xref: /freebsd/sys/vm/vm_page.c (revision da3086df1863e9aed45eb14e265c306f8bb27d80)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue regardless of other locks or the busy state of a page.
68  *
69  *		* In general, no thread besides the page daemon can acquire or
70  *		  hold more than one page queue lock at a time.
71  *
72  *		* The page daemon can acquire and hold any pair of page queue
73  *		  locks in any order.
74  *
75  *	- The object lock is required when inserting or removing
76  *	  pages from an object (vm_page_insert() or vm_page_remove()).
77  *
78  */
79 
80 /*
81  *	Resident memory management module.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_vm.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/lock.h>
92 #include <sys/kernel.h>
93 #include <sys/limits.h>
94 #include <sys/linker.h>
95 #include <sys/malloc.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/mutex.h>
99 #include <sys/proc.h>
100 #include <sys/rwlock.h>
101 #include <sys/sbuf.h>
102 #include <sys/smp.h>
103 #include <sys/sysctl.h>
104 #include <sys/vmmeter.h>
105 #include <sys/vnode.h>
106 
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_param.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_pager.h>
115 #include <vm/vm_phys.h>
116 #include <vm/vm_radix.h>
117 #include <vm/vm_reserv.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 #include <vm/uma_int.h>
121 
122 #include <machine/md_var.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 
129 struct vm_domain vm_dom[MAXMEMDOM];
130 struct mtx_padalign __exclusive_cache_line vm_page_queue_free_mtx;
131 
132 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
133 
134 /*
135  * bogus page -- for I/O to/from partially complete buffers,
136  * or for paging into sparsely invalid regions.
137  */
138 vm_page_t bogus_page;
139 
140 vm_page_t vm_page_array;
141 long vm_page_array_size;
142 long first_page;
143 
144 static int boot_pages = UMA_BOOT_PAGES;
145 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
146     &boot_pages, 0,
147     "number of pages allocated for bootstrapping the VM system");
148 
149 static int pa_tryrelock_restart;
150 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
151     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
152 
153 static TAILQ_HEAD(, vm_page) blacklist_head;
154 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
155 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
156     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
157 
158 /* Is the page daemon waiting for free pages? */
159 static int vm_pageout_pages_needed;
160 
161 static uma_zone_t fakepg_zone;
162 
163 static void vm_page_alloc_check(vm_page_t m);
164 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
165 static void vm_page_enqueue(uint8_t queue, vm_page_t m);
166 static void vm_page_free_wakeup(void);
167 static void vm_page_init(void *dummy);
168 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
169     vm_pindex_t pindex, vm_page_t mpred);
170 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
171     vm_page_t mpred);
172 static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
173     vm_paddr_t high);
174 
175 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
176 
177 static void
178 vm_page_init(void *dummy)
179 {
180 
181 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
182 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
183 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
184 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
185 }
186 
187 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
188 #if PAGE_SIZE == 32768
189 #ifdef CTASSERT
190 CTASSERT(sizeof(u_long) >= 8);
191 #endif
192 #endif
193 
194 /*
195  * Try to acquire a physical address lock while a pmap is locked.  If we
196  * fail to trylock we unlock and lock the pmap directly and cache the
197  * locked pa in *locked.  The caller should then restart their loop in case
198  * the virtual to physical mapping has changed.
199  */
200 int
201 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
202 {
203 	vm_paddr_t lockpa;
204 
205 	lockpa = *locked;
206 	*locked = pa;
207 	if (lockpa) {
208 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
209 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
210 			return (0);
211 		PA_UNLOCK(lockpa);
212 	}
213 	if (PA_TRYLOCK(pa))
214 		return (0);
215 	PMAP_UNLOCK(pmap);
216 	atomic_add_int(&pa_tryrelock_restart, 1);
217 	PA_LOCK(pa);
218 	PMAP_LOCK(pmap);
219 	return (EAGAIN);
220 }
221 
222 /*
223  *	vm_set_page_size:
224  *
225  *	Sets the page size, perhaps based upon the memory
226  *	size.  Must be called before any use of page-size
227  *	dependent functions.
228  */
229 void
230 vm_set_page_size(void)
231 {
232 	if (vm_cnt.v_page_size == 0)
233 		vm_cnt.v_page_size = PAGE_SIZE;
234 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
235 		panic("vm_set_page_size: page size not a power of two");
236 }
237 
238 /*
239  *	vm_page_blacklist_next:
240  *
241  *	Find the next entry in the provided string of blacklist
242  *	addresses.  Entries are separated by space, comma, or newline.
243  *	If an invalid integer is encountered then the rest of the
244  *	string is skipped.  Updates the list pointer to the next
245  *	character, or NULL if the string is exhausted or invalid.
246  */
247 static vm_paddr_t
248 vm_page_blacklist_next(char **list, char *end)
249 {
250 	vm_paddr_t bad;
251 	char *cp, *pos;
252 
253 	if (list == NULL || *list == NULL)
254 		return (0);
255 	if (**list =='\0') {
256 		*list = NULL;
257 		return (0);
258 	}
259 
260 	/*
261 	 * If there's no end pointer then the buffer is coming from
262 	 * the kenv and we know it's null-terminated.
263 	 */
264 	if (end == NULL)
265 		end = *list + strlen(*list);
266 
267 	/* Ensure that strtoq() won't walk off the end */
268 	if (*end != '\0') {
269 		if (*end == '\n' || *end == ' ' || *end  == ',')
270 			*end = '\0';
271 		else {
272 			printf("Blacklist not terminated, skipping\n");
273 			*list = NULL;
274 			return (0);
275 		}
276 	}
277 
278 	for (pos = *list; *pos != '\0'; pos = cp) {
279 		bad = strtoq(pos, &cp, 0);
280 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
281 			if (bad == 0) {
282 				if (++cp < end)
283 					continue;
284 				else
285 					break;
286 			}
287 		} else
288 			break;
289 		if (*cp == '\0' || ++cp >= end)
290 			*list = NULL;
291 		else
292 			*list = cp;
293 		return (trunc_page(bad));
294 	}
295 	printf("Garbage in RAM blacklist, skipping\n");
296 	*list = NULL;
297 	return (0);
298 }
299 
300 /*
301  *	vm_page_blacklist_check:
302  *
303  *	Iterate through the provided string of blacklist addresses, pulling
304  *	each entry out of the physical allocator free list and putting it
305  *	onto a list for reporting via the vm.page_blacklist sysctl.
306  */
307 static void
308 vm_page_blacklist_check(char *list, char *end)
309 {
310 	vm_paddr_t pa;
311 	vm_page_t m;
312 	char *next;
313 	int ret;
314 
315 	next = list;
316 	while (next != NULL) {
317 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
318 			continue;
319 		m = vm_phys_paddr_to_vm_page(pa);
320 		if (m == NULL)
321 			continue;
322 		mtx_lock(&vm_page_queue_free_mtx);
323 		ret = vm_phys_unfree_page(m);
324 		mtx_unlock(&vm_page_queue_free_mtx);
325 		if (ret == TRUE) {
326 			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
327 			if (bootverbose)
328 				printf("Skipping page with pa 0x%jx\n",
329 				    (uintmax_t)pa);
330 		}
331 	}
332 }
333 
334 /*
335  *	vm_page_blacklist_load:
336  *
337  *	Search for a special module named "ram_blacklist".  It'll be a
338  *	plain text file provided by the user via the loader directive
339  *	of the same name.
340  */
341 static void
342 vm_page_blacklist_load(char **list, char **end)
343 {
344 	void *mod;
345 	u_char *ptr;
346 	u_int len;
347 
348 	mod = NULL;
349 	ptr = NULL;
350 
351 	mod = preload_search_by_type("ram_blacklist");
352 	if (mod != NULL) {
353 		ptr = preload_fetch_addr(mod);
354 		len = preload_fetch_size(mod);
355         }
356 	*list = ptr;
357 	if (ptr != NULL)
358 		*end = ptr + len;
359 	else
360 		*end = NULL;
361 	return;
362 }
363 
364 static int
365 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
366 {
367 	vm_page_t m;
368 	struct sbuf sbuf;
369 	int error, first;
370 
371 	first = 1;
372 	error = sysctl_wire_old_buffer(req, 0);
373 	if (error != 0)
374 		return (error);
375 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
376 	TAILQ_FOREACH(m, &blacklist_head, listq) {
377 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
378 		    (uintmax_t)m->phys_addr);
379 		first = 0;
380 	}
381 	error = sbuf_finish(&sbuf);
382 	sbuf_delete(&sbuf);
383 	return (error);
384 }
385 
386 static void
387 vm_page_domain_init(struct vm_domain *vmd)
388 {
389 	struct vm_pagequeue *pq;
390 	int i;
391 
392 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
393 	    "vm inactive pagequeue";
394 	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
395 	    &vm_cnt.v_inactive_count;
396 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
397 	    "vm active pagequeue";
398 	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
399 	    &vm_cnt.v_active_count;
400 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
401 	    "vm laundry pagequeue";
402 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_vcnt) =
403 	    &vm_cnt.v_laundry_count;
404 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
405 	    "vm unswappable pagequeue";
406 	/* Unswappable dirty pages are counted as being in the laundry. */
407 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_vcnt) =
408 	    &vm_cnt.v_laundry_count;
409 	vmd->vmd_page_count = 0;
410 	vmd->vmd_free_count = 0;
411 	vmd->vmd_segs = 0;
412 	vmd->vmd_oom = FALSE;
413 	for (i = 0; i < PQ_COUNT; i++) {
414 		pq = &vmd->vmd_pagequeues[i];
415 		TAILQ_INIT(&pq->pq_pl);
416 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
417 		    MTX_DEF | MTX_DUPOK);
418 	}
419 }
420 
421 /*
422  *	vm_page_startup:
423  *
424  *	Initializes the resident memory module.  Allocates physical memory for
425  *	bootstrapping UMA and some data structures that are used to manage
426  *	physical pages.  Initializes these structures, and populates the free
427  *	page queues.
428  */
429 vm_offset_t
430 vm_page_startup(vm_offset_t vaddr)
431 {
432 	struct vm_domain *vmd;
433 	struct vm_phys_seg *seg;
434 	vm_page_t m;
435 	char *list, *listend;
436 	vm_offset_t mapped;
437 	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
438 	vm_paddr_t biggestsize, last_pa, pa;
439 	u_long pagecount;
440 	int biggestone, i, pages_per_zone, segind;
441 
442 	biggestsize = 0;
443 	biggestone = 0;
444 	vaddr = round_page(vaddr);
445 
446 	for (i = 0; phys_avail[i + 1]; i += 2) {
447 		phys_avail[i] = round_page(phys_avail[i]);
448 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
449 	}
450 	for (i = 0; phys_avail[i + 1]; i += 2) {
451 		size = phys_avail[i + 1] - phys_avail[i];
452 		if (size > biggestsize) {
453 			biggestone = i;
454 			biggestsize = size;
455 		}
456 	}
457 
458 	end = phys_avail[biggestone+1];
459 
460 	/*
461 	 * Initialize the page and queue locks.
462 	 */
463 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
464 	for (i = 0; i < PA_LOCK_COUNT; i++)
465 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
466 	for (i = 0; i < vm_ndomains; i++)
467 		vm_page_domain_init(&vm_dom[i]);
468 
469 	/*
470 	 * Almost all of the pages needed for bootstrapping UMA are used
471 	 * for zone structures, so if the number of CPUs results in those
472 	 * structures taking more than one page each, we set aside more pages
473 	 * in proportion to the zone structure size.
474 	 */
475 	pages_per_zone = howmany(sizeof(struct uma_zone) +
476 	    sizeof(struct uma_cache) * (mp_maxid + 1), UMA_SLAB_SIZE);
477 	if (pages_per_zone > 1) {
478 		/* Reserve more pages so that we don't run out. */
479 		boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone;
480 	}
481 
482 	/*
483 	 * Allocate memory for use when boot strapping the kernel memory
484 	 * allocator.
485 	 *
486 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
487 	 * manually fetch the value.
488 	 */
489 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
490 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
491 	new_end = trunc_page(new_end);
492 	mapped = pmap_map(&vaddr, new_end, end,
493 	    VM_PROT_READ | VM_PROT_WRITE);
494 	bzero((void *)mapped, end - new_end);
495 	uma_startup((void *)mapped, boot_pages);
496 
497 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
498     defined(__i386__) || defined(__mips__)
499 	/*
500 	 * Allocate a bitmap to indicate that a random physical page
501 	 * needs to be included in a minidump.
502 	 *
503 	 * The amd64 port needs this to indicate which direct map pages
504 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
505 	 *
506 	 * However, i386 still needs this workspace internally within the
507 	 * minidump code.  In theory, they are not needed on i386, but are
508 	 * included should the sf_buf code decide to use them.
509 	 */
510 	last_pa = 0;
511 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
512 		if (dump_avail[i + 1] > last_pa)
513 			last_pa = dump_avail[i + 1];
514 	page_range = last_pa / PAGE_SIZE;
515 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
516 	new_end -= vm_page_dump_size;
517 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
518 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
519 	bzero((void *)vm_page_dump, vm_page_dump_size);
520 #else
521 	(void)last_pa;
522 #endif
523 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
524 	/*
525 	 * Include the UMA bootstrap pages and vm_page_dump in a crash dump.
526 	 * When pmap_map() uses the direct map, they are not automatically
527 	 * included.
528 	 */
529 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
530 		dump_add_page(pa);
531 #endif
532 	phys_avail[biggestone + 1] = new_end;
533 #ifdef __amd64__
534 	/*
535 	 * Request that the physical pages underlying the message buffer be
536 	 * included in a crash dump.  Since the message buffer is accessed
537 	 * through the direct map, they are not automatically included.
538 	 */
539 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
540 	last_pa = pa + round_page(msgbufsize);
541 	while (pa < last_pa) {
542 		dump_add_page(pa);
543 		pa += PAGE_SIZE;
544 	}
545 #endif
546 	/*
547 	 * Compute the number of pages of memory that will be available for
548 	 * use, taking into account the overhead of a page structure per page.
549 	 * In other words, solve
550 	 *	"available physical memory" - round_page(page_range *
551 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
552 	 * for page_range.
