implement the hard-path of busying mechanism. 1030 * 1031 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1032 * will not sleep if the page is shared-busy. 1033 * 1034 * The object lock must not be held on entry. The operation will 1035 * return if the page changes identity. 1036 */ 1037 void 1038 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1039 const char *wmesg, int allocflags) 1040 { 1041 VM_OBJECT_ASSERT_UNLOCKED(obj); 1042 1043 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false); 1044 } 1045 1046 /* 1047 * _vm_page_busy_sleep: 1048 * 1049 * Internal busy sleep function. Verifies the page identity and 1050 * lockstate against parameters. Returns true if it sleeps and 1051 * false otherwise. 1052 * 1053 * allocflags uses VM_ALLOC_* flags to specify the lock required. 1054 * 1055 * If locked is true the lock will be dropped for any true returns 1056 * and held for any false returns. 1057 */ 1058 static bool 1059 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1060 const char *wmesg, int allocflags, bool locked) 1061 { 1062 bool xsleep; 1063 u_int x; 1064 1065 /* 1066 * If the object is busy we must wait for that to drain to zero 1067 * before trying the page again. 1068 */ 1069 if (obj != NULL && vm_object_busied(obj)) { 1070 if (locked) 1071 VM_OBJECT_DROP(obj); 1072 vm_object_busy_wait(obj, wmesg); 1073 return (true); 1074 } 1075 1076 if (!vm_page_busied(m)) 1077 return (false); 1078 1079 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0; 1080 sleepq_lock(m); 1081 x = vm_page_busy_fetch(m); 1082 do { 1083 /* 1084 * If the page changes objects or becomes unlocked we can 1085 * simply return. 1086 */ 1087 if (x == VPB_UNBUSIED || 1088 (xsleep && (x & VPB_BIT_SHARED) != 0) || 1089 m->object != obj || m->pindex != pindex) { 1090 sleepq_release(m); 1091 return (false); 1092 } 1093 if ((x & VPB_BIT_WAITERS) != 0) 1094 break; 1095 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS)); 1096 if (locked) 1097 VM_OBJECT_DROP(obj); 1098 DROP_GIANT(); 1099 sleepq_add(m, NULL, wmesg, 0, 0); 1100 sleepq_wait(m, PVM); 1101 PICKUP_GIANT(); 1102 return (true); 1103 } 1104 1105 /* 1106 * vm_page_trysbusy: 1107 * 1108 * Try to shared busy a page. 1109 * If the operation succeeds 1 is returned otherwise 0. 1110 * The operation never sleeps. 1111 */ 1112 int 1113 vm_page_trysbusy(vm_page_t m) 1114 { 1115 vm_object_t obj; 1116 u_int x; 1117 1118 obj = m->object; 1119 x = vm_page_busy_fetch(m); 1120 for (;;) { 1121 if ((x & VPB_BIT_SHARED) == 0) 1122 return (0); 1123 /* 1124 * Reduce the window for transient busies that will trigger 1125 * false negatives in vm_page_ps_test(). 1126 */ 1127 if (obj != NULL && vm_object_busied(obj)) 1128 return (0); 1129 if (atomic_fcmpset_acq_int(&m->busy_lock, &x, 1130 x + VPB_ONE_SHARER)) 1131 break; 1132 } 1133 1134 /* Refetch the object now that we're guaranteed that it is stable. */ 1135 obj = m->object; 1136 if (obj != NULL && vm_object_busied(obj)) { 1137 vm_page_sunbusy(m); 1138 return (0); 1139 } 1140 return (1); 1141 } 1142 1143 /* 1144 * vm_page_tryxbusy: 1145 * 1146 * Try to exclusive busy a page. 1147 * If the operation succeeds 1 is returned otherwise 0. 1148 * The operation never sleeps. 1149 */ 1150 int 1151 vm_page_tryxbusy(vm_page_t m) 1152 { 1153 vm_object_t obj; 1154 1155 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, 1156 VPB_CURTHREAD_EXCLUSIVE) == 0) 1157 return (0); 1158 1159 obj = m->object; 1160 if (obj != NULL && vm_object_busied(obj)) { 1161 vm_page_xunbusy(m); 1162 return (0); 1163 } 1164 return (1); 1165 } 1166 1167 static void 1168 vm_page_xunbusy_hard_tail(vm_page_t m) 1169 { 1170 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1171 /* Wake the waiter. */ 1172 wakeup(m); 1173 } 1174 1175 /* 1176 * vm_page_xunbusy_hard: 1177 * 1178 * Called when unbusy has failed because there is a waiter. 1179 */ 1180 void 1181 vm_page_xunbusy_hard(vm_page_t m) 1182 { 1183 vm_page_assert_xbusied(m); 1184 vm_page_xunbusy_hard_tail(m); 1185 } 1186 1187 void 1188 vm_page_xunbusy_hard_unchecked(vm_page_t m) 1189 { 1190 vm_page_assert_xbusied_unchecked(m); 1191 vm_page_xunbusy_hard_tail(m); 1192 } 1193 1194 static void 1195 vm_page_busy_free(vm_page_t m) 1196 { 1197 u_int x; 1198 1199 atomic_thread_fence_rel(); 1200 x = atomic_swap_int(&m->busy_lock, VPB_FREED); 1201 if ((x & VPB_BIT_WAITERS) != 0) 1202 wakeup(m); 1203 } 1204 1205 /* 1206 * vm_page_unhold_pages: 1207 * 1208 * Unhold each of the pages that is referenced by the given array. 1209 */ 1210 void 1211 vm_page_unhold_pages(vm_page_t *ma, int count) 1212 { 1213 1214 for (; count != 0; count--) { 1215 vm_page_unwire(*ma, PQ_ACTIVE); 1216 ma++; 1217 } 1218 } 1219 1220 vm_page_t 1221 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1222 { 1223 vm_page_t m; 1224 1225 #ifdef VM_PHYSSEG_SPARSE 1226 m = vm_phys_paddr_to_vm_page(pa); 1227 if (m == NULL) 1228 m = vm_phys_fictitious_to_vm_page(pa); 1229 return (m); 1230 #elif defined(VM_PHYSSEG_DENSE) 1231 long pi; 1232 1233 pi = atop(pa); 1234 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1235 m = &vm_page_array[pi - first_page]; 1236 return (m); 1237 } 1238 return (vm_phys_fictitious_to_vm_page(pa)); 1239 #else 1240 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1241 #endif 1242 } 1243 1244 /* 1245 * vm_page_getfake: 1246 * 1247 * Create a fictitious page with the specified physical address and 1248 * memory attribute. The memory attribute is the only the machine- 1249 * dependent aspect of a fictitious page that must be initialized. 1250 */ 1251 vm_page_t 1252 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1253 { 1254 vm_page_t m; 1255 1256 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1257 vm_page_initfake(m, paddr, memattr); 1258 return (m); 1259 } 1260 1261 void 1262 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1263 { 1264 1265 if ((m->flags & PG_FICTITIOUS) != 0) { 1266 /* 1267 * The page's memattr might have changed since the 1268 * previous initialization. Update the pmap to the 1269 * new memattr. 1270 */ 1271 goto memattr; 1272 } 1273 m->phys_addr = paddr; 1274 m->a.queue = PQ_NONE; 1275 /* Fictitious pages don't use "segind". */ 1276 m->flags = PG_FICTITIOUS; 1277 /* Fictitious pages don't use "order" or "pool". */ 1278 m->oflags = VPO_UNMANAGED; 1279 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 1280 /* Fictitious pages are unevictable. */ 1281 m->ref_count = 1; 1282 pmap_page_init(m); 1283 memattr: 1284 pmap_page_set_memattr(m, memattr); 1285 } 1286 1287 /* 1288 * vm_page_putfake: 1289 * 1290 * Release a fictitious page. 1291 */ 1292 void 1293 vm_page_putfake(vm_page_t m) 1294 { 1295 1296 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1297 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1298 ("vm_page_putfake: bad page %p", m)); 1299 vm_page_assert_xbusied(m); 1300 vm_page_busy_free(m); 1301 uma_zfree(fakepg_zone, m); 1302 } 1303 1304 /* 1305 * vm_page_updatefake: 1306 * 1307 * Update the given fictitious page to the specified physical address and 1308 * memory attribute. 1309 */ 1310 void 1311 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1312 { 1313 1314 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1315 ("vm_page_updatefake: bad page %p", m)); 1316 m->phys_addr = paddr; 1317 pmap_page_set_memattr(m, memattr); 1318 } 1319 1320 /* 1321 * vm_page_free: 1322 * 1323 * Free a page. 1324 */ 1325 void 1326 vm_page_free(vm_page_t m) 1327 { 1328 1329 m->flags &= ~PG_ZERO; 1330 vm_page_free_toq(m); 1331 } 1332 1333 /* 1334 * vm_page_free_zero: 1335 * 1336 * Free a page to the zerod-pages queue 1337 */ 1338 void 1339 vm_page_free_zero(vm_page_t m) 1340 { 1341 1342 m->flags |= PG_ZERO; 1343 vm_page_free_toq(m); 1344 } 1345 1346 /* 1347 * Unbusy and handle the page queueing for a page from a getpages request that 1348 * was optionally read ahead or behind. 1349 */ 1350 void 1351 vm_page_readahead_finish(vm_page_t m) 1352 { 1353 1354 /* We shouldn't put invalid pages on queues. */ 1355 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m)); 1356 1357 /* 1358 * Since the page is not the actually needed one, whether it should 1359 * be activated or deactivated is not obvious. Empirical results 1360 * have shown that deactivating the page is usually the best choice, 1361 * unless the page is wanted by another thread. 1362 */ 1363 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0) 1364 vm_page_activate(m); 1365 else 1366 vm_page_deactivate(m); 1367 vm_page_xunbusy_unchecked(m); 1368 } 1369 1370 /* 1371 * Destroy the identity of an invalid page and free it if possible. 1372 * This is intended to be used when reading a page from backing store fails. 1373 */ 1374 void 1375 vm_page_free_invalid(vm_page_t m) 1376 { 1377 1378 KASSERT(vm_page_none_valid(m), ("page %p is valid", m)); 1379 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m)); 1380 KASSERT(m->object != NULL, ("page %p has no object", m)); 1381 VM_OBJECT_ASSERT_WLOCKED(m->object); 1382 1383 /* 1384 * We may be attempting to free the page as part of the handling for an 1385 * I/O error, in which case the page was xbusied by a different thread. 1386 */ 1387 vm_page_xbusy_claim(m); 1388 1389 /* 1390 * If someone has wired this page while the object lock 1391 * was not held, then the thread that unwires is responsible 1392 * for freeing the page. Otherwise just free the page now. 1393 * The wire count of this unmapped page cannot change while 1394 * we have the page xbusy and the page's object wlocked. 1395 */ 1396 if (vm_page_remove(m)) 1397 vm_page_free(m); 1398 } 1399 1400 /* 1401 * vm_page_dirty_KBI: [ internal use only ] 1402 * 1403 * Set all bits in the page's dirty field. 1404 * 1405 * The object containing the specified page must be locked if the 1406 * call is made from the machine-independent layer. 1407 * 1408 * See vm_page_clear_dirty_mask(). 1409 * 1410 * This function should only be called by vm_page_dirty(). 1411 */ 1412 void 1413 vm_page_dirty_KBI(vm_page_t m) 1414 { 1415 1416 /* Refer to this operation by its public name. */ 1417 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!")); 1418 m->dirty = VM_PAGE_BITS_ALL; 1419 } 1420 1421 /* 1422 * vm_page_insert: [ internal use only ] 1423 * 1424 * Inserts the given mem entry into the object and object list. 1425 * 1426 * The object must be locked. 1427 */ 1428 int 1429 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1430 { 1431 vm_page_t mpred; 1432 1433 VM_OBJECT_ASSERT_WLOCKED(object); 1434 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1435 return (vm_page_insert_after(m, object, pindex, mpred)); 1436 } 1437 1438 /* 1439 * vm_page_insert_after: 1440 * 1441 * Inserts the page "m" into the specified object at offset "pindex". 1442 * 1443 * The page "mpred" must immediately precede the offset "pindex" within 1444 * the specified object. 1445 * 1446 * The object must be locked. 1447 */ 1448 static int 1449 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1450 vm_page_t mpred) 1451 { 1452 vm_page_t msucc; 1453 1454 VM_OBJECT_ASSERT_WLOCKED(object); 1455 KASSERT(m->object == NULL, 1456 ("vm_page_insert_after: page already inserted")); 1457 if (mpred != NULL) { 1458 KASSERT(mpred->object == object, 1459 ("vm_page_insert_after: object doesn't contain mpred")); 1460 KASSERT(mpred->pindex < pindex, 1461 ("vm_page_insert_after: mpred doesn't precede pindex")); 1462 msucc = TAILQ_NEXT(mpred, listq); 1463 } else 1464 msucc = TAILQ_FIRST(&object->memq); 1465 if (msucc != NULL) 1466 KASSERT(msucc->pindex > pindex, 1467 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1468 1469 /* 1470 * Record the object/offset pair in this page. 1471 */ 1472 m->object = object; 1473 m->pindex = pindex; 1474 m->ref_count |= VPRC_OBJREF; 1475 1476 /* 1477 * Now link into the object's ordered list of backed pages. 1478 */ 1479 if (vm_radix_insert(&object->rtree, m)) { 1480 m->object = NULL; 1481 m->pindex = 0; 1482 m->ref_count &= ~VPRC_OBJREF; 1483 return (1); 1484 } 1485 vm_page_insert_radixdone(m, object, mpred); 1486 vm_pager_page_inserted(object, m); 1487 return (0); 1488 } 1489 1490 /* 1491 * vm_page_insert_radixdone: 1492 * 1493 * Complete page "m" insertion into the specified object after the 1494 * radix trie hooking. 1495 * 1496 * The page "mpred" must precede the offset "m->pindex" within the 1497 * specified object. 1498 * 1499 * The object must be locked. 1500 */ 1501 static void 1502 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1503 { 1504 1505 VM_OBJECT_ASSERT_WLOCKED(object); 1506 KASSERT(object != NULL && m->object == object, 1507 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1508 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1509 ("vm_page_insert_radixdone: page %p is missing object ref", m)); 1510 if (mpred != NULL) { 1511 KASSERT(mpred->object == object, 1512 ("vm_page_insert_radixdone: object doesn't contain mpred")); 1513 KASSERT(mpred->pindex < m->pindex, 1514 ("vm_page_insert_radixdone: mpred doesn't precede pindex")); 1515 } 1516 1517 if (mpred != NULL) 1518 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1519 else 1520 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1521 1522 /* 1523 * Show that the object has one more resident page. 1524 */ 1525 object->resident_page_count++; 1526 1527 /* 1528 * Hold the vnode until the last page is released. 1529 */ 1530 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1531 vhold(object->handle); 1532 1533 /* 1534 * Since we are inserting a new and possibly dirty page, 1535 * update the object's generation count. 1536 */ 1537 if (pmap_page_is_write_mapped(m)) 1538 vm_object_set_writeable_dirty(object); 1539 } 1540 1541 /* 1542 * Do the work to remove a page from its object. The caller is responsible for 1543 * updating the page's fields to reflect this removal. 1544 */ 1545 static void 1546 vm_page_object_remove(vm_page_t m) 1547 { 1548 vm_object_t object; 1549 vm_page_t mrem __diagused; 1550 1551 vm_page_assert_xbusied(m); 1552 object = m->object; 1553 VM_OBJECT_ASSERT_WLOCKED(object); 1554 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1555 ("page %p is missing its object ref", m)); 1556 1557 /* Deferred free of swap space. */ 1558 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1559 vm_pager_page_unswapped(m); 1560 1561 vm_pager_page_removed(object, m); 1562 1563 m->object = NULL; 1564 mrem = vm_radix_remove(&object->rtree, m->pindex); 1565 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1566 1567 /* 1568 * Now remove from the object's list of backed pages. 1569 */ 1570 TAILQ_REMOVE(&object->memq, m, listq); 1571 1572 /* 1573 * And show that the object has one fewer resident page. 1574 */ 1575 object->resident_page_count--; 1576 1577 /* 1578 * The vnode may now be recycled. 1579 */ 1580 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1581 vdrop(object->handle); 1582 } 1583 1584 /* 1585 * vm_page_remove: 1586 * 1587 * Removes the specified page from its containing object, but does not 1588 * invalidate any backing storage. Returns true if the object's reference 1589 * was the last reference to the page, and false otherwise. 1590 * 1591 * The object must be locked and the page must be exclusively busied. 1592 * The exclusive busy will be released on return. If this is not the 1593 * final ref and the caller does not hold a wire reference it may not 1594 * continue to access the page. 1595 */ 1596 bool 1597 vm_page_remove(vm_page_t m) 1598 { 1599 bool dropped; 1600 1601 dropped = vm_page_remove_xbusy(m); 1602 vm_page_xunbusy(m); 1603 1604 return (dropped); 1605 } 1606 1607 /* 1608 * vm_page_remove_xbusy 1609 * 1610 * Removes the page but leaves the xbusy held. Returns true if this 1611 * removed the final ref and false otherwise. 1612 */ 1613 bool 1614 vm_page_remove_xbusy(vm_page_t m) 1615 { 1616 1617 vm_page_object_remove(m); 1618 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1619 } 1620 1621 /* 1622 * vm_page_lookup: 1623 * 1624 * Returns the page associated with the object/offset 1625 * pair specified; if none is found, NULL is returned. 1626 * 1627 * The object must be locked. 1628 */ 1629 vm_page_t 1630 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1631 { 1632 1633 VM_OBJECT_ASSERT_LOCKED(object); 1634 return (vm_radix_lookup(&object->rtree, pindex)); 1635 } 1636 1637 /* 1638 * vm_page_lookup_unlocked: 1639 * 1640 * Returns the page associated with the object/offset pair specified; 1641 * if none is found, NULL is returned. The page may be no longer be 1642 * present in the object at the time that this function returns. Only 1643 * useful for opportunistic checks such as inmem(). 1644 */ 1645 vm_page_t 1646 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex) 1647 { 1648 1649 return (vm_radix_lookup_unlocked(&object->rtree, pindex)); 1650 } 1651 1652 /* 1653 * vm_page_relookup: 1654 * 1655 * Returns a page that must already have been busied by 1656 * the caller. Used for bogus page replacement. 