1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - A page queue lock is required when adding or removing a page from a 67 * page queue regardless of other locks or the busy state of a page. 68 * 69 * * In general, no thread besides the page daemon can acquire or 70 * hold more than one page queue lock at a time. 71 * 72 * * The page daemon can acquire and hold any pair of page queue 73 * locks in any order. 74 * 75 * - The object lock is required when inserting or removing 76 * pages from an object (vm_page_insert() or vm_page_remove()). 77 * 78 */ 79 80 /* 81 * Resident memory management module. 82 */ 83 84 #include <sys/cdefs.h> 85 __FBSDID("$FreeBSD$"); 86 87 #include "opt_vm.h" 88 89 #include <sys/param.h> 90 #include <sys/systm.h> 91 #include <sys/lock.h> 92 #include <sys/kernel.h> 93 #include <sys/limits.h> 94 #include <sys/linker.h> 95 #include <sys/malloc.h> 96 #include <sys/mman.h> 97 #include <sys/msgbuf.h> 98 #include <sys/mutex.h> 99 #include <sys/proc.h> 100 #include <sys/rwlock.h> 101 #include <sys/sbuf.h> 102 #include <sys/sysctl.h> 103 #include <sys/vmmeter.h> 104 #include <sys/vnode.h> 105 106 #include <vm/vm.h> 107 #include <vm/pmap.h> 108 #include <vm/vm_param.h> 109 #include <vm/vm_kern.h> 110 #include <vm/vm_object.h> 111 #include <vm/vm_page.h> 112 #include <vm/vm_pageout.h> 113 #include <vm/vm_pager.h> 114 #include <vm/vm_phys.h> 115 #include <vm/vm_radix.h> 116 #include <vm/vm_reserv.h> 117 #include <vm/vm_extern.h> 118 #include <vm/uma.h> 119 #include <vm/uma_int.h> 120 121 #include <machine/md_var.h> 122 123 /* 124 * Associated with page of user-allocatable memory is a 125 * page structure. 126 */ 127 128 struct vm_domain vm_dom[MAXMEMDOM]; 129 struct mtx_padalign vm_page_queue_free_mtx; 130 131 struct mtx_padalign pa_lock[PA_LOCK_COUNT]; 132 133 vm_page_t vm_page_array; 134 long vm_page_array_size; 135 long first_page; 136 int vm_page_zero_count; 137 138 static int boot_pages = UMA_BOOT_PAGES; 139 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 140 &boot_pages, 0, 141 "number of pages allocated for bootstrapping the VM system"); 142 143 static int pa_tryrelock_restart; 144 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 145 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 146 147 static TAILQ_HEAD(, vm_page) blacklist_head; 148 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 149 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 150 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 151 152 153 static uma_zone_t fakepg_zone; 154 155 static struct vnode *vm_page_alloc_init(vm_page_t m); 156 static void vm_page_cache_turn_free(vm_page_t m); 157 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 158 static void vm_page_enqueue(uint8_t queue, vm_page_t m); 159 static void vm_page_init_fakepg(void *dummy); 160 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 161 vm_pindex_t pindex, vm_page_t mpred); 162 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 163 vm_page_t mpred); 164 165 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL); 166 167 static void 168 vm_page_init_fakepg(void *dummy) 169 { 170 171 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 172 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 173 } 174 175 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 176 #if PAGE_SIZE == 32768 177 #ifdef CTASSERT 178 CTASSERT(sizeof(u_long) >= 8); 179 #endif 180 #endif 181 182 /* 183 * Try to acquire a physical address lock while a pmap is locked. If we 184 * fail to trylock we unlock and lock the pmap directly and cache the 185 * locked pa in *locked. The caller should then restart their loop in case 186 * the virtual to physical mapping has changed. 187 */ 188 int 189 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 190 { 191 vm_paddr_t lockpa; 192 193 lockpa = *locked; 194 *locked = pa; 195 if (lockpa) { 196 PA_LOCK_ASSERT(lockpa, MA_OWNED); 197 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 198 return (0); 199 PA_UNLOCK(lockpa); 200 } 201 if (PA_TRYLOCK(pa)) 202 return (0); 203 PMAP_UNLOCK(pmap); 204 atomic_add_int(&pa_tryrelock_restart, 1); 205 PA_LOCK(pa); 206 PMAP_LOCK(pmap); 207 return (EAGAIN); 208 } 209 210 /* 211 * vm_set_page_size: 212 * 213 * Sets the page size, perhaps based upon the memory 214 * size. Must be called before any use of page-size 215 * dependent functions. 216 */ 217 void 218 vm_set_page_size(void) 219 { 220 if (vm_cnt.v_page_size == 0) 221 vm_cnt.v_page_size = PAGE_SIZE; 222 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 223 panic("vm_set_page_size: page size not a power of two"); 224 } 225 226 /* 227 * vm_page_blacklist_next: 228 * 229 * Find the next entry in the provided string of blacklist 230 * addresses. Entries are separated by space, comma, or newline. 231 * If an invalid integer is encountered then the rest of the 232 * string is skipped. Updates the list pointer to the next 233 * character, or NULL if the string is exhausted or invalid. 234 */ 235 static vm_paddr_t 236 vm_page_blacklist_next(char **list, char *end) 237 { 238 vm_paddr_t bad; 239 char *cp, *pos; 240 241 if (list == NULL || *list == NULL) 242 return (0); 243 if (**list =='\0') { 244 *list = NULL; 245 return (0); 246 } 247 248 /* 249 * If there's no end pointer then the buffer is coming from 250 * the kenv and we know it's null-terminated. 251 */ 252 if (end == NULL) 253 end = *list + strlen(*list); 254 255 /* Ensure that strtoq() won't walk off the end */ 256 if (*end != '\0') { 257 if (*end == '\n' || *end == ' ' || *end == ',') 258 *end = '\0'; 259 else { 260 printf("Blacklist not terminated, skipping\n"); 261 *list = NULL; 262 return (0); 263 } 264 } 265 266 for (pos = *list; *pos != '\0'; pos = cp) { 267 bad = strtoq(pos, &cp, 0); 268 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 269 if (bad == 0) { 270 if (++cp < end) 271 continue; 272 else 273 break; 274 } 275 } else 276 break; 277 if (*cp == '\0' || ++cp >= end) 278 *list = NULL; 279 else 280 *list = cp; 281 return (trunc_page(bad)); 282 } 283 printf("Garbage in RAM blacklist, skipping\n"); 284 *list = NULL; 285 return (0); 286 } 287 288 /* 289 * vm_page_blacklist_check: 290 * 291 * Iterate through the provided string of blacklist addresses, pulling 292 * each entry out of the physical allocator free list and putting it 293 * onto a list for reporting via the vm.page_blacklist sysctl. 294 */ 295 static void 296 vm_page_blacklist_check(char *list, char *end) 297 { 298 vm_paddr_t pa; 299 vm_page_t m; 300 char *next; 301 int ret; 302 303 next = list; 304 while (next != NULL) { 305 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 306 continue; 307 m = vm_phys_paddr_to_vm_page(pa); 308 if (m == NULL) 309 continue; 310 mtx_lock(&vm_page_queue_free_mtx); 311 ret = vm_phys_unfree_page(m); 312 mtx_unlock(&vm_page_queue_free_mtx); 313 if (ret == TRUE) { 314 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 315 if (bootverbose) 316 printf("Skipping page with pa 0x%jx\n", 317 (uintmax_t)pa); 318 } 319 } 320 } 321 322 /* 323 * vm_page_blacklist_load: 324 * 325 * Search for a special module named "ram_blacklist". It'll be a 326 * plain text file provided by the user via the loader directive 327 * of the same name. 328 */ 329 static void 330 vm_page_blacklist_load(char **list, char **end) 331 { 332 void *mod; 333 u_char *ptr; 334 u_int len; 335 336 mod = NULL; 337 ptr = NULL; 338 339 mod = preload_search_by_type("ram_blacklist"); 340 if (mod != NULL) { 341 ptr = preload_fetch_addr(mod); 342 len = preload_fetch_size(mod); 343 } 344 *list = ptr; 345 if (ptr != NULL) 346 *end = ptr + len; 347 else 348 *end = NULL; 349 return; 350 } 351 352 static int 353 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 354 { 355 vm_page_t m; 356 struct sbuf sbuf; 357 int error, first; 358 359 first = 1; 360 error = sysctl_wire_old_buffer(req, 0); 361 if (error != 0) 362 return (error); 363 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 364 TAILQ_FOREACH(m, &blacklist_head, listq) { 365 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 366 (uintmax_t)m->phys_addr); 367 first = 0; 368 } 369 error = sbuf_finish(&sbuf); 370 sbuf_delete(&sbuf); 371 return (error); 372 } 373 374 static void 375 vm_page_domain_init(struct vm_domain *vmd) 376 { 377 struct vm_pagequeue *pq; 378 int i; 379 380 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 381 "vm inactive pagequeue"; 382 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) = 383 &vm_cnt.v_inactive_count; 384 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 385 "vm active pagequeue"; 386 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) = 387 &vm_cnt.v_active_count; 388 vmd->vmd_page_count = 0; 389 vmd->vmd_free_count = 0; 390 vmd->vmd_segs = 0; 391 vmd->vmd_oom = FALSE; 392 vmd->vmd_pass = 0; 393 for (i = 0; i < PQ_COUNT; i++) { 394 pq = &vmd->vmd_pagequeues[i]; 395 TAILQ_INIT(&pq->pq_pl); 396 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 397 MTX_DEF | MTX_DUPOK); 398 } 399 } 400 401 /* 402 * vm_page_startup: 403 * 404 * Initializes the resident memory module. 405 * 406 * Allocates memory for the page cells, and 407 * for the object/offset-to-page hash table headers. 408 * Each page cell is initialized and placed on the free list. 409 */ 410 vm_offset_t 411 vm_page_startup(vm_offset_t vaddr) 412 { 413 vm_offset_t mapped; 414 vm_paddr_t page_range; 415 vm_paddr_t new_end; 416 int i; 417 vm_paddr_t pa; 418 vm_paddr_t last_pa; 419 char *list, *listend; 420 vm_paddr_t end; 421 vm_paddr_t biggestsize; 422 vm_paddr_t low_water, high_water; 423 int biggestone; 424 425 biggestsize = 0; 426 biggestone = 0; 427 vaddr = round_page(vaddr); 428 429 for (i = 0; phys_avail[i + 1]; i += 2) { 430 phys_avail[i] = round_page(phys_avail[i]); 431 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 432 } 433 434 low_water = phys_avail[0]; 435 high_water = phys_avail[1]; 436 437 for (i = 0; i < vm_phys_nsegs; i++) { 438 if (vm_phys_segs[i].start < low_water) 439 low_water = vm_phys_segs[i].start; 440 if (vm_phys_segs[i].end > high_water) 441 high_water = vm_phys_segs[i].end; 442 } 443 for (i = 0; phys_avail[i + 1]; i += 2) { 444 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 445 446 if (size > biggestsize) { 447 biggestone = i; 448 biggestsize = size; 449 } 450 if (phys_avail[i] < low_water) 451 low_water = phys_avail[i]; 452 if (phys_avail[i + 1] > high_water) 453 high_water = phys_avail[i + 1]; 454 } 455 456 end = phys_avail[biggestone+1]; 457 458 /* 459 * Initialize the page and queue locks. 460 */ 461 mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF); 462 for (i = 0; i < PA_LOCK_COUNT; i++) 463 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 464 for (i = 0; i < vm_ndomains; i++) 465 vm_page_domain_init(&vm_dom[i]); 466 467 /* 468 * Allocate memory for use when boot strapping the kernel memory 469 * allocator. 470 * 471 * CTFLAG_RDTUN doesn't work during the early boot process, so we must 472 * manually fetch the value. 473 */ 474 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); 475 new_end = end - (boot_pages * UMA_SLAB_SIZE); 476 new_end = trunc_page(new_end); 477 mapped = pmap_map(&vaddr, new_end, end, 478 VM_PROT_READ | VM_PROT_WRITE); 479 bzero((void *)mapped, end - new_end); 480 uma_startup((void *)mapped, boot_pages); 481 482 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \ 483 defined(__mips__) 484 /* 485 * Allocate a bitmap to indicate that a random physical page 486 * needs to be included in a minidump. 