553 	 */
554 	low_avail = phys_avail[0];
555 	high_avail = phys_avail[1];
556 	for (i = 0; i < vm_phys_nsegs; i++) {
557 		if (vm_phys_segs[i].start < low_avail)
558 			low_avail = vm_phys_segs[i].start;
559 		if (vm_phys_segs[i].end > high_avail)
560 			high_avail = vm_phys_segs[i].end;
561 	}
562 	/* Skip the first chunk.  It is already accounted for. */
563 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
564 		if (phys_avail[i] < low_avail)
565 			low_avail = phys_avail[i];
566 		if (phys_avail[i + 1] > high_avail)
567 			high_avail = phys_avail[i + 1];
568 	}
569 	first_page = low_avail / PAGE_SIZE;
570 #ifdef VM_PHYSSEG_SPARSE
571 	size = 0;
572 	for (i = 0; i < vm_phys_nsegs; i++)
573 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
574 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
575 		size += phys_avail[i + 1] - phys_avail[i];
576 #elif defined(VM_PHYSSEG_DENSE)
577 	size = high_avail - low_avail;
578 #else
579 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
580 #endif
581 
582 #ifdef VM_PHYSSEG_DENSE
583 	/*
584 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
585 	 * the overhead of a page structure per page only if vm_page_array is
586 	 * allocated from the last physical memory chunk.  Otherwise, we must
587 	 * allocate page structures representing the physical memory
588 	 * underlying vm_page_array, even though they will not be used.
589 	 */
590 	if (new_end != high_avail)
591 		page_range = size / PAGE_SIZE;
592 	else
593 #endif
594 	{
595 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
596 
597 		/*
598 		 * If the partial bytes remaining are large enough for
599 		 * a page (PAGE_SIZE) without a corresponding
600 		 * 'struct vm_page', then new_end will contain an
601 		 * extra page after subtracting the length of the VM
602 		 * page array.  Compensate by subtracting an extra
603 		 * page from new_end.
604 		 */
605 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
606 			if (new_end == high_avail)
607 				high_avail -= PAGE_SIZE;
608 			new_end -= PAGE_SIZE;
609 		}
610 	}
611 	end = new_end;
612 
613 	/*
614 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
615 	 * However, because this page is allocated from KVM, out-of-bounds
616 	 * accesses using the direct map will not be trapped.
617 	 */
618 	vaddr += PAGE_SIZE;
619 
620 	/*
621 	 * Allocate physical memory for the page structures, and map it.
622 	 */
623 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
624 	mapped = pmap_map(&vaddr, new_end, end,
625 	    VM_PROT_READ | VM_PROT_WRITE);
626 	vm_page_array = (vm_page_t)mapped;
627 	vm_page_array_size = page_range;
628 
629 #if VM_NRESERVLEVEL > 0
630 	/*
631 	 * Allocate physical memory for the reservation management system's
632 	 * data structures, and map it.
633 	 */
634 	if (high_avail == end)
635 		high_avail = new_end;
636 	new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
637 #endif
638 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
639 	/*
640 	 * Include vm_page_array and vm_reserv_array in a crash dump.
641 	 */
642 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
643 		dump_add_page(pa);
644 #endif
645 	phys_avail[biggestone + 1] = new_end;
646 
647 	/*
648 	 * Add physical memory segments corresponding to the available
649 	 * physical pages.
650 	 */
651 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
652 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
653 
654 	/*
655 	 * Initialize the physical memory allocator.
656 	 */
657 	vm_phys_init();
658 
659 	/*
660 	 * Initialize the page structures and add every available page to the
661 	 * physical memory allocator's free lists.
662 	 */
663 	vm_cnt.v_page_count = 0;
664 	vm_cnt.v_free_count = 0;
665 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
666 		seg = &vm_phys_segs[segind];
667 		for (pa = seg->start; pa < seg->end; pa += PAGE_SIZE)
668 			vm_phys_init_page(pa);
669 
670 		/*
671 		 * Add the segment to the free lists only if it is covered by
672 		 * one of the ranges in phys_avail.  Because we've added the
673 		 * ranges to the vm_phys_segs array, we can assume that each
674 		 * segment is either entirely contained in one of the ranges,
675 		 * or doesn't overlap any of them.
676 		 */
677 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
678 			if (seg->start < phys_avail[i] ||
679 			    seg->end > phys_avail[i + 1])
680 				continue;
681 
682 			m = seg->first_page;
683 			pagecount = (u_long)atop(seg->end - seg->start);
684 
685 			mtx_lock(&vm_page_queue_free_mtx);
686 			vm_phys_free_contig(m, pagecount);
687 			vm_phys_freecnt_adj(m, (int)pagecount);
688 			mtx_unlock(&vm_page_queue_free_mtx);
689 			vm_cnt.v_page_count += (u_int)pagecount;
690 
691 			vmd = &vm_dom[seg->domain];
692 			vmd->vmd_page_count += (u_int)pagecount;
693 			vmd->vmd_segs |= 1UL << m->segind;
694 			break;
695 		}
696 	}
697 
698 	/*
699 	 * Remove blacklisted pages from the physical memory allocator.
700 	 */
701 	TAILQ_INIT(&blacklist_head);
702 	vm_page_blacklist_load(&list, &listend);
703 	vm_page_blacklist_check(list, listend);
704 
705 	list = kern_getenv("vm.blacklist");
706 	vm_page_blacklist_check(list, NULL);
707 
708 	freeenv(list);
709 #if VM_NRESERVLEVEL > 0
710 	/*
711 	 * Initialize the reservation management system.
712 	 */
713 	vm_reserv_init();
714 #endif
715 	return (vaddr);
716 }
717 
718 void
719 vm_page_reference(vm_page_t m)
720 {
721 
722 	vm_page_aflag_set(m, PGA_REFERENCED);
723 }
724 
725 /*
726  *	vm_page_busy_downgrade:
727  *
728  *	Downgrade an exclusive busy page into a single shared busy page.
729  */
730 void
731 vm_page_busy_downgrade(vm_page_t m)
732 {
733 	u_int x;
734 	bool locked;
735 
736 	vm_page_assert_xbusied(m);
737 	locked = mtx_owned(vm_page_lockptr(m));
738 
739 	for (;;) {
740 		x = m->busy_lock;
741 		x &= VPB_BIT_WAITERS;
742 		if (x != 0 && !locked)
743 			vm_page_lock(m);
744 		if (atomic_cmpset_rel_int(&m->busy_lock,
745 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
746 			break;
747 		if (x != 0 && !locked)
748 			vm_page_unlock(m);
749 	}
750 	if (x != 0) {
751 		wakeup(m);
752 		if (!locked)
753 			vm_page_unlock(m);
754 	}
755 }
756 
757 /*
758  *	vm_page_sbusied:
759  *
760  *	Return a positive value if the page is shared busied, 0 otherwise.
761  */
762 int
763 vm_page_sbusied(vm_page_t m)
764 {
765 	u_int x;
766 
767 	x = m->busy_lock;
768 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
769 }
770 
771 /*
772  *	vm_page_sunbusy:
773  *
774  *	Shared unbusy a page.
775  */
776 void
777 vm_page_sunbusy(vm_page_t m)
778 {
779 	u_int x;
780 
781 	vm_page_lock_assert(m, MA_NOTOWNED);
782 	vm_page_assert_sbusied(m);
783 
784 	for (;;) {
785 		x = m->busy_lock;
786 		if (VPB_SHARERS(x) > 1) {
787 			if (atomic_cmpset_int(&m->busy_lock, x,
788 			    x - VPB_ONE_SHARER))
789 				break;
790 			continue;
791 		}
792 		if ((x & VPB_BIT_WAITERS) == 0) {
793 			KASSERT(x == VPB_SHARERS_WORD(1),
794 			    ("vm_page_sunbusy: invalid lock state"));
795 			if (atomic_cmpset_int(&m->busy_lock,
796 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
797 				break;
798 			continue;
799 		}
800 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
801 		    ("vm_page_sunbusy: invalid lock state for waiters"));
802 
803 		vm_page_lock(m);
804 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
805 			vm_page_unlock(m);
806 			continue;
807 		}
808 		wakeup(m);
809 		vm_page_unlock(m);
810 		break;
811 	}
812 }
813 
814 /*
815  *	vm_page_busy_sleep:
816  *
817  *	Sleep and release the page lock, using the page pointer as wchan.
818  *	This is used to implement the hard-path of busying mechanism.
819  *
820  *	The given page must be locked.
821  *
822  *	If nonshared is true, sleep only if the page is xbusy.
823  */
824 void
825 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
826 {
827 	u_int x;
828 
829 	vm_page_assert_locked(m);
830 
831 	x = m->busy_lock;
832 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
833 	    ((x & VPB_BIT_WAITERS) == 0 &&
834 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
835 		vm_page_unlock(m);
836 		return;
837 	}
838 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
839 }
840 
841 /*
842  *	vm_page_trysbusy:
843  *
844  *	Try to shared busy a page.
845  *	If the operation succeeds 1 is returned otherwise 0.
846  *	The operation never sleeps.
847  */
848 int
849 vm_page_trysbusy(vm_page_t m)
850 {
851 	u_int x;
852 
853 	for (;;) {
854 		x = m->busy_lock;
855 		if ((x & VPB_BIT_SHARED) == 0)
856 			return (0);
857 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
858 			return (1);
859 	}
860 }
861 
862 static void
863 vm_page_xunbusy_locked(vm_page_t m)
864 {
865 
866 	vm_page_assert_xbusied(m);
867 	vm_page_assert_locked(m);
868 
869 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
870 	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
871 	wakeup(m);
872 }
873 
874 void
875 vm_page_xunbusy_maybelocked(vm_page_t m)
876 {
877 	bool lockacq;
878 
879 	vm_page_assert_xbusied(m);
880 
881 	/*
882 	 * Fast path for unbusy.  If it succeeds, we know that there
883 	 * are no waiters, so we do not need a wakeup.
884 	 */
885 	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
886 	    VPB_UNBUSIED))
887 		return;
888 
889 	lockacq = !mtx_owned(vm_page_lockptr(m));
890 	if (lockacq)
891 		vm_page_lock(m);
892 	vm_page_xunbusy_locked(m);
893 	if (lockacq)
894 		vm_page_unlock(m);
895 }
896 
897 /*
898  *	vm_page_xunbusy_hard:
899  *
900  *	Called after the first try the exclusive unbusy of a page failed.
901  *	It is assumed that the waiters bit is on.
902  */
903 void
904 vm_page_xunbusy_hard(vm_page_t m)
905 {
906 
907 	vm_page_assert_xbusied(m);
908 
909 	vm_page_lock(m);
910 	vm_page_xunbusy_locked(m);
911 	vm_page_unlock(m);
912 }
913 
914 /*
915  *	vm_page_flash:
916  *
917  *	Wakeup anyone waiting for the page.
918  *	The ownership bits do not change.
919  *
920  *	The given page must be locked.
921  */
922 void
923 vm_page_flash(vm_page_t m)
924 {
925 	u_int x;
926 
927 	vm_page_lock_assert(m, MA_OWNED);
928 
929 	for (;;) {
930 		x = m->busy_lock;
931 		if ((x & VPB_BIT_WAITERS) == 0)
932 			return;
933 		if (atomic_cmpset_int(&m->busy_lock, x,
934 		    x & (~VPB_BIT_WAITERS)))
935 			break;
936 	}
937 	wakeup(m);
938 }
939 
940 /*
941  * Avoid releasing and reacquiring the same page lock.
942  */
943 void
944 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
945 {
946 	struct mtx *mtx1;
947 
948 	mtx1 = vm_page_lockptr(m);
949 	if (*mtx == mtx1)
950 		return;
951 	if (*mtx != NULL)
952 		mtx_unlock(*mtx);
953 	*mtx = mtx1;
954 	mtx_lock(mtx1);
955 }
956 
957 /*
958  * Keep page from being freed by the page daemon
959  * much of the same effect as wiring, except much lower
960  * overhead and should be used only for *very* temporary
961  * holding ("wiring").
962  */
963 void
964 vm_page_hold(vm_page_t mem)
965 {
966 
967 	vm_page_lock_assert(mem, MA_OWNED);
968         mem->hold_count++;
969 }
970 
971 void
972 vm_page_unhold(vm_page_t mem)
973 {
974 
975 	vm_page_lock_assert(mem, MA_OWNED);
976 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
977 	--mem->hold_count;
978 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
979 		vm_page_free_toq(mem);
980 }
981 
982 /*
983  *	vm_page_unhold_pages:
984  *
985  *	Unhold each of the pages that is referenced by the given array.
986  */
987 void
988 vm_page_unhold_pages(vm_page_t *ma, int count)
989 {
990 	struct mtx *mtx;
991 
992 	mtx = NULL;
993 	for (; count != 0; count--) {
994 		vm_page_change_lock(*ma, &mtx);
995 		vm_page_unhold(*ma);
996 		ma++;
997 	}
998 	if (mtx != NULL)
999 		mtx_unlock(mtx);
1000 }
1001 
1002 vm_page_t
1003 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1004 {
1005 	vm_page_t m;
1006 
1007 #ifdef VM_PHYSSEG_SPARSE
1008 	m = vm_phys_paddr_to_vm_page(pa);
1009 	if (m == NULL)
1010 		m = vm_phys_fictitious_to_vm_page(pa);
1011 	return (m);
1012 #elif defined(VM_PHYSSEG_DENSE)
1013 	long pi;
1014 
1015 	pi = atop(pa);
1016 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1017 		m = &vm_page_array[pi - first_page];
1018 		return (m);
1019 	}
1020 	return (vm_phys_fictitious_to_vm_page(pa));
1021 #else
1022 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1023 #endif
1024 }
1025 
1026 /*
1027  *	vm_page_getfake:
1028  *
1029  *	Create a fictitious page with the specified physical address and
1030  *	memory attribute.  The memory attribute is the only the machine-
1031  *	dependent aspect of a fictitious page that must be initialized.
1032  */
1033 vm_page_t
1034 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1035 {
1036 	vm_page_t m;
1037 
1038 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1039 	vm_page_initfake(m, paddr, memattr);
1040 	return (m);
1041 }
1042 
1043 void
1044 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1045 {
1046 
1047 	if ((m->flags & PG_FICTITIOUS) != 0) {
1048 		/*
1049 		 * The page's memattr might have changed since the
1050 		 * previous initialization.  Update the pmap to the
1051 		 * new memattr.
1052 		 */
1053 		goto memattr;
1054 	}
1055 	m->phys_addr = paddr;
1056 	m->queue = PQ_NONE;
1057 	/* Fictitious pages don't use "segind". */
1058 	m->flags = PG_FICTITIOUS;
1059 	/* Fictitious pages don't use "order" or "pool". */
1060 	m->oflags = VPO_UNMANAGED;
1061 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1062 	m->wire_count = 1;
1063 	pmap_page_init(m);
1064 memattr:
1065 	pmap_page_set_memattr(m, memattr);
1066 }
1067 
1068 /*
1069  *	vm_page_putfake:
1070  *
1071  *	Release a fictitious page.
1072  */
1073 void
1074 vm_page_putfake(vm_page_t m)
1075 {
1076 
1077 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1078 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1079 	    ("vm_page_putfake: bad page %p", m));
1080 	uma_zfree(fakepg_zone, m);
1081 }
1082 
1083 /*
1084  *	vm_page_updatefake:
1085  *
1086  *	Update the given fictitious page to the specified physical address and
1087  *	memory attribute.