1657 */ 1658 vm_page_t 1659 vm_page_relookup(vm_object_t object, vm_pindex_t pindex) 1660 { 1661 vm_page_t m; 1662 1663 m = vm_radix_lookup_unlocked(&object->rtree, pindex); 1664 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) && 1665 m->object == object && m->pindex == pindex, 1666 ("vm_page_relookup: Invalid page %p", m)); 1667 return (m); 1668 } 1669 1670 /* 1671 * This should only be used by lockless functions for releasing transient 1672 * incorrect acquires. The page may have been freed after we acquired a 1673 * busy lock. In this case busy_lock == VPB_FREED and we have nothing 1674 * further to do. 1675 */ 1676 static void 1677 vm_page_busy_release(vm_page_t m) 1678 { 1679 u_int x; 1680 1681 x = vm_page_busy_fetch(m); 1682 for (;;) { 1683 if (x == VPB_FREED) 1684 break; 1685 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) { 1686 if (atomic_fcmpset_int(&m->busy_lock, &x, 1687 x - VPB_ONE_SHARER)) 1688 break; 1689 continue; 1690 } 1691 KASSERT((x & VPB_BIT_SHARED) != 0 || 1692 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE, 1693 ("vm_page_busy_release: %p xbusy not owned.", m)); 1694 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1695 continue; 1696 if ((x & VPB_BIT_WAITERS) != 0) 1697 wakeup(m); 1698 break; 1699 } 1700 } 1701 1702 /* 1703 * vm_page_find_least: 1704 * 1705 * Returns the page associated with the object with least pindex 1706 * greater than or equal to the parameter pindex, or NULL. 1707 * 1708 * The object must be locked. 1709 */ 1710 vm_page_t 1711 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1712 { 1713 vm_page_t m; 1714 1715 VM_OBJECT_ASSERT_LOCKED(object); 1716 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1717 m = vm_radix_lookup_ge(&object->rtree, pindex); 1718 return (m); 1719 } 1720 1721 /* 1722 * Returns the given page's successor (by pindex) within the object if it is 1723 * resident; if none is found, NULL is returned. 1724 * 1725 * The object must be locked. 1726 */ 1727 vm_page_t 1728 vm_page_next(vm_page_t m) 1729 { 1730 vm_page_t next; 1731 1732 VM_OBJECT_ASSERT_LOCKED(m->object); 1733 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1734 MPASS(next->object == m->object); 1735 if (next->pindex != m->pindex + 1) 1736 next = NULL; 1737 } 1738 return (next); 1739 } 1740 1741 /* 1742 * Returns the given page's predecessor (by pindex) within the object if it is 1743 * resident; if none is found, NULL is returned. 1744 * 1745 * The object must be locked. 1746 */ 1747 vm_page_t 1748 vm_page_prev(vm_page_t m) 1749 { 1750 vm_page_t prev; 1751 1752 VM_OBJECT_ASSERT_LOCKED(m->object); 1753 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1754 MPASS(prev->object == m->object); 1755 if (prev->pindex != m->pindex - 1) 1756 prev = NULL; 1757 } 1758 return (prev); 1759 } 1760 1761 /* 1762 * Uses the page mnew as a replacement for an existing page at index 1763 * pindex which must be already present in the object. 1764 * 1765 * Both pages must be exclusively busied on enter. The old page is 1766 * unbusied on exit. 1767 * 1768 * A return value of true means mold is now free. If this is not the 1769 * final ref and the caller does not hold a wire reference it may not 1770 * continue to access the page. 1771 */ 1772 static bool 1773 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1774 vm_page_t mold) 1775 { 1776 vm_page_t mret __diagused; 1777 bool dropped; 1778 1779 VM_OBJECT_ASSERT_WLOCKED(object); 1780 vm_page_assert_xbusied(mold); 1781 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0, 1782 ("vm_page_replace: page %p already in object", mnew)); 1783 1784 /* 1785 * This function mostly follows vm_page_insert() and 1786 * vm_page_remove() without the radix, object count and vnode 1787 * dance. Double check such functions for more comments. 1788 */ 1789 1790 mnew->object = object; 1791 mnew->pindex = pindex; 1792 atomic_set_int(&mnew->ref_count, VPRC_OBJREF); 1793 mret = vm_radix_replace(&object->rtree, mnew); 1794 KASSERT(mret == mold, 1795 ("invalid page replacement, mold=%p, mret=%p", mold, mret)); 1796 KASSERT((mold->oflags & VPO_UNMANAGED) == 1797 (mnew->oflags & VPO_UNMANAGED), 1798 ("vm_page_replace: mismatched VPO_UNMANAGED")); 1799 1800 /* Keep the resident page list in sorted order. */ 1801 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1802 TAILQ_REMOVE(&object->memq, mold, listq); 1803 mold->object = NULL; 1804 1805 /* 1806 * The object's resident_page_count does not change because we have 1807 * swapped one page for another, but the generation count should 1808 * change if the page is dirty. 1809 */ 1810 if (pmap_page_is_write_mapped(mnew)) 1811 vm_object_set_writeable_dirty(object); 1812 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF; 1813 vm_page_xunbusy(mold); 1814 1815 return (dropped); 1816 } 1817 1818 void 1819 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1820 vm_page_t mold) 1821 { 1822 1823 vm_page_assert_xbusied(mnew); 1824 1825 if (vm_page_replace_hold(mnew, object, pindex, mold)) 1826 vm_page_free(mold); 1827 } 1828 1829 /* 1830 * vm_page_rename: 1831 * 1832 * Move the given memory entry from its 1833 * current object to the specified target object/offset. 1834 * 1835 * Note: swap associated with the page must be invalidated by the move. We 1836 * have to do this for several reasons: (1) we aren't freeing the 1837 * page, (2) we are dirtying the page, (3) the VM system is probably 1838 * moving the page from object A to B, and will then later move 1839 * the backing store from A to B and we can't have a conflict. 1840 * 1841 * Note: we *always* dirty the page. It is necessary both for the 1842 * fact that we moved it, and because we may be invalidating 1843 * swap. 1844 * 1845 * The objects must be locked. 1846 */ 1847 int 1848 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1849 { 1850 vm_page_t mpred; 1851 vm_pindex_t opidx; 1852 1853 VM_OBJECT_ASSERT_WLOCKED(new_object); 1854 1855 KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m)); 1856 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1857 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1858 ("vm_page_rename: pindex already renamed")); 1859 1860 /* 1861 * Create a custom version of vm_page_insert() which does not depend 1862 * by m_prev and can cheat on the implementation aspects of the 1863 * function. 1864 */ 1865 opidx = m->pindex; 1866 m->pindex = new_pindex; 1867 if (vm_radix_insert(&new_object->rtree, m)) { 1868 m->pindex = opidx; 1869 return (1); 1870 } 1871 1872 /* 1873 * The operation cannot fail anymore. The removal must happen before 1874 * the listq iterator is tainted. 1875 */ 1876 m->pindex = opidx; 1877 vm_page_object_remove(m); 1878 1879 /* Return back to the new pindex to complete vm_page_insert(). */ 1880 m->pindex = new_pindex; 1881 m->object = new_object; 1882 1883 vm_page_insert_radixdone(m, new_object, mpred); 1884 vm_page_dirty(m); 1885 vm_pager_page_inserted(new_object, m); 1886 return (0); 1887 } 1888 1889 /* 1890 * vm_page_alloc: 1891 * 1892 * Allocate and return a page that is associated with the specified 1893 * object and offset pair. By default, this page is exclusive busied. 1894 * 1895 * The caller must always specify an allocation class. 1896 * 1897 * allocation classes: 1898 * VM_ALLOC_NORMAL normal process request 1899 * VM_ALLOC_SYSTEM system *really* needs a page 1900 * VM_ALLOC_INTERRUPT interrupt time request 1901 * 1902 * optional allocation flags: 1903 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1904 * intends to allocate 1905 * VM_ALLOC_NOBUSY do not exclusive busy the page 1906 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1907 * VM_ALLOC_SBUSY shared busy the allocated page 1908 * VM_ALLOC_WIRED wire the allocated page 1909 * VM_ALLOC_ZERO prefer a zeroed page 1910 */ 1911 vm_page_t 1912 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1913 { 1914 1915 return (vm_page_alloc_after(object, pindex, req, 1916 vm_radix_lookup_le(&object->rtree, pindex))); 1917 } 1918 1919 vm_page_t 1920 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1921 int req) 1922 { 1923 1924 return (vm_page_alloc_domain_after(object, pindex, domain, req, 1925 vm_radix_lookup_le(&object->rtree, pindex))); 1926 } 1927 1928 /* 1929 * Allocate a page in the specified object with the given page index. To 1930 * optimize insertion of the page into the object, the caller must also specifiy 1931 * the resident page in the object with largest index smaller than the given 1932 * page index, or NULL if no such page exists. 1933 */ 1934 vm_page_t 1935 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 1936 int req, vm_page_t mpred) 1937 { 1938 struct vm_domainset_iter di; 1939 vm_page_t m; 1940 int domain; 1941 1942 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1943 do { 1944 m = vm_page_alloc_domain_after(object, pindex, domain, req, 1945 mpred); 1946 if (m != NULL) 1947 break; 1948 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1949 1950 return (m); 1951 } 1952 1953 /* 1954 * Returns true if the number of free pages exceeds the minimum 1955 * for the request class and false otherwise. 1956 */ 1957 static int 1958 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages) 1959 { 1960 u_int limit, old, new; 1961 1962 if (req_class == VM_ALLOC_INTERRUPT) 1963 limit = 0; 1964 else if (req_class == VM_ALLOC_SYSTEM) 1965 limit = vmd->vmd_interrupt_free_min; 1966 else 1967 limit = vmd->vmd_free_reserved; 1968 1969 /* 1970 * Attempt to reserve the pages. Fail if we're below the limit. 1971 */ 1972 limit += npages; 1973 old = vmd->vmd_free_count; 1974 do { 1975 if (old < limit) 1976 return (0); 1977 new = old - npages; 1978 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 1979 1980 /* Wake the page daemon if we've crossed the threshold. */ 1981 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 1982 pagedaemon_wakeup(vmd->vmd_domain); 1983 1984 /* Only update bitsets on transitions. */ 1985 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 1986 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 1987 vm_domain_set(vmd); 1988 1989 return (1); 1990 } 1991 1992 int 1993 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 1994 { 1995 int req_class; 1996 1997 /* 1998 * The page daemon is allowed to dig deeper into the free page list. 1999 */ 2000 req_class = req & VM_ALLOC_CLASS_MASK; 2001 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2002 req_class = VM_ALLOC_SYSTEM; 2003 return (_vm_domain_allocate(vmd, req_class, npages)); 2004 } 2005 2006 vm_page_t 2007 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 2008 int req, vm_page_t mpred) 2009 { 2010 struct vm_domain *vmd; 2011 vm_page_t m; 2012 int flags; 2013 2014 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2015 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \ 2016 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \ 2017 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK) 2018 KASSERT((req & ~VPA_FLAGS) == 0, 2019 ("invalid request %#x", req)); 2020 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2021 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2022 ("invalid request %#x", req)); 2023 KASSERT(mpred == NULL || mpred->pindex < pindex, 2024 ("mpred %p doesn't precede pindex 0x%jx", mpred, 2025 (uintmax_t)pindex)); 2026 VM_OBJECT_ASSERT_WLOCKED(object); 2027 2028 flags = 0; 2029 m = NULL; 2030 if (!vm_pager_can_alloc_page(object, pindex)) 2031 return (NULL); 2032 again: 2033 #if VM_NRESERVLEVEL > 0 2034 /* 2035 * Can we allocate the page from a reservation? 2036 */ 2037 if (vm_object_reserv(object) && 2038 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != 2039 NULL) { 2040 goto found; 2041 } 2042 #endif 2043 vmd = VM_DOMAIN(domain); 2044 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) { 2045 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone, 2046 M_NOWAIT | M_NOVM); 2047 if (m != NULL) { 2048 flags |= PG_PCPU_CACHE; 2049 goto found; 2050 } 2051 } 2052 if (vm_domain_allocate(vmd, req, 1)) { 2053 /* 2054 * If not, allocate it from the free page queues. 2055 */ 2056 vm_domain_free_lock(vmd); 2057 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0); 2058 vm_domain_free_unlock(vmd); 2059 if (m == NULL) { 2060 vm_domain_freecnt_inc(vmd, 1); 2061 #if VM_NRESERVLEVEL > 0 2062 if (vm_reserv_reclaim_inactive(domain)) 2063 goto again; 2064 #endif 2065 } 2066 } 2067 if (m == NULL) { 2068 /* 2069 * Not allocatable, give up. 2070 */ 2071 if (vm_domain_alloc_fail(vmd, object, req)) 2072 goto again; 2073 return (NULL); 2074 } 2075 2076 /* 2077 * At this point we had better have found a good page. 2078 */ 2079 found: 2080 vm_page_dequeue(m); 2081 vm_page_alloc_check(m); 2082 2083 /* 2084 * Initialize the page. Only the PG_ZERO flag is inherited. 2085 */ 2086 flags |= m->flags & PG_ZERO; 2087 if ((req & VM_ALLOC_NODUMP) != 0) 2088 flags |= PG_NODUMP; 2089 m->flags = flags; 2090 m->a.flags = 0; 2091 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2092 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2093 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2094 else if ((req & VM_ALLOC_SBUSY) != 0) 2095 m->busy_lock = VPB_SHARERS_WORD(1); 2096 else 2097 m->busy_lock = VPB_UNBUSIED; 2098 if (req & VM_ALLOC_WIRED) { 2099 vm_wire_add(1); 2100 m->ref_count = 1; 2101 } 2102 m->a.act_count = 0; 2103 2104 if (vm_page_insert_after(m, object, pindex, mpred)) { 2105 if (req & VM_ALLOC_WIRED) { 2106 vm_wire_sub(1); 2107 m->ref_count = 0; 2108 } 2109 KASSERT(m->object == NULL, ("page %p has object", m)); 2110 m->oflags = VPO_UNMANAGED; 2111 m->busy_lock = VPB_UNBUSIED; 2112 /* Don't change PG_ZERO. */ 2113 vm_page_free_toq(m); 2114 if (req & VM_ALLOC_WAITFAIL) { 2115 VM_OBJECT_WUNLOCK(object); 2116 vm_radix_wait(); 2117 VM_OBJECT_WLOCK(object); 2118 } 2119 return (NULL); 2120 } 2121 2122 /* Ignore device objects; the pager sets "memattr" for them. */ 2123 if (object->memattr != VM_MEMATTR_DEFAULT && 2124 (object->flags & OBJ_FICTITIOUS) == 0) 2125 pmap_page_set_memattr(m, object->memattr); 2126 2127 return (m); 2128 } 2129 2130 /* 2131 * vm_page_alloc_contig: 2132 * 2133 * Allocate a contiguous set of physical pages of the given size "npages" 2134 * from the free lists. All of the physical pages must be at or above 2135 * the given physical address "low" and below the given physical address 2136 * "high". The given value "alignment" determines the alignment of the 2137 * first physical page in the set. If the given value "boundary" is 2138 * non-zero, then the set of physical pages cannot cross any physical 2139 * address boundary that is a multiple of that value. Both "alignment" 2140 * and "boundary" must be a power of two. 2141 * 2142 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 2143 * then the memory attribute setting for the physical pages is configured 2144 * to the object's memory attribute setting. Otherwise, the memory 2145 * attribute setting for the physical pages is configured to "memattr", 2146 * overriding the object's memory attribute setting. However, if the 2147 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 2148 * memory attribute setting for the physical pages cannot be configured 2149 * to VM_MEMATTR_DEFAULT. 2150 * 2151 * The specified object may not contain fictitious pages. 2152 * 2153 * The caller must always specify an allocation class. 2154 * 2155 * allocation classes: 2156 * VM_ALLOC_NORMAL normal process request 2157 * VM_ALLOC_SYSTEM system *really* needs a page 2158 * VM_ALLOC_INTERRUPT interrupt time request 2159 * 2160 * optional allocation flags: 2161 * VM_ALLOC_NOBUSY do not exclusive busy the page 2162 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2163 * VM_ALLOC_SBUSY shared busy the allocated page 2164 * VM_ALLOC_WIRED wire the allocated page 2165 * VM_ALLOC_ZERO prefer a zeroed page 2166 */ 2167 vm_page_t 2168 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 2169 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2170 vm_paddr_t boundary, vm_memattr_t memattr) 2171 { 2172 struct vm_domainset_iter di; 2173 vm_page_t bounds[2]; 2174 vm_page_t m; 2175 int domain; 2176 int start_segind; 2177 2178 start_segind = -1; 2179 2180 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2181 do { 2182 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 2183 npages, low, high, alignment, boundary, memattr); 2184 if (m != NULL) 2185 break; 2186 if (start_segind == -1) 2187 start_segind = vm_phys_lookup_segind(low); 2188 if (vm_phys_find_range(bounds, start_segind, domain, 2189 npages, low, high) == -1) { 2190 vm_domainset_iter_ignore(&di, domain); 2191 } 2192 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2193 2194 return (m); 2195 } 2196 2197 static vm_page_t 2198 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low, 2199 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2200 { 2201 struct vm_domain *vmd; 2202 vm_page_t m_ret; 2203 2204 /* 2205 * Can we allocate the pages without the number of free pages falling 2206 * below the lower bound for the allocation class? 2207 */ 2208 vmd = VM_DOMAIN(domain); 2209 if (!vm_domain_allocate(vmd, req, npages)) 2210 return (NULL); 2211 /* 2212 * Try to allocate the pages from the free page queues. 2213 */ 2214 vm_domain_free_lock(vmd); 2215 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2216 alignment, boundary); 2217 vm_domain_free_unlock(vmd); 2218 if (m_ret != NULL) 2219 return (m_ret); 2220 #if VM_NRESERVLEVEL > 0 2221 /* 2222 * Try to break a reservation to allocate the pages. 