487 * 488 * The amd64 port needs this to indicate which direct map pages 489 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 490 * 491 * However, i386 still needs this workspace internally within the 492 * minidump code. In theory, they are not needed on i386, but are 493 * included should the sf_buf code decide to use them. 494 */ 495 last_pa = 0; 496 for (i = 0; dump_avail[i + 1] != 0; i += 2) 497 if (dump_avail[i + 1] > last_pa) 498 last_pa = dump_avail[i + 1]; 499 page_range = last_pa / PAGE_SIZE; 500 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 501 new_end -= vm_page_dump_size; 502 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 503 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 504 bzero((void *)vm_page_dump, vm_page_dump_size); 505 #endif 506 #ifdef __amd64__ 507 /* 508 * Request that the physical pages underlying the message buffer be 509 * included in a crash dump. Since the message buffer is accessed 510 * through the direct map, they are not automatically included. 511 */ 512 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 513 last_pa = pa + round_page(msgbufsize); 514 while (pa < last_pa) { 515 dump_add_page(pa); 516 pa += PAGE_SIZE; 517 } 518 #endif 519 /* 520 * Compute the number of pages of memory that will be available for 521 * use (taking into account the overhead of a page structure per 522 * page). 523 */ 524 first_page = low_water / PAGE_SIZE; 525 #ifdef VM_PHYSSEG_SPARSE 526 page_range = 0; 527 for (i = 0; i < vm_phys_nsegs; i++) { 528 page_range += atop(vm_phys_segs[i].end - 529 vm_phys_segs[i].start); 530 } 531 for (i = 0; phys_avail[i + 1] != 0; i += 2) 532 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 533 #elif defined(VM_PHYSSEG_DENSE) 534 page_range = high_water / PAGE_SIZE - first_page; 535 #else 536 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 537 #endif 538 end = new_end; 539 540 /* 541 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 542 */ 543 vaddr += PAGE_SIZE; 544 545 /* 546 * Initialize the mem entry structures now, and put them in the free 547 * queue. 548 */ 549 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 550 mapped = pmap_map(&vaddr, new_end, end, 551 VM_PROT_READ | VM_PROT_WRITE); 552 vm_page_array = (vm_page_t) mapped; 553 #if VM_NRESERVLEVEL > 0 554 /* 555 * Allocate memory for the reservation management system's data 556 * structures. 557 */ 558 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 559 #endif 560 #if defined(__amd64__) || defined(__mips__) 561 /* 562 * pmap_map on amd64 and mips can come out of the direct-map, not kvm 563 * like i386, so the pages must be tracked for a crashdump to include 564 * this data. This includes the vm_page_array and the early UMA 565 * bootstrap pages. 566 */ 567 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 568 dump_add_page(pa); 569 #endif 570 phys_avail[biggestone + 1] = new_end; 571 572 /* 573 * Add physical memory segments corresponding to the available 574 * physical pages. 575 */ 576 for (i = 0; phys_avail[i + 1] != 0; i += 2) 577 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 578 579 /* 580 * Clear all of the page structures 581 */ 582 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 583 for (i = 0; i < page_range; i++) 584 vm_page_array[i].order = VM_NFREEORDER; 585 vm_page_array_size = page_range; 586 587 /* 588 * Initialize the physical memory allocator. 589 */ 590 vm_phys_init(); 591 592 /* 593 * Add every available physical page that is not blacklisted to 594 * the free lists. 595 */ 596 vm_cnt.v_page_count = 0; 597 vm_cnt.v_free_count = 0; 598 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 599 pa = phys_avail[i]; 600 last_pa = phys_avail[i + 1]; 601 while (pa < last_pa) { 602 vm_phys_add_page(pa); 603 pa += PAGE_SIZE; 604 } 605 } 606 607 TAILQ_INIT(&blacklist_head); 608 vm_page_blacklist_load(&list, &listend); 609 vm_page_blacklist_check(list, listend); 610 611 list = kern_getenv("vm.blacklist"); 612 vm_page_blacklist_check(list, NULL); 613 614 freeenv(list); 615 #if VM_NRESERVLEVEL > 0 616 /* 617 * Initialize the reservation management system. 618 */ 619 vm_reserv_init(); 620 #endif 621 return (vaddr); 622 } 623 624 void 625 vm_page_reference(vm_page_t m) 626 { 627 628 vm_page_aflag_set(m, PGA_REFERENCED); 629 } 630 631 /* 632 * vm_page_busy_downgrade: 633 * 634 * Downgrade an exclusive busy page into a single shared busy page. 635 */ 636 void 637 vm_page_busy_downgrade(vm_page_t m) 638 { 639 u_int x; 640 641 vm_page_assert_xbusied(m); 642 643 for (;;) { 644 x = m->busy_lock; 645 x &= VPB_BIT_WAITERS; 646 if (atomic_cmpset_rel_int(&m->busy_lock, 647 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x)) 648 break; 649 } 650 } 651 652 /* 653 * vm_page_sbusied: 654 * 655 * Return a positive value if the page is shared busied, 0 otherwise. 656 */ 657 int 658 vm_page_sbusied(vm_page_t m) 659 { 660 u_int x; 661 662 x = m->busy_lock; 663 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 664 } 665 666 /* 667 * vm_page_sunbusy: 668 * 669 * Shared unbusy a page. 670 */ 671 void 672 vm_page_sunbusy(vm_page_t m) 673 { 674 u_int x; 675 676 vm_page_assert_sbusied(m); 677 678 for (;;) { 679 x = m->busy_lock; 680 if (VPB_SHARERS(x) > 1) { 681 if (atomic_cmpset_int(&m->busy_lock, x, 682 x - VPB_ONE_SHARER)) 683 break; 684 continue; 685 } 686 if ((x & VPB_BIT_WAITERS) == 0) { 687 KASSERT(x == VPB_SHARERS_WORD(1), 688 ("vm_page_sunbusy: invalid lock state")); 689 if (atomic_cmpset_int(&m->busy_lock, 690 VPB_SHARERS_WORD(1), VPB_UNBUSIED)) 691 break; 692 continue; 693 } 694 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), 695 ("vm_page_sunbusy: invalid lock state for waiters")); 696 697 vm_page_lock(m); 698 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { 699 vm_page_unlock(m); 700 continue; 701 } 702 wakeup(m); 703 vm_page_unlock(m); 704 break; 705 } 706 } 707 708 /* 709 * vm_page_busy_sleep: 710 * 711 * Sleep and release the page lock, using the page pointer as wchan. 712 * This is used to implement the hard-path of busying mechanism. 713 * 714 * The given page must be locked. 715 */ 716 void 717 vm_page_busy_sleep(vm_page_t m, const char *wmesg) 718 { 719 u_int x; 720 721 vm_page_lock_assert(m, MA_OWNED); 722 723 x = m->busy_lock; 724 if (x == VPB_UNBUSIED) { 725 vm_page_unlock(m); 726 return; 727 } 728 if ((x & VPB_BIT_WAITERS) == 0 && 729 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) { 730 vm_page_unlock(m); 731 return; 732 } 733 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); 734 } 735 736 /* 737 * vm_page_trysbusy: 738 * 739 * Try to shared busy a page. 740 * If the operation succeeds 1 is returned otherwise 0. 741 * The operation never sleeps. 742 */ 743 int 744 vm_page_trysbusy(vm_page_t m) 745 { 746 u_int x; 747 748 for (;;) { 749 x = m->busy_lock; 750 if ((x & VPB_BIT_SHARED) == 0) 751 return (0); 752 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) 753 return (1); 754 } 755 } 756 757 /* 758 * vm_page_xunbusy_hard: 759 * 760 * Called after the first try the exclusive unbusy of a page failed. 761 * It is assumed that the waiters bit is on. 762 */ 763 void 764 vm_page_xunbusy_hard(vm_page_t m) 765 { 766 767 vm_page_assert_xbusied(m); 768 769 vm_page_lock(m); 770 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 771 wakeup(m); 772 vm_page_unlock(m); 773 } 774 775 /* 776 * vm_page_flash: 777 * 778 * Wakeup anyone waiting for the page. 779 * The ownership bits do not change. 780 * 781 * The given page must be locked. 782 */ 783 void 784 vm_page_flash(vm_page_t m) 785 { 786 u_int x; 787 788 vm_page_lock_assert(m, MA_OWNED); 789 790 for (;;) { 791 x = m->busy_lock; 792 if ((x & VPB_BIT_WAITERS) == 0) 793 return; 794 if (atomic_cmpset_int(&m->busy_lock, x, 795 x & (~VPB_BIT_WAITERS))) 796 break; 797 } 798 wakeup(m); 799 } 800 801 /* 802 * Keep page from being freed by the page daemon 803 * much of the same effect as wiring, except much lower 804 * overhead and should be used only for *very* temporary 805 * holding ("wiring"). 806 */ 807 void 808 vm_page_hold(vm_page_t mem) 809 { 810 811 vm_page_lock_assert(mem, MA_OWNED); 812 mem->hold_count++; 813 } 814 815 void 816 vm_page_unhold(vm_page_t mem) 817 { 818 819 vm_page_lock_assert(mem, MA_OWNED); 820 KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!")); 821 --mem->hold_count; 822 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) 823 vm_page_free_toq(mem); 824 } 825 826 /* 827 * vm_page_unhold_pages: 828 * 829 * Unhold each of the pages that is referenced by the given array. 830 */ 831 void 832 vm_page_unhold_pages(vm_page_t *ma, int count) 833 { 834 struct mtx *mtx, *new_mtx; 835 836 mtx = NULL; 837 for (; count != 0; count--) { 838 /* 839 * Avoid releasing and reacquiring the same page lock. 840 */ 841 new_mtx = vm_page_lockptr(*ma); 842 if (mtx != new_mtx) { 843 if (mtx != NULL) 844 mtx_unlock(mtx); 845 mtx = new_mtx; 846 mtx_lock(mtx); 847 } 848 vm_page_unhold(*ma); 849 ma++; 850 } 851 if (mtx != NULL) 852 mtx_unlock(mtx); 853 } 854 855 vm_page_t 856 PHYS_TO_VM_PAGE(vm_paddr_t pa) 857 { 858 vm_page_t m; 859 860 #ifdef VM_PHYSSEG_SPARSE 861 m = vm_phys_paddr_to_vm_page(pa); 862 if (m == NULL) 863 m = vm_phys_fictitious_to_vm_page(pa); 864 return (m); 865 #elif defined(VM_PHYSSEG_DENSE) 866 long pi; 867 868 pi = atop(pa); 869 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 870 m = &vm_page_array[pi - first_page]; 871 return (m); 872 } 873 return (vm_phys_fictitious_to_vm_page(pa)); 874 #else 875 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 876 #endif 877 } 878 879 /* 880 * vm_page_getfake: 881 * 882 * Create a fictitious page with the specified physical address and 883 * memory attribute. The memory attribute is the only the machine- 884 * dependent aspect of a fictitious page that must be initialized. 885 */ 886 vm_page_t 887 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 888 { 889 vm_page_t m; 890 891 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 892 vm_page_initfake(m, paddr, memattr); 893 return (m); 894 } 895 896 void 897 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 898 { 899 900 if ((m->flags & PG_FICTITIOUS) != 0) { 901 /* 902 * The page's memattr might have changed since the 903 * previous initialization. Update the pmap to the 904 * new memattr. 905 */ 906 goto memattr; 907 } 908 m->phys_addr = paddr; 909 m->queue = PQ_NONE; 910 /* Fictitious pages don't use "segind". */ 911 m->flags = PG_FICTITIOUS; 912 /* Fictitious pages don't use "order" or "pool". */ 913 m->oflags = VPO_UNMANAGED; 914 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 915 m->wire_count = 1; 916 pmap_page_init(m); 917 memattr: 918 pmap_page_set_memattr(m, memattr); 919 } 920 921 /* 922 * vm_page_putfake: 923 * 924 * Release a fictitious page. 925 */ 926 void 927 vm_page_putfake(vm_page_t m) 928 { 929 930 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 931 KASSERT((m->flags & PG_FICTITIOUS) != 0, 932 ("vm_page_putfake: bad page %p", m)); 933 uma_zfree(fakepg_zone, m); 934 } 935 936 /* 937 * vm_page_updatefake: 938 * 939 * Update the given fictitious page to the specified physical address and 940 * memory attribute. 941 */ 942 void 943 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 944 { 945 946 KASSERT((m->flags & PG_FICTITIOUS) != 0, 947 ("vm_page_updatefake: bad page %p", m)); 948 m->phys_addr = paddr; 949 pmap_page_set_memattr(m, memattr); 950 } 951 952 /* 953 * vm_page_free: 954 * 955 * Free a page. 956 */ 957 void 958 vm_page_free(vm_page_t m) 959 { 960 961 m->flags &= ~PG_ZERO; 962 vm_page_free_toq(m); 963 } 964 965 /* 966 * vm_page_free_zero: 967 * 968 * Free a page to the zerod-pages queue 969 */ 970 void 971 vm_page_free_zero(vm_page_t m) 972 { 973 974 m->flags |= PG_ZERO; 975 vm_page_free_toq(m); 976 } 977 978 /* 979 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES() 980 * array which is not the request page. 981 */ 982 void 983 vm_page_readahead_finish(vm_page_t m) 984 { 985 986 if (m->valid != 0) { 987 /* 988 * Since the page is not the requested page, whether 989 * it should be activated or deactivated is not 990 * obvious. Empirical results have shown that 991 * deactivating the page is usually the best choice, 992 * unless the page is wanted by another thread. 