1088  */
1089 void
1090 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1091 {
1092 
1093 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1094 	    ("vm_page_updatefake: bad page %p", m));
1095 	m->phys_addr = paddr;
1096 	pmap_page_set_memattr(m, memattr);
1097 }
1098 
1099 /*
1100  *	vm_page_free:
1101  *
1102  *	Free a page.
1103  */
1104 void
1105 vm_page_free(vm_page_t m)
1106 {
1107 
1108 	m->flags &= ~PG_ZERO;
1109 	vm_page_free_toq(m);
1110 }
1111 
1112 /*
1113  *	vm_page_free_zero:
1114  *
1115  *	Free a page to the zerod-pages queue
1116  */
1117 void
1118 vm_page_free_zero(vm_page_t m)
1119 {
1120 
1121 	m->flags |= PG_ZERO;
1122 	vm_page_free_toq(m);
1123 }
1124 
1125 /*
1126  * Unbusy and handle the page queueing for a page from a getpages request that
1127  * was optionally read ahead or behind.
1128  */
1129 void
1130 vm_page_readahead_finish(vm_page_t m)
1131 {
1132 
1133 	/* We shouldn't put invalid pages on queues. */
1134 	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1135 
1136 	/*
1137 	 * Since the page is not the actually needed one, whether it should
1138 	 * be activated or deactivated is not obvious.  Empirical results
1139 	 * have shown that deactivating the page is usually the best choice,
1140 	 * unless the page is wanted by another thread.
1141 	 */
1142 	vm_page_lock(m);
1143 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1144 		vm_page_activate(m);
1145 	else
1146 		vm_page_deactivate(m);
1147 	vm_page_unlock(m);
1148 	vm_page_xunbusy(m);
1149 }
1150 
1151 /*
1152  *	vm_page_sleep_if_busy:
1153  *
1154  *	Sleep and release the page queues lock if the page is busied.
1155  *	Returns TRUE if the thread slept.
1156  *
1157  *	The given page must be unlocked and object containing it must
1158  *	be locked.
1159  */
1160 int
1161 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1162 {
1163 	vm_object_t obj;
1164 
1165 	vm_page_lock_assert(m, MA_NOTOWNED);
1166 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1167 
1168 	if (vm_page_busied(m)) {
1169 		/*
1170 		 * The page-specific object must be cached because page
1171 		 * identity can change during the sleep, causing the
1172 		 * re-lock of a different object.
1173 		 * It is assumed that a reference to the object is already
1174 		 * held by the callers.
1175 		 */
1176 		obj = m->object;
1177 		vm_page_lock(m);
1178 		VM_OBJECT_WUNLOCK(obj);
1179 		vm_page_busy_sleep(m, msg, false);
1180 		VM_OBJECT_WLOCK(obj);
1181 		return (TRUE);
1182 	}
1183 	return (FALSE);
1184 }
1185 
1186 /*
1187  *	vm_page_dirty_KBI:		[ internal use only ]
1188  *
1189  *	Set all bits in the page's dirty field.
1190  *
1191  *	The object containing the specified page must be locked if the
1192  *	call is made from the machine-independent layer.
1193  *
1194  *	See vm_page_clear_dirty_mask().
1195  *
1196  *	This function should only be called by vm_page_dirty().
1197  */
1198 void
1199 vm_page_dirty_KBI(vm_page_t m)
1200 {
1201 
1202 	/* Refer to this operation by its public name. */
1203 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1204 	    ("vm_page_dirty: page is invalid!"));
1205 	m->dirty = VM_PAGE_BITS_ALL;
1206 }
1207 
1208 /*
1209  *	vm_page_insert:		[ internal use only ]
1210  *
1211  *	Inserts the given mem entry into the object and object list.
1212  *
1213  *	The object must be locked.
1214  */
1215 int
1216 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1217 {
1218 	vm_page_t mpred;
1219 
1220 	VM_OBJECT_ASSERT_WLOCKED(object);
1221 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1222 	return (vm_page_insert_after(m, object, pindex, mpred));
1223 }
1224 
1225 /*
1226  *	vm_page_insert_after:
1227  *
1228  *	Inserts the page "m" into the specified object at offset "pindex".
1229  *
1230  *	The page "mpred" must immediately precede the offset "pindex" within
1231  *	the specified object.
1232  *
1233  *	The object must be locked.
1234  */
1235 static int
1236 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1237     vm_page_t mpred)
1238 {
1239 	vm_page_t msucc;
1240 
1241 	VM_OBJECT_ASSERT_WLOCKED(object);
1242 	KASSERT(m->object == NULL,
1243 	    ("vm_page_insert_after: page already inserted"));
1244 	if (mpred != NULL) {
1245 		KASSERT(mpred->object == object,
1246 		    ("vm_page_insert_after: object doesn't contain mpred"));
1247 		KASSERT(mpred->pindex < pindex,
1248 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1249 		msucc = TAILQ_NEXT(mpred, listq);
1250 	} else
1251 		msucc = TAILQ_FIRST(&object->memq);
1252 	if (msucc != NULL)
1253 		KASSERT(msucc->pindex > pindex,
1254 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1255 
1256 	/*
1257 	 * Record the object/offset pair in this page
1258 	 */
1259 	m->object = object;
1260 	m->pindex = pindex;
1261 
1262 	/*
1263 	 * Now link into the object's ordered list of backed pages.
1264 	 */
1265 	if (vm_radix_insert(&object->rtree, m)) {
1266 		m->object = NULL;
1267 		m->pindex = 0;
1268 		return (1);
1269 	}
1270 	vm_page_insert_radixdone(m, object, mpred);
1271 	return (0);
1272 }
1273 
1274 /*
1275  *	vm_page_insert_radixdone:
1276  *
1277  *	Complete page "m" insertion into the specified object after the
1278  *	radix trie hooking.
1279  *
1280  *	The page "mpred" must precede the offset "m->pindex" within the
1281  *	specified object.
1282  *
1283  *	The object must be locked.
1284  */
1285 static void
1286 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1287 {
1288 
1289 	VM_OBJECT_ASSERT_WLOCKED(object);
1290 	KASSERT(object != NULL && m->object == object,
1291 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1292 	if (mpred != NULL) {
1293 		KASSERT(mpred->object == object,
1294 		    ("vm_page_insert_after: object doesn't contain mpred"));
1295 		KASSERT(mpred->pindex < m->pindex,
1296 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1297 	}
1298 
1299 	if (mpred != NULL)
1300 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1301 	else
1302 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1303 
1304 	/*
1305 	 * Show that the object has one more resident page.
1306 	 */
1307 	object->resident_page_count++;
1308 
1309 	/*
1310 	 * Hold the vnode until the last page is released.
1311 	 */
1312 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1313 		vhold(object->handle);
1314 
1315 	/*
1316 	 * Since we are inserting a new and possibly dirty page,
1317 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1318 	 */
1319 	if (pmap_page_is_write_mapped(m))
1320 		vm_object_set_writeable_dirty(object);
1321 }
1322 
1323 /*
1324  *	vm_page_remove:
1325  *
1326  *	Removes the specified page from its containing object, but does not
1327  *	invalidate any backing storage.
1328  *
1329  *	The object must be locked.  The page must be locked if it is managed.
1330  */
1331 void
1332 vm_page_remove(vm_page_t m)
1333 {
1334 	vm_object_t object;
1335 	vm_page_t mrem;
1336 
1337 	if ((m->oflags & VPO_UNMANAGED) == 0)
1338 		vm_page_assert_locked(m);
1339 	if ((object = m->object) == NULL)
1340 		return;
1341 	VM_OBJECT_ASSERT_WLOCKED(object);
1342 	if (vm_page_xbusied(m))
1343 		vm_page_xunbusy_maybelocked(m);
1344 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1345 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1346 
1347 	/*
1348 	 * Now remove from the object's list of backed pages.
1349 	 */
1350 	TAILQ_REMOVE(&object->memq, m, listq);
1351 
1352 	/*
1353 	 * And show that the object has one fewer resident page.
1354 	 */
1355 	object->resident_page_count--;
1356 
1357 	/*
1358 	 * The vnode may now be recycled.
1359 	 */
1360 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1361 		vdrop(object->handle);
1362 
1363 	m->object = NULL;
1364 }
1365 
1366 /*
1367  *	vm_page_lookup:
1368  *
1369  *	Returns the page associated with the object/offset
1370  *	pair specified; if none is found, NULL is returned.
1371  *
1372  *	The object must be locked.
1373  */
1374 vm_page_t
1375 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1376 {
1377 
1378 	VM_OBJECT_ASSERT_LOCKED(object);
1379 	return (vm_radix_lookup(&object->rtree, pindex));
1380 }
1381 
1382 /*
1383  *	vm_page_find_least:
1384  *
1385  *	Returns the page associated with the object with least pindex
1386  *	greater than or equal to the parameter pindex, or NULL.
1387  *
1388  *	The object must be locked.
1389  */
1390 vm_page_t
1391 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1392 {
1393 	vm_page_t m;
1394 
1395 	VM_OBJECT_ASSERT_LOCKED(object);
1396 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1397 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1398 	return (m);
1399 }
1400 
1401 /*
1402  * Returns the given page's successor (by pindex) within the object if it is
1403  * resident; if none is found, NULL is returned.
1404  *
1405  * The object must be locked.
1406  */
1407 vm_page_t
1408 vm_page_next(vm_page_t m)
1409 {
1410 	vm_page_t next;
1411 
1412 	VM_OBJECT_ASSERT_LOCKED(m->object);
1413 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1414 		MPASS(next->object == m->object);
1415 		if (next->pindex != m->pindex + 1)
1416 			next = NULL;
1417 	}
1418 	return (next);
1419 }
1420 
1421 /*
1422  * Returns the given page's predecessor (by pindex) within the object if it is
1423  * resident; if none is found, NULL is returned.
1424  *
1425  * The object must be locked.
1426  */
1427 vm_page_t
1428 vm_page_prev(vm_page_t m)
1429 {
1430 	vm_page_t prev;
1431 
1432 	VM_OBJECT_ASSERT_LOCKED(m->object);
1433 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1434 		MPASS(prev->object == m->object);
1435 		if (prev->pindex != m->pindex - 1)
1436 			prev = NULL;
1437 	}
1438 	return (prev);
1439 }
1440 
1441 /*
1442  * Uses the page mnew as a replacement for an existing page at index
1443  * pindex which must be already present in the object.
1444  *
1445  * The existing page must not be on a paging queue.
1446  */
1447 vm_page_t
1448 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1449 {
1450 	vm_page_t mold;
1451 
1452 	VM_OBJECT_ASSERT_WLOCKED(object);
1453 	KASSERT(mnew->object == NULL,
1454 	    ("vm_page_replace: page already in object"));
1455 
1456 	/*
1457 	 * This function mostly follows vm_page_insert() and
1458 	 * vm_page_remove() without the radix, object count and vnode
1459 	 * dance.  Double check such functions for more comments.
1460 	 */
1461 
1462 	mnew->object = object;
1463 	mnew->pindex = pindex;
1464 	mold = vm_radix_replace(&object->rtree, mnew);
1465 	KASSERT(mold->queue == PQ_NONE,
1466 	    ("vm_page_replace: mold is on a paging queue"));
1467 
1468 	/* Keep the resident page list in sorted order. */
1469 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1470 	TAILQ_REMOVE(&object->memq, mold, listq);
1471 
1472 	mold->object = NULL;
1473 	vm_page_xunbusy_maybelocked(mold);
1474 
1475 	/*
1476 	 * The object's resident_page_count does not change because we have
1477 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1478 	 */
1479 	if (pmap_page_is_write_mapped(mnew))
1480 		vm_object_set_writeable_dirty(object);
1481 	return (mold);
1482 }
1483 
1484 /*
1485  *	vm_page_rename:
1486  *
1487  *	Move the given memory entry from its
1488  *	current object to the specified target object/offset.
1489  *
1490  *	Note: swap associated with the page must be invalidated by the move.  We
1491  *	      have to do this for several reasons:  (1) we aren't freeing the
1492  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1493  *	      moving the page from object A to B, and will then later move
1494  *	      the backing store from A to B and we can't have a conflict.
1495  *
1496  *	Note: we *always* dirty the page.  It is necessary both for the
1497  *	      fact that we moved it, and because we may be invalidating
1498  *	      swap.
1499  *
1500  *	The objects must be locked.
1501  */
1502 int
1503 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1504 {
1505 	vm_page_t mpred;
1506 	vm_pindex_t opidx;
1507 
1508 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1509 
1510 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1511 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1512 	    ("vm_page_rename: pindex already renamed"));
1513 
1514 	/*
1515 	 * Create a custom version of vm_page_insert() which does not depend
1516 	 * by m_prev and can cheat on the implementation aspects of the
1517 	 * function.
1518 	 */
1519 	opidx = m->pindex;
1520 	m->pindex = new_pindex;
1521 	if (vm_radix_insert(&new_object->rtree, m)) {
1522 		m->pindex = opidx;
1523 		return (1);
1524 	}
1525 
1526 	/*
1527 	 * The operation cannot fail anymore.  The removal must happen before
1528 	 * the listq iterator is tainted.
1529 	 */
1530 	m->pindex = opidx;
1531 	vm_page_lock(m);
1532 	vm_page_remove(m);
1533 
1534 	/* Return back to the new pindex to complete vm_page_insert(). */
1535 	m->pindex = new_pindex;
1536 	m->object = new_object;
1537 	vm_page_unlock(m);
1538 	vm_page_insert_radixdone(m, new_object, mpred);
1539 	vm_page_dirty(m);
1540 	return (0);
1541 }
1542 
1543 /*
1544  *	vm_page_alloc:
1545  *
1546  *	Allocate and return a page that is associated with the specified
1547  *	object and offset pair.  By default, this page is exclusive busied.
1548  *
1549  *	The caller must always specify an allocation class.
1550  *
1551  *	allocation classes:
1552  *	VM_ALLOC_NORMAL		normal process request
1553  *	VM_ALLOC_SYSTEM		system *really* needs a page
1554  *	VM_ALLOC_INTERRUPT	interrupt time request
1555  *
1556  *	optional allocation flags:
1557  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1558  *				intends to allocate
1559  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1560  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1561  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1562  *				should not be exclusive busy
1563  *	VM_ALLOC_SBUSY		shared busy the allocated page
1564  *	VM_ALLOC_WIRED		wire the allocated page
1565  *	VM_ALLOC_ZERO		prefer a zeroed page
1566  *
1567  *	This routine may not sleep.
1568  */
1569 vm_page_t
1570 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1571 {
1572 
1573 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1574 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1575 }
1576 
1577 /*
1578  * Allocate a page in the specified object with the given page index.  To
1579  * optimize insertion of the page into the object, the caller must also specifiy
1580  * the resident page in the object with largest index smaller than the given
1581  * page index, or NULL if no such page exists.