2223 */ 2224 if ((req & VM_ALLOC_NORECLAIM) == 0) { 2225 m_ret = vm_reserv_reclaim_contig(domain, npages, low, 2226 high, alignment, boundary); 2227 if (m_ret != NULL) 2228 return (m_ret); 2229 } 2230 #endif 2231 vm_domain_freecnt_inc(vmd, npages); 2232 return (NULL); 2233 } 2234 2235 vm_page_t 2236 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 2237 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2238 vm_paddr_t boundary, vm_memattr_t memattr) 2239 { 2240 vm_page_t m, m_ret, mpred; 2241 u_int busy_lock, flags, oflags; 2242 2243 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM) 2244 KASSERT((req & ~VPAC_FLAGS) == 0, 2245 ("invalid request %#x", req)); 2246 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2247 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2248 ("invalid request %#x", req)); 2249 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2250 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2251 ("invalid request %#x", req)); 2252 VM_OBJECT_ASSERT_WLOCKED(object); 2253 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 2254 ("vm_page_alloc_contig: object %p has fictitious pages", 2255 object)); 2256 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2257 2258 mpred = vm_radix_lookup_le(&object->rtree, pindex); 2259 KASSERT(mpred == NULL || mpred->pindex != pindex, 2260 ("vm_page_alloc_contig: pindex already allocated")); 2261 for (;;) { 2262 #if VM_NRESERVLEVEL > 0 2263 /* 2264 * Can we allocate the pages from a reservation? 2265 */ 2266 if (vm_object_reserv(object) && 2267 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, 2268 mpred, npages, low, high, alignment, boundary)) != NULL) { 2269 break; 2270 } 2271 #endif 2272 if ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2273 low, high, alignment, boundary)) != NULL) 2274 break; 2275 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req)) 2276 return (NULL); 2277 } 2278 for (m = m_ret; m < &m_ret[npages]; m++) { 2279 vm_page_dequeue(m); 2280 vm_page_alloc_check(m); 2281 } 2282 2283 /* 2284 * Initialize the pages. Only the PG_ZERO flag is inherited. 2285 */ 2286 flags = PG_ZERO; 2287 if ((req & VM_ALLOC_NODUMP) != 0) 2288 flags |= PG_NODUMP; 2289 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2290 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2291 busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2292 else if ((req & VM_ALLOC_SBUSY) != 0) 2293 busy_lock = VPB_SHARERS_WORD(1); 2294 else 2295 busy_lock = VPB_UNBUSIED; 2296 if ((req & VM_ALLOC_WIRED) != 0) 2297 vm_wire_add(npages); 2298 if (object->memattr != VM_MEMATTR_DEFAULT && 2299 memattr == VM_MEMATTR_DEFAULT) 2300 memattr = object->memattr; 2301 for (m = m_ret; m < &m_ret[npages]; m++) { 2302 m->a.flags = 0; 2303 m->flags = (m->flags | PG_NODUMP) & flags; 2304 m->busy_lock = busy_lock; 2305 if ((req & VM_ALLOC_WIRED) != 0) 2306 m->ref_count = 1; 2307 m->a.act_count = 0; 2308 m->oflags = oflags; 2309 if (vm_page_insert_after(m, object, pindex, mpred)) { 2310 if ((req & VM_ALLOC_WIRED) != 0) 2311 vm_wire_sub(npages); 2312 KASSERT(m->object == NULL, 2313 ("page %p has object", m)); 2314 mpred = m; 2315 for (m = m_ret; m < &m_ret[npages]; m++) { 2316 if (m <= mpred && 2317 (req & VM_ALLOC_WIRED) != 0) 2318 m->ref_count = 0; 2319 m->oflags = VPO_UNMANAGED; 2320 m->busy_lock = VPB_UNBUSIED; 2321 /* Don't change PG_ZERO. */ 2322 vm_page_free_toq(m); 2323 } 2324 if (req & VM_ALLOC_WAITFAIL) { 2325 VM_OBJECT_WUNLOCK(object); 2326 vm_radix_wait(); 2327 VM_OBJECT_WLOCK(object); 2328 } 2329 return (NULL); 2330 } 2331 mpred = m; 2332 if (memattr != VM_MEMATTR_DEFAULT) 2333 pmap_page_set_memattr(m, memattr); 2334 pindex++; 2335 } 2336 return (m_ret); 2337 } 2338 2339 /* 2340 * Allocate a physical page that is not intended to be inserted into a VM 2341 * object. If the "freelist" parameter is not equal to VM_NFREELIST, then only 2342 * pages from the specified vm_phys freelist will be returned. 2343 */ 2344 static __always_inline vm_page_t 2345 _vm_page_alloc_noobj_domain(int domain, const int freelist, int req) 2346 { 2347 struct vm_domain *vmd; 2348 vm_page_t m; 2349 int flags; 2350 2351 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2352 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \ 2353 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \ 2354 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK) 2355 KASSERT((req & ~VPAN_FLAGS) == 0, 2356 ("invalid request %#x", req)); 2357 2358 flags = (req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0; 2359 vmd = VM_DOMAIN(domain); 2360 again: 2361 if (freelist == VM_NFREELIST && 2362 vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) { 2363 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone, 2364 M_NOWAIT | M_NOVM); 2365 if (m != NULL) { 2366 flags |= PG_PCPU_CACHE; 2367 goto found; 2368 } 2369 } 2370 2371 if (vm_domain_allocate(vmd, req, 1)) { 2372 vm_domain_free_lock(vmd); 2373 if (freelist == VM_NFREELIST) 2374 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0); 2375 else 2376 m = vm_phys_alloc_freelist_pages(domain, freelist, 2377 VM_FREEPOOL_DIRECT, 0); 2378 vm_domain_free_unlock(vmd); 2379 if (m == NULL) { 2380 vm_domain_freecnt_inc(vmd, 1); 2381 #if VM_NRESERVLEVEL > 0 2382 if (freelist == VM_NFREELIST && 2383 vm_reserv_reclaim_inactive(domain)) 2384 goto again; 2385 #endif 2386 } 2387 } 2388 if (m == NULL) { 2389 if (vm_domain_alloc_fail(vmd, NULL, req)) 2390 goto again; 2391 return (NULL); 2392 } 2393 2394 found: 2395 vm_page_dequeue(m); 2396 vm_page_alloc_check(m); 2397 2398 /* 2399 * Consumers should not rely on a useful default pindex value. 2400 */ 2401 m->pindex = 0xdeadc0dedeadc0de; 2402 m->flags = (m->flags & PG_ZERO) | flags; 2403 m->a.flags = 0; 2404 m->oflags = VPO_UNMANAGED; 2405 m->busy_lock = VPB_UNBUSIED; 2406 if ((req & VM_ALLOC_WIRED) != 0) { 2407 vm_wire_add(1); 2408 m->ref_count = 1; 2409 } 2410 2411 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2412 pmap_zero_page(m); 2413 2414 return (m); 2415 } 2416 2417 vm_page_t 2418 vm_page_alloc_freelist(int freelist, int req) 2419 { 2420 struct vm_domainset_iter di; 2421 vm_page_t m; 2422 int domain; 2423 2424 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2425 do { 2426 m = vm_page_alloc_freelist_domain(domain, freelist, req); 2427 if (m != NULL) 2428 break; 2429 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2430 2431 return (m); 2432 } 2433 2434 vm_page_t 2435 vm_page_alloc_freelist_domain(int domain, int freelist, int req) 2436 { 2437 KASSERT(freelist >= 0 && freelist < VM_NFREELIST, 2438 ("%s: invalid freelist %d", __func__, freelist)); 2439 2440 return (_vm_page_alloc_noobj_domain(domain, freelist, req)); 2441 } 2442 2443 vm_page_t 2444 vm_page_alloc_noobj(int req) 2445 { 2446 struct vm_domainset_iter di; 2447 vm_page_t m; 2448 int domain; 2449 2450 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2451 do { 2452 m = vm_page_alloc_noobj_domain(domain, req); 2453 if (m != NULL) 2454 break; 2455 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2456 2457 return (m); 2458 } 2459 2460 vm_page_t 2461 vm_page_alloc_noobj_domain(int domain, int req) 2462 { 2463 return (_vm_page_alloc_noobj_domain(domain, VM_NFREELIST, req)); 2464 } 2465 2466 vm_page_t 2467 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low, 2468 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2469 vm_memattr_t memattr) 2470 { 2471 struct vm_domainset_iter di; 2472 vm_page_t m; 2473 int domain; 2474 2475 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2476 do { 2477 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low, 2478 high, alignment, boundary, memattr); 2479 if (m != NULL) 2480 break; 2481 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2482 2483 return (m); 2484 } 2485 2486 vm_page_t 2487 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages, 2488 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2489 vm_memattr_t memattr) 2490 { 2491 vm_page_t m, m_ret; 2492 u_int flags; 2493 2494 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM) 2495 KASSERT((req & ~VPANC_FLAGS) == 0, 2496 ("invalid request %#x", req)); 2497 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2498 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2499 ("invalid request %#x", req)); 2500 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2501 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2502 ("invalid request %#x", req)); 2503 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2504 2505 while ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2506 low, high, alignment, boundary)) == NULL) { 2507 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req)) 2508 return (NULL); 2509 } 2510 2511 /* 2512 * Initialize the pages. Only the PG_ZERO flag is inherited. 2513 */ 2514 flags = PG_ZERO; 2515 if ((req & VM_ALLOC_NODUMP) != 0) 2516 flags |= PG_NODUMP; 2517 if ((req & VM_ALLOC_WIRED) != 0) 2518 vm_wire_add(npages); 2519 for (m = m_ret; m < &m_ret[npages]; m++) { 2520 vm_page_dequeue(m); 2521 vm_page_alloc_check(m); 2522 2523 /* 2524 * Consumers should not rely on a useful default pindex value. 2525 */ 2526 m->pindex = 0xdeadc0dedeadc0de; 2527 m->a.flags = 0; 2528 m->flags = (m->flags | PG_NODUMP) & flags; 2529 m->busy_lock = VPB_UNBUSIED; 2530 if ((req & VM_ALLOC_WIRED) != 0) 2531 m->ref_count = 1; 2532 m->a.act_count = 0; 2533 m->oflags = VPO_UNMANAGED; 2534 2535 /* 2536 * Zero the page before updating any mappings since the page is 2537 * not yet shared with any devices which might require the 2538 * non-default memory attribute. pmap_page_set_memattr() 2539 * flushes data caches before returning. 2540 */ 2541 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2542 pmap_zero_page(m); 2543 if (memattr != VM_MEMATTR_DEFAULT) 2544 pmap_page_set_memattr(m, memattr); 2545 } 2546 return (m_ret); 2547 } 2548 2549 /* 2550 * Check a page that has been freshly dequeued from a freelist. 2551 */ 2552 static void 2553 vm_page_alloc_check(vm_page_t m) 2554 { 2555 2556 KASSERT(m->object == NULL, ("page %p has object", m)); 2557 KASSERT(m->a.queue == PQ_NONE && 2558 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 2559 ("page %p has unexpected queue %d, flags %#x", 2560 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK))); 2561 KASSERT(m->ref_count == 0, ("page %p has references", m)); 2562 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m)); 2563 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2564 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2565 ("page %p has unexpected memattr %d", 2566 m, pmap_page_get_memattr(m))); 2567 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m)); 2568 pmap_vm_page_alloc_check(m); 2569 } 2570 2571 static int 2572 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2573 { 2574 struct vm_domain *vmd; 2575 struct vm_pgcache *pgcache; 2576 int i; 2577 2578 pgcache = arg; 2579 vmd = VM_DOMAIN(pgcache->domain); 2580 2581 /* 2582 * The page daemon should avoid creating extra memory pressure since its 2583 * main purpose is to replenish the store of free pages. 2584 */ 2585 if (vmd->vmd_severeset || curproc == pageproc || 2586 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2587 return (0); 2588 domain = vmd->vmd_domain; 2589 vm_domain_free_lock(vmd); 2590 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2591 (vm_page_t *)store); 2592 vm_domain_free_unlock(vmd); 2593 if (cnt != i) 2594 vm_domain_freecnt_inc(vmd, cnt - i); 2595 2596 return (i); 2597 } 2598 2599 static void 2600 vm_page_zone_release(void *arg, void **store, int cnt) 2601 { 2602 struct vm_domain *vmd; 2603 struct vm_pgcache *pgcache; 2604 vm_page_t m; 2605 int i; 2606 2607 pgcache = arg; 2608 vmd = VM_DOMAIN(pgcache->domain); 2609 vm_domain_free_lock(vmd); 2610 for (i = 0; i < cnt; i++) { 2611 m = (vm_page_t)store[i]; 2612 vm_phys_free_pages(m, 0); 2613 } 2614 vm_domain_free_unlock(vmd); 2615 vm_domain_freecnt_inc(vmd, cnt); 2616 } 2617 2618 #define VPSC_ANY 0 /* No restrictions. */ 2619 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2620 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2621 2622 /* 2623 * vm_page_scan_contig: 2624 * 2625 * Scan vm_page_array[] between the specified entries "m_start" and 2626 * "m_end" for a run of contiguous physical pages that satisfy the 2627 * specified conditions, and return the lowest page in the run. The 2628 * specified "alignment" determines the alignment of the lowest physical 2629 * page in the run. If the specified "boundary" is non-zero, then the 2630 * run of physical pages cannot span a physical address that is a 2631 * multiple of "boundary". 2632 * 2633 * "m_end" is never dereferenced, so it need not point to a vm_page 2634 * structure within vm_page_array[]. 2635 * 2636 * "npages" must be greater than zero. "m_start" and "m_end" must not 2637 * span a hole (or discontiguity) in the physical address space. Both 2638 * "alignment" and "boundary" must be a power of two. 2639 */ 2640 static vm_page_t 2641 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2642 u_long alignment, vm_paddr_t boundary, int options) 2643 { 2644 vm_object_t object; 2645 vm_paddr_t pa; 2646 vm_page_t m, m_run; 2647 #if VM_NRESERVLEVEL > 0 2648 int level; 2649 #endif 2650 int m_inc, order, run_ext, run_len; 2651 2652 KASSERT(npages > 0, ("npages is 0")); 2653 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2654 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2655 m_run = NULL; 2656 run_len = 0; 2657 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2658 KASSERT((m->flags & PG_MARKER) == 0, 2659 ("page %p is PG_MARKER", m)); 2660 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1, 2661 ("fictitious page %p has invalid ref count", m)); 2662 2663 /* 2664 * If the current page would be the start of a run, check its 2665 * physical address against the end, alignment, and boundary 2666 * conditions. If it doesn't satisfy these conditions, either 2667 * terminate the scan or advance to the next page that 2668 * satisfies the failed condition. 2669 */ 2670 if (run_len == 0) { 2671 KASSERT(m_run == NULL, ("m_run != NULL")); 2672 if (m + npages > m_end) 2673 break; 2674 pa = VM_PAGE_TO_PHYS(m); 2675 if (!vm_addr_align_ok(pa, alignment)) { 2676 m_inc = atop(roundup2(pa, alignment) - pa); 2677 continue; 2678 } 2679 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) { 2680 m_inc = atop(roundup2(pa, boundary) - pa); 2681 continue; 2682 } 2683 } else 2684 KASSERT(m_run != NULL, ("m_run == NULL")); 2685 2686 retry: 2687 m_inc = 1; 2688 if (vm_page_wired(m)) 2689 run_ext = 0; 2690 #if VM_NRESERVLEVEL > 0 2691 else if ((level = vm_reserv_level(m)) >= 0 && 2692 (options & VPSC_NORESERV) != 0) { 2693 run_ext = 0; 2694 /* Advance to the end of the reservation. */ 2695 pa = VM_PAGE_TO_PHYS(m); 2696 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2697 pa); 2698 } 2699 #endif 2700 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 2701 /* 2702 * The page is considered eligible for relocation if 2703 * and only if it could be laundered or reclaimed by 2704 * the page daemon. 2705 */ 2706 VM_OBJECT_RLOCK(object); 2707 if (object != m->object) { 2708 VM_OBJECT_RUNLOCK(object); 2709 goto retry; 2710 } 2711 /* Don't care: PG_NODUMP, PG_ZERO. */ 2712 if ((object->flags & OBJ_SWAP) == 0 && 2713 object->type != OBJT_VNODE) { 2714 run_ext = 0; 2715 #if VM_NRESERVLEVEL > 0 2716 } else if ((options & VPSC_NOSUPER) != 0 && 2717 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2718 run_ext = 0; 2719 /* Advance to the end of the superpage. */ 2720 pa = VM_PAGE_TO_PHYS(m); 2721 m_inc = atop(roundup2(pa + 1, 2722 vm_reserv_size(level)) - pa); 2723 #endif 2724 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2725 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) { 2726 /* 2727 * The page is allocated but eligible for 2728 * relocation. Extend the current run by one 2729 * page. 2730 */ 2731 KASSERT(pmap_page_get_memattr(m) == 2732 VM_MEMATTR_DEFAULT, 2733 ("page %p has an unexpected memattr", m)); 2734 KASSERT((m->oflags & (VPO_SWAPINPROG | 2735 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2736 ("page %p has unexpected oflags", m)); 2737 /* Don't care: PGA_NOSYNC. */ 2738 run_ext = 1; 2739 } else 2740 run_ext = 0; 2741 VM_OBJECT_RUNLOCK(object); 2742 #if VM_NRESERVLEVEL > 0 2743 } else if (level >= 0) { 2744 /* 2745 * The page is reserved but not yet allocated. In 2746 * other words, it is still free. Extend the current 2747 * run by one page. 2748 */ 2749 run_ext = 1; 2750 #endif 2751 } else if ((order = m->order) < VM_NFREEORDER) { 2752 /* 2753 * The page is enqueued in the physical memory 2754 * allocator's free page queues. Moreover, it is the 2755 * first page in a power-of-two-sized run of 2756 * contiguous free pages. Add these pages to the end 2757 * of the current run, and jump ahead. 2758 */ 2759 run_ext = 1 << order; 2760 m_inc = 1 << order; 2761 } else { 2762 /* 2763 * Skip the page for one of the following reasons: (1) 2764 * It is enqueued in the physical memory allocator's 2765 * free page queues. However, it is not the first 2766 * page in a run of contiguous free pages. (This case 2767 * rarely occurs because the scan is performed in 2768 * ascending order.) (2) It is not reserved, and it is 2769 * transitioning from free to allocated. (Conversely, 2770 * the transition from allocated to free for managed 2771 * pages is blocked by the page busy lock.) (3) It is 2772 * allocated but not contained by an object and not 2773 * wired, e.g., allocated by Xen's balloon driver. 