xref: /freebsd/sys/vm/vm_page.c (revision cdc58367265a2bd6e8f913db2bdc591699ee229f)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue regardless of other locks or the busy state of a page.
68  *
69  *		* In general, no thread besides the page daemon can acquire or
70  *		  hold more than one page queue lock at a time.
71  *
72  *		* The page daemon can acquire and hold any pair of page queue
73  *		  locks in any order.
74  *
75  *	- The object lock is required when inserting or removing
76  *	  pages from an object (vm_page_insert() or vm_page_remove()).
77  *
78  */
79 
80 /*
81  *	Resident memory management module.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_vm.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/lock.h>
92 #include <sys/kernel.h>
93 #include <sys/limits.h>
94 #include <sys/malloc.h>
95 #include <sys/mman.h>
96 #include <sys/msgbuf.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/rwlock.h>
100 #include <sys/sysctl.h>
101 #include <sys/vmmeter.h>
102 #include <sys/vnode.h>
103 
104 #include <vm/vm.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_kern.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_radix.h>
114 #include <vm/vm_reserv.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117 #include <vm/uma_int.h>
118 
119 #include <machine/md_var.h>
120 
121 /*
122  *	Associated with page of user-allocatable memory is a
123  *	page structure.
124  */
125 
126 struct vm_domain vm_dom[MAXMEMDOM];
127 struct mtx_padalign vm_page_queue_free_mtx;
128 
129 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
130 
131 vm_page_t vm_page_array;
132 long vm_page_array_size;
133 long first_page;
134 int vm_page_zero_count;
135 
136 static int boot_pages = UMA_BOOT_PAGES;
137 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN, &boot_pages, 0,
138 	"number of pages allocated for bootstrapping the VM system");
139 
140 static int pa_tryrelock_restart;
141 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
142     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
143 
144 static uma_zone_t fakepg_zone;
145 
146 static struct vnode *vm_page_alloc_init(vm_page_t m);
147 static void vm_page_cache_turn_free(vm_page_t m);
148 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
149 static void vm_page_enqueue(uint8_t queue, vm_page_t m);
150 static void vm_page_init_fakepg(void *dummy);
151 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
152     vm_pindex_t pindex, vm_page_t mpred);
153 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
154     vm_page_t mpred);
155 
156 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
157 
158 static void
159 vm_page_init_fakepg(void *dummy)
160 {
161 
162 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
163 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
164 }
165 
166 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
167 #if PAGE_SIZE == 32768
168 #ifdef CTASSERT
169 CTASSERT(sizeof(u_long) >= 8);
170 #endif
171 #endif
172 
173 /*
174  * Try to acquire a physical address lock while a pmap is locked.  If we
175  * fail to trylock we unlock and lock the pmap directly and cache the
176  * locked pa in *locked.  The caller should then restart their loop in case
177  * the virtual to physical mapping has changed.
178  */
179 int
180 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
181 {
182 	vm_paddr_t lockpa;
183 
184 	lockpa = *locked;
185 	*locked = pa;
186 	if (lockpa) {
187 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
188 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
189 			return (0);
190 		PA_UNLOCK(lockpa);
191 	}
192 	if (PA_TRYLOCK(pa))
193 		return (0);
194 	PMAP_UNLOCK(pmap);
195 	atomic_add_int(&pa_tryrelock_restart, 1);
196 	PA_LOCK(pa);
197 	PMAP_LOCK(pmap);
198 	return (EAGAIN);
199 }
200 
201 /*
202  *	vm_set_page_size:
203  *
204  *	Sets the page size, perhaps based upon the memory
205  *	size.  Must be called before any use of page-size
206  *	dependent functions.
207  */
208 void
209 vm_set_page_size(void)
210 {
211 	if (vm_cnt.v_page_size == 0)
212 		vm_cnt.v_page_size = PAGE_SIZE;
213 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
214 		panic("vm_set_page_size: page size not a power of two");
215 }
216 
217 /*
218  *	vm_page_blacklist_lookup:
219  *
220  *	See if a physical address in this page has been listed
221  *	in the blacklist tunable.  Entries in the tunable are
222  *	separated by spaces or commas.  If an invalid integer is
223  *	encountered then the rest of the string is skipped.