1582  */
1583 vm_page_t
1584 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, int req,
1585     vm_page_t mpred)
1586 {
1587 	vm_page_t m;
1588 	int flags, req_class;
1589 
1590 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1591 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1592 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1593 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1594 	    ("inconsistent object(%p)/req(%x)", object, req));
1595 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1596 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1597 	    (uintmax_t)pindex));
1598 	if (object != NULL)
1599 		VM_OBJECT_ASSERT_WLOCKED(object);
1600 
1601 	req_class = req & VM_ALLOC_CLASS_MASK;
1602 
1603 	/*
1604 	 * The page daemon is allowed to dig deeper into the free page list.
1605 	 */
1606 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1607 		req_class = VM_ALLOC_SYSTEM;
1608 
1609 	/*
1610 	 * Allocate a page if the number of free pages exceeds the minimum
1611 	 * for the request class.
1612 	 */
1613 	mtx_lock(&vm_page_queue_free_mtx);
1614 	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
1615 	    (req_class == VM_ALLOC_SYSTEM &&
1616 	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
1617 	    (req_class == VM_ALLOC_INTERRUPT &&
1618 	    vm_cnt.v_free_count > 0)) {
1619 		/*
1620 		 * Can we allocate the page from a reservation?
1621 		 */
1622 #if VM_NRESERVLEVEL > 0
1623 		if (object == NULL || (object->flags & (OBJ_COLORED |
1624 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1625 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL)
1626 #endif
1627 		{
1628 			/*
1629 			 * If not, allocate it from the free page queues.
1630 			 */
1631 			m = vm_phys_alloc_pages(object != NULL ?
1632 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1633 #if VM_NRESERVLEVEL > 0
1634 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1635 				m = vm_phys_alloc_pages(object != NULL ?
1636 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1637 				    0);
1638 			}
1639 #endif
1640 		}
1641 	} else {
1642 		/*
1643 		 * Not allocatable, give up.
1644 		 */
1645 		mtx_unlock(&vm_page_queue_free_mtx);
1646 		atomic_add_int(&vm_pageout_deficit,
1647 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1648 		pagedaemon_wakeup();
1649 		return (NULL);
1650 	}
1651 
1652 	/*
1653 	 *  At this point we had better have found a good page.
1654 	 */
1655 	KASSERT(m != NULL, ("missing page"));
1656 	vm_phys_freecnt_adj(m, -1);
1657 	mtx_unlock(&vm_page_queue_free_mtx);
1658 	vm_page_alloc_check(m);
1659 
1660 	/*
1661 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1662 	 */
1663 	flags = 0;
1664 	if ((req & VM_ALLOC_ZERO) != 0)
1665 		flags = PG_ZERO;
1666 	flags &= m->flags;
1667 	if ((req & VM_ALLOC_NODUMP) != 0)
1668 		flags |= PG_NODUMP;
1669 	m->flags = flags;
1670 	m->aflags = 0;
1671 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1672 	    VPO_UNMANAGED : 0;
1673 	m->busy_lock = VPB_UNBUSIED;
1674 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1675 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1676 	if ((req & VM_ALLOC_SBUSY) != 0)
1677 		m->busy_lock = VPB_SHARERS_WORD(1);
1678 	if (req & VM_ALLOC_WIRED) {
1679 		/*
1680 		 * The page lock is not required for wiring a page until that
1681 		 * page is inserted into the object.
1682 		 */
1683 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1684 		m->wire_count = 1;
1685 	}
1686 	m->act_count = 0;
1687 
1688 	if (object != NULL) {
1689 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1690 			pagedaemon_wakeup();
1691 			if (req & VM_ALLOC_WIRED) {
1692 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1693 				m->wire_count = 0;
1694 			}
1695 			KASSERT(m->object == NULL, ("page %p has object", m));
1696 			m->oflags = VPO_UNMANAGED;
1697 			m->busy_lock = VPB_UNBUSIED;
1698 			/* Don't change PG_ZERO. */
1699 			vm_page_free_toq(m);
1700 			return (NULL);
1701 		}
1702 
1703 		/* Ignore device objects; the pager sets "memattr" for them. */
1704 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1705 		    (object->flags & OBJ_FICTITIOUS) == 0)
1706 			pmap_page_set_memattr(m, object->memattr);
1707 	} else
1708 		m->pindex = pindex;
1709 
1710 	/*
1711 	 * Don't wakeup too often - wakeup the pageout daemon when
1712 	 * we would be nearly out of memory.
1713 	 */
1714 	if (vm_paging_needed())
1715 		pagedaemon_wakeup();
1716 
1717 	return (m);
1718 }
1719 
1720 /*
1721  *	vm_page_alloc_contig:
1722  *
1723  *	Allocate a contiguous set of physical pages of the given size "npages"
1724  *	from the free lists.  All of the physical pages must be at or above
1725  *	the given physical address "low" and below the given physical address
1726  *	"high".  The given value "alignment" determines the alignment of the
1727  *	first physical page in the set.  If the given value "boundary" is
1728  *	non-zero, then the set of physical pages cannot cross any physical
1729  *	address boundary that is a multiple of that value.  Both "alignment"
1730  *	and "boundary" must be a power of two.
1731  *
1732  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1733  *	then the memory attribute setting for the physical pages is configured
1734  *	to the object's memory attribute setting.  Otherwise, the memory
1735  *	attribute setting for the physical pages is configured to "memattr",
1736  *	overriding the object's memory attribute setting.  However, if the
1737  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1738  *	memory attribute setting for the physical pages cannot be configured
1739  *	to VM_MEMATTR_DEFAULT.
1740  *
1741  *	The specified object may not contain fictitious pages.
1742  *
1743  *	The caller must always specify an allocation class.
1744  *
1745  *	allocation classes:
1746  *	VM_ALLOC_NORMAL		normal process request
1747  *	VM_ALLOC_SYSTEM		system *really* needs a page
1748  *	VM_ALLOC_INTERRUPT	interrupt time request
1749  *
1750  *	optional allocation flags:
1751  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1752  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1753  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1754  *				should not be exclusive busy
1755  *	VM_ALLOC_SBUSY		shared busy the allocated page
1756  *	VM_ALLOC_WIRED		wire the allocated page
1757  *	VM_ALLOC_ZERO		prefer a zeroed page
1758  *
1759  *	This routine may not sleep.
1760  */
1761 vm_page_t
1762 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1763     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1764     vm_paddr_t boundary, vm_memattr_t memattr)
1765 {
1766 	vm_page_t m, m_ret, mpred;
1767 	u_int busy_lock, flags, oflags;
1768 	int req_class;
1769 
1770 	mpred = NULL;	/* XXX: pacify gcc */
1771 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1772 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1773 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1774 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1775 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
1776 	    req));
1777 	if (object != NULL) {
1778 		VM_OBJECT_ASSERT_WLOCKED(object);
1779 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
1780 		    ("vm_page_alloc_contig: object %p has fictitious pages",
1781 		    object));
1782 	}
1783 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1784 	req_class = req & VM_ALLOC_CLASS_MASK;
1785 
1786 	/*
1787 	 * The page daemon is allowed to dig deeper into the free page list.
1788 	 */
1789 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1790 		req_class = VM_ALLOC_SYSTEM;
1791 
1792 	if (object != NULL) {
1793 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1794 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1795 		    ("vm_page_alloc_contig: pindex already allocated"));
1796 	}
1797 
1798 	/*
1799 	 * Can we allocate the pages without the number of free pages falling
1800 	 * below the lower bound for the allocation class?
1801 	 */
1802 	mtx_lock(&vm_page_queue_free_mtx);
1803 	if (vm_cnt.v_free_count >= npages + vm_cnt.v_free_reserved ||
1804 	    (req_class == VM_ALLOC_SYSTEM &&
1805 	    vm_cnt.v_free_count >= npages + vm_cnt.v_interrupt_free_min) ||
1806 	    (req_class == VM_ALLOC_INTERRUPT &&
1807 	    vm_cnt.v_free_count >= npages)) {
1808 		/*
1809 		 * Can we allocate the pages from a reservation?
1810 		 */
1811 #if VM_NRESERVLEVEL > 0
1812 retry:
1813 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1814 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1815 		    low, high, alignment, boundary, mpred)) == NULL)
1816 #endif
1817 			/*
1818 			 * If not, allocate them from the free page queues.
1819 			 */
1820 			m_ret = vm_phys_alloc_contig(npages, low, high,
1821 			    alignment, boundary);
1822 	} else {
1823 		mtx_unlock(&vm_page_queue_free_mtx);
1824 		atomic_add_int(&vm_pageout_deficit, npages);
1825 		pagedaemon_wakeup();
1826 		return (NULL);
1827 	}
1828 	if (m_ret != NULL)
1829 		vm_phys_freecnt_adj(m_ret, -npages);
1830 	else {
1831 #if VM_NRESERVLEVEL > 0
1832 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1833 		    boundary))
1834 			goto retry;
1835 #endif
1836 	}
1837 	mtx_unlock(&vm_page_queue_free_mtx);
1838 	if (m_ret == NULL)
1839 		return (NULL);
1840 	for (m = m_ret; m < &m_ret[npages]; m++)
1841 		vm_page_alloc_check(m);
1842 
1843 	/*
1844 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1845 	 */
1846 	flags = 0;
1847 	if ((req & VM_ALLOC_ZERO) != 0)
1848 		flags = PG_ZERO;
1849 	if ((req & VM_ALLOC_NODUMP) != 0)
1850 		flags |= PG_NODUMP;
1851 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1852 	    VPO_UNMANAGED : 0;
1853 	busy_lock = VPB_UNBUSIED;
1854 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1855 		busy_lock = VPB_SINGLE_EXCLUSIVER;
1856 	if ((req & VM_ALLOC_SBUSY) != 0)
1857 		busy_lock = VPB_SHARERS_WORD(1);
1858 	if ((req & VM_ALLOC_WIRED) != 0)
1859 		atomic_add_int(&vm_cnt.v_wire_count, npages);
1860 	if (object != NULL) {
1861 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1862 		    memattr == VM_MEMATTR_DEFAULT)
1863 			memattr = object->memattr;
1864 	}
1865 	for (m = m_ret; m < &m_ret[npages]; m++) {
1866 		m->aflags = 0;
1867 		m->flags = (m->flags | PG_NODUMP) & flags;
1868 		m->busy_lock = busy_lock;
1869 		if ((req & VM_ALLOC_WIRED) != 0)
1870 			m->wire_count = 1;
1871 		m->act_count = 0;
1872 		m->oflags = oflags;
1873 		if (object != NULL) {
1874 			if (vm_page_insert_after(m, object, pindex, mpred)) {
1875 				pagedaemon_wakeup();
1876 				if ((req & VM_ALLOC_WIRED) != 0)
1877 					atomic_subtract_int(
1878 					    &vm_cnt.v_wire_count, npages);
1879 				KASSERT(m->object == NULL,
1880 				    ("page %p has object", m));
1881 				mpred = m;
1882 				for (m = m_ret; m < &m_ret[npages]; m++) {
1883 					if (m <= mpred &&
1884 					    (req & VM_ALLOC_WIRED) != 0)
1885 						m->wire_count = 0;
1886 					m->oflags = VPO_UNMANAGED;
1887 					m->busy_lock = VPB_UNBUSIED;
1888 					/* Don't change PG_ZERO. */
1889 					vm_page_free_toq(m);
1890 				}
1891 				return (NULL);
1892 			}
1893 			mpred = m;
1894 		} else
1895 			m->pindex = pindex;
1896 		if (memattr != VM_MEMATTR_DEFAULT)
1897 			pmap_page_set_memattr(m, memattr);
1898 		pindex++;
1899 	}
1900 	if (vm_paging_needed())
1901 		pagedaemon_wakeup();
1902 	return (m_ret);
1903 }
1904 
1905 /*
1906  * Check a page that has been freshly dequeued from a freelist.
1907  */
1908 static void
1909 vm_page_alloc_check(vm_page_t m)
1910 {
1911 
1912 	KASSERT(m->object == NULL, ("page %p has object", m));
1913 	KASSERT(m->queue == PQ_NONE,
1914 	    ("page %p has unexpected queue %d", m, m->queue));
1915 	KASSERT(m->wire_count == 0, ("page %p is wired", m));
1916 	KASSERT(m->hold_count == 0, ("page %p is held", m));
1917 	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
1918 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
1919 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1920 	    ("page %p has unexpected memattr %d",
1921 	    m, pmap_page_get_memattr(m)));
1922 	KASSERT(m->valid == 0, ("free page %p is valid", m));
1923 }
1924 
1925 /*
1926  * 	vm_page_alloc_freelist:
1927  *
1928  *	Allocate a physical page from the specified free page list.
1929  *
1930  *	The caller must always specify an allocation class.
1931  *
1932  *	allocation classes:
1933  *	VM_ALLOC_NORMAL		normal process request
1934  *	VM_ALLOC_SYSTEM		system *really* needs a page
1935  *	VM_ALLOC_INTERRUPT	interrupt time request
1936  *
1937  *	optional allocation flags:
1938  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1939  *				intends to allocate
1940  *	VM_ALLOC_WIRED		wire the allocated page
1941  *	VM_ALLOC_ZERO		prefer a zeroed page
1942  *
1943  *	This routine may not sleep.
1944  */
1945 vm_page_t
1946 vm_page_alloc_freelist(int flind, int req)
1947 {
1948 	vm_page_t m;
1949 	u_int flags;
1950 	int req_class;
1951 
1952 	req_class = req & VM_ALLOC_CLASS_MASK;
1953 
1954 	/*
1955 	 * The page daemon is allowed to dig deeper into the free page list.
1956 	 */
1957 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1958 		req_class = VM_ALLOC_SYSTEM;
1959 
1960 	/*
1961 	 * Do not allocate reserved pages unless the req has asked for it.
1962 	 */
1963 	mtx_lock(&vm_page_queue_free_mtx);
1964 	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
1965 	    (req_class == VM_ALLOC_SYSTEM &&
1966 	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
1967 	    (req_class == VM_ALLOC_INTERRUPT &&
1968 	    vm_cnt.v_free_count > 0))
1969 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1970 	else {
1971 		mtx_unlock(&vm_page_queue_free_mtx);
1972 		atomic_add_int(&vm_pageout_deficit,
1973 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1974 		pagedaemon_wakeup();
1975 		return (NULL);
1976 	}
1977 	if (m == NULL) {
1978 		mtx_unlock(&vm_page_queue_free_mtx);
1979 		return (NULL);
1980 	}
1981 	vm_phys_freecnt_adj(m, -1);
1982 	mtx_unlock(&vm_page_queue_free_mtx);
1983 	vm_page_alloc_check(m);
1984 
1985 	/*
1986 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1987 	 */
1988 	m->aflags = 0;
1989 	flags = 0;
1990 	if ((req & VM_ALLOC_ZERO) != 0)
1991 		flags = PG_ZERO;
1992 	m->flags &= flags;
1993 	if ((req & VM_ALLOC_WIRED) != 0) {
1994 		/*
1995 		 * The page lock is not required for wiring a page that does
1996 		 * not belong to an object.