2774 */ 2775 run_ext = 0; 2776 } 2777 2778 /* 2779 * Extend or reset the current run of pages. 2780 */ 2781 if (run_ext > 0) { 2782 if (run_len == 0) 2783 m_run = m; 2784 run_len += run_ext; 2785 } else { 2786 if (run_len > 0) { 2787 m_run = NULL; 2788 run_len = 0; 2789 } 2790 } 2791 } 2792 if (run_len >= npages) 2793 return (m_run); 2794 return (NULL); 2795 } 2796 2797 /* 2798 * vm_page_reclaim_run: 2799 * 2800 * Try to relocate each of the allocated virtual pages within the 2801 * specified run of physical pages to a new physical address. Free the 2802 * physical pages underlying the relocated virtual pages. A virtual page 2803 * is relocatable if and only if it could be laundered or reclaimed by 2804 * the page daemon. Whenever possible, a virtual page is relocated to a 2805 * physical address above "high". 2806 * 2807 * Returns 0 if every physical page within the run was already free or 2808 * just freed by a successful relocation. Otherwise, returns a non-zero 2809 * value indicating why the last attempt to relocate a virtual page was 2810 * unsuccessful. 2811 * 2812 * "req_class" must be an allocation class. 2813 */ 2814 static int 2815 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2816 vm_paddr_t high) 2817 { 2818 struct vm_domain *vmd; 2819 struct spglist free; 2820 vm_object_t object; 2821 vm_paddr_t pa; 2822 vm_page_t m, m_end, m_new; 2823 int error, order, req; 2824 2825 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2826 ("req_class is not an allocation class")); 2827 SLIST_INIT(&free); 2828 error = 0; 2829 m = m_run; 2830 m_end = m_run + npages; 2831 for (; error == 0 && m < m_end; m++) { 2832 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2833 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2834 2835 /* 2836 * Racily check for wirings. Races are handled once the object 2837 * lock is held and the page is unmapped. 2838 */ 2839 if (vm_page_wired(m)) 2840 error = EBUSY; 2841 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 2842 /* 2843 * The page is relocated if and only if it could be 2844 * laundered or reclaimed by the page daemon. 2845 */ 2846 VM_OBJECT_WLOCK(object); 2847 /* Don't care: PG_NODUMP, PG_ZERO. */ 2848 if (m->object != object || 2849 ((object->flags & OBJ_SWAP) == 0 && 2850 object->type != OBJT_VNODE)) 2851 error = EINVAL; 2852 else if (object->memattr != VM_MEMATTR_DEFAULT) 2853 error = EINVAL; 2854 else if (vm_page_queue(m) != PQ_NONE && 2855 vm_page_tryxbusy(m) != 0) { 2856 if (vm_page_wired(m)) { 2857 vm_page_xunbusy(m); 2858 error = EBUSY; 2859 goto unlock; 2860 } 2861 KASSERT(pmap_page_get_memattr(m) == 2862 VM_MEMATTR_DEFAULT, 2863 ("page %p has an unexpected memattr", m)); 2864 KASSERT(m->oflags == 0, 2865 ("page %p has unexpected oflags", m)); 2866 /* Don't care: PGA_NOSYNC. */ 2867 if (!vm_page_none_valid(m)) { 2868 /* 2869 * First, try to allocate a new page 2870 * that is above "high". Failing 2871 * that, try to allocate a new page 2872 * that is below "m_run". Allocate 2873 * the new page between the end of 2874 * "m_run" and "high" only as a last 2875 * resort. 2876 */ 2877 req = req_class; 2878 if ((m->flags & PG_NODUMP) != 0) 2879 req |= VM_ALLOC_NODUMP; 2880 if (trunc_page(high) != 2881 ~(vm_paddr_t)PAGE_MASK) { 2882 m_new = 2883 vm_page_alloc_noobj_contig( 2884 req, 1, round_page(high), 2885 ~(vm_paddr_t)0, PAGE_SIZE, 2886 0, VM_MEMATTR_DEFAULT); 2887 } else 2888 m_new = NULL; 2889 if (m_new == NULL) { 2890 pa = VM_PAGE_TO_PHYS(m_run); 2891 m_new = 2892 vm_page_alloc_noobj_contig( 2893 req, 1, 0, pa - 1, 2894 PAGE_SIZE, 0, 2895 VM_MEMATTR_DEFAULT); 2896 } 2897 if (m_new == NULL) { 2898 pa += ptoa(npages); 2899 m_new = 2900 vm_page_alloc_noobj_contig( 2901 req, 1, pa, high, PAGE_SIZE, 2902 0, VM_MEMATTR_DEFAULT); 2903 } 2904 if (m_new == NULL) { 2905 vm_page_xunbusy(m); 2906 error = ENOMEM; 2907 goto unlock; 2908 } 2909 2910 /* 2911 * Unmap the page and check for new 2912 * wirings that may have been acquired 2913 * through a pmap lookup. 2914 */ 2915 if (object->ref_count != 0 && 2916 !vm_page_try_remove_all(m)) { 2917 vm_page_xunbusy(m); 2918 vm_page_free(m_new); 2919 error = EBUSY; 2920 goto unlock; 2921 } 2922 2923 /* 2924 * Replace "m" with the new page. For 2925 * vm_page_replace(), "m" must be busy 2926 * and dequeued. Finally, change "m" 2927 * as if vm_page_free() was called. 2928 */ 2929 m_new->a.flags = m->a.flags & 2930 ~PGA_QUEUE_STATE_MASK; 2931 KASSERT(m_new->oflags == VPO_UNMANAGED, 2932 ("page %p is managed", m_new)); 2933 m_new->oflags = 0; 2934 pmap_copy_page(m, m_new); 2935 m_new->valid = m->valid; 2936 m_new->dirty = m->dirty; 2937 m->flags &= ~PG_ZERO; 2938 vm_page_dequeue(m); 2939 if (vm_page_replace_hold(m_new, object, 2940 m->pindex, m) && 2941 vm_page_free_prep(m)) 2942 SLIST_INSERT_HEAD(&free, m, 2943 plinks.s.ss); 2944 2945 /* 2946 * The new page must be deactivated 2947 * before the object is unlocked. 2948 */ 2949 vm_page_deactivate(m_new); 2950 } else { 2951 m->flags &= ~PG_ZERO; 2952 vm_page_dequeue(m); 2953 if (vm_page_free_prep(m)) 2954 SLIST_INSERT_HEAD(&free, m, 2955 plinks.s.ss); 2956 KASSERT(m->dirty == 0, 2957 ("page %p is dirty", m)); 2958 } 2959 } else 2960 error = EBUSY; 2961 unlock: 2962 VM_OBJECT_WUNLOCK(object); 2963 } else { 2964 MPASS(vm_page_domain(m) == domain); 2965 vmd = VM_DOMAIN(domain); 2966 vm_domain_free_lock(vmd); 2967 order = m->order; 2968 if (order < VM_NFREEORDER) { 2969 /* 2970 * The page is enqueued in the physical memory 2971 * allocator's free page queues. Moreover, it 2972 * is the first page in a power-of-two-sized 2973 * run of contiguous free pages. Jump ahead 2974 * to the last page within that run, and 2975 * continue from there. 2976 */ 2977 m += (1 << order) - 1; 2978 } 2979 #if VM_NRESERVLEVEL > 0 2980 else if (vm_reserv_is_page_free(m)) 2981 order = 0; 2982 #endif 2983 vm_domain_free_unlock(vmd); 2984 if (order == VM_NFREEORDER) 2985 error = EINVAL; 2986 } 2987 } 2988 if ((m = SLIST_FIRST(&free)) != NULL) { 2989 int cnt; 2990 2991 vmd = VM_DOMAIN(domain); 2992 cnt = 0; 2993 vm_domain_free_lock(vmd); 2994 do { 2995 MPASS(vm_page_domain(m) == domain); 2996 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 2997 vm_phys_free_pages(m, 0); 2998 cnt++; 2999 } while ((m = SLIST_FIRST(&free)) != NULL); 3000 vm_domain_free_unlock(vmd); 3001 vm_domain_freecnt_inc(vmd, cnt); 3002 } 3003 return (error); 3004 } 3005 3006 #define NRUNS 16 3007 3008 #define RUN_INDEX(count, nruns) ((count) % (nruns)) 3009 3010 #define MIN_RECLAIM 8 3011 3012 /* 3013 * vm_page_reclaim_contig: 3014 * 3015 * Reclaim allocated, contiguous physical memory satisfying the specified 3016 * conditions by relocating the virtual pages using that physical memory. 3017 * Returns 0 if reclamation is successful, ERANGE if the specified domain 3018 * can't possibly satisfy the reclamation request, or ENOMEM if not 3019 * currently able to reclaim the requested number of pages. Since 3020 * relocation requires the allocation of physical pages, reclamation may 3021 * fail with ENOMEM due to a shortage of free pages. When reclamation 3022 * fails in this manner, callers are expected to perform vm_wait() before 3023 * retrying a failed allocation operation, e.g., vm_page_alloc_contig(). 3024 * 3025 * The caller must always specify an allocation class through "req". 3026 * 3027 * allocation classes: 3028 * VM_ALLOC_NORMAL normal process request 3029 * VM_ALLOC_SYSTEM system *really* needs a page 3030 * VM_ALLOC_INTERRUPT interrupt time request 3031 * 3032 * The optional allocation flags are ignored. 3033 * 3034 * "npages" must be greater than zero. Both "alignment" and "boundary" 3035 * must be a power of two. 3036 */ 3037 int 3038 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages, 3039 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 3040 int desired_runs) 3041 { 3042 struct vm_domain *vmd; 3043 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs; 3044 u_long count, minalign, reclaimed; 3045 int error, i, min_reclaim, nruns, options, req_class; 3046 int segind, start_segind; 3047 int ret; 3048 3049 KASSERT(npages > 0, ("npages is 0")); 3050 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 3051 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 3052 3053 ret = ENOMEM; 3054 3055 /* 3056 * If the caller wants to reclaim multiple runs, try to allocate 3057 * space to store the runs. If that fails, fall back to the old 3058 * behavior of just reclaiming MIN_RECLAIM pages. 3059 */ 3060 if (desired_runs > 1) 3061 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs), 3062 M_TEMP, M_NOWAIT); 3063 else 3064 m_runs = NULL; 3065 3066 if (m_runs == NULL) { 3067 m_runs = _m_runs; 3068 nruns = NRUNS; 3069 } else { 3070 nruns = NRUNS + desired_runs - 1; 3071 } 3072 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM); 3073 3074 /* 3075 * The caller will attempt an allocation after some runs have been 3076 * reclaimed and added to the vm_phys buddy lists. Due to limitations 3077 * of vm_phys_alloc_contig(), round up the requested length to the next 3078 * power of two or maximum chunk size, and ensure that each run is 3079 * suitably aligned. 3080 */ 3081 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1); 3082 npages = roundup2(npages, minalign); 3083 if (alignment < ptoa(minalign)) 3084 alignment = ptoa(minalign); 3085 3086 /* 3087 * The page daemon is allowed to dig deeper into the free page list. 3088 */ 3089 req_class = req & VM_ALLOC_CLASS_MASK; 3090 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 3091 req_class = VM_ALLOC_SYSTEM; 3092 3093 start_segind = vm_phys_lookup_segind(low); 3094 3095 /* 3096 * Return if the number of free pages cannot satisfy the requested 3097 * allocation. 3098 */ 3099 vmd = VM_DOMAIN(domain); 3100 count = vmd->vmd_free_count; 3101 if (count < npages + vmd->vmd_free_reserved || (count < npages + 3102 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 3103 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 3104 goto done; 3105 3106 /* 3107 * Scan up to three times, relaxing the restrictions ("options") on 3108 * the reclamation of reservations and superpages each time. 3109 */ 3110 for (options = VPSC_NORESERV;;) { 3111 bool phys_range_exists = false; 3112 3113 /* 3114 * Find the highest runs that satisfy the given constraints 3115 * and restrictions, and record them in "m_runs". 3116 */ 3117 count = 0; 3118 segind = start_segind; 3119 while ((segind = vm_phys_find_range(bounds, segind, domain, 3120 npages, low, high)) != -1) { 3121 phys_range_exists = true; 3122 while ((m_run = vm_page_scan_contig(npages, bounds[0], 3123 bounds[1], alignment, boundary, options))) { 3124 bounds[0] = m_run + npages; 3125 m_runs[RUN_INDEX(count, nruns)] = m_run; 3126 count++; 3127 } 3128 segind++; 3129 } 3130 3131 if (!phys_range_exists) { 3132 ret = ERANGE; 3133 goto done; 3134 } 3135 3136 /* 3137 * Reclaim the highest runs in LIFO (descending) order until 3138 * the number of reclaimed pages, "reclaimed", is at least 3139 * "min_reclaim". Reset "reclaimed" each time because each 3140 * reclamation is idempotent, and runs will (likely) recur 3141 * from one scan to the next as restrictions are relaxed. 3142 */ 3143 reclaimed = 0; 3144 for (i = 0; count > 0 && i < nruns; i++) { 3145 count--; 3146 m_run = m_runs[RUN_INDEX(count, nruns)]; 3147 error = vm_page_reclaim_run(req_class, domain, npages, 3148 m_run, high); 3149 if (error == 0) { 3150 reclaimed += npages; 3151 if (reclaimed >= min_reclaim) { 3152 ret = 0; 3153 goto done; 3154 } 3155 } 3156 } 3157 3158 /* 3159 * Either relax the restrictions on the next scan or return if 3160 * the last scan had no restrictions. 3161 */ 3162 if (options == VPSC_NORESERV) 3163 options = VPSC_NOSUPER; 3164 else if (options == VPSC_NOSUPER) 3165 options = VPSC_ANY; 3166 else if (options == VPSC_ANY) { 3167 if (reclaimed != 0) 3168 ret = 0; 3169 goto done; 3170 } 3171 } 3172 done: 3173 if (m_runs != _m_runs) 3174 free(m_runs, M_TEMP); 3175 return (ret); 3176 } 3177 3178 int 3179 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 3180 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 3181 { 3182 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high, 3183 alignment, boundary, 1)); 3184 } 3185 3186 int 3187 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 3188 u_long alignment, vm_paddr_t boundary) 3189 { 3190 struct vm_domainset_iter di; 3191 int domain, ret, status; 3192 3193 ret = ERANGE; 3194 3195 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 3196 do { 3197 status = vm_page_reclaim_contig_domain(domain, req, npages, low, 3198 high, alignment, boundary); 3199 if (status == 0) 3200 return (0); 3201 else if (status == ERANGE) 3202 vm_domainset_iter_ignore(&di, domain); 3203 else { 3204 KASSERT(status == ENOMEM, ("Unrecognized error %d " 3205 "from vm_page_reclaim_contig_domain()", status)); 3206 ret = ENOMEM; 3207 } 3208 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 3209 3210 return (ret); 3211 } 3212 3213 /* 3214 * Set the domain in the appropriate page level domainset. 3215 */ 3216 void 3217 vm_domain_set(struct vm_domain *vmd) 3218 { 3219 3220 mtx_lock(&vm_domainset_lock); 3221 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 3222 vmd->vmd_minset = 1; 3223 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 3224 } 3225 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 3226 vmd->vmd_severeset = 1; 3227 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 3228 } 3229 mtx_unlock(&vm_domainset_lock); 3230 } 3231 3232 /* 3233 * Clear the domain from the appropriate page level domainset. 3234 */ 3235 void 3236 vm_domain_clear(struct vm_domain *vmd) 3237 { 3238 3239 mtx_lock(&vm_domainset_lock); 3240 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 3241 vmd->vmd_minset = 0; 3242 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 3243 if (vm_min_waiters != 0) { 3244 vm_min_waiters = 0; 3245 wakeup(&vm_min_domains); 3246 } 3247 } 3248 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 3249 vmd->vmd_severeset = 0; 3250 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 3251 if (vm_severe_waiters != 0) { 3252 vm_severe_waiters = 0; 3253 wakeup(&vm_severe_domains); 3254 } 3255 } 3256 3257 /* 3258 * If pageout daemon needs pages, then tell it that there are 3259 * some free. 3260 */ 3261 if (vmd->vmd_pageout_pages_needed && 3262 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 3263 wakeup(&vmd->vmd_pageout_pages_needed); 3264 vmd->vmd_pageout_pages_needed = 0; 3265 } 3266 3267 /* See comments in vm_wait_doms(). */ 3268 if (vm_pageproc_waiters) { 3269 vm_pageproc_waiters = 0; 3270 wakeup(&vm_pageproc_waiters); 3271 } 3272 mtx_unlock(&vm_domainset_lock); 3273 } 3274 3275 /* 3276 * Wait for free pages to exceed the min threshold globally. 3277 */ 3278 void 3279 vm_wait_min(void) 3280 { 3281 3282 mtx_lock(&vm_domainset_lock); 3283 while (vm_page_count_min()) { 3284 vm_min_waiters++; 3285 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 3286 } 3287 mtx_unlock(&vm_domainset_lock); 3288 } 3289 3290 /* 3291 * Wait for free pages to exceed the severe threshold globally. 3292 */ 3293 void 3294 vm_wait_severe(void) 3295 { 3296 3297 mtx_lock(&vm_domainset_lock); 3298 while (vm_page_count_severe()) { 3299 vm_severe_waiters++; 3300 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 3301 "vmwait", 0); 3302 } 3303 mtx_unlock(&vm_domainset_lock); 3304 } 3305 3306 u_int 3307 vm_wait_count(void) 3308 { 3309 3310 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 3311 } 3312 3313 int 3314 vm_wait_doms(const domainset_t *wdoms, int mflags) 3315 { 3316 int error; 3317 3318 error = 0; 3319 3320 /* 3321 * We use racey wakeup synchronization to avoid expensive global 3322 * locking for the pageproc when sleeping with a non-specific vm_wait. 3323 * To handle this, we only sleep for one tick in this instance. It 3324 * is expected that most allocations for the pageproc will come from 3325 * kmem or vm_page_grab* which will use the more specific and 3326 * race-free vm_wait_domain(). 3327 */ 3328 if (curproc == pageproc) { 3329 mtx_lock(&vm_domainset_lock); 3330 vm_pageproc_waiters++; 3331 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock, 3332 PVM | PDROP | mflags, "pageprocwait", 1); 3333 } else { 3334 /* 3335 * XXX Ideally we would wait only until the allocation could 3336 * be satisfied. This condition can cause new allocators to 3337 * consume all freed pages while old allocators wait. 3338 */ 3339 mtx_lock(&vm_domainset_lock); 3340 if (vm_page_count_min_set(wdoms)) { 3341 if (pageproc == NULL) 3342 panic("vm_wait in early boot"); 3343 vm_min_waiters++; 3344 error = msleep(&vm_min_domains, &vm_domainset_lock, 3345 PVM | PDROP | mflags, "vmwait", 0); 3346 } else 3347 mtx_unlock(&vm_domainset_lock); 3348 } 3349 return (error); 3350 } 3351 3352 /* 3353 * vm_wait_domain: 3354 * 3355 * Sleep until free pages are available for allocation. 3356 * - Called in various places after failed memory allocations. 