993 */ 994 vm_page_lock(m); 995 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 996 vm_page_activate(m); 997 else 998 vm_page_deactivate(m); 999 vm_page_unlock(m); 1000 vm_page_xunbusy(m); 1001 } else { 1002 /* 1003 * Free the completely invalid page. Such page state 1004 * occurs due to the short read operation which did 1005 * not covered our page at all, or in case when a read 1006 * error happens. 1007 */ 1008 vm_page_lock(m); 1009 vm_page_free(m); 1010 vm_page_unlock(m); 1011 } 1012 } 1013 1014 /* 1015 * vm_page_sleep_if_busy: 1016 * 1017 * Sleep and release the page queues lock if the page is busied. 1018 * Returns TRUE if the thread slept. 1019 * 1020 * The given page must be unlocked and object containing it must 1021 * be locked. 1022 */ 1023 int 1024 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 1025 { 1026 vm_object_t obj; 1027 1028 vm_page_lock_assert(m, MA_NOTOWNED); 1029 VM_OBJECT_ASSERT_WLOCKED(m->object); 1030 1031 if (vm_page_busied(m)) { 1032 /* 1033 * The page-specific object must be cached because page 1034 * identity can change during the sleep, causing the 1035 * re-lock of a different object. 1036 * It is assumed that a reference to the object is already 1037 * held by the callers. 1038 */ 1039 obj = m->object; 1040 vm_page_lock(m); 1041 VM_OBJECT_WUNLOCK(obj); 1042 vm_page_busy_sleep(m, msg); 1043 VM_OBJECT_WLOCK(obj); 1044 return (TRUE); 1045 } 1046 return (FALSE); 1047 } 1048 1049 /* 1050 * vm_page_dirty_KBI: [ internal use only ] 1051 * 1052 * Set all bits in the page's dirty field. 1053 * 1054 * The object containing the specified page must be locked if the 1055 * call is made from the machine-independent layer. 1056 * 1057 * See vm_page_clear_dirty_mask(). 1058 * 1059 * This function should only be called by vm_page_dirty(). 1060 */ 1061 void 1062 vm_page_dirty_KBI(vm_page_t m) 1063 { 1064 1065 /* These assertions refer to this operation by its public name. */ 1066 KASSERT((m->flags & PG_CACHED) == 0, 1067 ("vm_page_dirty: page in cache!")); 1068 KASSERT(m->valid == VM_PAGE_BITS_ALL, 1069 ("vm_page_dirty: page is invalid!")); 1070 m->dirty = VM_PAGE_BITS_ALL; 1071 } 1072 1073 /* 1074 * vm_page_insert: [ internal use only ] 1075 * 1076 * Inserts the given mem entry into the object and object list. 1077 * 1078 * The object must be locked. 1079 */ 1080 int 1081 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1082 { 1083 vm_page_t mpred; 1084 1085 VM_OBJECT_ASSERT_WLOCKED(object); 1086 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1087 return (vm_page_insert_after(m, object, pindex, mpred)); 1088 } 1089 1090 /* 1091 * vm_page_insert_after: 1092 * 1093 * Inserts the page "m" into the specified object at offset "pindex". 1094 * 1095 * The page "mpred" must immediately precede the offset "pindex" within 1096 * the specified object. 1097 * 1098 * The object must be locked. 1099 */ 1100 static int 1101 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1102 vm_page_t mpred) 1103 { 1104 vm_pindex_t sidx; 1105 vm_object_t sobj; 1106 vm_page_t msucc; 1107 1108 VM_OBJECT_ASSERT_WLOCKED(object); 1109 KASSERT(m->object == NULL, 1110 ("vm_page_insert_after: page already inserted")); 1111 if (mpred != NULL) { 1112 KASSERT(mpred->object == object, 1113 ("vm_page_insert_after: object doesn't contain mpred")); 1114 KASSERT(mpred->pindex < pindex, 1115 ("vm_page_insert_after: mpred doesn't precede pindex")); 1116 msucc = TAILQ_NEXT(mpred, listq); 1117 } else 1118 msucc = TAILQ_FIRST(&object->memq); 1119 if (msucc != NULL) 1120 KASSERT(msucc->pindex > pindex, 1121 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1122 1123 /* 1124 * Record the object/offset pair in this page 1125 */ 1126 sobj = m->object; 1127 sidx = m->pindex; 1128 m->object = object; 1129 m->pindex = pindex; 1130 1131 /* 1132 * Now link into the object's ordered list of backed pages. 1133 */ 1134 if (vm_radix_insert(&object->rtree, m)) { 1135 m->object = sobj; 1136 m->pindex = sidx; 1137 return (1); 1138 } 1139 vm_page_insert_radixdone(m, object, mpred); 1140 return (0); 1141 } 1142 1143 /* 1144 * vm_page_insert_radixdone: 1145 * 1146 * Complete page "m" insertion into the specified object after the 1147 * radix trie hooking. 1148 * 1149 * The page "mpred" must precede the offset "m->pindex" within the 1150 * specified object. 1151 * 1152 * The object must be locked. 1153 */ 1154 static void 1155 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1156 { 1157 1158 VM_OBJECT_ASSERT_WLOCKED(object); 1159 KASSERT(object != NULL && m->object == object, 1160 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1161 if (mpred != NULL) { 1162 KASSERT(mpred->object == object, 1163 ("vm_page_insert_after: object doesn't contain mpred")); 1164 KASSERT(mpred->pindex < m->pindex, 1165 ("vm_page_insert_after: mpred doesn't precede pindex")); 1166 } 1167 1168 if (mpred != NULL) 1169 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1170 else 1171 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1172 1173 /* 1174 * Show that the object has one more resident page. 1175 */ 1176 object->resident_page_count++; 1177 1178 /* 1179 * Hold the vnode until the last page is released. 1180 */ 1181 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1182 vhold(object->handle); 1183 1184 /* 1185 * Since we are inserting a new and possibly dirty page, 1186 * update the object's OBJ_MIGHTBEDIRTY flag. 1187 */ 1188 if (pmap_page_is_write_mapped(m)) 1189 vm_object_set_writeable_dirty(object); 1190 } 1191 1192 /* 1193 * vm_page_remove: 1194 * 1195 * Removes the given mem entry from the object/offset-page 1196 * table and the object page list, but do not invalidate/terminate 1197 * the backing store. 1198 * 1199 * The object must be locked. The page must be locked if it is managed. 1200 */ 1201 void 1202 vm_page_remove(vm_page_t m) 1203 { 1204 vm_object_t object; 1205 boolean_t lockacq; 1206 1207 if ((m->oflags & VPO_UNMANAGED) == 0) 1208 vm_page_lock_assert(m, MA_OWNED); 1209 if ((object = m->object) == NULL) 1210 return; 1211 VM_OBJECT_ASSERT_WLOCKED(object); 1212 if (vm_page_xbusied(m)) { 1213 lockacq = FALSE; 1214 if ((m->oflags & VPO_UNMANAGED) != 0 && 1215 !mtx_owned(vm_page_lockptr(m))) { 1216 lockacq = TRUE; 1217 vm_page_lock(m); 1218 } 1219 vm_page_flash(m); 1220 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1221 if (lockacq) 1222 vm_page_unlock(m); 1223 } 1224 1225 /* 1226 * Now remove from the object's list of backed pages. 1227 */ 1228 vm_radix_remove(&object->rtree, m->pindex); 1229 TAILQ_REMOVE(&object->memq, m, listq); 1230 1231 /* 1232 * And show that the object has one fewer resident page. 1233 */ 1234 object->resident_page_count--; 1235 1236 /* 1237 * The vnode may now be recycled. 1238 */ 1239 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1240 vdrop(object->handle); 1241 1242 m->object = NULL; 1243 } 1244 1245 /* 1246 * vm_page_lookup: 1247 * 1248 * Returns the page associated with the object/offset 1249 * pair specified; if none is found, NULL is returned. 1250 * 1251 * The object must be locked. 1252 */ 1253 vm_page_t 1254 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1255 { 1256 1257 VM_OBJECT_ASSERT_LOCKED(object); 1258 return (vm_radix_lookup(&object->rtree, pindex)); 1259 } 1260 1261 /* 1262 * vm_page_find_least: 1263 * 1264 * Returns the page associated with the object with least pindex 1265 * greater than or equal to the parameter pindex, or NULL. 1266 * 1267 * The object must be locked. 1268 */ 1269 vm_page_t 1270 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1271 { 1272 vm_page_t m; 1273 1274 VM_OBJECT_ASSERT_LOCKED(object); 1275 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1276 m = vm_radix_lookup_ge(&object->rtree, pindex); 1277 return (m); 1278 } 1279 1280 /* 1281 * Returns the given page's successor (by pindex) within the object if it is 1282 * resident; if none is found, NULL is returned. 1283 * 1284 * The object must be locked. 1285 */ 1286 vm_page_t 1287 vm_page_next(vm_page_t m) 1288 { 1289 vm_page_t next; 1290 1291 VM_OBJECT_ASSERT_WLOCKED(m->object); 1292 if ((next = TAILQ_NEXT(m, listq)) != NULL && 1293 next->pindex != m->pindex + 1) 1294 next = NULL; 1295 return (next); 1296 } 1297 1298 /* 1299 * Returns the given page's predecessor (by pindex) within the object if it is 1300 * resident; if none is found, NULL is returned. 1301 * 1302 * The object must be locked. 1303 */ 1304 vm_page_t 1305 vm_page_prev(vm_page_t m) 1306 { 1307 vm_page_t prev; 1308 1309 VM_OBJECT_ASSERT_WLOCKED(m->object); 1310 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 1311 prev->pindex != m->pindex - 1) 1312 prev = NULL; 1313 return (prev); 1314 } 1315 1316 /* 1317 * Uses the page mnew as a replacement for an existing page at index 1318 * pindex which must be already present in the object. 1319 * 1320 * The existing page must not be on a paging queue. 1321 */ 1322 vm_page_t 1323 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) 1324 { 1325 vm_page_t mold, mpred; 1326 1327 VM_OBJECT_ASSERT_WLOCKED(object); 1328 1329 /* 1330 * This function mostly follows vm_page_insert() and 1331 * vm_page_remove() without the radix, object count and vnode 1332 * dance. Double check such functions for more comments. 1333 */ 1334 mpred = vm_radix_lookup(&object->rtree, pindex); 1335 KASSERT(mpred != NULL, 1336 ("vm_page_replace: replacing page not present with pindex")); 1337 mpred = TAILQ_PREV(mpred, respgs, listq); 1338 if (mpred != NULL) 1339 KASSERT(mpred->pindex < pindex, 1340 ("vm_page_insert_after: mpred doesn't precede pindex")); 1341 1342 mnew->object = object; 1343 mnew->pindex = pindex; 1344 mold = vm_radix_replace(&object->rtree, mnew); 1345 KASSERT(mold->queue == PQ_NONE, 1346 ("vm_page_replace: mold is on a paging queue")); 1347 1348 /* Detach the old page from the resident tailq. */ 1349 TAILQ_REMOVE(&object->memq, mold, listq); 1350 1351 mold->object = NULL; 1352 vm_page_xunbusy(mold); 1353 1354 /* Insert the new page in the resident tailq. */ 1355 if (mpred != NULL) 1356 TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq); 1357 else 1358 TAILQ_INSERT_HEAD(&object->memq, mnew, listq); 1359 if (pmap_page_is_write_mapped(mnew)) 1360 vm_object_set_writeable_dirty(object); 1361 return (mold); 1362 } 1363 1364 /* 1365 * vm_page_rename: 1366 * 1367 * Move the given memory entry from its 1368 * current object to the specified target object/offset. 1369 * 1370 * Note: swap associated with the page must be invalidated by the move. We 1371 * have to do this for several reasons: (1) we aren't freeing the 1372 * page, (2) we are dirtying the page, (3) the VM system is probably 1373 * moving the page from object A to B, and will then later move 1374 * the backing store from A to B and we can't have a conflict. 1375 * 1376 * Note: we *always* dirty the page. It is necessary both for the 1377 * fact that we moved it, and because we may be invalidating 1378 * swap. If the page is on the cache, we have to deactivate it 1379 * or vm_page_dirty() will panic. Dirty pages are not allowed 1380 * on the cache. 1381 * 1382 * The objects must be locked. 1383 */ 1384 int 1385 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1386 { 1387 vm_page_t mpred; 1388 vm_pindex_t opidx; 1389 1390 VM_OBJECT_ASSERT_WLOCKED(new_object); 1391 1392 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1393 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1394 ("vm_page_rename: pindex already renamed")); 1395 1396 /* 1397 * Create a custom version of vm_page_insert() which does not depend 1398 * by m_prev and can cheat on the implementation aspects of the 1399 * function. 1400 */ 1401 opidx = m->pindex; 1402 m->pindex = new_pindex; 1403 if (vm_radix_insert(&new_object->rtree, m)) { 1404 m->pindex = opidx; 1405 return (1); 1406 } 1407 1408 /* 1409 * The operation cannot fail anymore. The removal must happen before 1410 * the listq iterator is tainted. 