224  */
225 static int
226 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
227 {
228 	vm_paddr_t bad;
229 	char *cp, *pos;
230 
231 	for (pos = list; *pos != '\0'; pos = cp) {
232 		bad = strtoq(pos, &cp, 0);
233 		if (*cp != '\0') {
234 			if (*cp == ' ' || *cp == ',') {
235 				cp++;
236 				if (cp == pos)
237 					continue;
238 			} else
239 				break;
240 		}
241 		if (pa == trunc_page(bad))
242 			return (1);
243 	}
244 	return (0);
245 }
246 
247 static void
248 vm_page_domain_init(struct vm_domain *vmd)
249 {
250 	struct vm_pagequeue *pq;
251 	int i;
252 
253 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
254 	    "vm inactive pagequeue";
255 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
256 	    &vm_cnt.v_inactive_count;
257 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
258 	    "vm active pagequeue";
259 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
260 	    &vm_cnt.v_active_count;
261 	vmd->vmd_page_count = 0;
262 	vmd->vmd_free_count = 0;
263 	vmd->vmd_segs = 0;
264 	vmd->vmd_oom = FALSE;
265 	vmd->vmd_pass = 0;
266 	for (i = 0; i < PQ_COUNT; i++) {
267 		pq = &vmd->vmd_pagequeues[i];
268 		TAILQ_INIT(&pq->pq_pl);
269 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
270 		    MTX_DEF | MTX_DUPOK);
271 	}
272 }
273 
274 /*
275  *	vm_page_startup:
276  *
277  *	Initializes the resident memory module.
278  *
279  *	Allocates memory for the page cells, and
280  *	for the object/offset-to-page hash table headers.
281  *	Each page cell is initialized and placed on the free list.
282  */
283 vm_offset_t
284 vm_page_startup(vm_offset_t vaddr)
285 {
286 	vm_offset_t mapped;
287 	vm_paddr_t page_range;
288 	vm_paddr_t new_end;
289 	int i;
290 	vm_paddr_t pa;
291 	vm_paddr_t last_pa;
292 	char *list;
293 	vm_paddr_t end;
294 	vm_paddr_t biggestsize;
295 	vm_paddr_t low_water, high_water;
296 	int biggestone;
297 
298 	biggestsize = 0;
299 	biggestone = 0;
300 	vaddr = round_page(vaddr);
301 
302 	for (i = 0; phys_avail[i + 1]; i += 2) {
303 		phys_avail[i] = round_page(phys_avail[i]);
304 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
305 	}
306 
307 #ifdef XEN
308 	/*
309 	 * There is no obvious reason why i386 PV Xen needs vm_page structs
310 	 * created for these pseudo-physical addresses.  XXX
311 	 */
312 	vm_phys_add_seg(0, phys_avail[0]);
313 #endif
314 
315 	low_water = phys_avail[0];
316 	high_water = phys_avail[1];
317 
318 	for (i = 0; i < vm_phys_nsegs; i++) {
319 		if (vm_phys_segs[i].start < low_water)
320 			low_water = vm_phys_segs[i].start;
321 		if (vm_phys_segs[i].end > high_water)
322 			high_water = vm_phys_segs[i].end;
323 	}
324 	for (i = 0; phys_avail[i + 1]; i += 2) {
325 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
326 
327 		if (size > biggestsize) {
328 			biggestone = i;
329 			biggestsize = size;
330 		}
331 		if (phys_avail[i] < low_water)
332 			low_water = phys_avail[i];
333 		if (phys_avail[i + 1] > high_water)
334 			high_water = phys_avail[i + 1];
335 	}
336 
337 	end = phys_avail[biggestone+1];
338 
339 	/*
340 	 * Initialize the page and queue locks.