3357 */ 3358 void 3359 vm_wait_domain(int domain) 3360 { 3361 struct vm_domain *vmd; 3362 domainset_t wdom; 3363 3364 vmd = VM_DOMAIN(domain); 3365 vm_domain_free_assert_unlocked(vmd); 3366 3367 if (curproc == pageproc) { 3368 mtx_lock(&vm_domainset_lock); 3369 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 3370 vmd->vmd_pageout_pages_needed = 1; 3371 msleep(&vmd->vmd_pageout_pages_needed, 3372 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 3373 } else 3374 mtx_unlock(&vm_domainset_lock); 3375 } else { 3376 DOMAINSET_ZERO(&wdom); 3377 DOMAINSET_SET(vmd->vmd_domain, &wdom); 3378 vm_wait_doms(&wdom, 0); 3379 } 3380 } 3381 3382 static int 3383 vm_wait_flags(vm_object_t obj, int mflags) 3384 { 3385 struct domainset *d; 3386 3387 d = NULL; 3388 3389 /* 3390 * Carefully fetch pointers only once: the struct domainset 3391 * itself is ummutable but the pointer might change. 3392 */ 3393 if (obj != NULL) 3394 d = obj->domain.dr_policy; 3395 if (d == NULL) 3396 d = curthread->td_domain.dr_policy; 3397 3398 return (vm_wait_doms(&d->ds_mask, mflags)); 3399 } 3400 3401 /* 3402 * vm_wait: 3403 * 3404 * Sleep until free pages are available for allocation in the 3405 * affinity domains of the obj. If obj is NULL, the domain set 3406 * for the calling thread is used. 3407 * Called in various places after failed memory allocations. 3408 */ 3409 void 3410 vm_wait(vm_object_t obj) 3411 { 3412 (void)vm_wait_flags(obj, 0); 3413 } 3414 3415 int 3416 vm_wait_intr(vm_object_t obj) 3417 { 3418 return (vm_wait_flags(obj, PCATCH)); 3419 } 3420 3421 /* 3422 * vm_domain_alloc_fail: 3423 * 3424 * Called when a page allocation function fails. Informs the 3425 * pagedaemon and performs the requested wait. Requires the 3426 * domain_free and object lock on entry. Returns with the 3427 * object lock held and free lock released. Returns an error when 3428 * retry is necessary. 3429 * 3430 */ 3431 static int 3432 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3433 { 3434 3435 vm_domain_free_assert_unlocked(vmd); 3436 3437 atomic_add_int(&vmd->vmd_pageout_deficit, 3438 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3439 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3440 if (object != NULL) 3441 VM_OBJECT_WUNLOCK(object); 3442 vm_wait_domain(vmd->vmd_domain); 3443 if (object != NULL) 3444 VM_OBJECT_WLOCK(object); 3445 if (req & VM_ALLOC_WAITOK) 3446 return (EAGAIN); 3447 } 3448 3449 return (0); 3450 } 3451 3452 /* 3453 * vm_waitpfault: 3454 * 3455 * Sleep until free pages are available for allocation. 3456 * - Called only in vm_fault so that processes page faulting 3457 * can be easily tracked. 3458 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3459 * processes will be able to grab memory first. Do not change 3460 * this balance without careful testing first. 3461 */ 3462 void 3463 vm_waitpfault(struct domainset *dset, int timo) 3464 { 3465 3466 /* 3467 * XXX Ideally we would wait only until the allocation could 3468 * be satisfied. This condition can cause new allocators to 3469 * consume all freed pages while old allocators wait. 3470 */ 3471 mtx_lock(&vm_domainset_lock); 3472 if (vm_page_count_min_set(&dset->ds_mask)) { 3473 vm_min_waiters++; 3474 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3475 "pfault", timo); 3476 } else 3477 mtx_unlock(&vm_domainset_lock); 3478 } 3479 3480 static struct vm_pagequeue * 3481 _vm_page_pagequeue(vm_page_t m, uint8_t queue) 3482 { 3483 3484 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); 3485 } 3486 3487 #ifdef INVARIANTS 3488 static struct vm_pagequeue * 3489 vm_page_pagequeue(vm_page_t m) 3490 { 3491 3492 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue)); 3493 } 3494 #endif 3495 3496 static __always_inline bool 3497 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3498 { 3499 vm_page_astate_t tmp; 3500 3501 tmp = *old; 3502 do { 3503 if (__predict_true(vm_page_astate_fcmpset(m, old, new))) 3504 return (true); 3505 counter_u64_add(pqstate_commit_retries, 1); 3506 } while (old->_bits == tmp._bits); 3507 3508 return (false); 3509 } 3510 3511 /* 3512 * Do the work of committing a queue state update that moves the page out of 3513 * its current queue. 3514 */ 3515 static bool 3516 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m, 3517 vm_page_astate_t *old, vm_page_astate_t new) 3518 { 3519 vm_page_t next; 3520 3521 vm_pagequeue_assert_locked(pq); 3522 KASSERT(vm_page_pagequeue(m) == pq, 3523 ("%s: queue %p does not match page %p", __func__, pq, m)); 3524 KASSERT(old->queue != PQ_NONE && new.queue != old->queue, 3525 ("%s: invalid queue indices %d %d", 3526 __func__, old->queue, new.queue)); 3527 3528 /* 3529 * Once the queue index of the page changes there is nothing 3530 * synchronizing with further updates to the page's physical 3531 * queue state. Therefore we must speculatively remove the page 3532 * from the queue now and be prepared to roll back if the queue 3533 * state update fails. If the page is not physically enqueued then 3534 * we just update its queue index. 3535 */ 3536 if ((old->flags & PGA_ENQUEUED) != 0) { 3537 new.flags &= ~PGA_ENQUEUED; 3538 next = TAILQ_NEXT(m, plinks.q); 3539 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3540 vm_pagequeue_cnt_dec(pq); 3541 if (!vm_page_pqstate_fcmpset(m, old, new)) { 3542 if (next == NULL) 3543 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3544 else 3545 TAILQ_INSERT_BEFORE(next, m, plinks.q); 3546 vm_pagequeue_cnt_inc(pq); 3547 return (false); 3548 } else { 3549 return (true); 3550 } 3551 } else { 3552 return (vm_page_pqstate_fcmpset(m, old, new)); 3553 } 3554 } 3555 3556 static bool 3557 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old, 3558 vm_page_astate_t new) 3559 { 3560 struct vm_pagequeue *pq; 3561 vm_page_astate_t as; 3562 bool ret; 3563 3564 pq = _vm_page_pagequeue(m, old->queue); 3565 3566 /* 3567 * The queue field and PGA_ENQUEUED flag are stable only so long as the 3568 * corresponding page queue lock is held. 3569 */ 3570 vm_pagequeue_lock(pq); 3571 as = vm_page_astate_load(m); 3572 if (__predict_false(as._bits != old->_bits)) { 3573 *old = as; 3574 ret = false; 3575 } else { 3576 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new); 3577 } 3578 vm_pagequeue_unlock(pq); 3579 return (ret); 3580 } 3581 3582 /* 3583 * Commit a queue state update that enqueues or requeues a page. 3584 */ 3585 static bool 3586 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m, 3587 vm_page_astate_t *old, vm_page_astate_t new) 3588 { 3589 struct vm_domain *vmd; 3590 3591 vm_pagequeue_assert_locked(pq); 3592 KASSERT(old->queue != PQ_NONE && new.queue == old->queue, 3593 ("%s: invalid queue indices %d %d", 3594 __func__, old->queue, new.queue)); 3595 3596 new.flags |= PGA_ENQUEUED; 3597 if (!vm_page_pqstate_fcmpset(m, old, new)) 3598 return (false); 3599 3600 if ((old->flags & PGA_ENQUEUED) != 0) 3601 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3602 else 3603 vm_pagequeue_cnt_inc(pq); 3604 3605 /* 3606 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if 3607 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be 3608 * applied, even if it was set first. 3609 */ 3610 if ((old->flags & PGA_REQUEUE_HEAD) != 0) { 3611 vmd = vm_pagequeue_domain(m); 3612 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE], 3613 ("%s: invalid page queue for page %p", __func__, m)); 3614 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3615 } else { 3616 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3617 } 3618 return (true); 3619 } 3620 3621 /* 3622 * Commit a queue state update that encodes a request for a deferred queue 3623 * operation. 3624 */ 3625 static bool 3626 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old, 3627 vm_page_astate_t new) 3628 { 3629 3630 KASSERT(old->queue == new.queue || new.queue != PQ_NONE, 3631 ("%s: invalid state, queue %d flags %x", 3632 __func__, new.queue, new.flags)); 3633 3634 if (old->_bits != new._bits && 3635 !vm_page_pqstate_fcmpset(m, old, new)) 3636 return (false); 3637 vm_page_pqbatch_submit(m, new.queue); 3638 return (true); 3639 } 3640 3641 /* 3642 * A generic queue state update function. This handles more cases than the 3643 * specialized functions above. 3644 */ 3645 bool 3646 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3647 { 3648 3649 if (old->_bits == new._bits) 3650 return (true); 3651 3652 if (old->queue != PQ_NONE && new.queue != old->queue) { 3653 if (!vm_page_pqstate_commit_dequeue(m, old, new)) 3654 return (false); 3655 if (new.queue != PQ_NONE) 3656 vm_page_pqbatch_submit(m, new.queue); 3657 } else { 3658 if (!vm_page_pqstate_fcmpset(m, old, new)) 3659 return (false); 3660 if (new.queue != PQ_NONE && 3661 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0) 3662 vm_page_pqbatch_submit(m, new.queue); 3663 } 3664 return (true); 3665 } 3666 3667 /* 3668 * Apply deferred queue state updates to a page. 3669 */ 3670 static inline void 3671 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue) 3672 { 3673 vm_page_astate_t new, old; 3674 3675 CRITICAL_ASSERT(curthread); 3676 vm_pagequeue_assert_locked(pq); 3677 KASSERT(queue < PQ_COUNT, 3678 ("%s: invalid queue index %d", __func__, queue)); 3679 KASSERT(pq == _vm_page_pagequeue(m, queue), 3680 ("%s: page %p does not belong to queue %p", __func__, m, pq)); 3681 3682 for (old = vm_page_astate_load(m);;) { 3683 if (__predict_false(old.queue != queue || 3684 (old.flags & PGA_QUEUE_OP_MASK) == 0)) { 3685 counter_u64_add(queue_nops, 1); 3686 break; 3687 } 3688 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3689 ("%s: page %p is unmanaged", __func__, m)); 3690 3691 new = old; 3692 if ((old.flags & PGA_DEQUEUE) != 0) { 3693 new.flags &= ~PGA_QUEUE_OP_MASK; 3694 new.queue = PQ_NONE; 3695 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq, 3696 m, &old, new))) { 3697 counter_u64_add(queue_ops, 1); 3698 break; 3699 } 3700 } else { 3701 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD); 3702 if (__predict_true(_vm_page_pqstate_commit_requeue(pq, 3703 m, &old, new))) { 3704 counter_u64_add(queue_ops, 1); 3705 break; 3706 } 3707 } 3708 } 3709 } 3710 3711 static void 3712 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3713 uint8_t queue) 3714 { 3715 int i; 3716 3717 for (i = 0; i < bq->bq_cnt; i++) 3718 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue); 3719 vm_batchqueue_init(bq); 3720 } 3721 3722 /* 3723 * vm_page_pqbatch_submit: [ internal use only ] 3724 * 3725 * Enqueue a page in the specified page queue's batched work queue. 3726 * The caller must have encoded the requested operation in the page 3727 * structure's a.flags field. 3728 */ 3729 void 3730 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) 3731 { 3732 struct vm_batchqueue *bq; 3733 struct vm_pagequeue *pq; 3734 int domain, slots_remaining; 3735 3736 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 3737 3738 domain = vm_page_domain(m); 3739 critical_enter(); 3740 bq = DPCPU_PTR(pqbatch[domain][queue]); 3741 slots_remaining = vm_batchqueue_insert(bq, m); 3742 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) { 3743 /* keep building the bq */ 3744 critical_exit(); 3745 return; 3746 } else if (slots_remaining > 0 ) { 3747 /* Try to process the bq if we can get the lock */ 3748 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 3749 if (vm_pagequeue_trylock(pq)) { 3750 vm_pqbatch_process(pq, bq, queue); 3751 vm_pagequeue_unlock(pq); 3752 } 3753 critical_exit(); 3754 return; 3755 } 3756 critical_exit(); 3757 3758 /* if we make it here, the bq is full so wait for the lock */ 3759 3760 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 3761 vm_pagequeue_lock(pq); 3762 critical_enter(); 3763 bq = DPCPU_PTR(pqbatch[domain][queue]); 3764 vm_pqbatch_process(pq, bq, queue); 3765 vm_pqbatch_process_page(pq, m, queue); 3766 vm_pagequeue_unlock(pq); 3767 critical_exit(); 3768 } 3769 3770 /* 3771 * vm_page_pqbatch_drain: [ internal use only ] 3772 * 3773 * Force all per-CPU page queue batch queues to be drained. This is 3774 * intended for use in severe memory shortages, to ensure that pages 3775 * do not remain stuck in the batch queues. 3776 */ 3777 void 3778 vm_page_pqbatch_drain(void) 3779 { 3780 struct thread *td; 3781 struct vm_domain *vmd; 3782 struct vm_pagequeue *pq; 3783 int cpu, domain, queue; 3784 3785 td = curthread; 3786 CPU_FOREACH(cpu) { 3787 thread_lock(td); 3788 sched_bind(td, cpu); 3789 thread_unlock(td); 3790 3791 for (domain = 0; domain < vm_ndomains; domain++) { 3792 vmd = VM_DOMAIN(domain); 3793 for (queue = 0; queue < PQ_COUNT; queue++) { 3794 pq = &vmd->vmd_pagequeues[queue]; 3795 vm_pagequeue_lock(pq); 3796 critical_enter(); 3797 vm_pqbatch_process(pq, 3798 DPCPU_PTR(pqbatch[domain][queue]), queue); 3799 critical_exit(); 3800 vm_pagequeue_unlock(pq); 3801 } 3802 } 3803 } 3804 thread_lock(td); 3805 sched_unbind(td); 3806 thread_unlock(td); 3807 } 3808 3809 /* 3810 * vm_page_dequeue_deferred: [ internal use only ] 3811 * 3812 * Request removal of the given page from its current page 3813 * queue. Physical removal from the queue may be deferred 3814 * indefinitely. 3815 */ 3816 void 3817 vm_page_dequeue_deferred(vm_page_t m) 3818 { 3819 vm_page_astate_t new, old; 3820 3821 old = vm_page_astate_load(m); 3822 do { 3823 if (old.queue == PQ_NONE) { 3824 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3825 ("%s: page %p has unexpected queue state", 3826 __func__, m)); 3827 break; 3828 } 3829 new = old; 3830 new.flags |= PGA_DEQUEUE; 3831 } while (!vm_page_pqstate_commit_request(m, &old, new)); 3832 } 3833 3834 /* 3835 * vm_page_dequeue: 3836 * 3837 * Remove the page from whichever page queue it's in, if any, before 3838 * returning. 3839 */ 3840 void 3841 vm_page_dequeue(vm_page_t m) 3842 { 3843 vm_page_astate_t new, old; 3844 3845 old = vm_page_astate_load(m); 3846 do { 3847 if (old.queue == PQ_NONE) { 3848 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3849 ("%s: page %p has unexpected queue state", 3850 __func__, m)); 3851 break; 3852 } 3853 new = old; 3854 new.flags &= ~PGA_QUEUE_OP_MASK; 3855 new.queue = PQ_NONE; 3856 } while (!vm_page_pqstate_commit_dequeue(m, &old, new)); 3857 3858 } 3859 3860 /* 3861 * Schedule the given page for insertion into the specified page queue. 3862 * Physical insertion of the page may be deferred indefinitely. 3863 */ 3864 static void 3865 vm_page_enqueue(vm_page_t m, uint8_t queue) 3866 { 3867 3868 KASSERT(m->a.queue == PQ_NONE && 3869 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 3870 ("%s: page %p is already enqueued", __func__, m)); 3871 KASSERT(m->ref_count > 0, 3872 ("%s: page %p does not carry any references", __func__, m)); 3873 3874 m->a.queue = queue; 3875 if ((m->a.flags & PGA_REQUEUE) == 0) 3876 vm_page_aflag_set(m, PGA_REQUEUE); 3877 vm_page_pqbatch_submit(m, queue); 3878 } 3879 3880 /* 3881 * vm_page_free_prep: 3882 * 3883 * Prepares the given page to be put on the free list, 3884 * disassociating it from any VM object. The caller may return 3885 * the page to the free list only if this function returns true. 3886 * 3887 * The object, if it exists, must be locked, and then the page must 3888 * be xbusy. Otherwise the page must be not busied. A managed 3889 * page must be unmapped. 3890 */ 3891 static bool 3892 vm_page_free_prep(vm_page_t m) 3893 { 3894 3895 /* 3896 * Synchronize with threads that have dropped a reference to this 3897 * page. 3898 */ 3899 atomic_thread_fence_acq(); 3900 3901 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 3902 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 3903 uint64_t *p; 3904 int i; 3905 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 3906 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 3907 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 3908 m, i, (uintmax_t)*p)); 3909 } 3910 #endif 3911 if ((m->oflags & VPO_UNMANAGED) == 0) { 3912 KASSERT(!pmap_page_is_mapped(m), 3913 ("vm_page_free_prep: freeing mapped page %p", m)); 3914 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0, 3915 ("vm_page_free_prep: mapping flags set in page %p", m)); 3916 } else { 3917 KASSERT(m->a.queue == PQ_NONE, 3918 ("vm_page_free_prep: unmanaged page %p is queued", m)); 3919 } 3920 VM_CNT_INC(v_tfree); 3921 3922 if (m->object != NULL) { 3923 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) == 3924 ((m->object->flags & OBJ_UNMANAGED) != 0), 3925 ("vm_page_free_prep: managed flag mismatch for page %p", 3926 m)); 3927 vm_page_assert_xbusied(m); 3928 3929 /* 3930 * The object reference can be released without an atomic 3931 * operation. 3932 */ 3933 KASSERT((m->flags & PG_FICTITIOUS) != 0 || 3934 m->ref_count == VPRC_OBJREF, 3935 ("vm_page_free_prep: page %p has unexpected ref_count %u", 3936 m, m->ref_count)); 3937 vm_page_object_remove(m); 3938 m->ref_count -= VPRC_OBJREF; 3939 } else 3940 vm_page_assert_unbusied(m); 3941 3942 vm_page_busy_free(m); 3943 3944 /* 3945 * If fictitious remove object association and 3946 * return. 3947 */ 3948 if ((m->flags & PG_FICTITIOUS) != 0) { 3949 KASSERT(m->ref_count == 1, 3950 ("fictitious page %p is referenced", m)); 3951 KASSERT(m->a.queue == PQ_NONE, 3952 ("fictitious page %p is queued", m)); 3953 return (false); 3954 } 3955 3956 /* 3957 * Pages need not be dequeued before they are returned to the physical 3958 * memory allocator, but they must at least be marked for a deferred 3959 * dequeue. 