1411 */ 1412 m->pindex = opidx; 1413 vm_page_lock(m); 1414 vm_page_remove(m); 1415 1416 /* Return back to the new pindex to complete vm_page_insert(). */ 1417 m->pindex = new_pindex; 1418 m->object = new_object; 1419 vm_page_unlock(m); 1420 vm_page_insert_radixdone(m, new_object, mpred); 1421 vm_page_dirty(m); 1422 return (0); 1423 } 1424 1425 /* 1426 * Convert all of the given object's cached pages that have a 1427 * pindex within the given range into free pages. If the value 1428 * zero is given for "end", then the range's upper bound is 1429 * infinity. If the given object is backed by a vnode and it 1430 * transitions from having one or more cached pages to none, the 1431 * vnode's hold count is reduced. 1432 */ 1433 void 1434 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1435 { 1436 vm_page_t m; 1437 boolean_t empty; 1438 1439 mtx_lock(&vm_page_queue_free_mtx); 1440 if (__predict_false(vm_radix_is_empty(&object->cache))) { 1441 mtx_unlock(&vm_page_queue_free_mtx); 1442 return; 1443 } 1444 while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) { 1445 if (end != 0 && m->pindex >= end) 1446 break; 1447 vm_radix_remove(&object->cache, m->pindex); 1448 vm_page_cache_turn_free(m); 1449 } 1450 empty = vm_radix_is_empty(&object->cache); 1451 mtx_unlock(&vm_page_queue_free_mtx); 1452 if (object->type == OBJT_VNODE && empty) 1453 vdrop(object->handle); 1454 } 1455 1456 /* 1457 * Returns the cached page that is associated with the given 1458 * object and offset. If, however, none exists, returns NULL. 1459 * 1460 * The free page queue must be locked. 1461 */ 1462 static inline vm_page_t 1463 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 1464 { 1465 1466 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1467 return (vm_radix_lookup(&object->cache, pindex)); 1468 } 1469 1470 /* 1471 * Remove the given cached page from its containing object's 1472 * collection of cached pages. 1473 * 1474 * The free page queue must be locked. 1475 */ 1476 static void 1477 vm_page_cache_remove(vm_page_t m) 1478 { 1479 1480 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1481 KASSERT((m->flags & PG_CACHED) != 0, 1482 ("vm_page_cache_remove: page %p is not cached", m)); 1483 vm_radix_remove(&m->object->cache, m->pindex); 1484 m->object = NULL; 1485 vm_cnt.v_cache_count--; 1486 } 1487 1488 /* 1489 * Transfer all of the cached pages with offset greater than or 1490 * equal to 'offidxstart' from the original object's cache to the 1491 * new object's cache. However, any cached pages with offset 1492 * greater than or equal to the new object's size are kept in the 1493 * original object. Initially, the new object's cache must be 1494 * empty. Offset 'offidxstart' in the original object must 1495 * correspond to offset zero in the new object. 1496 * 1497 * The new object must be locked. 1498 */ 1499 void 1500 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 1501 vm_object_t new_object) 1502 { 1503 vm_page_t m; 1504 1505 /* 1506 * Insertion into an object's collection of cached pages 1507 * requires the object to be locked. In contrast, removal does 1508 * not. 1509 */ 1510 VM_OBJECT_ASSERT_WLOCKED(new_object); 1511 KASSERT(vm_radix_is_empty(&new_object->cache), 1512 ("vm_page_cache_transfer: object %p has cached pages", 1513 new_object)); 1514 mtx_lock(&vm_page_queue_free_mtx); 1515 while ((m = vm_radix_lookup_ge(&orig_object->cache, 1516 offidxstart)) != NULL) { 1517 /* 1518 * Transfer all of the pages with offset greater than or 1519 * equal to 'offidxstart' from the original object's 1520 * cache to the new object's cache. 1521 */ 1522 if ((m->pindex - offidxstart) >= new_object->size) 1523 break; 1524 vm_radix_remove(&orig_object->cache, m->pindex); 1525 /* Update the page's object and offset. */ 1526 m->object = new_object; 1527 m->pindex -= offidxstart; 1528 if (vm_radix_insert(&new_object->cache, m)) 1529 vm_page_cache_turn_free(m); 1530 } 1531 mtx_unlock(&vm_page_queue_free_mtx); 1532 } 1533 1534 /* 1535 * Returns TRUE if a cached page is associated with the given object and 1536 * offset, and FALSE otherwise. 1537 * 1538 * The object must be locked. 1539 */ 1540 boolean_t 1541 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex) 1542 { 1543 vm_page_t m; 1544 1545 /* 1546 * Insertion into an object's collection of cached pages requires the 1547 * object to be locked. Therefore, if the object is locked and the 1548 * object's collection is empty, there is no need to acquire the free 1549 * page queues lock in order to prove that the specified page doesn't 1550 * exist. 1551 */ 1552 VM_OBJECT_ASSERT_WLOCKED(object); 1553 if (__predict_true(vm_object_cache_is_empty(object))) 1554 return (FALSE); 1555 mtx_lock(&vm_page_queue_free_mtx); 1556 m = vm_page_cache_lookup(object, pindex); 1557 mtx_unlock(&vm_page_queue_free_mtx); 1558 return (m != NULL); 1559 } 1560 1561 /* 1562 * vm_page_alloc: 1563 * 1564 * Allocate and return a page that is associated with the specified 1565 * object and offset pair. By default, this page is exclusive busied. 1566 * 1567 * The caller must always specify an allocation class. 1568 * 1569 * allocation classes: 1570 * VM_ALLOC_NORMAL normal process request 1571 * VM_ALLOC_SYSTEM system *really* needs a page 1572 * VM_ALLOC_INTERRUPT interrupt time request 1573 * 1574 * optional allocation flags: 1575 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1576 * intends to allocate 1577 * VM_ALLOC_IFCACHED return page only if it is cached 1578 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page 1579 * is cached 1580 * VM_ALLOC_NOBUSY do not exclusive busy the page 1581 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1582 * VM_ALLOC_NOOBJ page is not associated with an object and 1583 * should not be exclusive busy 1584 * VM_ALLOC_SBUSY shared busy the allocated page 1585 * VM_ALLOC_WIRED wire the allocated page 1586 * VM_ALLOC_ZERO prefer a zeroed page 1587 * 1588 * This routine may not sleep. 1589 */ 1590 vm_page_t 1591 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1592 { 1593 struct vnode *vp = NULL; 1594 vm_object_t m_object; 1595 vm_page_t m, mpred; 1596 int flags, req_class; 1597 1598 mpred = 0; /* XXX: pacify gcc */ 1599 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1600 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1601 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1602 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1603 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, 1604 req)); 1605 if (object != NULL) 1606 VM_OBJECT_ASSERT_WLOCKED(object); 1607 1608 req_class = req & VM_ALLOC_CLASS_MASK; 1609 1610 /* 1611 * The page daemon is allowed to dig deeper into the free page list. 1612 */ 1613 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1614 req_class = VM_ALLOC_SYSTEM; 1615 1616 if (object != NULL) { 1617 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1618 KASSERT(mpred == NULL || mpred->pindex != pindex, 1619 ("vm_page_alloc: pindex already allocated")); 1620 } 1621 1622 /* 1623 * The page allocation request can came from consumers which already 1624 * hold the free page queue mutex, like vm_page_insert() in 1625 * vm_page_cache(). 1626 */ 1627 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); 1628 if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || 1629 (req_class == VM_ALLOC_SYSTEM && 1630 vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || 1631 (req_class == VM_ALLOC_INTERRUPT && 1632 vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) { 1633 /* 1634 * Allocate from the free queue if the number of free pages 1635 * exceeds the minimum for the request class. 1636 */ 1637 if (object != NULL && 1638 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1639 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1640 mtx_unlock(&vm_page_queue_free_mtx); 1641 return (NULL); 1642 } 1643 if (vm_phys_unfree_page(m)) 1644 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1645 #if VM_NRESERVLEVEL > 0 1646 else if (!vm_reserv_reactivate_page(m)) 1647 #else 1648 else 1649 #endif 1650 panic("vm_page_alloc: cache page %p is missing" 1651 " from the free queue", m); 1652 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1653 mtx_unlock(&vm_page_queue_free_mtx); 1654 return (NULL); 1655 #if VM_NRESERVLEVEL > 0 1656 } else if (object == NULL || (object->flags & (OBJ_COLORED | 1657 OBJ_FICTITIOUS)) != OBJ_COLORED || (m = 1658 vm_reserv_alloc_page(object, pindex, mpred)) == NULL) { 1659 #else 1660 } else { 1661 #endif 1662 m = vm_phys_alloc_pages(object != NULL ? 1663 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1664 #if VM_NRESERVLEVEL > 0 1665 if (m == NULL && vm_reserv_reclaim_inactive()) { 1666 m = vm_phys_alloc_pages(object != NULL ? 1667 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1668 0); 1669 } 1670 #endif 1671 } 1672 } else { 1673 /* 1674 * Not allocatable, give up. 1675 */ 1676 mtx_unlock(&vm_page_queue_free_mtx); 1677 atomic_add_int(&vm_pageout_deficit, 1678 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1679 pagedaemon_wakeup(); 1680 return (NULL); 1681 } 1682 1683 /* 1684 * At this point we had better have found a good page. 1685 */ 1686 KASSERT(m != NULL, ("vm_page_alloc: missing page")); 1687 KASSERT(m->queue == PQ_NONE, 1688 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue)); 1689 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m)); 1690 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m)); 1691 KASSERT(!vm_page_sbusied(m), 1692 ("vm_page_alloc: page %p is busy", m)); 1693 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m)); 1694 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1695 ("vm_page_alloc: page %p has unexpected memattr %d", m, 1696 pmap_page_get_memattr(m))); 1697 if ((m->flags & PG_CACHED) != 0) { 1698 KASSERT((m->flags & PG_ZERO) == 0, 1699 ("vm_page_alloc: cached page %p is PG_ZERO", m)); 1700 KASSERT(m->valid != 0, 1701 ("vm_page_alloc: cached page %p is invalid", m)); 1702 if (m->object == object && m->pindex == pindex) 1703 vm_cnt.v_reactivated++; 1704 else 1705 m->valid = 0; 1706 m_object = m->object; 1707 vm_page_cache_remove(m); 1708 if (m_object->type == OBJT_VNODE && 1709 vm_object_cache_is_empty(m_object)) 1710 vp = m_object->handle; 1711 } else { 1712 KASSERT(m->valid == 0, 1713 ("vm_page_alloc: free page %p is valid", m)); 1714 vm_phys_freecnt_adj(m, -1); 1715 if ((m->flags & PG_ZERO) != 0) 1716 vm_page_zero_count--; 1717 } 1718 mtx_unlock(&vm_page_queue_free_mtx); 1719 1720 /* 1721 * Initialize the page. Only the PG_ZERO flag is inherited. 1722 */ 1723 flags = 0; 1724 if ((req & VM_ALLOC_ZERO) != 0) 1725 flags = PG_ZERO; 1726 flags &= m->flags; 1727 if ((req & VM_ALLOC_NODUMP) != 0) 1728 flags |= PG_NODUMP; 1729 m->flags = flags; 1730 m->aflags = 0; 1731 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1732 VPO_UNMANAGED : 0; 1733 m->busy_lock = VPB_UNBUSIED; 1734 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1735 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1736 if ((req & VM_ALLOC_SBUSY) != 0) 1737 m->busy_lock = VPB_SHARERS_WORD(1); 1738 if (req & VM_ALLOC_WIRED) { 1739 /* 1740 * The page lock is not required for wiring a page until that 1741 * page is inserted into the object. 1742 */ 1743 atomic_add_int(&vm_cnt.v_wire_count, 1); 1744 m->wire_count = 1; 1745 } 1746 m->act_count = 0; 1747 1748 if (object != NULL) { 1749 if (vm_page_insert_after(m, object, pindex, mpred)) { 1750 /* See the comment below about hold count. */ 1751 if (vp != NULL) 1752 vdrop(vp); 1753 pagedaemon_wakeup(); 1754 if (req & VM_ALLOC_WIRED) { 1755 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 1756 m->wire_count = 0; 1757 } 1758 m->object = NULL; 1759 vm_page_free(m); 1760 return (NULL); 1761 } 1762 1763 /* Ignore device objects; the pager sets "memattr" for them. */ 1764 if (object->memattr != VM_MEMATTR_DEFAULT && 1765 (object->flags & OBJ_FICTITIOUS) == 0) 1766 pmap_page_set_memattr(m, object->memattr); 1767 } else 1768 m->pindex = pindex; 1769 1770 /* 1771 * The following call to vdrop() must come after the above call 1772 * to vm_page_insert() in case both affect the same object and 1773 * vnode. Otherwise, the affected vnode's hold count could 1774 * temporarily become zero. 1775 */ 1776 if (vp != NULL) 1777 vdrop(vp); 1778 1779 /* 1780 * Don't wakeup too often - wakeup the pageout daemon when 1781 * we would be nearly out of memory. 