1997 		 */
1998 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1999 		m->wire_count = 1;
2000 	}
2001 	/* Unmanaged pages don't use "act_count". */
2002 	m->oflags = VPO_UNMANAGED;
2003 	if (vm_paging_needed())
2004 		pagedaemon_wakeup();
2005 	return (m);
2006 }
2007 
2008 #define	VPSC_ANY	0	/* No restrictions. */
2009 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2010 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2011 
2012 /*
2013  *	vm_page_scan_contig:
2014  *
2015  *	Scan vm_page_array[] between the specified entries "m_start" and
2016  *	"m_end" for a run of contiguous physical pages that satisfy the
2017  *	specified conditions, and return the lowest page in the run.  The
2018  *	specified "alignment" determines the alignment of the lowest physical
2019  *	page in the run.  If the specified "boundary" is non-zero, then the
2020  *	run of physical pages cannot span a physical address that is a
2021  *	multiple of "boundary".
2022  *
2023  *	"m_end" is never dereferenced, so it need not point to a vm_page
2024  *	structure within vm_page_array[].
2025  *
2026  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2027  *	span a hole (or discontiguity) in the physical address space.  Both
2028  *	"alignment" and "boundary" must be a power of two.
2029  */
2030 vm_page_t
2031 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2032     u_long alignment, vm_paddr_t boundary, int options)
2033 {
2034 	struct mtx *m_mtx;
2035 	vm_object_t object;
2036 	vm_paddr_t pa;
2037 	vm_page_t m, m_run;
2038 #if VM_NRESERVLEVEL > 0
2039 	int level;
2040 #endif
2041 	int m_inc, order, run_ext, run_len;
2042 
2043 	KASSERT(npages > 0, ("npages is 0"));
2044 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2045 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2046 	m_run = NULL;
2047 	run_len = 0;
2048 	m_mtx = NULL;
2049 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2050 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2051 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2052 
2053 		/*
2054 		 * If the current page would be the start of a run, check its
2055 		 * physical address against the end, alignment, and boundary
2056 		 * conditions.  If it doesn't satisfy these conditions, either
2057 		 * terminate the scan or advance to the next page that
2058 		 * satisfies the failed condition.
2059 		 */
2060 		if (run_len == 0) {
2061 			KASSERT(m_run == NULL, ("m_run != NULL"));
2062 			if (m + npages > m_end)
2063 				break;
2064 			pa = VM_PAGE_TO_PHYS(m);
2065 			if ((pa & (alignment - 1)) != 0) {
2066 				m_inc = atop(roundup2(pa, alignment) - pa);
2067 				continue;
2068 			}
2069 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2070 			    boundary) != 0) {
2071 				m_inc = atop(roundup2(pa, boundary) - pa);
2072 				continue;
2073 			}
2074 		} else
2075 			KASSERT(m_run != NULL, ("m_run == NULL"));
2076 
2077 		vm_page_change_lock(m, &m_mtx);
2078 		m_inc = 1;
2079 retry:
2080 		if (m->wire_count != 0 || m->hold_count != 0)
2081 			run_ext = 0;
2082 #if VM_NRESERVLEVEL > 0
2083 		else if ((level = vm_reserv_level(m)) >= 0 &&
2084 		    (options & VPSC_NORESERV) != 0) {
2085 			run_ext = 0;
2086 			/* Advance to the end of the reservation. */
2087 			pa = VM_PAGE_TO_PHYS(m);
2088 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2089 			    pa);
2090 		}
2091 #endif
2092 		else if ((object = m->object) != NULL) {
2093 			/*
2094 			 * The page is considered eligible for relocation if
2095 			 * and only if it could be laundered or reclaimed by
2096 			 * the page daemon.
2097 			 */
2098 			if (!VM_OBJECT_TRYRLOCK(object)) {
2099 				mtx_unlock(m_mtx);
2100 				VM_OBJECT_RLOCK(object);
2101 				mtx_lock(m_mtx);
2102 				if (m->object != object) {
2103 					/*
2104 					 * The page may have been freed.
2105 					 */
2106 					VM_OBJECT_RUNLOCK(object);
2107 					goto retry;
2108 				} else if (m->wire_count != 0 ||
2109 				    m->hold_count != 0) {
2110 					run_ext = 0;
2111 					goto unlock;
2112 				}
2113 			}
2114 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2115 			    ("page %p is PG_UNHOLDFREE", m));
2116 			/* Don't care: PG_NODUMP, PG_ZERO. */
2117 			if (object->type != OBJT_DEFAULT &&
2118 			    object->type != OBJT_SWAP &&
2119 			    object->type != OBJT_VNODE) {
2120 				run_ext = 0;
2121 #if VM_NRESERVLEVEL > 0
2122 			} else if ((options & VPSC_NOSUPER) != 0 &&
2123 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2124 				run_ext = 0;
2125 				/* Advance to the end of the superpage. */
2126 				pa = VM_PAGE_TO_PHYS(m);
2127 				m_inc = atop(roundup2(pa + 1,
2128 				    vm_reserv_size(level)) - pa);
2129 #endif
2130 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2131 			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2132 				/*
2133 				 * The page is allocated but eligible for
2134 				 * relocation.  Extend the current run by one
2135 				 * page.
2136 				 */
2137 				KASSERT(pmap_page_get_memattr(m) ==
2138 				    VM_MEMATTR_DEFAULT,
2139 				    ("page %p has an unexpected memattr", m));
2140 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2141 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2142 				    ("page %p has unexpected oflags", m));
2143 				/* Don't care: VPO_NOSYNC. */
2144 				run_ext = 1;
2145 			} else
2146 				run_ext = 0;
2147 unlock:
2148 			VM_OBJECT_RUNLOCK(object);
2149 #if VM_NRESERVLEVEL > 0
2150 		} else if (level >= 0) {
2151 			/*
2152 			 * The page is reserved but not yet allocated.  In
2153 			 * other words, it is still free.  Extend the current
2154 			 * run by one page.
2155 			 */
2156 			run_ext = 1;
2157 #endif
2158 		} else if ((order = m->order) < VM_NFREEORDER) {
2159 			/*
2160 			 * The page is enqueued in the physical memory
2161 			 * allocator's free page queues.  Moreover, it is the
2162 			 * first page in a power-of-two-sized run of
2163 			 * contiguous free pages.  Add these pages to the end
2164 			 * of the current run, and jump ahead.
2165 			 */
2166 			run_ext = 1 << order;
2167 			m_inc = 1 << order;
2168 		} else {
2169 			/*
2170 			 * Skip the page for one of the following reasons: (1)
2171 			 * It is enqueued in the physical memory allocator's
2172 			 * free page queues.  However, it is not the first
2173 			 * page in a run of contiguous free pages.  (This case
2174 			 * rarely occurs because the scan is performed in
2175 			 * ascending order.) (2) It is not reserved, and it is
2176 			 * transitioning from free to allocated.  (Conversely,
2177 			 * the transition from allocated to free for managed
2178 			 * pages is blocked by the page lock.) (3) It is
2179 			 * allocated but not contained by an object and not
2180 			 * wired, e.g., allocated by Xen's balloon driver.
2181 			 */
2182 			run_ext = 0;
2183 		}
2184 
2185 		/*
2186 		 * Extend or reset the current run of pages.
2187 		 */
2188 		if (run_ext > 0) {
2189 			if (run_len == 0)
2190 				m_run = m;
2191 			run_len += run_ext;
2192 		} else {
2193 			if (run_len > 0) {
2194 				m_run = NULL;
2195 				run_len = 0;
2196 			}
2197 		}
2198 	}
2199 	if (m_mtx != NULL)
2200 		mtx_unlock(m_mtx);
2201 	if (run_len >= npages)
2202 		return (m_run);
2203 	return (NULL);
2204 }
2205 
2206 /*
2207  *	vm_page_reclaim_run:
2208  *
2209  *	Try to relocate each of the allocated virtual pages within the
2210  *	specified run of physical pages to a new physical address.  Free the
2211  *	physical pages underlying the relocated virtual pages.  A virtual page
2212  *	is relocatable if and only if it could be laundered or reclaimed by
2213  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2214  *	physical address above "high".
2215  *
2216  *	Returns 0 if every physical page within the run was already free or
2217  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2218  *	value indicating why the last attempt to relocate a virtual page was
2219  *	unsuccessful.
2220  *
2221  *	"req_class" must be an allocation class.
2222  */
2223 static int
2224 vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2225     vm_paddr_t high)
2226 {
2227 	struct mtx *m_mtx;
2228 	struct spglist free;
2229 	vm_object_t object;
2230 	vm_paddr_t pa;
2231 	vm_page_t m, m_end, m_new;
2232 	int error, order, req;
2233 
2234 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2235 	    ("req_class is not an allocation class"));
2236 	SLIST_INIT(&free);
2237 	error = 0;
2238 	m = m_run;
2239 	m_end = m_run + npages;
2240 	m_mtx = NULL;
2241 	for (; error == 0 && m < m_end; m++) {
2242 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2243 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2244 
2245 		/*
2246 		 * Avoid releasing and reacquiring the same page lock.
2247 		 */
2248 		vm_page_change_lock(m, &m_mtx);
2249 retry:
2250 		if (m->wire_count != 0 || m->hold_count != 0)
2251 			error = EBUSY;
2252 		else if ((object = m->object) != NULL) {
2253 			/*
2254 			 * The page is relocated if and only if it could be
2255 			 * laundered or reclaimed by the page daemon.
2256 			 */
2257 			if (!VM_OBJECT_TRYWLOCK(object)) {
2258 				mtx_unlock(m_mtx);
2259 				VM_OBJECT_WLOCK(object);
2260 				mtx_lock(m_mtx);
2261 				if (m->object != object) {
2262 					/*
2263 					 * The page may have been freed.
2264 					 */
2265 					VM_OBJECT_WUNLOCK(object);
2266 					goto retry;
2267 				} else if (m->wire_count != 0 ||
2268 				    m->hold_count != 0) {
2269 					error = EBUSY;
2270 					goto unlock;
2271 				}
2272 			}
2273 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2274 			    ("page %p is PG_UNHOLDFREE", m));
2275 			/* Don't care: PG_NODUMP, PG_ZERO. */
2276 			if (object->type != OBJT_DEFAULT &&
2277 			    object->type != OBJT_SWAP &&
2278 			    object->type != OBJT_VNODE)
2279 				error = EINVAL;
2280 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2281 				error = EINVAL;
2282 			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2283 				KASSERT(pmap_page_get_memattr(m) ==
2284 				    VM_MEMATTR_DEFAULT,
2285 				    ("page %p has an unexpected memattr", m));
2286 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2287 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2288 				    ("page %p has unexpected oflags", m));
2289 				/* Don't care: VPO_NOSYNC. */
2290 				if (m->valid != 0) {
2291 					/*
2292 					 * First, try to allocate a new page
2293 					 * that is above "high".  Failing
2294 					 * that, try to allocate a new page
2295 					 * that is below "m_run".  Allocate
2296 					 * the new page between the end of
2297 					 * "m_run" and "high" only as a last
2298 					 * resort.
2299 					 */
2300 					req = req_class | VM_ALLOC_NOOBJ;
2301 					if ((m->flags & PG_NODUMP) != 0)
2302 						req |= VM_ALLOC_NODUMP;
2303 					if (trunc_page(high) !=
2304 					    ~(vm_paddr_t)PAGE_MASK) {
2305 						m_new = vm_page_alloc_contig(
2306 						    NULL, 0, req, 1,
2307 						    round_page(high),
2308 						    ~(vm_paddr_t)0,
2309 						    PAGE_SIZE, 0,
2310 						    VM_MEMATTR_DEFAULT);
2311 					} else
2312 						m_new = NULL;
2313 					if (m_new == NULL) {
2314 						pa = VM_PAGE_TO_PHYS(m_run);
2315 						m_new = vm_page_alloc_contig(
2316 						    NULL, 0, req, 1,
2317 						    0, pa - 1, PAGE_SIZE, 0,
2318 						    VM_MEMATTR_DEFAULT);
2319 					}
2320 					if (m_new == NULL) {
2321 						pa += ptoa(npages);
2322 						m_new = vm_page_alloc_contig(
2323 						    NULL, 0, req, 1,
2324 						    pa, high, PAGE_SIZE, 0,
2325 						    VM_MEMATTR_DEFAULT);
2326 					}
2327 					if (m_new == NULL) {
2328 						error = ENOMEM;
2329 						goto unlock;
2330 					}
2331 					KASSERT(m_new->wire_count == 0,
2332 					    ("page %p is wired", m));
2333 
2334 					/*
2335 					 * Replace "m" with the new page.  For
2336 					 * vm_page_replace(), "m" must be busy
2337 					 * and dequeued.  Finally, change "m"
2338 					 * as if vm_page_free() was called.
2339 					 */
2340 					if (object->ref_count != 0)
2341 						pmap_remove_all(m);
2342 					m_new->aflags = m->aflags;
2343 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2344 					    ("page %p is managed", m));
2345 					m_new->oflags = m->oflags & VPO_NOSYNC;
2346 					pmap_copy_page(m, m_new);
2347 					m_new->valid = m->valid;
2348 					m_new->dirty = m->dirty;
2349 					m->flags &= ~PG_ZERO;
2350 					vm_page_xbusy(m);
2351 					vm_page_remque(m);
2352 					vm_page_replace_checked(m_new, object,
2353 					    m->pindex, m);
2354 					m->valid = 0;
2355 					vm_page_undirty(m);
2356 
2357 					/*
2358 					 * The new page must be deactivated
2359 					 * before the object is unlocked.
2360 					 */
2361 					vm_page_change_lock(m_new, &m_mtx);
2362 					vm_page_deactivate(m_new);
2363 				} else {
2364 					m->flags &= ~PG_ZERO;
2365 					vm_page_remque(m);
2366 					vm_page_remove(m);
2367 					KASSERT(m->dirty == 0,
2368 					    ("page %p is dirty", m));
2369 				}
2370 				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2371 			} else
2372 				error = EBUSY;
2373 unlock:
2374 			VM_OBJECT_WUNLOCK(object);
2375 		} else {
2376 			mtx_lock(&vm_page_queue_free_mtx);
2377 			order = m->order;
2378 			if (order < VM_NFREEORDER) {
2379 				/*
2380 				 * The page is enqueued in the physical memory
2381 				 * allocator's free page queues.  Moreover, it
2382 				 * is the first page in a power-of-two-sized
2383 				 * run of contiguous free pages.  Jump ahead
2384 				 * to the last page within that run, and
2385 				 * continue from there.