3960 */ 3961 if ((m->oflags & VPO_UNMANAGED) == 0) 3962 vm_page_dequeue_deferred(m); 3963 3964 m->valid = 0; 3965 vm_page_undirty(m); 3966 3967 if (m->ref_count != 0) 3968 panic("vm_page_free_prep: page %p has references", m); 3969 3970 /* 3971 * Restore the default memory attribute to the page. 3972 */ 3973 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 3974 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 3975 3976 #if VM_NRESERVLEVEL > 0 3977 /* 3978 * Determine whether the page belongs to a reservation. If the page was 3979 * allocated from a per-CPU cache, it cannot belong to a reservation, so 3980 * as an optimization, we avoid the check in that case. 3981 */ 3982 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 3983 return (false); 3984 #endif 3985 3986 return (true); 3987 } 3988 3989 /* 3990 * vm_page_free_toq: 3991 * 3992 * Returns the given page to the free list, disassociating it 3993 * from any VM object. 3994 * 3995 * The object must be locked. The page must be exclusively busied if it 3996 * belongs to an object. 3997 */ 3998 static void 3999 vm_page_free_toq(vm_page_t m) 4000 { 4001 struct vm_domain *vmd; 4002 uma_zone_t zone; 4003 4004 if (!vm_page_free_prep(m)) 4005 return; 4006 4007 vmd = vm_pagequeue_domain(m); 4008 zone = vmd->vmd_pgcache[m->pool].zone; 4009 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 4010 uma_zfree(zone, m); 4011 return; 4012 } 4013 vm_domain_free_lock(vmd); 4014 vm_phys_free_pages(m, 0); 4015 vm_domain_free_unlock(vmd); 4016 vm_domain_freecnt_inc(vmd, 1); 4017 } 4018 4019 /* 4020 * vm_page_free_pages_toq: 4021 * 4022 * Returns a list of pages to the free list, disassociating it 4023 * from any VM object. In other words, this is equivalent to 4024 * calling vm_page_free_toq() for each page of a list of VM objects. 4025 */ 4026 void 4027 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 4028 { 4029 vm_page_t m; 4030 int count; 4031 4032 if (SLIST_EMPTY(free)) 4033 return; 4034 4035 count = 0; 4036 while ((m = SLIST_FIRST(free)) != NULL) { 4037 count++; 4038 SLIST_REMOVE_HEAD(free, plinks.s.ss); 4039 vm_page_free_toq(m); 4040 } 4041 4042 if (update_wire_count) 4043 vm_wire_sub(count); 4044 } 4045 4046 /* 4047 * Mark this page as wired down. For managed pages, this prevents reclamation 4048 * by the page daemon, or when the containing object, if any, is destroyed. 4049 */ 4050 void 4051 vm_page_wire(vm_page_t m) 4052 { 4053 u_int old; 4054 4055 #ifdef INVARIANTS 4056 if (m->object != NULL && !vm_page_busied(m) && 4057 !vm_object_busied(m->object)) 4058 VM_OBJECT_ASSERT_LOCKED(m->object); 4059 #endif 4060 KASSERT((m->flags & PG_FICTITIOUS) == 0 || 4061 VPRC_WIRE_COUNT(m->ref_count) >= 1, 4062 ("vm_page_wire: fictitious page %p has zero wirings", m)); 4063 4064 old = atomic_fetchadd_int(&m->ref_count, 1); 4065 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX, 4066 ("vm_page_wire: counter overflow for page %p", m)); 4067 if (VPRC_WIRE_COUNT(old) == 0) { 4068 if ((m->oflags & VPO_UNMANAGED) == 0) 4069 vm_page_aflag_set(m, PGA_DEQUEUE); 4070 vm_wire_add(1); 4071 } 4072 } 4073 4074 /* 4075 * Attempt to wire a mapped page following a pmap lookup of that page. 4076 * This may fail if a thread is concurrently tearing down mappings of the page. 4077 * The transient failure is acceptable because it translates to the 4078 * failure of the caller pmap_extract_and_hold(), which should be then 4079 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages(). 4080 */ 4081 bool 4082 vm_page_wire_mapped(vm_page_t m) 4083 { 4084 u_int old; 4085 4086 old = m->ref_count; 4087 do { 4088 KASSERT(old > 0, 4089 ("vm_page_wire_mapped: wiring unreferenced page %p", m)); 4090 if ((old & VPRC_BLOCKED) != 0) 4091 return (false); 4092 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1)); 4093 4094 if (VPRC_WIRE_COUNT(old) == 0) { 4095 if ((m->oflags & VPO_UNMANAGED) == 0) 4096 vm_page_aflag_set(m, PGA_DEQUEUE); 4097 vm_wire_add(1); 4098 } 4099 return (true); 4100 } 4101 4102 /* 4103 * Release a wiring reference to a managed page. If the page still belongs to 4104 * an object, update its position in the page queues to reflect the reference. 4105 * If the wiring was the last reference to the page, free the page. 4106 */ 4107 static void 4108 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse) 4109 { 4110 u_int old; 4111 4112 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4113 ("%s: page %p is unmanaged", __func__, m)); 4114 4115 /* 4116 * Update LRU state before releasing the wiring reference. 4117 * Use a release store when updating the reference count to 4118 * synchronize with vm_page_free_prep(). 4119 */ 4120 old = m->ref_count; 4121 do { 4122 KASSERT(VPRC_WIRE_COUNT(old) > 0, 4123 ("vm_page_unwire: wire count underflow for page %p", m)); 4124 4125 if (old > VPRC_OBJREF + 1) { 4126 /* 4127 * The page has at least one other wiring reference. An 4128 * earlier iteration of this loop may have called 4129 * vm_page_release_toq() and cleared PGA_DEQUEUE, so 4130 * re-set it if necessary. 4131 */ 4132 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0) 4133 vm_page_aflag_set(m, PGA_DEQUEUE); 4134 } else if (old == VPRC_OBJREF + 1) { 4135 /* 4136 * This is the last wiring. Clear PGA_DEQUEUE and 4137 * update the page's queue state to reflect the 4138 * reference. If the page does not belong to an object 4139 * (i.e., the VPRC_OBJREF bit is clear), we only need to 4140 * clear leftover queue state. 4141 */ 4142 vm_page_release_toq(m, nqueue, noreuse); 4143 } else if (old == 1) { 4144 vm_page_aflag_clear(m, PGA_DEQUEUE); 4145 } 4146 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1)); 4147 4148 if (VPRC_WIRE_COUNT(old) == 1) { 4149 vm_wire_sub(1); 4150 if (old == 1) 4151 vm_page_free(m); 4152 } 4153 } 4154 4155 /* 4156 * Release one wiring of the specified page, potentially allowing it to be 4157 * paged out. 4158 * 4159 * Only managed pages belonging to an object can be paged out. If the number 4160 * of wirings transitions to zero and the page is eligible for page out, then 4161 * the page is added to the specified paging queue. If the released wiring 4162 * represented the last reference to the page, the page is freed. 4163 */ 4164 void 4165 vm_page_unwire(vm_page_t m, uint8_t nqueue) 4166 { 4167 4168 KASSERT(nqueue < PQ_COUNT, 4169 ("vm_page_unwire: invalid queue %u request for page %p", 4170 nqueue, m)); 4171 4172 if ((m->oflags & VPO_UNMANAGED) != 0) { 4173 if (vm_page_unwire_noq(m) && m->ref_count == 0) 4174 vm_page_free(m); 4175 return; 4176 } 4177 vm_page_unwire_managed(m, nqueue, false); 4178 } 4179 4180 /* 4181 * Unwire a page without (re-)inserting it into a page queue. It is up 4182 * to the caller to enqueue, requeue, or free the page as appropriate. 4183 * In most cases involving managed pages, vm_page_unwire() should be used 4184 * instead. 4185 */ 4186 bool 4187 vm_page_unwire_noq(vm_page_t m) 4188 { 4189 u_int old; 4190 4191 old = vm_page_drop(m, 1); 4192 KASSERT(VPRC_WIRE_COUNT(old) != 0, 4193 ("%s: counter underflow for page %p", __func__, m)); 4194 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1, 4195 ("%s: missing ref on fictitious page %p", __func__, m)); 4196 4197 if (VPRC_WIRE_COUNT(old) > 1) 4198 return (false); 4199 if ((m->oflags & VPO_UNMANAGED) == 0) 4200 vm_page_aflag_clear(m, PGA_DEQUEUE); 4201 vm_wire_sub(1); 4202 return (true); 4203 } 4204 4205 /* 4206 * Ensure that the page ends up in the specified page queue. If the page is 4207 * active or being moved to the active queue, ensure that its act_count is 4208 * at least ACT_INIT but do not otherwise mess with it. 4209 */ 4210 static __always_inline void 4211 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag) 4212 { 4213 vm_page_astate_t old, new; 4214 4215 KASSERT(m->ref_count > 0, 4216 ("%s: page %p does not carry any references", __func__, m)); 4217 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD, 4218 ("%s: invalid flags %x", __func__, nflag)); 4219 4220 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) 4221 return; 4222 4223 old = vm_page_astate_load(m); 4224 do { 4225 if ((old.flags & PGA_DEQUEUE) != 0) 4226 break; 4227 new = old; 4228 new.flags &= ~PGA_QUEUE_OP_MASK; 4229 if (nqueue == PQ_ACTIVE) 4230 new.act_count = max(old.act_count, ACT_INIT); 4231 if (old.queue == nqueue) { 4232 /* 4233 * There is no need to requeue pages already in the 4234 * active queue. 4235 */ 4236 if (nqueue != PQ_ACTIVE || 4237 (old.flags & PGA_ENQUEUED) == 0) 4238 new.flags |= nflag; 4239 } else { 4240 new.flags |= nflag; 4241 new.queue = nqueue; 4242 } 4243 } while (!vm_page_pqstate_commit(m, &old, new)); 4244 } 4245 4246 /* 4247 * Put the specified page on the active list (if appropriate). 4248 */ 4249 void 4250 vm_page_activate(vm_page_t m) 4251 { 4252 4253 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE); 4254 } 4255 4256 /* 4257 * Move the specified page to the tail of the inactive queue, or requeue 4258 * the page if it is already in the inactive queue. 4259 */ 4260 void 4261 vm_page_deactivate(vm_page_t m) 4262 { 4263 4264 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE); 4265 } 4266 4267 void 4268 vm_page_deactivate_noreuse(vm_page_t m) 4269 { 4270 4271 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD); 4272 } 4273 4274 /* 4275 * Put a page in the laundry, or requeue it if it is already there. 4276 */ 4277 void 4278 vm_page_launder(vm_page_t m) 4279 { 4280 4281 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE); 4282 } 4283 4284 /* 4285 * Put a page in the PQ_UNSWAPPABLE holding queue. 4286 */ 4287 void 4288 vm_page_unswappable(vm_page_t m) 4289 { 4290 4291 VM_OBJECT_ASSERT_LOCKED(m->object); 4292 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4293 ("page %p already unswappable", m)); 4294 4295 vm_page_dequeue(m); 4296 vm_page_enqueue(m, PQ_UNSWAPPABLE); 4297 } 4298 4299 /* 4300 * Release a page back to the page queues in preparation for unwiring. 4301 */ 4302 static void 4303 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse) 4304 { 4305 vm_page_astate_t old, new; 4306 uint16_t nflag; 4307 4308 /* 4309 * Use a check of the valid bits to determine whether we should 4310 * accelerate reclamation of the page. The object lock might not be 4311 * held here, in which case the check is racy. At worst we will either 4312 * accelerate reclamation of a valid page and violate LRU, or 4313 * unnecessarily defer reclamation of an invalid page. 4314 * 4315 * If we were asked to not cache the page, place it near the head of the 4316 * inactive queue so that is reclaimed sooner. 4317 */ 4318 if (noreuse || vm_page_none_valid(m)) { 4319 nqueue = PQ_INACTIVE; 4320 nflag = PGA_REQUEUE_HEAD; 4321 } else { 4322 nflag = PGA_REQUEUE; 4323 } 4324 4325 old = vm_page_astate_load(m); 4326 do { 4327 new = old; 4328 4329 /* 4330 * If the page is already in the active queue and we are not 4331 * trying to accelerate reclamation, simply mark it as 4332 * referenced and avoid any queue operations. 4333 */ 4334 new.flags &= ~PGA_QUEUE_OP_MASK; 4335 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE && 4336 (old.flags & PGA_ENQUEUED) != 0) 4337 new.flags |= PGA_REFERENCED; 4338 else { 4339 new.flags |= nflag; 4340 new.queue = nqueue; 4341 } 4342 } while (!vm_page_pqstate_commit(m, &old, new)); 4343 } 4344 4345 /* 4346 * Unwire a page and either attempt to free it or re-add it to the page queues. 4347 */ 4348 void 4349 vm_page_release(vm_page_t m, int flags) 4350 { 4351 vm_object_t object; 4352 4353 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4354 ("vm_page_release: page %p is unmanaged", m)); 4355 4356 if ((flags & VPR_TRYFREE) != 0) { 4357 for (;;) { 4358 object = atomic_load_ptr(&m->object); 4359 if (object == NULL) 4360 break; 4361 /* Depends on type-stability. */ 4362 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) 4363 break; 4364 if (object == m->object) { 4365 vm_page_release_locked(m, flags); 4366 VM_OBJECT_WUNLOCK(object); 4367 return; 4368 } 4369 VM_OBJECT_WUNLOCK(object); 4370 } 4371 } 4372 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0); 4373 } 4374 4375 /* See vm_page_release(). */ 4376 void 4377 vm_page_release_locked(vm_page_t m, int flags) 4378 { 4379 4380 VM_OBJECT_ASSERT_WLOCKED(m->object); 4381 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4382 ("vm_page_release_locked: page %p is unmanaged", m)); 4383 4384 if (vm_page_unwire_noq(m)) { 4385 if ((flags & VPR_TRYFREE) != 0 && 4386 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 4387 m->dirty == 0 && vm_page_tryxbusy(m)) { 4388 /* 4389 * An unlocked lookup may have wired the page before the 4390 * busy lock was acquired, in which case the page must 4391 * not be freed. 4392 */ 4393 if (__predict_true(!vm_page_wired(m))) { 4394 vm_page_free(m); 4395 return; 4396 } 4397 vm_page_xunbusy(m); 4398 } else { 4399 vm_page_release_toq(m, PQ_INACTIVE, flags != 0); 4400 } 4401 } 4402 } 4403 4404 static bool 4405 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t)) 4406 { 4407 u_int old; 4408 4409 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0, 4410 ("vm_page_try_blocked_op: page %p has no object", m)); 4411 KASSERT(vm_page_busied(m), 4412 ("vm_page_try_blocked_op: page %p is not busy", m)); 4413 VM_OBJECT_ASSERT_LOCKED(m->object); 4414 4415 old = m->ref_count; 4416 do { 4417 KASSERT(old != 0, 4418 ("vm_page_try_blocked_op: page %p has no references", m)); 4419 if (VPRC_WIRE_COUNT(old) != 0) 4420 return (false); 4421 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED)); 4422 4423 (op)(m); 4424 4425 /* 4426 * If the object is read-locked, new wirings may be created via an 4427 * object lookup. 4428 */ 4429 old = vm_page_drop(m, VPRC_BLOCKED); 4430 KASSERT(!VM_OBJECT_WOWNED(m->object) || 4431 old == (VPRC_BLOCKED | VPRC_OBJREF), 4432 ("vm_page_try_blocked_op: unexpected refcount value %u for %p", 4433 old, m)); 4434 return (true); 4435 } 4436 4437 /* 4438 * Atomically check for wirings and remove all mappings of the page. 4439 */ 4440 bool 4441 vm_page_try_remove_all(vm_page_t m) 4442 { 4443 4444 return (vm_page_try_blocked_op(m, pmap_remove_all)); 4445 } 4446 4447 /* 4448 * Atomically check for wirings and remove all writeable mappings of the page. 4449 */ 4450 bool 4451 vm_page_try_remove_write(vm_page_t m) 4452 { 4453 4454 return (vm_page_try_blocked_op(m, pmap_remove_write)); 4455 } 4456 4457 /* 4458 * vm_page_advise 4459 * 4460 * Apply the specified advice to the given page. 4461 */ 4462 void 4463 vm_page_advise(vm_page_t m, int advice) 4464 { 4465 4466 VM_OBJECT_ASSERT_WLOCKED(m->object); 4467 vm_page_assert_xbusied(m); 4468 4469 if (advice == MADV_FREE) 4470 /* 4471 * Mark the page clean. This will allow the page to be freed 4472 * without first paging it out. MADV_FREE pages are often 4473 * quickly reused by malloc(3), so we do not do anything that 4474 * would result in a page fault on a later access. 4475 */ 4476 vm_page_undirty(m); 4477 else if (advice != MADV_DONTNEED) { 4478 if (advice == MADV_WILLNEED) 4479 vm_page_activate(m); 4480 return; 4481 } 4482 4483 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 4484 vm_page_dirty(m); 4485 4486 /* 4487 * Clear any references to the page. Otherwise, the page daemon will 4488 * immediately reactivate the page. 4489 */ 4490 vm_page_aflag_clear(m, PGA_REFERENCED); 4491 4492 /* 4493 * Place clean pages near the head of the inactive queue rather than 4494 * the tail, thus defeating the queue's LRU operation and ensuring that 4495 * the page will be reused quickly. Dirty pages not already in the 4496 * laundry are moved there. 4497 */ 4498 if (m->dirty == 0) 4499 vm_page_deactivate_noreuse(m); 4500 else if (!vm_page_in_laundry(m)) 4501 vm_page_launder(m); 4502 } 4503 4504 /* 4505 * vm_page_grab_release 4506 * 4507 * Helper routine for grab functions to release busy on return. 4508 */ 4509 static inline void 4510 vm_page_grab_release(vm_page_t m, int allocflags) 4511 { 4512 4513 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4514 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4515 vm_page_sunbusy(m); 4516 else 4517 vm_page_xunbusy(m); 4518 } 4519 } 4520 4521 /* 4522 * vm_page_grab_sleep 4523 * 4524 * Sleep for busy according to VM_ALLOC_ parameters. Returns true 4525 * if the caller should retry and false otherwise. 4526 * 4527 * If the object is locked on entry the object will be unlocked with 4528 * false returns and still locked but possibly having been dropped 4529 * with true returns. 4530 */ 4531 static bool 4532 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex, 4533 const char *wmesg, int allocflags, bool locked) 4534 { 4535 4536 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4537 return (false); 4538 4539 /* 4540 * Reference the page before unlocking and sleeping so that 4541 * the page daemon is less likely to reclaim it. 4542 */ 4543 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0) 4544 vm_page_reference(m); 4545 4546 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) && 4547 locked) 4548 VM_OBJECT_WLOCK(object); 4549 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 4550 return (false); 4551 4552 return (true); 4553 } 4554 4555 /* 4556 * Assert that the grab flags are valid. 