1782 */ 1783 if (vm_paging_needed()) 1784 pagedaemon_wakeup(); 1785 1786 return (m); 1787 } 1788 1789 static void 1790 vm_page_alloc_contig_vdrop(struct spglist *lst) 1791 { 1792 1793 while (!SLIST_EMPTY(lst)) { 1794 vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv); 1795 SLIST_REMOVE_HEAD(lst, plinks.s.ss); 1796 } 1797 } 1798 1799 /* 1800 * vm_page_alloc_contig: 1801 * 1802 * Allocate a contiguous set of physical pages of the given size "npages" 1803 * from the free lists. All of the physical pages must be at or above 1804 * the given physical address "low" and below the given physical address 1805 * "high". The given value "alignment" determines the alignment of the 1806 * first physical page in the set. If the given value "boundary" is 1807 * non-zero, then the set of physical pages cannot cross any physical 1808 * address boundary that is a multiple of that value. Both "alignment" 1809 * and "boundary" must be a power of two. 1810 * 1811 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1812 * then the memory attribute setting for the physical pages is configured 1813 * to the object's memory attribute setting. Otherwise, the memory 1814 * attribute setting for the physical pages is configured to "memattr", 1815 * overriding the object's memory attribute setting. However, if the 1816 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1817 * memory attribute setting for the physical pages cannot be configured 1818 * to VM_MEMATTR_DEFAULT. 1819 * 1820 * The caller must always specify an allocation class. 1821 * 1822 * allocation classes: 1823 * VM_ALLOC_NORMAL normal process request 1824 * VM_ALLOC_SYSTEM system *really* needs a page 1825 * VM_ALLOC_INTERRUPT interrupt time request 1826 * 1827 * optional allocation flags: 1828 * VM_ALLOC_NOBUSY do not exclusive busy the page 1829 * VM_ALLOC_NOOBJ page is not associated with an object and 1830 * should not be exclusive busy 1831 * VM_ALLOC_SBUSY shared busy the allocated page 1832 * VM_ALLOC_WIRED wire the allocated page 1833 * VM_ALLOC_ZERO prefer a zeroed page 1834 * 1835 * This routine may not sleep. 1836 */ 1837 vm_page_t 1838 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1839 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1840 vm_paddr_t boundary, vm_memattr_t memattr) 1841 { 1842 struct vnode *drop; 1843 struct spglist deferred_vdrop_list; 1844 vm_page_t m, m_tmp, m_ret; 1845 u_int flags; 1846 int req_class; 1847 1848 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1849 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1850 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1851 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1852 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, 1853 req)); 1854 if (object != NULL) { 1855 VM_OBJECT_ASSERT_WLOCKED(object); 1856 KASSERT(object->type == OBJT_PHYS, 1857 ("vm_page_alloc_contig: object %p isn't OBJT_PHYS", 1858 object)); 1859 } 1860 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1861 req_class = req & VM_ALLOC_CLASS_MASK; 1862 1863 /* 1864 * The page daemon is allowed to dig deeper into the free page list. 1865 */ 1866 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1867 req_class = VM_ALLOC_SYSTEM; 1868 1869 SLIST_INIT(&deferred_vdrop_list); 1870 mtx_lock(&vm_page_queue_free_mtx); 1871 if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + 1872 vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && 1873 vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + 1874 vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && 1875 vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) { 1876 #if VM_NRESERVLEVEL > 0 1877 retry: 1878 if (object == NULL || (object->flags & OBJ_COLORED) == 0 || 1879 (m_ret = vm_reserv_alloc_contig(object, pindex, npages, 1880 low, high, alignment, boundary)) == NULL) 1881 #endif 1882 m_ret = vm_phys_alloc_contig(npages, low, high, 1883 alignment, boundary); 1884 } else { 1885 mtx_unlock(&vm_page_queue_free_mtx); 1886 atomic_add_int(&vm_pageout_deficit, npages); 1887 pagedaemon_wakeup(); 1888 return (NULL); 1889 } 1890 if (m_ret != NULL) 1891 for (m = m_ret; m < &m_ret[npages]; m++) { 1892 drop = vm_page_alloc_init(m); 1893 if (drop != NULL) { 1894 /* 1895 * Enqueue the vnode for deferred vdrop(). 1896 */ 1897 m->plinks.s.pv = drop; 1898 SLIST_INSERT_HEAD(&deferred_vdrop_list, m, 1899 plinks.s.ss); 1900 } 1901 } 1902 else { 1903 #if VM_NRESERVLEVEL > 0 1904 if (vm_reserv_reclaim_contig(npages, low, high, alignment, 1905 boundary)) 1906 goto retry; 1907 #endif 1908 } 1909 mtx_unlock(&vm_page_queue_free_mtx); 1910 if (m_ret == NULL) 1911 return (NULL); 1912 1913 /* 1914 * Initialize the pages. Only the PG_ZERO flag is inherited. 1915 */ 1916 flags = 0; 1917 if ((req & VM_ALLOC_ZERO) != 0) 1918 flags = PG_ZERO; 1919 if ((req & VM_ALLOC_NODUMP) != 0) 1920 flags |= PG_NODUMP; 1921 if ((req & VM_ALLOC_WIRED) != 0) 1922 atomic_add_int(&vm_cnt.v_wire_count, npages); 1923 if (object != NULL) { 1924 if (object->memattr != VM_MEMATTR_DEFAULT && 1925 memattr == VM_MEMATTR_DEFAULT) 1926 memattr = object->memattr; 1927 } 1928 for (m = m_ret; m < &m_ret[npages]; m++) { 1929 m->aflags = 0; 1930 m->flags = (m->flags | PG_NODUMP) & flags; 1931 m->busy_lock = VPB_UNBUSIED; 1932 if (object != NULL) { 1933 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 1934 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1935 if ((req & VM_ALLOC_SBUSY) != 0) 1936 m->busy_lock = VPB_SHARERS_WORD(1); 1937 } 1938 if ((req & VM_ALLOC_WIRED) != 0) 1939 m->wire_count = 1; 1940 /* Unmanaged pages don't use "act_count". */ 1941 m->oflags = VPO_UNMANAGED; 1942 if (object != NULL) { 1943 if (vm_page_insert(m, object, pindex)) { 1944 vm_page_alloc_contig_vdrop( 1945 &deferred_vdrop_list); 1946 if (vm_paging_needed()) 1947 pagedaemon_wakeup(); 1948 if ((req & VM_ALLOC_WIRED) != 0) 1949 atomic_subtract_int(&vm_cnt.v_wire_count, 1950 npages); 1951 for (m_tmp = m, m = m_ret; 1952 m < &m_ret[npages]; m++) { 1953 if ((req & VM_ALLOC_WIRED) != 0) 1954 m->wire_count = 0; 1955 if (m >= m_tmp) 1956 m->object = NULL; 1957 vm_page_free(m); 1958 } 1959 return (NULL); 1960 } 1961 } else 1962 m->pindex = pindex; 1963 if (memattr != VM_MEMATTR_DEFAULT) 1964 pmap_page_set_memattr(m, memattr); 1965 pindex++; 1966 } 1967 vm_page_alloc_contig_vdrop(&deferred_vdrop_list); 1968 if (vm_paging_needed()) 1969 pagedaemon_wakeup(); 1970 return (m_ret); 1971 } 1972 1973 /* 1974 * Initialize a page that has been freshly dequeued from a freelist. 1975 * The caller has to drop the vnode returned, if it is not NULL. 1976 * 1977 * This function may only be used to initialize unmanaged pages. 1978 * 1979 * To be called with vm_page_queue_free_mtx held. 1980 */ 1981 static struct vnode * 1982 vm_page_alloc_init(vm_page_t m) 1983 { 1984 struct vnode *drop; 1985 vm_object_t m_object; 1986 1987 KASSERT(m->queue == PQ_NONE, 1988 ("vm_page_alloc_init: page %p has unexpected queue %d", 1989 m, m->queue)); 1990 KASSERT(m->wire_count == 0, 1991 ("vm_page_alloc_init: page %p is wired", m)); 1992 KASSERT(m->hold_count == 0, 1993 ("vm_page_alloc_init: page %p is held", m)); 1994 KASSERT(!vm_page_sbusied(m), 1995 ("vm_page_alloc_init: page %p is busy", m)); 1996 KASSERT(m->dirty == 0, 1997 ("vm_page_alloc_init: page %p is dirty", m)); 1998 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1999 ("vm_page_alloc_init: page %p has unexpected memattr %d", 2000 m, pmap_page_get_memattr(m))); 2001 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2002 drop = NULL; 2003 if ((m->flags & PG_CACHED) != 0) { 2004 KASSERT((m->flags & PG_ZERO) == 0, 2005 ("vm_page_alloc_init: cached page %p is PG_ZERO", m)); 2006 m->valid = 0; 2007 m_object = m->object; 2008 vm_page_cache_remove(m); 2009 if (m_object->type == OBJT_VNODE && 2010 vm_object_cache_is_empty(m_object)) 2011 drop = m_object->handle; 2012 } else { 2013 KASSERT(m->valid == 0, 2014 ("vm_page_alloc_init: free page %p is valid", m)); 2015 vm_phys_freecnt_adj(m, -1); 2016 if ((m->flags & PG_ZERO) != 0) 2017 vm_page_zero_count--; 2018 } 2019 return (drop); 2020 } 2021 2022 /* 2023 * vm_page_alloc_freelist: 2024 * 2025 * Allocate a physical page from the specified free page list. 2026 * 2027 * The caller must always specify an allocation class. 2028 * 2029 * allocation classes: 2030 * VM_ALLOC_NORMAL normal process request 2031 * VM_ALLOC_SYSTEM system *really* needs a page 2032 * VM_ALLOC_INTERRUPT interrupt time request 2033 * 2034 * optional allocation flags: 2035 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2036 * intends to allocate 2037 * VM_ALLOC_WIRED wire the allocated page 2038 * VM_ALLOC_ZERO prefer a zeroed page 2039 * 2040 * This routine may not sleep. 2041 */ 2042 vm_page_t 2043 vm_page_alloc_freelist(int flind, int req) 2044 { 2045 struct vnode *drop; 2046 vm_page_t m; 2047 u_int flags; 2048 int req_class; 2049 2050 req_class = req & VM_ALLOC_CLASS_MASK; 2051 2052 /* 2053 * The page daemon is allowed to dig deeper into the free page list. 2054 */ 2055 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2056 req_class = VM_ALLOC_SYSTEM; 2057 2058 /* 2059 * Do not allocate reserved pages unless the req has asked for it. 2060 */ 2061 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); 2062 if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || 2063 (req_class == VM_ALLOC_SYSTEM && 2064 vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || 2065 (req_class == VM_ALLOC_INTERRUPT && 2066 vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) 2067 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0); 2068 else { 2069 mtx_unlock(&vm_page_queue_free_mtx); 2070 atomic_add_int(&vm_pageout_deficit, 2071 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 2072 pagedaemon_wakeup(); 2073 return (NULL); 2074 } 2075 if (m == NULL) { 2076 mtx_unlock(&vm_page_queue_free_mtx); 2077 return (NULL); 2078 } 2079 drop = vm_page_alloc_init(m); 2080 mtx_unlock(&vm_page_queue_free_mtx); 2081 2082 /* 2083 * Initialize the page. Only the PG_ZERO flag is inherited. 2084 */ 2085 m->aflags = 0; 2086 flags = 0; 2087 if ((req & VM_ALLOC_ZERO) != 0) 2088 flags = PG_ZERO; 2089 m->flags &= flags; 2090 if ((req & VM_ALLOC_WIRED) != 0) { 2091 /* 2092 * The page lock is not required for wiring a page that does 2093 * not belong to an object. 2094 */ 2095 atomic_add_int(&vm_cnt.v_wire_count, 1); 2096 m->wire_count = 1; 2097 } 2098 /* Unmanaged pages don't use "act_count". */ 2099 m->oflags = VPO_UNMANAGED; 2100 if (drop != NULL) 2101 vdrop(drop); 2102 if (vm_paging_needed()) 2103 pagedaemon_wakeup(); 2104 return (m); 2105 } 2106 2107 /* 2108 * vm_wait: (also see VM_WAIT macro) 2109 * 2110 * Sleep until free pages are available for allocation. 2111 * - Called in various places before memory allocations. 2112 */ 2113 void 2114 vm_wait(void) 2115 { 2116 2117 mtx_lock(&vm_page_queue_free_mtx); 2118 if (curproc == pageproc) { 2119 vm_pageout_pages_needed = 1; 2120 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 2121 PDROP | PSWP, "VMWait", 0); 2122 } else { 2123 if (!vm_pages_needed) { 2124 vm_pages_needed = 1; 2125 wakeup(&vm_pages_needed); 2126 } 2127 msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 2128 "vmwait", 0); 2129 } 2130 } 2131 2132 /* 2133 * vm_waitpfault: (also see VM_WAITPFAULT macro) 2134 * 2135 * Sleep until free pages are available for allocation. 2136 * - Called only in vm_fault so that processes page faulting 2137 * can be easily tracked. 2138 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 2139 * processes will be able to grab memory first. Do not change 2140 * this balance without careful testing first. 