2386 				 */
2387 				m += (1 << order) - 1;
2388 			}
2389 #if VM_NRESERVLEVEL > 0
2390 			else if (vm_reserv_is_page_free(m))
2391 				order = 0;
2392 #endif
2393 			mtx_unlock(&vm_page_queue_free_mtx);
2394 			if (order == VM_NFREEORDER)
2395 				error = EINVAL;
2396 		}
2397 	}
2398 	if (m_mtx != NULL)
2399 		mtx_unlock(m_mtx);
2400 	if ((m = SLIST_FIRST(&free)) != NULL) {
2401 		mtx_lock(&vm_page_queue_free_mtx);
2402 		do {
2403 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2404 			vm_phys_freecnt_adj(m, 1);
2405 #if VM_NRESERVLEVEL > 0
2406 			if (!vm_reserv_free_page(m))
2407 #else
2408 			if (true)
2409 #endif
2410 				vm_phys_free_pages(m, 0);
2411 		} while ((m = SLIST_FIRST(&free)) != NULL);
2412 		vm_page_free_wakeup();
2413 		mtx_unlock(&vm_page_queue_free_mtx);
2414 	}
2415 	return (error);
2416 }
2417 
2418 #define	NRUNS	16
2419 
2420 CTASSERT(powerof2(NRUNS));
2421 
2422 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2423 
2424 #define	MIN_RECLAIM	8
2425 
2426 /*
2427  *	vm_page_reclaim_contig:
2428  *
2429  *	Reclaim allocated, contiguous physical memory satisfying the specified
2430  *	conditions by relocating the virtual pages using that physical memory.
2431  *	Returns true if reclamation is successful and false otherwise.  Since
2432  *	relocation requires the allocation of physical pages, reclamation may
2433  *	fail due to a shortage of free pages.  When reclamation fails, callers
2434  *	are expected to perform VM_WAIT before retrying a failed allocation
2435  *	operation, e.g., vm_page_alloc_contig().
2436  *
2437  *	The caller must always specify an allocation class through "req".
2438  *
2439  *	allocation classes:
2440  *	VM_ALLOC_NORMAL		normal process request
2441  *	VM_ALLOC_SYSTEM		system *really* needs a page
2442  *	VM_ALLOC_INTERRUPT	interrupt time request
2443  *
2444  *	The optional allocation flags are ignored.
2445  *
2446  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2447  *	must be a power of two.
2448  */
2449 bool
2450 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2451     u_long alignment, vm_paddr_t boundary)
2452 {
2453 	vm_paddr_t curr_low;
2454 	vm_page_t m_run, m_runs[NRUNS];
2455 	u_long count, reclaimed;
2456 	int error, i, options, req_class;
2457 
2458 	KASSERT(npages > 0, ("npages is 0"));
2459 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2460 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2461 	req_class = req & VM_ALLOC_CLASS_MASK;
2462 
2463 	/*
2464 	 * The page daemon is allowed to dig deeper into the free page list.
2465 	 */
2466 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2467 		req_class = VM_ALLOC_SYSTEM;
2468 
2469 	/*
2470 	 * Return if the number of free pages cannot satisfy the requested
2471 	 * allocation.
2472 	 */
2473 	count = vm_cnt.v_free_count;
2474 	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2475 	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2476 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2477 		return (false);
2478 
2479 	/*
2480 	 * Scan up to three times, relaxing the restrictions ("options") on
2481 	 * the reclamation of reservations and superpages each time.
2482 	 */
2483 	for (options = VPSC_NORESERV;;) {
2484 		/*
2485 		 * Find the highest runs that satisfy the given constraints
2486 		 * and restrictions, and record them in "m_runs".
2487 		 */
2488 		curr_low = low;
2489 		count = 0;
2490 		for (;;) {
2491 			m_run = vm_phys_scan_contig(npages, curr_low, high,
2492 			    alignment, boundary, options);
2493 			if (m_run == NULL)
2494 				break;
2495 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2496 			m_runs[RUN_INDEX(count)] = m_run;
2497 			count++;
2498 		}
2499 
2500 		/*
2501 		 * Reclaim the highest runs in LIFO (descending) order until
2502 		 * the number of reclaimed pages, "reclaimed", is at least
2503 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2504 		 * reclamation is idempotent, and runs will (likely) recur
2505 		 * from one scan to the next as restrictions are relaxed.
2506 		 */
2507 		reclaimed = 0;
2508 		for (i = 0; count > 0 && i < NRUNS; i++) {
2509 			count--;
2510 			m_run = m_runs[RUN_INDEX(count)];
2511 			error = vm_page_reclaim_run(req_class, npages, m_run,
2512 			    high);
2513 			if (error == 0) {
2514 				reclaimed += npages;
2515 				if (reclaimed >= MIN_RECLAIM)
2516 					return (true);
2517 			}
2518 		}
2519 
2520 		/*
2521 		 * Either relax the restrictions on the next scan or return if
2522 		 * the last scan had no restrictions.
2523 		 */
2524 		if (options == VPSC_NORESERV)
2525 			options = VPSC_NOSUPER;
2526 		else if (options == VPSC_NOSUPER)
2527 			options = VPSC_ANY;
2528 		else if (options == VPSC_ANY)
2529 			return (reclaimed != 0);
2530 	}
2531 }
2532 
2533 /*
2534  *	vm_wait:	(also see VM_WAIT macro)
2535  *
2536  *	Sleep until free pages are available for allocation.
2537  *	- Called in various places before memory allocations.
2538  */
2539 void
2540 vm_wait(void)
2541 {
2542 
2543 	mtx_lock(&vm_page_queue_free_mtx);
2544 	if (curproc == pageproc) {
2545 		vm_pageout_pages_needed = 1;
2546 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2547 		    PDROP | PSWP, "VMWait", 0);
2548 	} else {
2549 		if (__predict_false(pageproc == NULL))
2550 			panic("vm_wait in early boot");
2551 		if (!vm_pageout_wanted) {
2552 			vm_pageout_wanted = true;
2553 			wakeup(&vm_pageout_wanted);
2554 		}
2555 		vm_pages_needed = true;
2556 		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2557 		    "vmwait", 0);
2558 	}
2559 }
2560 
2561 /*
2562  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2563  *
2564  *	Sleep until free pages are available for allocation.
2565  *	- Called only in vm_fault so that processes page faulting
2566  *	  can be easily tracked.
2567  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2568  *	  processes will be able to grab memory first.  Do not change
2569  *	  this balance without careful testing first.
2570  */
2571 void
2572 vm_waitpfault(void)
2573 {
2574 
2575 	mtx_lock(&vm_page_queue_free_mtx);
2576 	if (!vm_pageout_wanted) {
2577 		vm_pageout_wanted = true;
2578 		wakeup(&vm_pageout_wanted);
2579 	}
2580 	vm_pages_needed = true;
2581 	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2582 	    "pfault", 0);
2583 }
2584 
2585 struct vm_pagequeue *
2586 vm_page_pagequeue(vm_page_t m)
2587 {
2588 
2589 	if (vm_page_in_laundry(m))
2590 		return (&vm_dom[0].vmd_pagequeues[m->queue]);
2591 	else
2592 		return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2593 }
2594 
2595 /*
2596  *	vm_page_dequeue:
2597  *
2598  *	Remove the given page from its current page queue.
2599  *
2600  *	The page must be locked.
2601  */
2602 void
2603 vm_page_dequeue(vm_page_t m)
2604 {
2605 	struct vm_pagequeue *pq;
2606 
2607 	vm_page_assert_locked(m);
2608 	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2609 	    m));
2610 	pq = vm_page_pagequeue(m);
2611 	vm_pagequeue_lock(pq);
2612 	m->queue = PQ_NONE;
2613 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2614 	vm_pagequeue_cnt_dec(pq);
2615 	vm_pagequeue_unlock(pq);
2616 }
2617 
2618 /*
2619  *	vm_page_dequeue_locked:
2620  *
2621  *	Remove the given page from its current page queue.
2622  *
2623  *	The page and page queue must be locked.
2624  */
2625 void
2626 vm_page_dequeue_locked(vm_page_t m)
2627 {
2628 	struct vm_pagequeue *pq;
2629 
2630 	vm_page_lock_assert(m, MA_OWNED);
2631 	pq = vm_page_pagequeue(m);
2632 	vm_pagequeue_assert_locked(pq);
2633 	m->queue = PQ_NONE;
2634 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2635 	vm_pagequeue_cnt_dec(pq);
2636 }
2637 
2638 /*
2639  *	vm_page_enqueue:
2640  *
2641  *	Add the given page to the specified page queue.
2642  *
2643  *	The page must be locked.
2644  */
2645 static void
2646 vm_page_enqueue(uint8_t queue, vm_page_t m)
2647 {
2648 	struct vm_pagequeue *pq;
2649 
2650 	vm_page_lock_assert(m, MA_OWNED);
2651 	KASSERT(queue < PQ_COUNT,
2652 	    ("vm_page_enqueue: invalid queue %u request for page %p",
2653 	    queue, m));
2654 	if (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE)
2655 		pq = &vm_dom[0].vmd_pagequeues[queue];
2656 	else
2657 		pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2658 	vm_pagequeue_lock(pq);
2659 	m->queue = queue;
2660 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2661 	vm_pagequeue_cnt_inc(pq);
2662 	vm_pagequeue_unlock(pq);
2663 }
2664 
2665 /*
2666  *	vm_page_requeue:
2667  *
2668  *	Move the given page to the tail of its current page queue.
2669  *
2670  *	The page must be locked.
2671  */
2672 void
2673 vm_page_requeue(vm_page_t m)
2674 {
2675 	struct vm_pagequeue *pq;
2676 
2677 	vm_page_lock_assert(m, MA_OWNED);
2678 	KASSERT(m->queue != PQ_NONE,
2679 	    ("vm_page_requeue: page %p is not queued", m));
2680 	pq = vm_page_pagequeue(m);
2681 	vm_pagequeue_lock(pq);
2682 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2683 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2684 	vm_pagequeue_unlock(pq);
2685 }
2686 
2687 /*
2688  *	vm_page_requeue_locked:
2689  *
2690  *	Move the given page to the tail of its current page queue.
2691  *
2692  *	The page queue must be locked.
2693  */
2694 void
2695 vm_page_requeue_locked(vm_page_t m)
2696 {
2697 	struct vm_pagequeue *pq;
2698 
2699 	KASSERT(m->queue != PQ_NONE,
2700 	    ("vm_page_requeue_locked: page %p is not queued", m));
2701 	pq = vm_page_pagequeue(m);
2702 	vm_pagequeue_assert_locked(pq);
2703 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2704 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2705 }
2706 
2707 /*
2708  *	vm_page_activate:
2709  *
2710  *	Put the specified page on the active list (if appropriate).
2711  *	Ensure that act_count is at least ACT_INIT but do not otherwise
2712  *	mess with it.
2713  *
2714  *	The page must be locked.
2715  */
2716 void
2717 vm_page_activate(vm_page_t m)
2718 {
2719 	int queue;
2720 
2721 	vm_page_lock_assert(m, MA_OWNED);
2722 	if ((queue = m->queue) != PQ_ACTIVE) {
2723 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2724 			if (m->act_count < ACT_INIT)
2725 				m->act_count = ACT_INIT;
2726 			if (queue != PQ_NONE)
2727 				vm_page_dequeue(m);
2728 			vm_page_enqueue(PQ_ACTIVE, m);
2729 		} else
2730 			KASSERT(queue == PQ_NONE,
2731 			    ("vm_page_activate: wired page %p is queued", m));
2732 	} else {
2733 		if (m->act_count < ACT_INIT)
2734 			m->act_count = ACT_INIT;
2735 	}
2736 }
2737 
2738 /*
2739  *	vm_page_free_wakeup:
2740  *
2741  *	Helper routine for vm_page_free_toq().  This routine is called
2742  *	when a page is added to the free queues.
2743  *
2744  *	The page queues must be locked.
2745  */
2746 static inline void
2747 vm_page_free_wakeup(void)
2748 {
2749 
2750 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2751 	/*
2752 	 * if pageout daemon needs pages, then tell it that there are
2753 	 * some free.
2754 	 */
2755 	if (vm_pageout_pages_needed &&
2756 	    vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2757 		wakeup(&vm_pageout_pages_needed);
2758 		vm_pageout_pages_needed = 0;
2759 	}
2760 	/*
2761 	 * wakeup processes that are waiting on memory if we hit a
2762 	 * high water mark. And wakeup scheduler process if we have
2763 	 * lots of memory. this process will swapin processes.
2764 	 */
2765 	if (vm_pages_needed && !vm_page_count_min()) {
2766 		vm_pages_needed = false;
2767 		wakeup(&vm_cnt.v_free_count);
2768 	}
2769 }
2770 
2771 /*
2772  *	vm_page_free_toq:
2773  *
2774  *	Returns the given page to the free list,
2775  *	disassociating it with any VM object.
2776  *
2777  *	The object must be locked.  The page must be locked if it is managed.
2778  */
2779 void
2780 vm_page_free_toq(vm_page_t m)
2781 {
2782 
2783 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2784 		vm_page_lock_assert(m, MA_OWNED);
2785 		KASSERT(!pmap_page_is_mapped(m),
2786 		    ("vm_page_free_toq: freeing mapped page %p", m));
2787 	} else
2788 		KASSERT(m->queue == PQ_NONE,
2789 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2790 	VM_CNT_INC(v_tfree);
2791 
2792 	if (vm_page_sbusied(m))
2793 		panic("vm_page_free: freeing busy page %p", m);
2794 
2795 	/*
2796 	 * Unqueue, then remove page.  Note that we cannot destroy
2797 	 * the page here because we do not want to call the pager's
2798 	 * callback routine until after we've put the page on the
2799 	 * appropriate free queue.
2800 	 */
2801 	vm_page_remque(m);
2802 	vm_page_remove(m);
2803 
2804 	/*
2805 	 * If fictitious remove object association and
2806 	 * return, otherwise delay object association removal.
2807 	 */
2808 	if ((m->flags & PG_FICTITIOUS) != 0) {
2809 		return;
2810 	}
2811 
2812 	m->valid = 0;
2813 	vm_page_undirty(m);
2814 
2815 	if (m->wire_count != 0)
2816 		panic("vm_page_free: freeing wired page %p", m);
2817 	if (m->hold_count != 0) {
2818 		m->flags &= ~PG_ZERO;
2819 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2820 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2821 		m->flags |= PG_UNHOLDFREE;
2822 	} else {
2823 		/*
2824 		 * Restore the default memory attribute to the page.
2825 		 */
2826 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2827 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2828 
2829 		/*
2830 		 * Insert the page into the physical memory allocator's free
2831 		 * page queues.