4557 */ 4558 static inline void 4559 vm_page_grab_check(int allocflags) 4560 { 4561 4562 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 4563 (allocflags & VM_ALLOC_WIRED) != 0, 4564 ("vm_page_grab*: the pages must be busied or wired")); 4565 4566 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4567 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4568 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4569 } 4570 4571 /* 4572 * Calculate the page allocation flags for grab. 4573 */ 4574 static inline int 4575 vm_page_grab_pflags(int allocflags) 4576 { 4577 int pflags; 4578 4579 pflags = allocflags & 4580 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL | 4581 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY); 4582 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4583 pflags |= VM_ALLOC_WAITFAIL; 4584 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4585 pflags |= VM_ALLOC_SBUSY; 4586 4587 return (pflags); 4588 } 4589 4590 /* 4591 * Grab a page, waiting until we are waken up due to the page 4592 * changing state. We keep on waiting, if the page continues 4593 * to be in the object. If the page doesn't exist, first allocate it 4594 * and then conditionally zero it. 4595 * 4596 * This routine may sleep. 4597 * 4598 * The object must be locked on entry. The lock will, however, be released 4599 * and reacquired if the routine sleeps. 4600 */ 4601 vm_page_t 4602 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 4603 { 4604 vm_page_t m; 4605 4606 VM_OBJECT_ASSERT_WLOCKED(object); 4607 vm_page_grab_check(allocflags); 4608 4609 retrylookup: 4610 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4611 if (!vm_page_tryacquire(m, allocflags)) { 4612 if (vm_page_grab_sleep(object, m, pindex, "pgrbwt", 4613 allocflags, true)) 4614 goto retrylookup; 4615 return (NULL); 4616 } 4617 goto out; 4618 } 4619 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4620 return (NULL); 4621 m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags)); 4622 if (m == NULL) { 4623 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0) 4624 return (NULL); 4625 goto retrylookup; 4626 } 4627 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 4628 pmap_zero_page(m); 4629 4630 out: 4631 vm_page_grab_release(m, allocflags); 4632 4633 return (m); 4634 } 4635 4636 /* 4637 * Locklessly attempt to acquire a page given a (object, pindex) tuple 4638 * and an optional previous page to avoid the radix lookup. The resulting 4639 * page will be validated against the identity tuple and busied or wired 4640 * as requested. A NULL *mp return guarantees that the page was not in 4641 * radix at the time of the call but callers must perform higher level 4642 * synchronization or retry the operation under a lock if they require 4643 * an atomic answer. This is the only lock free validation routine, 4644 * other routines can depend on the resulting page state. 4645 * 4646 * The return value indicates whether the operation failed due to caller 4647 * flags. The return is tri-state with mp: 4648 * 4649 * (true, *mp != NULL) - The operation was successful. 4650 * (true, *mp == NULL) - The page was not found in tree. 4651 * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition. 4652 */ 4653 static bool 4654 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, 4655 vm_page_t prev, vm_page_t *mp, int allocflags) 4656 { 4657 vm_page_t m; 4658 4659 vm_page_grab_check(allocflags); 4660 MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev)); 4661 4662 *mp = NULL; 4663 for (;;) { 4664 /* 4665 * We may see a false NULL here because the previous page 4666 * has been removed or just inserted and the list is loaded 4667 * without barriers. Switch to radix to verify. 4668 */ 4669 if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL || 4670 QMD_IS_TRASHED(m) || m->pindex != pindex || 4671 atomic_load_ptr(&m->object) != object) { 4672 prev = NULL; 4673 /* 4674 * This guarantees the result is instantaneously 4675 * correct. 4676 */ 4677 m = vm_radix_lookup_unlocked(&object->rtree, pindex); 4678 } 4679 if (m == NULL) 4680 return (true); 4681 if (vm_page_trybusy(m, allocflags)) { 4682 if (m->object == object && m->pindex == pindex) 4683 break; 4684 /* relookup. */ 4685 vm_page_busy_release(m); 4686 cpu_spinwait(); 4687 continue; 4688 } 4689 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp", 4690 allocflags, false)) 4691 return (false); 4692 } 4693 if ((allocflags & VM_ALLOC_WIRED) != 0) 4694 vm_page_wire(m); 4695 vm_page_grab_release(m, allocflags); 4696 *mp = m; 4697 return (true); 4698 } 4699 4700 /* 4701 * Try to locklessly grab a page and fall back to the object lock if NOCREAT 4702 * is not set. 4703 */ 4704 vm_page_t 4705 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags) 4706 { 4707 vm_page_t m; 4708 4709 vm_page_grab_check(allocflags); 4710 4711 if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags)) 4712 return (NULL); 4713 if (m != NULL) 4714 return (m); 4715 4716 /* 4717 * The radix lockless lookup should never return a false negative 4718 * errors. If the user specifies NOCREAT they are guaranteed there 4719 * was no page present at the instant of the call. A NOCREAT caller 4720 * must handle create races gracefully. 4721 */ 4722 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4723 return (NULL); 4724 4725 VM_OBJECT_WLOCK(object); 4726 m = vm_page_grab(object, pindex, allocflags); 4727 VM_OBJECT_WUNLOCK(object); 4728 4729 return (m); 4730 } 4731 4732 /* 4733 * Grab a page and make it valid, paging in if necessary. Pages missing from 4734 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied 4735 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought 4736 * in simultaneously. Additional pages will be left on a paging queue but 4737 * will neither be wired nor busy regardless of allocflags. 4738 */ 4739 int 4740 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags) 4741 { 4742 vm_page_t m; 4743 vm_page_t ma[VM_INITIAL_PAGEIN]; 4744 int after, i, pflags, rv; 4745 4746 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4747 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4748 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4749 KASSERT((allocflags & 4750 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4751 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags)); 4752 VM_OBJECT_ASSERT_WLOCKED(object); 4753 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY | 4754 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY); 4755 pflags |= VM_ALLOC_WAITFAIL; 4756 4757 retrylookup: 4758 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4759 /* 4760 * If the page is fully valid it can only become invalid 4761 * with the object lock held. If it is not valid it can 4762 * become valid with the busy lock held. Therefore, we 4763 * may unnecessarily lock the exclusive busy here if we 4764 * race with I/O completion not using the object lock. 4765 * However, we will not end up with an invalid page and a 4766 * shared lock. 4767 */ 4768 if (!vm_page_trybusy(m, 4769 vm_page_all_valid(m) ? allocflags : 0)) { 4770 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt", 4771 allocflags, true); 4772 goto retrylookup; 4773 } 4774 if (vm_page_all_valid(m)) 4775 goto out; 4776 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4777 vm_page_busy_release(m); 4778 *mp = NULL; 4779 return (VM_PAGER_FAIL); 4780 } 4781 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4782 *mp = NULL; 4783 return (VM_PAGER_FAIL); 4784 } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) { 4785 if (!vm_pager_can_alloc_page(object, pindex)) { 4786 *mp = NULL; 4787 return (VM_PAGER_AGAIN); 4788 } 4789 goto retrylookup; 4790 } 4791 4792 vm_page_assert_xbusied(m); 4793 if (vm_pager_has_page(object, pindex, NULL, &after)) { 4794 after = MIN(after, VM_INITIAL_PAGEIN); 4795 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT); 4796 after = MAX(after, 1); 4797 ma[0] = m; 4798 for (i = 1; i < after; i++) { 4799 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { 4800 if (vm_page_any_valid(ma[i]) || 4801 !vm_page_tryxbusy(ma[i])) 4802 break; 4803 } else { 4804 ma[i] = vm_page_alloc(object, m->pindex + i, 4805 VM_ALLOC_NORMAL); 4806 if (ma[i] == NULL) 4807 break; 4808 } 4809 } 4810 after = i; 4811 vm_object_pip_add(object, after); 4812 VM_OBJECT_WUNLOCK(object); 4813 rv = vm_pager_get_pages(object, ma, after, NULL, NULL); 4814 VM_OBJECT_WLOCK(object); 4815 vm_object_pip_wakeupn(object, after); 4816 /* Pager may have replaced a page. */ 4817 m = ma[0]; 4818 if (rv != VM_PAGER_OK) { 4819 for (i = 0; i < after; i++) { 4820 if (!vm_page_wired(ma[i])) 4821 vm_page_free(ma[i]); 4822 else 4823 vm_page_xunbusy(ma[i]); 4824 } 4825 *mp = NULL; 4826 return (rv); 4827 } 4828 for (i = 1; i < after; i++) 4829 vm_page_readahead_finish(ma[i]); 4830 MPASS(vm_page_all_valid(m)); 4831 } else { 4832 vm_page_zero_invalid(m, TRUE); 4833 } 4834 out: 4835 if ((allocflags & VM_ALLOC_WIRED) != 0) 4836 vm_page_wire(m); 4837 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m)) 4838 vm_page_busy_downgrade(m); 4839 else if ((allocflags & VM_ALLOC_NOBUSY) != 0) 4840 vm_page_busy_release(m); 4841 *mp = m; 4842 return (VM_PAGER_OK); 4843 } 4844 4845 /* 4846 * Locklessly grab a valid page. If the page is not valid or not yet 4847 * allocated this will fall back to the object lock method. 4848 */ 4849 int 4850 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object, 4851 vm_pindex_t pindex, int allocflags) 4852 { 4853 vm_page_t m; 4854 int flags; 4855 int error; 4856 4857 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4858 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4859 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY " 4860 "mismatch")); 4861 KASSERT((allocflags & 4862 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4863 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags)); 4864 4865 /* 4866 * Attempt a lockless lookup and busy. We need at least an sbusy 4867 * before we can inspect the valid field and return a wired page. 4868 */ 4869 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); 4870 if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags)) 4871 return (VM_PAGER_FAIL); 4872 if ((m = *mp) != NULL) { 4873 if (vm_page_all_valid(m)) { 4874 if ((allocflags & VM_ALLOC_WIRED) != 0) 4875 vm_page_wire(m); 4876 vm_page_grab_release(m, allocflags); 4877 return (VM_PAGER_OK); 4878 } 4879 vm_page_busy_release(m); 4880 } 4881 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4882 *mp = NULL; 4883 return (VM_PAGER_FAIL); 4884 } 4885 VM_OBJECT_WLOCK(object); 4886 error = vm_page_grab_valid(mp, object, pindex, allocflags); 4887 VM_OBJECT_WUNLOCK(object); 4888 4889 return (error); 4890 } 4891 4892 /* 4893 * Return the specified range of pages from the given object. For each 4894 * page offset within the range, if a page already exists within the object 4895 * at that offset and it is busy, then wait for it to change state. If, 4896 * instead, the page doesn't exist, then allocate it. 4897 * 4898 * The caller must always specify an allocation class. 4899 * 4900 * allocation classes: 4901 * VM_ALLOC_NORMAL normal process request 4902 * VM_ALLOC_SYSTEM system *really* needs the pages 4903 * 4904 * The caller must always specify that the pages are to be busied and/or 4905 * wired. 4906 * 4907 * optional allocation flags: 4908 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 4909 * VM_ALLOC_NOBUSY do not exclusive busy the page 4910 * VM_ALLOC_NOWAIT do not sleep 4911 * VM_ALLOC_SBUSY set page to sbusy state 4912 * VM_ALLOC_WIRED wire the pages 4913 * VM_ALLOC_ZERO zero and validate any invalid pages 4914 * 4915 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 4916 * may return a partial prefix of the requested range. 4917 */ 4918 int 4919 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 4920 vm_page_t *ma, int count) 4921 { 4922 vm_page_t m, mpred; 4923 int pflags; 4924 int i; 4925 4926 VM_OBJECT_ASSERT_WLOCKED(object); 4927 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 4928 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 4929 KASSERT(count > 0, 4930 ("vm_page_grab_pages: invalid page count %d", count)); 4931 vm_page_grab_check(allocflags); 4932 4933 pflags = vm_page_grab_pflags(allocflags); 4934 i = 0; 4935 retrylookup: 4936 m = vm_radix_lookup_le(&object->rtree, pindex + i); 4937 if (m == NULL || m->pindex != pindex + i) { 4938 mpred = m; 4939 m = NULL; 4940 } else 4941 mpred = TAILQ_PREV(m, pglist, listq); 4942 for (; i < count; i++) { 4943 if (m != NULL) { 4944 if (!vm_page_tryacquire(m, allocflags)) { 4945 if (vm_page_grab_sleep(object, m, pindex + i, 4946 "grbmaw", allocflags, true)) 4947 goto retrylookup; 4948 break; 4949 } 4950 } else { 4951 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4952 break; 4953 m = vm_page_alloc_after(object, pindex + i, 4954 pflags | VM_ALLOC_COUNT(count - i), mpred); 4955 if (m == NULL) { 4956 if ((allocflags & (VM_ALLOC_NOWAIT | 4957 VM_ALLOC_WAITFAIL)) != 0) 4958 break; 4959 goto retrylookup; 4960 } 4961 } 4962 if (vm_page_none_valid(m) && 4963 (allocflags & VM_ALLOC_ZERO) != 0) { 4964 if ((m->flags & PG_ZERO) == 0) 4965 pmap_zero_page(m); 4966 vm_page_valid(m); 4967 } 4968 vm_page_grab_release(m, allocflags); 4969 ma[i] = mpred = m; 4970 m = vm_page_next(m); 4971 } 4972 return (i); 4973 } 4974 4975 /* 4976 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags 4977 * and will fall back to the locked variant to handle allocation. 4978 */ 4979 int 4980 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex, 4981 int allocflags, vm_page_t *ma, int count) 4982 { 4983 vm_page_t m, pred; 4984 int flags; 4985 int i; 4986 4987 KASSERT(count > 0, 4988 ("vm_page_grab_pages_unlocked: invalid page count %d", count)); 4989 vm_page_grab_check(allocflags); 4990 4991 /* 4992 * Modify flags for lockless acquire to hold the page until we 4993 * set it valid if necessary. 4994 */ 4995 flags = allocflags & ~VM_ALLOC_NOBUSY; 4996 pred = NULL; 4997 for (i = 0; i < count; i++, pindex++) { 4998 if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags)) 4999 return (i); 5000 if (m == NULL) 5001 break; 5002 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) { 5003 if ((m->flags & PG_ZERO) == 0) 5004 pmap_zero_page(m); 5005 vm_page_valid(m); 5006 } 5007 /* m will still be wired or busy according to flags. */ 5008 vm_page_grab_release(m, allocflags); 5009 pred = ma[i] = m; 5010 } 5011 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0) 5012 return (i); 5013 count -= i; 5014 VM_OBJECT_WLOCK(object); 5015 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count); 5016 VM_OBJECT_WUNLOCK(object); 5017 5018 return (i); 5019 } 5020 5021 /* 5022 * Mapping function for valid or dirty bits in a page. 5023 * 5024 * Inputs are required to range within a page. 5025 */ 5026 vm_page_bits_t 5027 vm_page_bits(int base, int size) 5028 { 5029 int first_bit; 5030 int last_bit; 5031 5032 KASSERT( 5033 base + size <= PAGE_SIZE, 5034 ("vm_page_bits: illegal base/size %d/%d", base, size) 5035 ); 5036 5037 if (size == 0) /* handle degenerate case */ 5038 return (0); 5039 5040 first_bit = base >> DEV_BSHIFT; 5041 last_bit = (base + size - 1) >> DEV_BSHIFT; 5042 5043 return (((vm_page_bits_t)2 << last_bit) - 5044 ((vm_page_bits_t)1 << first_bit)); 5045 } 5046 5047 void 5048 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set) 5049 { 5050 5051 #if PAGE_SIZE == 32768 5052 atomic_set_64((uint64_t *)bits, set); 5053 #elif PAGE_SIZE == 16384 5054 atomic_set_32((uint32_t *)bits, set); 5055 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16) 5056 atomic_set_16((uint16_t *)bits, set); 5057 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8) 5058 atomic_set_8((uint8_t *)bits, set); 5059 #else /* PAGE_SIZE <= 8192 */ 5060 uintptr_t addr; 5061 int shift; 5062 5063 addr = (uintptr_t)bits; 5064 /* 5065 * Use a trick to perform a 32-bit atomic on the 5066 * containing aligned word, to not depend on the existence 5067 * of atomic_{set, clear}_{8, 16}. 5068 */ 5069 shift = addr & (sizeof(uint32_t) - 1); 5070 #if BYTE_ORDER == BIG_ENDIAN 5071 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5072 #else 5073 shift *= NBBY; 5074 #endif 5075 addr &= ~(sizeof(uint32_t) - 1); 5076 atomic_set_32((uint32_t *)addr, set << shift); 5077 #endif /* PAGE_SIZE */ 5078 } 5079 5080 static inline void 5081 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear) 5082 { 5083 5084 #if PAGE_SIZE == 32768 5085 atomic_clear_64((uint64_t *)bits, clear); 5086 #elif PAGE_SIZE == 16384 5087 atomic_clear_32((uint32_t *)bits, clear); 5088 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16) 5089 atomic_clear_16((uint16_t *)bits, clear); 5090 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8) 5091 atomic_clear_8((uint8_t *)bits, clear); 5092 #else /* PAGE_SIZE <= 8192 */ 5093 uintptr_t addr; 5094 int shift; 5095 5096 addr = (uintptr_t)bits; 5097 /* 5098 * Use a trick to perform a 32-bit atomic on the 5099 * containing aligned word, to not depend on the existence 5100 * of atomic_{set, clear}_{8, 16}. 