2141 */ 2142 void 2143 vm_waitpfault(void) 2144 { 2145 2146 mtx_lock(&vm_page_queue_free_mtx); 2147 if (!vm_pages_needed) { 2148 vm_pages_needed = 1; 2149 wakeup(&vm_pages_needed); 2150 } 2151 msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 2152 "pfault", 0); 2153 } 2154 2155 struct vm_pagequeue * 2156 vm_page_pagequeue(vm_page_t m) 2157 { 2158 2159 return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]); 2160 } 2161 2162 /* 2163 * vm_page_dequeue: 2164 * 2165 * Remove the given page from its current page queue. 2166 * 2167 * The page must be locked. 2168 */ 2169 void 2170 vm_page_dequeue(vm_page_t m) 2171 { 2172 struct vm_pagequeue *pq; 2173 2174 vm_page_assert_locked(m); 2175 KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued", 2176 m)); 2177 pq = vm_page_pagequeue(m); 2178 vm_pagequeue_lock(pq); 2179 m->queue = PQ_NONE; 2180 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2181 vm_pagequeue_cnt_dec(pq); 2182 vm_pagequeue_unlock(pq); 2183 } 2184 2185 /* 2186 * vm_page_dequeue_locked: 2187 * 2188 * Remove the given page from its current page queue. 2189 * 2190 * The page and page queue must be locked. 2191 */ 2192 void 2193 vm_page_dequeue_locked(vm_page_t m) 2194 { 2195 struct vm_pagequeue *pq; 2196 2197 vm_page_lock_assert(m, MA_OWNED); 2198 pq = vm_page_pagequeue(m); 2199 vm_pagequeue_assert_locked(pq); 2200 m->queue = PQ_NONE; 2201 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2202 vm_pagequeue_cnt_dec(pq); 2203 } 2204 2205 /* 2206 * vm_page_enqueue: 2207 * 2208 * Add the given page to the specified page queue. 2209 * 2210 * The page must be locked. 2211 */ 2212 static void 2213 vm_page_enqueue(uint8_t queue, vm_page_t m) 2214 { 2215 struct vm_pagequeue *pq; 2216 2217 vm_page_lock_assert(m, MA_OWNED); 2218 KASSERT(queue < PQ_COUNT, 2219 ("vm_page_enqueue: invalid queue %u request for page %p", 2220 queue, m)); 2221 pq = &vm_phys_domain(m)->vmd_pagequeues[queue]; 2222 vm_pagequeue_lock(pq); 2223 m->queue = queue; 2224 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2225 vm_pagequeue_cnt_inc(pq); 2226 vm_pagequeue_unlock(pq); 2227 } 2228 2229 /* 2230 * vm_page_requeue: 2231 * 2232 * Move the given page to the tail of its current page queue. 2233 * 2234 * The page must be locked. 2235 */ 2236 void 2237 vm_page_requeue(vm_page_t m) 2238 { 2239 struct vm_pagequeue *pq; 2240 2241 vm_page_lock_assert(m, MA_OWNED); 2242 KASSERT(m->queue != PQ_NONE, 2243 ("vm_page_requeue: page %p is not queued", m)); 2244 pq = vm_page_pagequeue(m); 2245 vm_pagequeue_lock(pq); 2246 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2247 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2248 vm_pagequeue_unlock(pq); 2249 } 2250 2251 /* 2252 * vm_page_requeue_locked: 2253 * 2254 * Move the given page to the tail of its current page queue. 2255 * 2256 * The page queue must be locked. 2257 */ 2258 void 2259 vm_page_requeue_locked(vm_page_t m) 2260 { 2261 struct vm_pagequeue *pq; 2262 2263 KASSERT(m->queue != PQ_NONE, 2264 ("vm_page_requeue_locked: page %p is not queued", m)); 2265 pq = vm_page_pagequeue(m); 2266 vm_pagequeue_assert_locked(pq); 2267 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2268 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2269 } 2270 2271 /* 2272 * vm_page_activate: 2273 * 2274 * Put the specified page on the active list (if appropriate). 2275 * Ensure that act_count is at least ACT_INIT but do not otherwise 2276 * mess with it. 2277 * 2278 * The page must be locked. 2279 */ 2280 void 2281 vm_page_activate(vm_page_t m) 2282 { 2283 int queue; 2284 2285 vm_page_lock_assert(m, MA_OWNED); 2286 if ((queue = m->queue) != PQ_ACTIVE) { 2287 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2288 if (m->act_count < ACT_INIT) 2289 m->act_count = ACT_INIT; 2290 if (queue != PQ_NONE) 2291 vm_page_dequeue(m); 2292 vm_page_enqueue(PQ_ACTIVE, m); 2293 } else 2294 KASSERT(queue == PQ_NONE, 2295 ("vm_page_activate: wired page %p is queued", m)); 2296 } else { 2297 if (m->act_count < ACT_INIT) 2298 m->act_count = ACT_INIT; 2299 } 2300 } 2301 2302 /* 2303 * vm_page_free_wakeup: 2304 * 2305 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 2306 * routine is called when a page has been added to the cache or free 2307 * queues. 2308 * 2309 * The page queues must be locked. 2310 */ 2311 static inline void 2312 vm_page_free_wakeup(void) 2313 { 2314 2315 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2316 /* 2317 * if pageout daemon needs pages, then tell it that there are 2318 * some free. 2319 */ 2320 if (vm_pageout_pages_needed && 2321 vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) { 2322 wakeup(&vm_pageout_pages_needed); 2323 vm_pageout_pages_needed = 0; 2324 } 2325 /* 2326 * wakeup processes that are waiting on memory if we hit a 2327 * high water mark. And wakeup scheduler process if we have 2328 * lots of memory. this process will swapin processes. 2329 */ 2330 if (vm_pages_needed && !vm_page_count_min()) { 2331 vm_pages_needed = 0; 2332 wakeup(&vm_cnt.v_free_count); 2333 } 2334 } 2335 2336 /* 2337 * Turn a cached page into a free page, by changing its attributes. 2338 * Keep the statistics up-to-date. 2339 * 2340 * The free page queue must be locked. 2341 */ 2342 static void 2343 vm_page_cache_turn_free(vm_page_t m) 2344 { 2345 2346 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2347 2348 m->object = NULL; 2349 m->valid = 0; 2350 KASSERT((m->flags & PG_CACHED) != 0, 2351 ("vm_page_cache_turn_free: page %p is not cached", m)); 2352 m->flags &= ~PG_CACHED; 2353 vm_cnt.v_cache_count--; 2354 vm_phys_freecnt_adj(m, 1); 2355 } 2356 2357 /* 2358 * vm_page_free_toq: 2359 * 2360 * Returns the given page to the free list, 2361 * disassociating it with any VM object. 2362 * 2363 * The object must be locked. The page must be locked if it is managed. 2364 */ 2365 void 2366 vm_page_free_toq(vm_page_t m) 2367 { 2368 2369 if ((m->oflags & VPO_UNMANAGED) == 0) { 2370 vm_page_lock_assert(m, MA_OWNED); 2371 KASSERT(!pmap_page_is_mapped(m), 2372 ("vm_page_free_toq: freeing mapped page %p", m)); 2373 } else 2374 KASSERT(m->queue == PQ_NONE, 2375 ("vm_page_free_toq: unmanaged page %p is queued", m)); 2376 PCPU_INC(cnt.v_tfree); 2377 2378 if (vm_page_sbusied(m)) 2379 panic("vm_page_free: freeing busy page %p", m); 2380 2381 /* 2382 * Unqueue, then remove page. Note that we cannot destroy 2383 * the page here because we do not want to call the pager's 2384 * callback routine until after we've put the page on the 2385 * appropriate free queue. 2386 */ 2387 vm_page_remque(m); 2388 vm_page_remove(m); 2389 2390 /* 2391 * If fictitious remove object association and 2392 * return, otherwise delay object association removal. 2393 */ 2394 if ((m->flags & PG_FICTITIOUS) != 0) { 2395 return; 2396 } 2397 2398 m->valid = 0; 2399 vm_page_undirty(m); 2400 2401 if (m->wire_count != 0) 2402 panic("vm_page_free: freeing wired page %p", m); 2403 if (m->hold_count != 0) { 2404 m->flags &= ~PG_ZERO; 2405 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2406 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); 2407 m->flags |= PG_UNHOLDFREE; 2408 } else { 2409 /* 2410 * Restore the default memory attribute to the page. 2411 */ 2412 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2413 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2414 2415 /* 2416 * Insert the page into the physical memory allocator's 2417 * cache/free page queues. 2418 */ 2419 mtx_lock(&vm_page_queue_free_mtx); 2420 vm_phys_freecnt_adj(m, 1); 2421 #if VM_NRESERVLEVEL > 0 2422 if (!vm_reserv_free_page(m)) 2423 #else 2424 if (TRUE) 2425 #endif 2426 vm_phys_free_pages(m, 0); 2427 if ((m->flags & PG_ZERO) != 0) 2428 ++vm_page_zero_count; 2429 else 2430 vm_page_zero_idle_wakeup(); 2431 vm_page_free_wakeup(); 2432 mtx_unlock(&vm_page_queue_free_mtx); 2433 } 2434 } 2435 2436 /* 2437 * vm_page_wire: 2438 * 2439 * Mark this page as wired down by yet 2440 * another map, removing it from paging queues 2441 * as necessary. 2442 * 2443 * If the page is fictitious, then its wire count must remain one. 2444 * 2445 * The page must be locked. 2446 */ 2447 void 2448 vm_page_wire(vm_page_t m) 2449 { 2450 2451 /* 2452 * Only bump the wire statistics if the page is not already wired, 2453 * and only unqueue the page if it is on some queue (if it is unmanaged 2454 * it is already off the queues). 2455 */ 2456 vm_page_lock_assert(m, MA_OWNED); 2457 if ((m->flags & PG_FICTITIOUS) != 0) { 2458 KASSERT(m->wire_count == 1, 2459 ("vm_page_wire: fictitious page %p's wire count isn't one", 2460 m)); 2461 return; 2462 } 2463 if (m->wire_count == 0) { 2464 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 2465 m->queue == PQ_NONE, 2466 ("vm_page_wire: unmanaged page %p is queued", m)); 2467 vm_page_remque(m); 2468 atomic_add_int(&vm_cnt.v_wire_count, 1); 2469 } 2470 m->wire_count++; 2471 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 2472 } 2473 2474 /* 2475 * vm_page_unwire: 2476 * 2477 * Release one wiring of the specified page, potentially enabling it to be 2478 * paged again. If paging is enabled, then the value of the parameter 2479 * "queue" determines the queue to which the page is added. 2480 * 2481 * However, unless the page belongs to an object, it is not enqueued because 2482 * it cannot be paged out. 2483 * 2484 * If a page is fictitious, then its wire count must always be one. 2485 * 2486 * A managed page must be locked. 2487 */ 2488 void 2489 vm_page_unwire(vm_page_t m, uint8_t queue) 2490 { 2491 2492 KASSERT(queue < PQ_COUNT, 2493 ("vm_page_unwire: invalid queue %u request for page %p", 2494 queue, m)); 2495 if ((m->oflags & VPO_UNMANAGED) == 0) 2496 vm_page_lock_assert(m, MA_OWNED); 2497 if ((m->flags & PG_FICTITIOUS) != 0) { 2498 KASSERT(m->wire_count == 1, 2499 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 2500 return; 2501 } 2502 if (m->wire_count > 0) { 2503 m->wire_count--; 2504 if (m->wire_count == 0) { 2505 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 2506 if ((m->oflags & VPO_UNMANAGED) != 0 || 2507 m->object == NULL) 2508 return; 2509 if (queue == PQ_INACTIVE) 2510 m->flags &= ~PG_WINATCFLS; 2511 vm_page_enqueue(queue, m); 2512 } 2513 } else 2514 panic("vm_page_unwire: page %p's wire count is zero", m); 2515 } 2516 2517 /* 2518 * Move the specified page to the inactive queue. 2519 * 2520 * Many pages placed on the inactive queue should actually go 2521 * into the cache, but it is difficult to figure out which. What 2522 * we do instead, if the inactive target is well met, is to put 2523 * clean pages at the head of the inactive queue instead of the tail. 2524 * This will cause them to be moved to the cache more quickly and 2525 * if not actively re-referenced, reclaimed more quickly. If we just 2526 * stick these pages at the end of the inactive queue, heavy filesystem 2527 * meta-data accesses can cause an unnecessary paging load on memory bound 2528 * processes. This optimization causes one-time-use metadata to be 2529 * reused more quickly. 2530 * 2531 * Normally athead is 0 resulting in LRU operation. athead is set 2532 * to 1 if we want this page to be 'as if it were placed in the cache', 2533 * except without unmapping it from the process address space. 2534 * 2535 * The page must be locked. 2536 */ 2537 static inline void 2538 _vm_page_deactivate(vm_page_t m, int athead) 2539 { 2540 struct vm_pagequeue *pq; 2541 int queue; 2542 2543 vm_page_lock_assert(m, MA_OWNED); 2544 2545 /* 2546 * Ignore if already inactive. 2547 */ 2548 if ((queue = m->queue) == PQ_INACTIVE) 2549 return; 2550 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2551 if (queue != PQ_NONE) 2552 vm_page_dequeue(m); 2553 m->flags &= ~PG_WINATCFLS; 2554 pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE]; 2555 vm_pagequeue_lock(pq); 2556 m->queue = PQ_INACTIVE; 2557 if (athead) 2558 TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q); 2559 else 2560 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2561 vm_pagequeue_cnt_inc(pq); 2562 vm_pagequeue_unlock(pq); 2563 } 2564 } 2565 2566 /* 2567 * Move the specified page to the inactive queue. 2568 * 2569 * The page must be locked. 