2832 		 */
2833 		mtx_lock(&vm_page_queue_free_mtx);
2834 		vm_phys_freecnt_adj(m, 1);
2835 #if VM_NRESERVLEVEL > 0
2836 		if (!vm_reserv_free_page(m))
2837 #else
2838 		if (TRUE)
2839 #endif
2840 			vm_phys_free_pages(m, 0);
2841 		vm_page_free_wakeup();
2842 		mtx_unlock(&vm_page_queue_free_mtx);
2843 	}
2844 }
2845 
2846 /*
2847  *	vm_page_wire:
2848  *
2849  *	Mark this page as wired down by yet
2850  *	another map, removing it from paging queues
2851  *	as necessary.
2852  *
2853  *	If the page is fictitious, then its wire count must remain one.
2854  *
2855  *	The page must be locked.
2856  */
2857 void
2858 vm_page_wire(vm_page_t m)
2859 {
2860 
2861 	/*
2862 	 * Only bump the wire statistics if the page is not already wired,
2863 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2864 	 * it is already off the queues).
2865 	 */
2866 	vm_page_lock_assert(m, MA_OWNED);
2867 	if ((m->flags & PG_FICTITIOUS) != 0) {
2868 		KASSERT(m->wire_count == 1,
2869 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2870 		    m));
2871 		return;
2872 	}
2873 	if (m->wire_count == 0) {
2874 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2875 		    m->queue == PQ_NONE,
2876 		    ("vm_page_wire: unmanaged page %p is queued", m));
2877 		vm_page_remque(m);
2878 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2879 	}
2880 	m->wire_count++;
2881 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2882 }
2883 
2884 /*
2885  * vm_page_unwire:
2886  *
2887  * Release one wiring of the specified page, potentially allowing it to be
2888  * paged out.  Returns TRUE if the number of wirings transitions to zero and
2889  * FALSE otherwise.
2890  *
2891  * Only managed pages belonging to an object can be paged out.  If the number
2892  * of wirings transitions to zero and the page is eligible for page out, then
2893  * the page is added to the specified paging queue (unless PQ_NONE is
2894  * specified).
2895  *
2896  * If a page is fictitious, then its wire count must always be one.
2897  *
2898  * A managed page must be locked.
2899  */
2900 boolean_t
2901 vm_page_unwire(vm_page_t m, uint8_t queue)
2902 {
2903 
2904 	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
2905 	    ("vm_page_unwire: invalid queue %u request for page %p",
2906 	    queue, m));
2907 	if ((m->oflags & VPO_UNMANAGED) == 0)
2908 		vm_page_assert_locked(m);
2909 	if ((m->flags & PG_FICTITIOUS) != 0) {
2910 		KASSERT(m->wire_count == 1,
2911 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2912 		return (FALSE);
2913 	}
2914 	if (m->wire_count > 0) {
2915 		m->wire_count--;
2916 		if (m->wire_count == 0) {
2917 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2918 			if ((m->oflags & VPO_UNMANAGED) == 0 &&
2919 			    m->object != NULL && queue != PQ_NONE)
2920 				vm_page_enqueue(queue, m);
2921 			return (TRUE);
2922 		} else
2923 			return (FALSE);
2924 	} else
2925 		panic("vm_page_unwire: page %p's wire count is zero", m);
2926 }
2927 
2928 /*
2929  * Move the specified page to the inactive queue.
2930  *
2931  * Normally, "noreuse" is FALSE, resulting in LRU ordering of the inactive
2932  * queue.  However, setting "noreuse" to TRUE will accelerate the specified
2933  * page's reclamation, but it will not unmap the page from any address space.
2934  * This is implemented by inserting the page near the head of the inactive
2935  * queue, using a marker page to guide FIFO insertion ordering.
2936  *
2937  * The page must be locked.
2938  */
2939 static inline void
2940 _vm_page_deactivate(vm_page_t m, boolean_t noreuse)
2941 {
2942 	struct vm_pagequeue *pq;
2943 	int queue;
2944 
2945 	vm_page_assert_locked(m);
2946 
2947 	/*
2948 	 * Ignore if the page is already inactive, unless it is unlikely to be
2949 	 * reactivated.
2950 	 */
2951 	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
2952 		return;
2953 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2954 		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2955 		/* Avoid multiple acquisitions of the inactive queue lock. */
2956 		if (queue == PQ_INACTIVE) {
2957 			vm_pagequeue_lock(pq);
2958 			vm_page_dequeue_locked(m);
2959 		} else {
2960 			if (queue != PQ_NONE)
2961 				vm_page_dequeue(m);
2962 			vm_pagequeue_lock(pq);
2963 		}
2964 		m->queue = PQ_INACTIVE;
2965 		if (noreuse)
2966 			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
2967 			    m, plinks.q);
2968 		else
2969 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2970 		vm_pagequeue_cnt_inc(pq);
2971 		vm_pagequeue_unlock(pq);
2972 	}
2973 }
2974 
2975 /*
2976  * Move the specified page to the inactive queue.
2977  *
2978  * The page must be locked.
2979  */
2980 void
2981 vm_page_deactivate(vm_page_t m)
2982 {
2983 
2984 	_vm_page_deactivate(m, FALSE);
2985 }
2986 
2987 /*
2988  * Move the specified page to the inactive queue with the expectation
2989  * that it is unlikely to be reused.
2990  *
2991  * The page must be locked.
2992  */
2993 void
2994 vm_page_deactivate_noreuse(vm_page_t m)
2995 {
2996 
2997 	_vm_page_deactivate(m, TRUE);
2998 }
2999 
3000 /*
3001  * vm_page_launder
3002  *
3003  * 	Put a page in the laundry.
3004  */
3005 void
3006 vm_page_launder(vm_page_t m)
3007 {
3008 	int queue;
3009 
3010 	vm_page_assert_locked(m);
3011 	if ((queue = m->queue) != PQ_LAUNDRY) {
3012 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3013 			if (queue != PQ_NONE)
3014 				vm_page_dequeue(m);
3015 			vm_page_enqueue(PQ_LAUNDRY, m);
3016 		} else
3017 			KASSERT(queue == PQ_NONE,
3018 			    ("wired page %p is queued", m));
3019 	}
3020 }
3021 
3022 /*
3023  * vm_page_unswappable
3024  *
3025  *	Put a page in the PQ_UNSWAPPABLE holding queue.
3026  */
3027 void
3028 vm_page_unswappable(vm_page_t m)
3029 {
3030 
3031 	vm_page_assert_locked(m);
3032 	KASSERT(m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0,
3033 	    ("page %p already unswappable", m));
3034 	if (m->queue != PQ_NONE)
3035 		vm_page_dequeue(m);
3036 	vm_page_enqueue(PQ_UNSWAPPABLE, m);
3037 }
3038 
3039 /*
3040  * vm_page_try_to_free()
3041  *
3042  *	Attempt to free the page.  If we cannot free it, we do nothing.
3043  *	1 is returned on success, 0 on failure.
3044  */
3045 int
3046 vm_page_try_to_free(vm_page_t m)
3047 {
3048 
3049 	vm_page_lock_assert(m, MA_OWNED);
3050 	if (m->object != NULL)
3051 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3052 	if (m->dirty || m->hold_count || m->wire_count ||
3053 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3054 		return (0);
3055 	pmap_remove_all(m);
3056 	if (m->dirty)
3057 		return (0);
3058 	vm_page_free(m);
3059 	return (1);
3060 }
3061 
3062 /*
3063  * vm_page_advise
3064  *
3065  * 	Apply the specified advice to the given page.
3066  *
3067  *	The object and page must be locked.
3068  */
3069 void
3070 vm_page_advise(vm_page_t m, int advice)
3071 {
3072 
3073 	vm_page_assert_locked(m);
3074 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3075 	if (advice == MADV_FREE)
3076 		/*
3077 		 * Mark the page clean.  This will allow the page to be freed
3078 		 * without first paging it out.  MADV_FREE pages are often
3079 		 * quickly reused by malloc(3), so we do not do anything that
3080 		 * would result in a page fault on a later access.
3081 		 */
3082 		vm_page_undirty(m);
3083 	else if (advice != MADV_DONTNEED) {
3084 		if (advice == MADV_WILLNEED)
3085 			vm_page_activate(m);
3086 		return;
3087 	}
3088 
3089 	/*
3090 	 * Clear any references to the page.  Otherwise, the page daemon will
3091 	 * immediately reactivate the page.
3092 	 */
3093 	vm_page_aflag_clear(m, PGA_REFERENCED);
3094 
3095 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3096 		vm_page_dirty(m);
3097 
3098 	/*
3099 	 * Place clean pages near the head of the inactive queue rather than
3100 	 * the tail, thus defeating the queue's LRU operation and ensuring that
3101 	 * the page will be reused quickly.  Dirty pages not already in the
3102 	 * laundry are moved there.
3103 	 */
3104 	if (m->dirty == 0)
3105 		vm_page_deactivate_noreuse(m);
3106 	else
3107 		vm_page_launder(m);
3108 }
3109 
3110 /*
3111  * Grab a page, waiting until we are waken up due to the page
3112  * changing state.  We keep on waiting, if the page continues
3113  * to be in the object.  If the page doesn't exist, first allocate it
3114  * and then conditionally zero it.
3115  *
3116  * This routine may sleep.
3117  *
3118  * The object must be locked on entry.  The lock will, however, be released
3119  * and reacquired if the routine sleeps.
3120  */
3121 vm_page_t
3122 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3123 {
3124 	vm_page_t m;
3125 	int sleep;
3126 
3127 	VM_OBJECT_ASSERT_WLOCKED(object);
3128 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3129 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3130 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3131 retrylookup:
3132 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3133 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3134 		    vm_page_xbusied(m) : vm_page_busied(m);
3135 		if (sleep) {
3136 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3137 				return (NULL);
3138 			/*
3139 			 * Reference the page before unlocking and
3140 			 * sleeping so that the page daemon is less
3141 			 * likely to reclaim it.
3142 			 */
3143 			vm_page_aflag_set(m, PGA_REFERENCED);
3144 			vm_page_lock(m);
3145 			VM_OBJECT_WUNLOCK(object);
3146 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3147 			    VM_ALLOC_IGN_SBUSY) != 0);
3148 			VM_OBJECT_WLOCK(object);
3149 			goto retrylookup;
3150 		} else {
3151 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3152 				vm_page_lock(m);
3153 				vm_page_wire(m);
3154 				vm_page_unlock(m);
3155 			}
3156 			if ((allocflags &
3157 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3158 				vm_page_xbusy(m);
3159 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3160 				vm_page_sbusy(m);
3161 			return (m);
3162 		}
3163 	}
3164 	m = vm_page_alloc(object, pindex, allocflags);
3165 	if (m == NULL) {
3166 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3167 			return (NULL);
3168 		VM_OBJECT_WUNLOCK(object);
3169 		VM_WAIT;
3170 		VM_OBJECT_WLOCK(object);
3171 		goto retrylookup;
3172 	}
3173 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3174 		pmap_zero_page(m);
3175 	return (m);
3176 }
3177 
3178 /*
3179  * Return the specified range of pages from the given object.  For each
3180  * page offset within the range, if a page already exists within the object
3181  * at that offset and it is busy, then wait for it to change state.  If,
3182  * instead, the page doesn't exist, then allocate it.
3183  *
3184  * The caller must always specify an allocation class.
3185  *
3186  * allocation classes:
3187  *	VM_ALLOC_NORMAL		normal process request
3188  *	VM_ALLOC_SYSTEM		system *really* needs the pages
3189  *
3190  * The caller must always specify that the pages are to be busied and/or
3191  * wired.
3192  *
3193  * optional allocation flags:
3194  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
3195  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
3196  *	VM_ALLOC_NOWAIT		do not sleep
3197  *	VM_ALLOC_SBUSY		set page to sbusy state
3198  *	VM_ALLOC_WIRED		wire the pages
3199  *	VM_ALLOC_ZERO		zero and validate any invalid pages
3200  *
3201  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
3202  * may return a partial prefix of the requested range.
3203  */
3204 int
3205 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
3206     vm_page_t *ma, int count)
3207 {
3208 	vm_page_t m, mpred;
3209 	int i;
3210 	bool sleep;
3211 
3212 	VM_OBJECT_ASSERT_WLOCKED(object);
3213 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
3214 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
3215 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
3216 	    (allocflags & VM_ALLOC_WIRED) != 0,
3217 	    ("vm_page_grab_pages: the pages must be busied or wired"));
3218 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3219 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3220 	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
3221 	if (count == 0)
3222 		return (0);
3223 	i = 0;
3224 retrylookup:
3225 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
3226 	if (m == NULL || m->pindex != pindex + i) {
3227 		mpred = m;
3228 		m = NULL;
3229 	} else
3230 		mpred = TAILQ_PREV(m, pglist, listq);
3231 	for (; i < count; i++) {
3232 		if (m != NULL) {
3233 			sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3234 			    vm_page_xbusied(m) : vm_page_busied(m);
3235 			if (sleep) {
3236 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3237 					break;
3238 				/*
3239 				 * Reference the page before unlocking and
3240 				 * sleeping so that the page daemon is less
3241 				 * likely to reclaim it.
3242 				 */
3243 				vm_page_aflag_set(m, PGA_REFERENCED);
3244 				vm_page_lock(m);
3245 				VM_OBJECT_WUNLOCK(object);
3246 				vm_page_busy_sleep(m, "grbmaw", (allocflags &
3247 				    VM_ALLOC_IGN_SBUSY) != 0);
3248 				VM_OBJECT_WLOCK(object);
3249 				goto retrylookup;
3250 			}
3251 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3252 				vm_page_lock(m);
3253 				vm_page_wire(m);
3254 				vm_page_unlock(m);
3255 			}
3256 			if ((allocflags & (VM_ALLOC_NOBUSY |
3257 			    VM_ALLOC_SBUSY)) == 0)
3258 				vm_page_xbusy(m);
3259 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3260 				vm_page_sbusy(m);
3261 		} else {
3262 			m = vm_page_alloc_after(object, pindex + i,
3263 			    (allocflags & ~VM_ALLOC_IGN_SBUSY) |
3264 			    VM_ALLOC_COUNT(count - i), mpred);
3265 			if (m == NULL) {
3266 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3267 					break;
3268 				VM_OBJECT_WUNLOCK(object);
3269 				VM_WAIT;
3270 				VM_OBJECT_WLOCK(object);
3271 				goto retrylookup;
3272 			}
3273 		}
3274 		if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
3275 			if ((m->flags & PG_ZERO) == 0)
3276 				pmap_zero_page(m);
3277 			m->valid = VM_PAGE_BITS_ALL;
3278 		}
3279 		ma[i] = mpred = m;
3280 		m = vm_page_next(m);
3281 	}
3282 	return (i);
3283 }
3284 
3285 /*
3286  * Mapping function for valid or dirty bits in a page.
3287  *
3288  * Inputs are required to range within a page.