5101 */ 5102 shift = addr & (sizeof(uint32_t) - 1); 5103 #if BYTE_ORDER == BIG_ENDIAN 5104 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5105 #else 5106 shift *= NBBY; 5107 #endif 5108 addr &= ~(sizeof(uint32_t) - 1); 5109 atomic_clear_32((uint32_t *)addr, clear << shift); 5110 #endif /* PAGE_SIZE */ 5111 } 5112 5113 static inline vm_page_bits_t 5114 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits) 5115 { 5116 #if PAGE_SIZE == 32768 5117 uint64_t old; 5118 5119 old = *bits; 5120 while (atomic_fcmpset_64(bits, &old, newbits) == 0); 5121 return (old); 5122 #elif PAGE_SIZE == 16384 5123 uint32_t old; 5124 5125 old = *bits; 5126 while (atomic_fcmpset_32(bits, &old, newbits) == 0); 5127 return (old); 5128 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16) 5129 uint16_t old; 5130 5131 old = *bits; 5132 while (atomic_fcmpset_16(bits, &old, newbits) == 0); 5133 return (old); 5134 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8) 5135 uint8_t old; 5136 5137 old = *bits; 5138 while (atomic_fcmpset_8(bits, &old, newbits) == 0); 5139 return (old); 5140 #else /* PAGE_SIZE <= 4096*/ 5141 uintptr_t addr; 5142 uint32_t old, new, mask; 5143 int shift; 5144 5145 addr = (uintptr_t)bits; 5146 /* 5147 * Use a trick to perform a 32-bit atomic on the 5148 * containing aligned word, to not depend on the existence 5149 * of atomic_{set, swap, clear}_{8, 16}. 5150 */ 5151 shift = addr & (sizeof(uint32_t) - 1); 5152 #if BYTE_ORDER == BIG_ENDIAN 5153 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5154 #else 5155 shift *= NBBY; 5156 #endif 5157 addr &= ~(sizeof(uint32_t) - 1); 5158 mask = VM_PAGE_BITS_ALL << shift; 5159 5160 old = *bits; 5161 do { 5162 new = old & ~mask; 5163 new |= newbits << shift; 5164 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0); 5165 return (old >> shift); 5166 #endif /* PAGE_SIZE */ 5167 } 5168 5169 /* 5170 * vm_page_set_valid_range: 5171 * 5172 * Sets portions of a page valid. The arguments are expected 5173 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5174 * of any partial chunks touched by the range. The invalid portion of 5175 * such chunks will be zeroed. 5176 * 5177 * (base + size) must be less then or equal to PAGE_SIZE. 5178 */ 5179 void 5180 vm_page_set_valid_range(vm_page_t m, int base, int size) 5181 { 5182 int endoff, frag; 5183 vm_page_bits_t pagebits; 5184 5185 vm_page_assert_busied(m); 5186 if (size == 0) /* handle degenerate case */ 5187 return; 5188 5189 /* 5190 * If the base is not DEV_BSIZE aligned and the valid 5191 * bit is clear, we have to zero out a portion of the 5192 * first block. 5193 */ 5194 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5195 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 5196 pmap_zero_page_area(m, frag, base - frag); 5197 5198 /* 5199 * If the ending offset is not DEV_BSIZE aligned and the 5200 * valid bit is clear, we have to zero out a portion of 5201 * the last block. 5202 */ 5203 endoff = base + size; 5204 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5205 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 5206 pmap_zero_page_area(m, endoff, 5207 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5208 5209 /* 5210 * Assert that no previously invalid block that is now being validated 5211 * is already dirty. 5212 */ 5213 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 5214 ("vm_page_set_valid_range: page %p is dirty", m)); 5215 5216 /* 5217 * Set valid bits inclusive of any overlap. 5218 */ 5219 pagebits = vm_page_bits(base, size); 5220 if (vm_page_xbusied(m)) 5221 m->valid |= pagebits; 5222 else 5223 vm_page_bits_set(m, &m->valid, pagebits); 5224 } 5225 5226 /* 5227 * Set the page dirty bits and free the invalid swap space if 5228 * present. Returns the previous dirty bits. 5229 */ 5230 vm_page_bits_t 5231 vm_page_set_dirty(vm_page_t m) 5232 { 5233 vm_page_bits_t old; 5234 5235 VM_PAGE_OBJECT_BUSY_ASSERT(m); 5236 5237 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) { 5238 old = m->dirty; 5239 m->dirty = VM_PAGE_BITS_ALL; 5240 } else 5241 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL); 5242 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0) 5243 vm_pager_page_unswapped(m); 5244 5245 return (old); 5246 } 5247 5248 /* 5249 * Clear the given bits from the specified page's dirty field. 5250 */ 5251 static __inline void 5252 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 5253 { 5254 5255 vm_page_assert_busied(m); 5256 5257 /* 5258 * If the page is xbusied and not write mapped we are the 5259 * only thread that can modify dirty bits. Otherwise, The pmap 5260 * layer can call vm_page_dirty() without holding a distinguished 5261 * lock. The combination of page busy and atomic operations 5262 * suffice to guarantee consistency of the page dirty field. 5263 */ 5264 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 5265 m->dirty &= ~pagebits; 5266 else 5267 vm_page_bits_clear(m, &m->dirty, pagebits); 5268 } 5269 5270 /* 5271 * vm_page_set_validclean: 5272 * 5273 * Sets portions of a page valid and clean. The arguments are expected 5274 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5275 * of any partial chunks touched by the range. The invalid portion of 5276 * such chunks will be zero'd. 5277 * 5278 * (base + size) must be less then or equal to PAGE_SIZE. 5279 */ 5280 void 5281 vm_page_set_validclean(vm_page_t m, int base, int size) 5282 { 5283 vm_page_bits_t oldvalid, pagebits; 5284 int endoff, frag; 5285 5286 vm_page_assert_busied(m); 5287 if (size == 0) /* handle degenerate case */ 5288 return; 5289 5290 /* 5291 * If the base is not DEV_BSIZE aligned and the valid 5292 * bit is clear, we have to zero out a portion of the 5293 * first block. 5294 */ 5295 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5296 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 5297 pmap_zero_page_area(m, frag, base - frag); 5298 5299 /* 5300 * If the ending offset is not DEV_BSIZE aligned and the 5301 * valid bit is clear, we have to zero out a portion of 5302 * the last block. 5303 */ 5304 endoff = base + size; 5305 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5306 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 5307 pmap_zero_page_area(m, endoff, 5308 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5309 5310 /* 5311 * Set valid, clear dirty bits. If validating the entire 5312 * page we can safely clear the pmap modify bit. We also 5313 * use this opportunity to clear the PGA_NOSYNC flag. If a process 5314 * takes a write fault on a MAP_NOSYNC memory area the flag will 5315 * be set again. 5316 * 5317 * We set valid bits inclusive of any overlap, but we can only 5318 * clear dirty bits for DEV_BSIZE chunks that are fully within 5319 * the range. 5320 */ 5321 oldvalid = m->valid; 5322 pagebits = vm_page_bits(base, size); 5323 if (vm_page_xbusied(m)) 5324 m->valid |= pagebits; 5325 else 5326 vm_page_bits_set(m, &m->valid, pagebits); 5327 #if 0 /* NOT YET */ 5328 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 5329 frag = DEV_BSIZE - frag; 5330 base += frag; 5331 size -= frag; 5332 if (size < 0) 5333 size = 0; 5334 } 5335 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 5336 #endif 5337 if (base == 0 && size == PAGE_SIZE) { 5338 /* 5339 * The page can only be modified within the pmap if it is 5340 * mapped, and it can only be mapped if it was previously 5341 * fully valid. 5342 */ 5343 if (oldvalid == VM_PAGE_BITS_ALL) 5344 /* 5345 * Perform the pmap_clear_modify() first. Otherwise, 5346 * a concurrent pmap operation, such as 5347 * pmap_protect(), could clear a modification in the 5348 * pmap and set the dirty field on the page before 5349 * pmap_clear_modify() had begun and after the dirty 5350 * field was cleared here. 5351 */ 5352 pmap_clear_modify(m); 5353 m->dirty = 0; 5354 vm_page_aflag_clear(m, PGA_NOSYNC); 5355 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m)) 5356 m->dirty &= ~pagebits; 5357 else 5358 vm_page_clear_dirty_mask(m, pagebits); 5359 } 5360 5361 void 5362 vm_page_clear_dirty(vm_page_t m, int base, int size) 5363 { 5364 5365 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 5366 } 5367 5368 /* 5369 * vm_page_set_invalid: 5370 * 5371 * Invalidates DEV_BSIZE'd chunks within a page. Both the 5372 * valid and dirty bits for the effected areas are cleared. 5373 */ 5374 void 5375 vm_page_set_invalid(vm_page_t m, int base, int size) 5376 { 5377 vm_page_bits_t bits; 5378 vm_object_t object; 5379 5380 /* 5381 * The object lock is required so that pages can't be mapped 5382 * read-only while we're in the process of invalidating them. 5383 */ 5384 object = m->object; 5385 VM_OBJECT_ASSERT_WLOCKED(object); 5386 vm_page_assert_busied(m); 5387 5388 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 5389 size >= object->un_pager.vnp.vnp_size) 5390 bits = VM_PAGE_BITS_ALL; 5391 else 5392 bits = vm_page_bits(base, size); 5393 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0) 5394 pmap_remove_all(m); 5395 KASSERT((bits == 0 && vm_page_all_valid(m)) || 5396 !pmap_page_is_mapped(m), 5397 ("vm_page_set_invalid: page %p is mapped", m)); 5398 if (vm_page_xbusied(m)) { 5399 m->valid &= ~bits; 5400 m->dirty &= ~bits; 5401 } else { 5402 vm_page_bits_clear(m, &m->valid, bits); 5403 vm_page_bits_clear(m, &m->dirty, bits); 5404 } 5405 } 5406 5407 /* 5408 * vm_page_invalid: 5409 * 5410 * Invalidates the entire page. The page must be busy, unmapped, and 5411 * the enclosing object must be locked. The object locks protects 5412 * against concurrent read-only pmap enter which is done without 5413 * busy. 5414 */ 5415 void 5416 vm_page_invalid(vm_page_t m) 5417 { 5418 5419 vm_page_assert_busied(m); 5420 VM_OBJECT_ASSERT_WLOCKED(m->object); 5421 MPASS(!pmap_page_is_mapped(m)); 5422 5423 if (vm_page_xbusied(m)) 5424 m->valid = 0; 5425 else 5426 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL); 5427 } 5428 5429 /* 5430 * vm_page_zero_invalid() 5431 * 5432 * The kernel assumes that the invalid portions of a page contain 5433 * garbage, but such pages can be mapped into memory by user code. 5434 * When this occurs, we must zero out the non-valid portions of the 5435 * page so user code sees what it expects. 5436 * 5437 * Pages are most often semi-valid when the end of a file is mapped 5438 * into memory and the file's size is not page aligned. 5439 */ 5440 void 5441 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 5442 { 5443 int b; 5444 int i; 5445 5446 /* 5447 * Scan the valid bits looking for invalid sections that 5448 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 5449 * valid bit may be set ) have already been zeroed by 5450 * vm_page_set_validclean(). 5451 */ 5452 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 5453 if (i == (PAGE_SIZE / DEV_BSIZE) || 5454 (m->valid & ((vm_page_bits_t)1 << i))) { 5455 if (i > b) { 5456 pmap_zero_page_area(m, 5457 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 5458 } 5459 b = i + 1; 5460 } 5461 } 5462 5463 /* 5464 * setvalid is TRUE when we can safely set the zero'd areas 5465 * as being valid. We can do this if there are no cache consistency 5466 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 5467 */ 5468 if (setvalid) 5469 vm_page_valid(m); 5470 } 5471 5472 /* 5473 * vm_page_is_valid: 5474 * 5475 * Is (partial) page valid? Note that the case where size == 0 5476 * will return FALSE in the degenerate case where the page is 5477 * entirely invalid, and TRUE otherwise. 5478 * 5479 * Some callers envoke this routine without the busy lock held and 5480 * handle races via higher level locks. Typical callers should 5481 * hold a busy lock to prevent invalidation. 5482 */ 5483 int 5484 vm_page_is_valid(vm_page_t m, int base, int size) 5485 { 5486 vm_page_bits_t bits; 5487 5488 bits = vm_page_bits(base, size); 5489 return (vm_page_any_valid(m) && (m->valid & bits) == bits); 5490 } 5491 5492 /* 5493 * Returns true if all of the specified predicates are true for the entire 5494 * (super)page and false otherwise. 5495 */ 5496 bool 5497 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) 5498 { 5499 vm_object_t object; 5500 int i, npages; 5501 5502 object = m->object; 5503 if (skip_m != NULL && skip_m->object != object) 5504 return (false); 5505 VM_OBJECT_ASSERT_LOCKED(object); 5506 npages = atop(pagesizes[m->psind]); 5507 5508 /* 5509 * The physically contiguous pages that make up a superpage, i.e., a 5510 * page with a page size index ("psind") greater than zero, will 5511 * occupy adjacent entries in vm_page_array[]. 5512 */ 5513 for (i = 0; i < npages; i++) { 5514 /* Always test object consistency, including "skip_m". */ 5515 if (m[i].object != object) 5516 return (false); 5517 if (&m[i] == skip_m) 5518 continue; 5519 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 5520 return (false); 5521 if ((flags & PS_ALL_DIRTY) != 0) { 5522 /* 5523 * Calling vm_page_test_dirty() or pmap_is_modified() 5524 * might stop this case from spuriously returning 5525 * "false". However, that would require a write lock 5526 * on the object containing "m[i]". 5527 */ 5528 if (m[i].dirty != VM_PAGE_BITS_ALL) 5529 return (false); 5530 } 5531 if ((flags & PS_ALL_VALID) != 0 && 5532 m[i].valid != VM_PAGE_BITS_ALL) 5533 return (false); 5534 } 5535 return (true); 5536 } 5537 5538 /* 5539 * Set the page's dirty bits if the page is modified. 5540 */ 5541 void 5542 vm_page_test_dirty(vm_page_t m) 5543 { 5544 5545 vm_page_assert_busied(m); 5546 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 5547 vm_page_dirty(m); 5548 } 5549 5550 void 5551 vm_page_valid(vm_page_t m) 5552 { 5553 5554 vm_page_assert_busied(m); 5555 if (vm_page_xbusied(m)) 5556 m->valid = VM_PAGE_BITS_ALL; 5557 else 5558 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL); 5559 } 5560 5561 void 5562 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 5563 { 5564 5565 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 5566 } 5567 5568 void 5569 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 5570 { 5571 5572 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 5573 } 5574 5575 int 5576 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 5577 { 5578 5579 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 5580 } 5581 5582 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 5583 void 5584 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 5585 { 5586 5587 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 5588 } 5589 5590 void 5591 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 5592 { 5593 5594 mtx_assert_(vm_page_lockptr(m), a, file, line); 5595 } 5596 #endif 5597 5598 #ifdef INVARIANTS 5599 void 5600 vm_page_object_busy_assert(vm_page_t m) 5601 { 5602 5603 /* 5604 * Certain of the page's fields may only be modified by the 5605 * holder of a page or object busy. 5606 */ 5607 if (m->object != NULL && !vm_page_busied(m)) 5608 VM_OBJECT_ASSERT_BUSY(m->object); 5609 } 5610 5611 void 5612 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits) 5613 { 5614 5615 if ((bits & PGA_WRITEABLE) == 0) 5616 return; 5617 5618 /* 5619 * The PGA_WRITEABLE flag can only be set if the page is 5620 * managed, is exclusively busied or the object is locked. 5621 * Currently, this flag is only set by pmap_enter(). 5622 */ 5623 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 5624 ("PGA_WRITEABLE on unmanaged page")); 5625 if (!vm_page_xbusied(m)) 5626 VM_OBJECT_ASSERT_BUSY(m->object); 5627 } 5628 #endif 5629 5630 #include "opt_ddb.h" 5631 #ifdef DDB 5632 #include <sys/kernel.h> 5633 5634 #include <ddb/ddb.h> 5635 5636 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE) 5637 { 5638 5639 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 5640 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 5641 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 5642 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 5643 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 5644 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 5645 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 5646 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 5647 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 5648 } 5649 5650 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE) 5651 { 5652 int dom; 5653 5654 db_printf("pq_free %d\n", vm_free_count()); 5655 for (dom = 0; dom < vm_ndomains; dom++) { 5656 db_printf( 5657 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 5658 dom, 5659 vm_dom[dom].vmd_page_count, 5660 vm_dom[dom].vmd_free_count, 5661 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 5662 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 5663 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 5664 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 5665 } 5666 } 5667 5668 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 5669 { 5670 vm_page_t m; 5671 boolean_t phys, virt; 5672 5673 if (!have_addr) { 5674 db_printf("show pginfo addr\n"); 5675 return; 5676 } 5677 5678 phys = strchr(modif, 'p') != NULL; 5679 virt = strchr(modif, 'v') != NULL; 5680 if (virt) 5681 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 5682 else if (phys) 5683 m = PHYS_TO_VM_PAGE(addr); 5684 else 5685 m = (vm_page_t)addr; 5686 db_printf( 5687 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n" 5688 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 5689 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 5690 m->a.queue, m->ref_count, m->a.flags, m->oflags, 5691 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty); 5692 } 5693 #endif /* DDB */ 5694