2570 */ 2571 void 2572 vm_page_deactivate(vm_page_t m) 2573 { 2574 2575 _vm_page_deactivate(m, 0); 2576 } 2577 2578 /* 2579 * vm_page_try_to_cache: 2580 * 2581 * Returns 0 on failure, 1 on success 2582 */ 2583 int 2584 vm_page_try_to_cache(vm_page_t m) 2585 { 2586 2587 vm_page_lock_assert(m, MA_OWNED); 2588 VM_OBJECT_ASSERT_WLOCKED(m->object); 2589 if (m->dirty || m->hold_count || m->wire_count || 2590 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) 2591 return (0); 2592 pmap_remove_all(m); 2593 if (m->dirty) 2594 return (0); 2595 vm_page_cache(m); 2596 return (1); 2597 } 2598 2599 /* 2600 * vm_page_try_to_free() 2601 * 2602 * Attempt to free the page. If we cannot free it, we do nothing. 2603 * 1 is returned on success, 0 on failure. 2604 */ 2605 int 2606 vm_page_try_to_free(vm_page_t m) 2607 { 2608 2609 vm_page_lock_assert(m, MA_OWNED); 2610 if (m->object != NULL) 2611 VM_OBJECT_ASSERT_WLOCKED(m->object); 2612 if (m->dirty || m->hold_count || m->wire_count || 2613 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) 2614 return (0); 2615 pmap_remove_all(m); 2616 if (m->dirty) 2617 return (0); 2618 vm_page_free(m); 2619 return (1); 2620 } 2621 2622 /* 2623 * vm_page_cache 2624 * 2625 * Put the specified page onto the page cache queue (if appropriate). 2626 * 2627 * The object and page must be locked. 2628 */ 2629 void 2630 vm_page_cache(vm_page_t m) 2631 { 2632 vm_object_t object; 2633 boolean_t cache_was_empty; 2634 2635 vm_page_lock_assert(m, MA_OWNED); 2636 object = m->object; 2637 VM_OBJECT_ASSERT_WLOCKED(object); 2638 if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) || 2639 m->hold_count || m->wire_count) 2640 panic("vm_page_cache: attempting to cache busy page"); 2641 KASSERT(!pmap_page_is_mapped(m), 2642 ("vm_page_cache: page %p is mapped", m)); 2643 KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m)); 2644 if (m->valid == 0 || object->type == OBJT_DEFAULT || 2645 (object->type == OBJT_SWAP && 2646 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 2647 /* 2648 * Hypothesis: A cache-eligible page belonging to a 2649 * default object or swap object but without a backing 2650 * store must be zero filled. 2651 */ 2652 vm_page_free(m); 2653 return; 2654 } 2655 KASSERT((m->flags & PG_CACHED) == 0, 2656 ("vm_page_cache: page %p is already cached", m)); 2657 2658 /* 2659 * Remove the page from the paging queues. 2660 */ 2661 vm_page_remque(m); 2662 2663 /* 2664 * Remove the page from the object's collection of resident 2665 * pages. 2666 */ 2667 vm_radix_remove(&object->rtree, m->pindex); 2668 TAILQ_REMOVE(&object->memq, m, listq); 2669 object->resident_page_count--; 2670 2671 /* 2672 * Restore the default memory attribute to the page. 2673 */ 2674 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2675 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2676 2677 /* 2678 * Insert the page into the object's collection of cached pages 2679 * and the physical memory allocator's cache/free page queues. 2680 */ 2681 m->flags &= ~PG_ZERO; 2682 mtx_lock(&vm_page_queue_free_mtx); 2683 cache_was_empty = vm_radix_is_empty(&object->cache); 2684 if (vm_radix_insert(&object->cache, m)) { 2685 mtx_unlock(&vm_page_queue_free_mtx); 2686 if (object->resident_page_count == 0) 2687 vdrop(object->handle); 2688 m->object = NULL; 2689 vm_page_free(m); 2690 return; 2691 } 2692 2693 /* 2694 * The above call to vm_radix_insert() could reclaim the one pre- 2695 * existing cached page from this object, resulting in a call to 2696 * vdrop(). 2697 */ 2698 if (!cache_was_empty) 2699 cache_was_empty = vm_radix_is_singleton(&object->cache); 2700 2701 m->flags |= PG_CACHED; 2702 vm_cnt.v_cache_count++; 2703 PCPU_INC(cnt.v_tcached); 2704 #if VM_NRESERVLEVEL > 0 2705 if (!vm_reserv_free_page(m)) { 2706 #else 2707 if (TRUE) { 2708 #endif 2709 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 2710 vm_phys_free_pages(m, 0); 2711 } 2712 vm_page_free_wakeup(); 2713 mtx_unlock(&vm_page_queue_free_mtx); 2714 2715 /* 2716 * Increment the vnode's hold count if this is the object's only 2717 * cached page. Decrement the vnode's hold count if this was 2718 * the object's only resident page. 2719 */ 2720 if (object->type == OBJT_VNODE) { 2721 if (cache_was_empty && object->resident_page_count != 0) 2722 vhold(object->handle); 2723 else if (!cache_was_empty && object->resident_page_count == 0) 2724 vdrop(object->handle); 2725 } 2726 } 2727 2728 /* 2729 * vm_page_advise 2730 * 2731 * Cache, deactivate, or do nothing as appropriate. This routine 2732 * is used by madvise(). 2733 * 2734 * Generally speaking we want to move the page into the cache so 2735 * it gets reused quickly. However, this can result in a silly syndrome 2736 * due to the page recycling too quickly. Small objects will not be 2737 * fully cached. On the other hand, if we move the page to the inactive 2738 * queue we wind up with a problem whereby very large objects 2739 * unnecessarily blow away our inactive and cache queues. 2740 * 2741 * The solution is to move the pages based on a fixed weighting. We 2742 * either leave them alone, deactivate them, or move them to the cache, 2743 * where moving them to the cache has the highest weighting. 2744 * By forcing some pages into other queues we eventually force the 2745 * system to balance the queues, potentially recovering other unrelated 2746 * space from active. The idea is to not force this to happen too 2747 * often. 2748 * 2749 * The object and page must be locked. 2750 */ 2751 void 2752 vm_page_advise(vm_page_t m, int advice) 2753 { 2754 int dnw, head; 2755 2756 vm_page_assert_locked(m); 2757 VM_OBJECT_ASSERT_WLOCKED(m->object); 2758 if (advice == MADV_FREE) { 2759 /* 2760 * Mark the page clean. This will allow the page to be freed 2761 * up by the system. However, such pages are often reused 2762 * quickly by malloc() so we do not do anything that would 2763 * cause a page fault if we can help it. 2764 * 2765 * Specifically, we do not try to actually free the page now 2766 * nor do we try to put it in the cache (which would cause a 2767 * page fault on reuse). 2768 * 2769 * But we do make the page is freeable as we can without 2770 * actually taking the step of unmapping it. 2771 */ 2772 m->dirty = 0; 2773 m->act_count = 0; 2774 } else if (advice != MADV_DONTNEED) 2775 return; 2776 dnw = PCPU_GET(dnweight); 2777 PCPU_INC(dnweight); 2778 2779 /* 2780 * Occasionally leave the page alone. 2781 */ 2782 if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) { 2783 if (m->act_count >= ACT_INIT) 2784 --m->act_count; 2785 return; 2786 } 2787 2788 /* 2789 * Clear any references to the page. Otherwise, the page daemon will 2790 * immediately reactivate the page. 2791 */ 2792 vm_page_aflag_clear(m, PGA_REFERENCED); 2793 2794 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 2795 vm_page_dirty(m); 2796 2797 if (m->dirty || (dnw & 0x0070) == 0) { 2798 /* 2799 * Deactivate the page 3 times out of 32. 2800 */ 2801 head = 0; 2802 } else { 2803 /* 2804 * Cache the page 28 times out of every 32. Note that 2805 * the page is deactivated instead of cached, but placed 2806 * at the head of the queue instead of the tail. 2807 */ 2808 head = 1; 2809 } 2810 _vm_page_deactivate(m, head); 2811 } 2812 2813 /* 2814 * Grab a page, waiting until we are waken up due to the page 2815 * changing state. We keep on waiting, if the page continues 2816 * to be in the object. If the page doesn't exist, first allocate it 2817 * and then conditionally zero it. 2818 * 2819 * This routine may sleep. 2820 * 2821 * The object must be locked on entry. The lock will, however, be released 2822 * and reacquired if the routine sleeps. 2823 */ 2824 vm_page_t 2825 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2826 { 2827 vm_page_t m; 2828 int sleep; 2829 2830 VM_OBJECT_ASSERT_WLOCKED(object); 2831 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 2832 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 2833 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 2834 retrylookup: 2835 if ((m = vm_page_lookup(object, pindex)) != NULL) { 2836 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 2837 vm_page_xbusied(m) : vm_page_busied(m); 2838 if (sleep) { 2839 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 2840 return (NULL); 2841 /* 2842 * Reference the page before unlocking and 2843 * sleeping so that the page daemon is less 2844 * likely to reclaim it. 2845 */ 2846 vm_page_aflag_set(m, PGA_REFERENCED); 2847 vm_page_lock(m); 2848 VM_OBJECT_WUNLOCK(object); 2849 vm_page_busy_sleep(m, "pgrbwt"); 2850 VM_OBJECT_WLOCK(object); 2851 goto retrylookup; 2852 } else { 2853 if ((allocflags & VM_ALLOC_WIRED) != 0) { 2854 vm_page_lock(m); 2855 vm_page_wire(m); 2856 vm_page_unlock(m); 2857 } 2858 if ((allocflags & 2859 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2860 vm_page_xbusy(m); 2861 if ((allocflags & VM_ALLOC_SBUSY) != 0) 2862 vm_page_sbusy(m); 2863 return (m); 2864 } 2865 } 2866 m = vm_page_alloc(object, pindex, allocflags); 2867 if (m == NULL) { 2868 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 2869 return (NULL); 2870 VM_OBJECT_WUNLOCK(object); 2871 VM_WAIT; 2872 VM_OBJECT_WLOCK(object); 2873 goto retrylookup; 2874 } else if (m->valid != 0) 2875 return (m); 2876 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 2877 pmap_zero_page(m); 2878 return (m); 2879 } 2880 2881 /* 2882 * Mapping function for valid or dirty bits in a page. 2883 * 2884 * Inputs are required to range within a page. 2885 */ 2886 vm_page_bits_t 2887 vm_page_bits(int base, int size) 2888 { 2889 int first_bit; 2890 int last_bit; 2891 2892 KASSERT( 2893 base + size <= PAGE_SIZE, 2894 ("vm_page_bits: illegal base/size %d/%d", base, size) 2895 ); 2896 2897 if (size == 0) /* handle degenerate case */ 2898 return (0); 2899 2900 first_bit = base >> DEV_BSHIFT; 2901 last_bit = (base + size - 1) >> DEV_BSHIFT; 2902 2903 return (((vm_page_bits_t)2 << last_bit) - 2904 ((vm_page_bits_t)1 << first_bit)); 2905 } 2906 2907 /* 2908 * vm_page_set_valid_range: 2909 * 2910 * Sets portions of a page valid. The arguments are expected 2911 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2912 * of any partial chunks touched by the range. The invalid portion of 2913 * such chunks will be zeroed. 2914 * 2915 * (base + size) must be less then or equal to PAGE_SIZE. 2916 */ 2917 void 2918 vm_page_set_valid_range(vm_page_t m, int base, int size) 2919 { 2920 int endoff, frag; 2921 2922 VM_OBJECT_ASSERT_WLOCKED(m->object); 2923 if (size == 0) /* handle degenerate case */ 2924 return; 2925 2926 /* 2927 * If the base is not DEV_BSIZE aligned and the valid 2928 * bit is clear, we have to zero out a portion of the 2929 * first block. 2930 */ 2931 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2932 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 2933 pmap_zero_page_area(m, frag, base - frag); 2934 2935 /* 2936 * If the ending offset is not DEV_BSIZE aligned and the 2937 * valid bit is clear, we have to zero out a portion of 2938 * the last block. 2939 */ 2940 endoff = base + size; 2941 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2942 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 2943 pmap_zero_page_area(m, endoff, 2944 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2945 2946 /* 2947 * Assert that no previously invalid block that is now being validated 2948 * is already dirty. 2949 */ 2950 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 2951 ("vm_page_set_valid_range: page %p is dirty", m)); 2952 2953 /* 2954 * Set valid bits inclusive of any overlap. 2955 */ 2956 m->valid |= vm_page_bits(base, size); 2957 } 2958 2959 /* 2960 * Clear the given bits from the specified page's dirty field. 2961 */ 2962 static __inline void 2963 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 2964 { 2965 uintptr_t addr; 2966 #if PAGE_SIZE < 16384 2967 int shift; 2968 #endif 2969 2970 /* 2971 * If the object is locked and the page is neither exclusive busy nor 2972 * write mapped, then the page's dirty field cannot possibly be 2973 * set by a concurrent pmap operation. 