341 	 */
342 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
343 	for (i = 0; i < PA_LOCK_COUNT; i++)
344 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
345 	for (i = 0; i < vm_ndomains; i++)
346 		vm_page_domain_init(&vm_dom[i]);
347 
348 	/*
349 	 * Allocate memory for use when boot strapping the kernel memory
350 	 * allocator.
351 	 */
352 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
353 	new_end = trunc_page(new_end);
354 	mapped = pmap_map(&vaddr, new_end, end,
355 	    VM_PROT_READ | VM_PROT_WRITE);
356 	bzero((void *)mapped, end - new_end);
357 	uma_startup((void *)mapped, boot_pages);
358 
359 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
360     defined(__mips__)
361 	/*
362 	 * Allocate a bitmap to indicate that a random physical page
363 	 * needs to be included in a minidump.
364 	 *
365 	 * The amd64 port needs this to indicate which direct map pages
366 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
367 	 *
368 	 * However, i386 still needs this workspace internally within the
369 	 * minidump code.  In theory, they are not needed on i386, but are
370 	 * included should the sf_buf code decide to use them.
371 	 */
372 	last_pa = 0;
373 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
374 		if (dump_avail[i + 1] > last_pa)
375 			last_pa = dump_avail[i + 1];
376 	page_range = last_pa / PAGE_SIZE;
377 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
378 	new_end -= vm_page_dump_size;
379 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
380 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
381 	bzero((void *)vm_page_dump, vm_page_dump_size);
382 #endif
383 #ifdef __amd64__
384 	/*
385 	 * Request that the physical pages underlying the message buffer be
386 	 * included in a crash dump.  Since the message buffer is accessed
387 	 * through the direct map, they are not automatically included.
388 	 */
389 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
390 	last_pa = pa + round_page(msgbufsize);
391 	while (pa < last_pa) {
392 		dump_add_page(pa);
393 		pa += PAGE_SIZE;
394 	}
395 #endif
396 	/*
397 	 * Compute the number of pages of memory that will be available for
398 	 * use (taking into account the overhead of a page structure per
399 	 * page).
400 	 */
401 	first_page = low_water / PAGE_SIZE;
402 #ifdef VM_PHYSSEG_SPARSE
403 	page_range = 0;
404 	for (i = 0; i < vm_phys_nsegs; i++) {
405 		page_range += atop(vm_phys_segs[i].end -
406 		    vm_phys_segs[i].start);
407 	}
408 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
409 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
410 #elif defined(VM_PHYSSEG_DENSE)
411 	page_range = high_water / PAGE_SIZE - first_page;
412 #else
413 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
414 #endif
415 	end = new_end;
416 
417 	/*
418 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
419 	 */
420 	vaddr += PAGE_SIZE;
421 
422 	/*
423 	 * Initialize the mem entry structures now, and put them in the free
424 	 * queue.
425 	 */
426 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
427 	mapped = pmap_map(&vaddr, new_end, end,
428 	    VM_PROT_READ | VM_PROT_WRITE);
429 	vm_page_array = (vm_page_t) mapped;
430 #if VM_NRESERVLEVEL > 0
431 	/*
432 	 * Allocate memory for the reservation management system's data
433 	 * structures.
434 	 */
435 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
436 #endif
437 #if defined(__amd64__) || defined(__mips__)
438 	/*
439 	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
440 	 * like i386, so the pages must be tracked for a crashdump to include
441 	 * this data.  This includes the vm_page_array and the early UMA
442 	 * bootstrap pages.
443 	 */
444 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
445 		dump_add_page(pa);
446 #endif
447 	phys_avail[biggestone + 1] = new_end;
448 
449 	/*
450 	 * Add physical memory segments corresponding to the available
451 	 * physical pages.
452 	 */
453 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
454 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
455 
456 	/*
457 	 * Clear all of the page structures
458 	 */
459 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
460 	for (i = 0; i < page_range; i++)
461 		vm_page_array[i].order = VM_NFREEORDER;
462 	vm_page_array_size = page_range;
463 
464 	/*
465 	 * Initialize the physical memory allocator.
466 	 */
467 	vm_phys_init();
468 
469 	/*
470 	 * Add every available physical page that is not blacklisted to
471 	 * the free lists.