3289  */
3290 vm_page_bits_t
3291 vm_page_bits(int base, int size)
3292 {
3293 	int first_bit;
3294 	int last_bit;
3295 
3296 	KASSERT(
3297 	    base + size <= PAGE_SIZE,
3298 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3299 	);
3300 
3301 	if (size == 0)		/* handle degenerate case */
3302 		return (0);
3303 
3304 	first_bit = base >> DEV_BSHIFT;
3305 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3306 
3307 	return (((vm_page_bits_t)2 << last_bit) -
3308 	    ((vm_page_bits_t)1 << first_bit));
3309 }
3310 
3311 /*
3312  *	vm_page_set_valid_range:
3313  *
3314  *	Sets portions of a page valid.  The arguments are expected
3315  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3316  *	of any partial chunks touched by the range.  The invalid portion of
3317  *	such chunks will be zeroed.
3318  *
3319  *	(base + size) must be less then or equal to PAGE_SIZE.
3320  */
3321 void
3322 vm_page_set_valid_range(vm_page_t m, int base, int size)
3323 {
3324 	int endoff, frag;
3325 
3326 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3327 	if (size == 0)	/* handle degenerate case */
3328 		return;
3329 
3330 	/*
3331 	 * If the base is not DEV_BSIZE aligned and the valid
3332 	 * bit is clear, we have to zero out a portion of the
3333 	 * first block.
3334 	 */
3335 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3336 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3337 		pmap_zero_page_area(m, frag, base - frag);
3338 
3339 	/*
3340 	 * If the ending offset is not DEV_BSIZE aligned and the
3341 	 * valid bit is clear, we have to zero out a portion of
3342 	 * the last block.
3343 	 */
3344 	endoff = base + size;
3345 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3346 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3347 		pmap_zero_page_area(m, endoff,
3348 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3349 
3350 	/*
3351 	 * Assert that no previously invalid block that is now being validated
3352 	 * is already dirty.
3353 	 */
3354 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3355 	    ("vm_page_set_valid_range: page %p is dirty", m));
3356 
3357 	/*
3358 	 * Set valid bits inclusive of any overlap.
3359 	 */
3360 	m->valid |= vm_page_bits(base, size);
3361 }
3362 
3363 /*
3364  * Clear the given bits from the specified page's dirty field.
3365  */
3366 static __inline void
3367 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3368 {
3369 	uintptr_t addr;
3370 #if PAGE_SIZE < 16384
3371 	int shift;
3372 #endif
3373 
3374 	/*
3375 	 * If the object is locked and the page is neither exclusive busy nor
3376 	 * write mapped, then the page's dirty field cannot possibly be
3377 	 * set by a concurrent pmap operation.
3378 	 */
3379 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3380 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3381 		m->dirty &= ~pagebits;
3382 	else {
3383 		/*
3384 		 * The pmap layer can call vm_page_dirty() without
3385 		 * holding a distinguished lock.  The combination of
3386 		 * the object's lock and an atomic operation suffice
3387 		 * to guarantee consistency of the page dirty field.
3388 		 *
3389 		 * For PAGE_SIZE == 32768 case, compiler already
3390 		 * properly aligns the dirty field, so no forcible
3391 		 * alignment is needed. Only require existence of
3392 		 * atomic_clear_64 when page size is 32768.
3393 		 */
3394 		addr = (uintptr_t)&m->dirty;
3395 #if PAGE_SIZE == 32768
3396 		atomic_clear_64((uint64_t *)addr, pagebits);
3397 #elif PAGE_SIZE == 16384
3398 		atomic_clear_32((uint32_t *)addr, pagebits);
3399 #else		/* PAGE_SIZE <= 8192 */
3400 		/*
3401 		 * Use a trick to perform a 32-bit atomic on the
3402 		 * containing aligned word, to not depend on the existence
3403 		 * of atomic_clear_{8, 16}.
3404 		 */
3405 		shift = addr & (sizeof(uint32_t) - 1);
3406 #if BYTE_ORDER == BIG_ENDIAN
3407 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3408 #else
3409 		shift *= NBBY;
3410 #endif
3411 		addr &= ~(sizeof(uint32_t) - 1);
3412 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3413 #endif		/* PAGE_SIZE */
3414 	}
3415 }
3416 
3417 /*
3418  *	vm_page_set_validclean:
3419  *
3420  *	Sets portions of a page valid and clean.  The arguments are expected
3421  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3422  *	of any partial chunks touched by the range.  The invalid portion of
3423  *	such chunks will be zero'd.
3424  *
3425  *	(base + size) must be less then or equal to PAGE_SIZE.
3426  */
3427 void
3428 vm_page_set_validclean(vm_page_t m, int base, int size)
3429 {
3430 	vm_page_bits_t oldvalid, pagebits;
3431 	int endoff, frag;
3432 
3433 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3434 	if (size == 0)	/* handle degenerate case */
3435 		return;
3436 
3437 	/*
3438 	 * If the base is not DEV_BSIZE aligned and the valid
3439 	 * bit is clear, we have to zero out a portion of the
3440 	 * first block.
3441 	 */
3442 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3443 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3444 		pmap_zero_page_area(m, frag, base - frag);
3445 
3446 	/*
3447 	 * If the ending offset is not DEV_BSIZE aligned and the
3448 	 * valid bit is clear, we have to zero out a portion of
3449 	 * the last block.
3450 	 */
3451 	endoff = base + size;
3452 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3453 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3454 		pmap_zero_page_area(m, endoff,
3455 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3456 
3457 	/*
3458 	 * Set valid, clear dirty bits.  If validating the entire
3459 	 * page we can safely clear the pmap modify bit.  We also
3460 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3461 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3462 	 * be set again.
3463 	 *
3464 	 * We set valid bits inclusive of any overlap, but we can only
3465 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3466 	 * the range.
3467 	 */
3468 	oldvalid = m->valid;
3469 	pagebits = vm_page_bits(base, size);
3470 	m->valid |= pagebits;
3471 #if 0	/* NOT YET */
3472 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3473 		frag = DEV_BSIZE - frag;
3474 		base += frag;
3475 		size -= frag;
3476 		if (size < 0)
3477 			size = 0;
3478 	}
3479 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3480 #endif
3481 	if (base == 0 && size == PAGE_SIZE) {
3482 		/*
3483 		 * The page can only be modified within the pmap if it is
3484 		 * mapped, and it can only be mapped if it was previously
3485 		 * fully valid.
3486 		 */
3487 		if (oldvalid == VM_PAGE_BITS_ALL)
3488 			/*
3489 			 * Perform the pmap_clear_modify() first.  Otherwise,
3490 			 * a concurrent pmap operation, such as
3491 			 * pmap_protect(), could clear a modification in the
3492 			 * pmap and set the dirty field on the page before
3493 			 * pmap_clear_modify() had begun and after the dirty
3494 			 * field was cleared here.
3495 			 */
3496 			pmap_clear_modify(m);
3497 		m->dirty = 0;
3498 		m->oflags &= ~VPO_NOSYNC;
3499 	} else if (oldvalid != VM_PAGE_BITS_ALL)
3500 		m->dirty &= ~pagebits;
3501 	else
3502 		vm_page_clear_dirty_mask(m, pagebits);
3503 }
3504 
3505 void
3506 vm_page_clear_dirty(vm_page_t m, int base, int size)
3507 {
3508 
3509 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3510 }
3511 
3512 /*
3513  *	vm_page_set_invalid:
3514  *
3515  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3516  *	valid and dirty bits for the effected areas are cleared.
3517  */
3518 void
3519 vm_page_set_invalid(vm_page_t m, int base, int size)
3520 {
3521 	vm_page_bits_t bits;
3522 	vm_object_t object;
3523 
3524 	object = m->object;
3525 	VM_OBJECT_ASSERT_WLOCKED(object);
3526 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3527 	    size >= object->un_pager.vnp.vnp_size)
3528 		bits = VM_PAGE_BITS_ALL;
3529 	else
3530 		bits = vm_page_bits(base, size);
3531 	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3532 	    bits != 0)
3533 		pmap_remove_all(m);
3534 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3535 	    !pmap_page_is_mapped(m),
3536 	    ("vm_page_set_invalid: page %p is mapped", m));
3537 	m->valid &= ~bits;
3538 	m->dirty &= ~bits;
3539 }
3540 
3541 /*
3542  * vm_page_zero_invalid()
3543  *
3544  *	The kernel assumes that the invalid portions of a page contain
3545  *	garbage, but such pages can be mapped into memory by user code.
3546  *	When this occurs, we must zero out the non-valid portions of the
3547  *	page so user code sees what it expects.
3548  *
3549  *	Pages are most often semi-valid when the end of a file is mapped
3550  *	into memory and the file's size is not page aligned.
3551  */
3552 void
3553 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3554 {
3555 	int b;
3556 	int i;
3557 
3558 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3559 	/*
3560 	 * Scan the valid bits looking for invalid sections that
3561 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3562 	 * valid bit may be set ) have already been zeroed by
3563 	 * vm_page_set_validclean().
3564 	 */
3565 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3566 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3567 		    (m->valid & ((vm_page_bits_t)1 << i))) {
3568 			if (i > b) {
3569 				pmap_zero_page_area(m,
3570 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3571 			}
3572 			b = i + 1;
3573 		}
3574 	}
3575 
3576 	/*
3577 	 * setvalid is TRUE when we can safely set the zero'd areas
3578 	 * as being valid.  We can do this if there are no cache consistancy
3579 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3580 	 */
3581 	if (setvalid)
3582 		m->valid = VM_PAGE_BITS_ALL;
3583 }
3584 
3585 /*
3586  *	vm_page_is_valid:
3587  *
3588  *	Is (partial) page valid?  Note that the case where size == 0
3589  *	will return FALSE in the degenerate case where the page is
3590  *	entirely invalid, and TRUE otherwise.
3591  */
3592 int
3593 vm_page_is_valid(vm_page_t m, int base, int size)
3594 {
3595 	vm_page_bits_t bits;
3596 
3597 	VM_OBJECT_ASSERT_LOCKED(m->object);
3598 	bits = vm_page_bits(base, size);
3599 	return (m->valid != 0 && (m->valid & bits) == bits);
3600 }
3601 
3602 /*
3603  * Returns true if all of the specified predicates are true for the entire
3604  * (super)page and false otherwise.
3605  */
3606 bool
3607 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
3608 {
3609 	vm_object_t object;
3610 	int i, npages;
3611 
3612 	object = m->object;
3613 	VM_OBJECT_ASSERT_LOCKED(object);
3614 	npages = atop(pagesizes[m->psind]);
3615 
3616 	/*
3617 	 * The physically contiguous pages that make up a superpage, i.e., a
3618 	 * page with a page size index ("psind") greater than zero, will
3619 	 * occupy adjacent entries in vm_page_array[].
3620 	 */
3621 	for (i = 0; i < npages; i++) {
3622 		/* Always test object consistency, including "skip_m". */
3623 		if (m[i].object != object)
3624 			return (false);
3625 		if (&m[i] == skip_m)
3626 			continue;
3627 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
3628 			return (false);
3629 		if ((flags & PS_ALL_DIRTY) != 0) {
3630 			/*
3631 			 * Calling vm_page_test_dirty() or pmap_is_modified()
3632 			 * might stop this case from spuriously returning
3633 			 * "false".  However, that would require a write lock
3634 			 * on the object containing "m[i]".
3635 			 */
3636 			if (m[i].dirty != VM_PAGE_BITS_ALL)
3637 				return (false);
3638 		}
3639 		if ((flags & PS_ALL_VALID) != 0 &&
3640 		    m[i].valid != VM_PAGE_BITS_ALL)
3641 			return (false);
3642 	}
3643 	return (true);
3644 }
3645 
3646 /*
3647  * Set the page's dirty bits if the page is modified.
3648  */
3649 void
3650 vm_page_test_dirty(vm_page_t m)
3651 {
3652 
3653 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3654 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3655 		vm_page_dirty(m);
3656 }
3657 
3658 void
3659 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3660 {
3661 
3662 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3663 }
3664 
3665 void
3666 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3667 {
3668 
3669 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3670 }
3671 
3672 int
3673 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3674 {
3675 
3676 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3677 }
3678 
3679 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3680 void
3681 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3682 {
3683 
3684 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3685 }
3686 
3687 void
3688 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3689 {
3690 
3691 	mtx_assert_(vm_page_lockptr(m), a, file, line);
3692 }
3693 #endif
3694 
3695 #ifdef INVARIANTS
3696 void
3697 vm_page_object_lock_assert(vm_page_t m)
3698 {
3699 
3700 	/*
3701 	 * Certain of the page's fields may only be modified by the
3702 	 * holder of the containing object's lock or the exclusive busy.
3703 	 * holder.  Unfortunately, the holder of the write busy is
3704 	 * not recorded, and thus cannot be checked here.
3705 	 */
3706 	if (m->object != NULL && !vm_page_xbusied(m))
3707 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3708 }
3709 
3710 void
3711 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3712 {
3713 
3714 	if ((bits & PGA_WRITEABLE) == 0)
3715 		return;
3716 
3717 	/*
3718 	 * The PGA_WRITEABLE flag can only be set if the page is
3719 	 * managed, is exclusively busied or the object is locked.
3720 	 * Currently, this flag is only set by pmap_enter().
3721 	 */
3722 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3723 	    ("PGA_WRITEABLE on unmanaged page"));
3724 	if (!vm_page_xbusied(m))
3725 		VM_OBJECT_ASSERT_LOCKED(m->object);
3726 }
3727 #endif
3728 
3729 #include "opt_ddb.h"
3730 #ifdef DDB
3731 #include <sys/kernel.h>
3732 
3733 #include <ddb/ddb.h>
3734 
3735 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3736 {
3737 
3738 	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3739 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3740 	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3741 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_cnt.v_laundry_count);
3742 	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3743 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3744 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3745 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3746 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3747 }
3748 
3749 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3750 {
3751 	int dom;
3752 
3753 	db_printf("pq_free %d\n", vm_cnt.v_free_count);
3754 	for (dom = 0; dom < vm_ndomains; dom++) {
3755 		db_printf(
3756     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
3757 		    dom,
3758 		    vm_dom[dom].vmd_page_count,
3759 		    vm_dom[dom].vmd_free_count,
3760 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3761 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3762 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
3763 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
3764 	}
3765 }
3766 
3767 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3768 {
3769 	vm_page_t m;
3770 	boolean_t phys;
3771 
3772 	if (!have_addr) {
3773 		db_printf("show pginfo addr\n");
3774 		return;
3775 	}
3776 
3777 	phys = strchr(modif, 'p') != NULL;
3778 	if (phys)
3779 		m = PHYS_TO_VM_PAGE(addr);
3780 	else
3781 		m = (vm_page_t)addr;
3782 	db_printf(
3783     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3784     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3785 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3786 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3787 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3788 }
3789 #endif /* DDB */
3790