2974 */ 2975 VM_OBJECT_ASSERT_WLOCKED(m->object); 2976 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 2977 m->dirty &= ~pagebits; 2978 else { 2979 /* 2980 * The pmap layer can call vm_page_dirty() without 2981 * holding a distinguished lock. The combination of 2982 * the object's lock and an atomic operation suffice 2983 * to guarantee consistency of the page dirty field. 2984 * 2985 * For PAGE_SIZE == 32768 case, compiler already 2986 * properly aligns the dirty field, so no forcible 2987 * alignment is needed. Only require existence of 2988 * atomic_clear_64 when page size is 32768. 2989 */ 2990 addr = (uintptr_t)&m->dirty; 2991 #if PAGE_SIZE == 32768 2992 atomic_clear_64((uint64_t *)addr, pagebits); 2993 #elif PAGE_SIZE == 16384 2994 atomic_clear_32((uint32_t *)addr, pagebits); 2995 #else /* PAGE_SIZE <= 8192 */ 2996 /* 2997 * Use a trick to perform a 32-bit atomic on the 2998 * containing aligned word, to not depend on the existence 2999 * of atomic_clear_{8, 16}. 3000 */ 3001 shift = addr & (sizeof(uint32_t) - 1); 3002 #if BYTE_ORDER == BIG_ENDIAN 3003 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 3004 #else 3005 shift *= NBBY; 3006 #endif 3007 addr &= ~(sizeof(uint32_t) - 1); 3008 atomic_clear_32((uint32_t *)addr, pagebits << shift); 3009 #endif /* PAGE_SIZE */ 3010 } 3011 } 3012 3013 /* 3014 * vm_page_set_validclean: 3015 * 3016 * Sets portions of a page valid and clean. The arguments are expected 3017 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 3018 * of any partial chunks touched by the range. The invalid portion of 3019 * such chunks will be zero'd. 3020 * 3021 * (base + size) must be less then or equal to PAGE_SIZE. 3022 */ 3023 void 3024 vm_page_set_validclean(vm_page_t m, int base, int size) 3025 { 3026 vm_page_bits_t oldvalid, pagebits; 3027 int endoff, frag; 3028 3029 VM_OBJECT_ASSERT_WLOCKED(m->object); 3030 if (size == 0) /* handle degenerate case */ 3031 return; 3032 3033 /* 3034 * If the base is not DEV_BSIZE aligned and the valid 3035 * bit is clear, we have to zero out a portion of the 3036 * first block. 3037 */ 3038 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 3039 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 3040 pmap_zero_page_area(m, frag, base - frag); 3041 3042 /* 3043 * If the ending offset is not DEV_BSIZE aligned and the 3044 * valid bit is clear, we have to zero out a portion of 3045 * the last block. 3046 */ 3047 endoff = base + size; 3048 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 3049 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 3050 pmap_zero_page_area(m, endoff, 3051 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 3052 3053 /* 3054 * Set valid, clear dirty bits. If validating the entire 3055 * page we can safely clear the pmap modify bit. We also 3056 * use this opportunity to clear the VPO_NOSYNC flag. If a process 3057 * takes a write fault on a MAP_NOSYNC memory area the flag will 3058 * be set again. 3059 * 3060 * We set valid bits inclusive of any overlap, but we can only 3061 * clear dirty bits for DEV_BSIZE chunks that are fully within 3062 * the range. 3063 */ 3064 oldvalid = m->valid; 3065 pagebits = vm_page_bits(base, size); 3066 m->valid |= pagebits; 3067 #if 0 /* NOT YET */ 3068 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 3069 frag = DEV_BSIZE - frag; 3070 base += frag; 3071 size -= frag; 3072 if (size < 0) 3073 size = 0; 3074 } 3075 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 3076 #endif 3077 if (base == 0 && size == PAGE_SIZE) { 3078 /* 3079 * The page can only be modified within the pmap if it is 3080 * mapped, and it can only be mapped if it was previously 3081 * fully valid. 3082 */ 3083 if (oldvalid == VM_PAGE_BITS_ALL) 3084 /* 3085 * Perform the pmap_clear_modify() first. Otherwise, 3086 * a concurrent pmap operation, such as 3087 * pmap_protect(), could clear a modification in the 3088 * pmap and set the dirty field on the page before 3089 * pmap_clear_modify() had begun and after the dirty 3090 * field was cleared here. 3091 */ 3092 pmap_clear_modify(m); 3093 m->dirty = 0; 3094 m->oflags &= ~VPO_NOSYNC; 3095 } else if (oldvalid != VM_PAGE_BITS_ALL) 3096 m->dirty &= ~pagebits; 3097 else 3098 vm_page_clear_dirty_mask(m, pagebits); 3099 } 3100 3101 void 3102 vm_page_clear_dirty(vm_page_t m, int base, int size) 3103 { 3104 3105 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 3106 } 3107 3108 /* 3109 * vm_page_set_invalid: 3110 * 3111 * Invalidates DEV_BSIZE'd chunks within a page. Both the 3112 * valid and dirty bits for the effected areas are cleared. 3113 */ 3114 void 3115 vm_page_set_invalid(vm_page_t m, int base, int size) 3116 { 3117 vm_page_bits_t bits; 3118 vm_object_t object; 3119 3120 object = m->object; 3121 VM_OBJECT_ASSERT_WLOCKED(object); 3122 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 3123 size >= object->un_pager.vnp.vnp_size) 3124 bits = VM_PAGE_BITS_ALL; 3125 else 3126 bits = vm_page_bits(base, size); 3127 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 3128 pmap_remove_all(m); 3129 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || 3130 !pmap_page_is_mapped(m), 3131 ("vm_page_set_invalid: page %p is mapped", m)); 3132 m->valid &= ~bits; 3133 m->dirty &= ~bits; 3134 } 3135 3136 /* 3137 * vm_page_zero_invalid() 3138 * 3139 * The kernel assumes that the invalid portions of a page contain 3140 * garbage, but such pages can be mapped into memory by user code. 3141 * When this occurs, we must zero out the non-valid portions of the 3142 * page so user code sees what it expects. 3143 * 3144 * Pages are most often semi-valid when the end of a file is mapped 3145 * into memory and the file's size is not page aligned. 3146 */ 3147 void 3148 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 3149 { 3150 int b; 3151 int i; 3152 3153 VM_OBJECT_ASSERT_WLOCKED(m->object); 3154 /* 3155 * Scan the valid bits looking for invalid sections that 3156 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 3157 * valid bit may be set ) have already been zerod by 3158 * vm_page_set_validclean(). 3159 */ 3160 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 3161 if (i == (PAGE_SIZE / DEV_BSIZE) || 3162 (m->valid & ((vm_page_bits_t)1 << i))) { 3163 if (i > b) { 3164 pmap_zero_page_area(m, 3165 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 3166 } 3167 b = i + 1; 3168 } 3169 } 3170 3171 /* 3172 * setvalid is TRUE when we can safely set the zero'd areas 3173 * as being valid. We can do this if there are no cache consistancy 3174 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 3175 */ 3176 if (setvalid) 3177 m->valid = VM_PAGE_BITS_ALL; 3178 } 3179 3180 /* 3181 * vm_page_is_valid: 3182 * 3183 * Is (partial) page valid? Note that the case where size == 0 3184 * will return FALSE in the degenerate case where the page is 3185 * entirely invalid, and TRUE otherwise. 3186 */ 3187 int 3188 vm_page_is_valid(vm_page_t m, int base, int size) 3189 { 3190 vm_page_bits_t bits; 3191 3192 VM_OBJECT_ASSERT_LOCKED(m->object); 3193 bits = vm_page_bits(base, size); 3194 return (m->valid != 0 && (m->valid & bits) == bits); 3195 } 3196 3197 /* 3198 * vm_page_ps_is_valid: 3199 * 3200 * Returns TRUE if the entire (super)page is valid and FALSE otherwise. 3201 */ 3202 boolean_t 3203 vm_page_ps_is_valid(vm_page_t m) 3204 { 3205 int i, npages; 3206 3207 VM_OBJECT_ASSERT_LOCKED(m->object); 3208 npages = atop(pagesizes[m->psind]); 3209 3210 /* 3211 * The physically contiguous pages that make up a superpage, i.e., a 3212 * page with a page size index ("psind") greater than zero, will 3213 * occupy adjacent entries in vm_page_array[]. 3214 */ 3215 for (i = 0; i < npages; i++) { 3216 if (m[i].valid != VM_PAGE_BITS_ALL) 3217 return (FALSE); 3218 } 3219 return (TRUE); 3220 } 3221 3222 /* 3223 * Set the page's dirty bits if the page is modified. 3224 */ 3225 void 3226 vm_page_test_dirty(vm_page_t m) 3227 { 3228 3229 VM_OBJECT_ASSERT_WLOCKED(m->object); 3230 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 3231 vm_page_dirty(m); 3232 } 3233 3234 void 3235 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 3236 { 3237 3238 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 3239 } 3240 3241 void 3242 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 3243 { 3244 3245 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 3246 } 3247 3248 int 3249 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 3250 { 3251 3252 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 3253 } 3254 3255 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 3256 void 3257 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 3258 { 3259 3260 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 3261 } 3262 3263 void 3264 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 3265 { 3266 3267 mtx_assert_(vm_page_lockptr(m), a, file, line); 3268 } 3269 #endif 3270 3271 #ifdef INVARIANTS 3272 void 3273 vm_page_object_lock_assert(vm_page_t m) 3274 { 3275 3276 /* 3277 * Certain of the page's fields may only be modified by the 3278 * holder of the containing object's lock or the exclusive busy. 3279 * holder. Unfortunately, the holder of the write busy is 3280 * not recorded, and thus cannot be checked here. 3281 */ 3282 if (m->object != NULL && !vm_page_xbusied(m)) 3283 VM_OBJECT_ASSERT_WLOCKED(m->object); 3284 } 3285 3286 void 3287 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) 3288 { 3289 3290 if ((bits & PGA_WRITEABLE) == 0) 3291 return; 3292 3293 /* 3294 * The PGA_WRITEABLE flag can only be set if the page is 3295 * managed, is exclusively busied or the object is locked. 3296 * Currently, this flag is only set by pmap_enter(). 3297 */ 3298 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3299 ("PGA_WRITEABLE on unmanaged page")); 3300 if (!vm_page_xbusied(m)) 3301 VM_OBJECT_ASSERT_LOCKED(m->object); 3302 } 3303 #endif 3304 3305 #include "opt_ddb.h" 3306 #ifdef DDB 3307 #include <sys/kernel.h> 3308 3309 #include <ddb/ddb.h> 3310 3311 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3312 { 3313 db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count); 3314 db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count); 3315 db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count); 3316 db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count); 3317 db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count); 3318 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 3319 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 3320 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 3321 db_printf("vm_cnt.v_cache_min: %d\n", vm_cnt.v_cache_min); 3322 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 3323 } 3324 3325 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3326 { 3327 int dom; 3328 3329 db_printf("pq_free %d pq_cache %d\n", 3330 vm_cnt.v_free_count, vm_cnt.v_cache_count); 3331 for (dom = 0; dom < vm_ndomains; dom++) { 3332 db_printf( 3333 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n", 3334 dom, 3335 vm_dom[dom].vmd_page_count, 3336 vm_dom[dom].vmd_free_count, 3337 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 3338 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 3339 vm_dom[dom].vmd_pass); 3340 } 3341 } 3342 3343 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 3344 { 3345 vm_page_t m; 3346 boolean_t phys; 3347 3348 if (!have_addr) { 3349 db_printf("show pginfo addr\n"); 3350 return; 3351 } 3352 3353 phys = strchr(modif, 'p') != NULL; 3354 if (phys) 3355 m = PHYS_TO_VM_PAGE(addr); 3356 else 3357 m = (vm_page_t)addr; 3358 db_printf( 3359 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" 3360 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 3361 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 3362 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, 3363 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); 3364 } 3365 #endif /* DDB */ 3366