472 	 */
473 	vm_cnt.v_page_count = 0;
474 	vm_cnt.v_free_count = 0;
475 	list = kern_getenv("vm.blacklist");
476 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
477 		pa = phys_avail[i];
478 		last_pa = phys_avail[i + 1];
479 		while (pa < last_pa) {
480 			if (list != NULL &&
481 			    vm_page_blacklist_lookup(list, pa))
482 				printf("Skipping page with pa 0x%jx\n",
483 				    (uintmax_t)pa);
484 			else
485 				vm_phys_add_page(pa);
486 			pa += PAGE_SIZE;
487 		}
488 	}
489 	freeenv(list);
490 #if VM_NRESERVLEVEL > 0
491 	/*
492 	 * Initialize the reservation management system.
493 	 */
494 	vm_reserv_init();
495 #endif
496 	return (vaddr);
497 }
498 
499 void
500 vm_page_reference(vm_page_t m)
501 {
502 
503 	vm_page_aflag_set(m, PGA_REFERENCED);
504 }
505 
506 /*
507  *	vm_page_busy_downgrade:
508  *
509  *	Downgrade an exclusive busy page into a single shared busy page.
510  */
511 void
512 vm_page_busy_downgrade(vm_page_t m)
513 {
514 	u_int x;
515 
516 	vm_page_assert_xbusied(m);
517 
518 	for (;;) {
519 		x = m->busy_lock;
520 		x &= VPB_BIT_WAITERS;
521 		if (atomic_cmpset_rel_int(&m->busy_lock,
522 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
523 			break;
524 	}
525 }
526 
527 /*
528  *	vm_page_sbusied:
529  *
530  *	Return a positive value if the page is shared busied, 0 otherwise.
531  */
532 int
533 vm_page_sbusied(vm_page_t m)
534 {
535 	u_int x;
536 
537 	x = m->busy_lock;
538 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
539 }
540 
541 /*
542  *	vm_page_sunbusy:
543  *
544  *	Shared unbusy a page.
545  */
546 void
547 vm_page_sunbusy(vm_page_t m)
548 {
549 	u_int x;
550 
551 	vm_page_assert_sbusied(m);
552 
553 	for (;;) {
554 		x = m->busy_lock;
555 		if (VPB_SHARERS(x) > 1) {
556 			if (atomic_cmpset_int(&m->busy_lock, x,
557 			    x - VPB_ONE_SHARER))
558 				break;
559 			continue;
560 		}
561 		if ((x & VPB_BIT_WAITERS) == 0) {
562 			KASSERT(x == VPB_SHARERS_WORD(1),
563 			    ("vm_page_sunbusy: invalid lock state"));
564 			if (atomic_cmpset_int(&m->busy_lock,
565 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
566 				break;
567 			continue;
568 		}
569 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
570 		    ("vm_page_sunbusy: invalid lock state for waiters"));
571 
572 		vm_page_lock(m);
573 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
574 			vm_page_unlock(m);
575 			continue;
576 		}
577 		wakeup(m);
578 		vm_page_unlock(m);
579 		break;
580 	}
581 }
582 
583 /*
584  *	vm_page_busy_sleep:
585  *
586  *	Sleep and release the page lock, using the page pointer as wchan.
587  *	This is used to implement the hard-path of busying mechanism.
588  *
589  *	The given page must be locked.
590  */
591 void
592 vm_page_busy_sleep(vm_page_t m, const char *wmesg)
593 {
594 	u_int x;
595 
596 	vm_page_lock_assert(m, MA_OWNED);
597 
598 	x = m->busy_lock;
599 	if (x == VPB_UNBUSIED) {
600 		vm_page_unlock(m);
601 		return;
602 	}
603 	if ((x & VPB_BIT_WAITERS) == 0 &&
604 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
605 		vm_page_unlock(m);
606 		return;
607 	}
608 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
609 }
610 
611 /*
612  *	vm_page_trysbusy:
613  *
614  *	Try to shared busy a page.
615  *	If the operation succeeds 1 is returned otherwise 0.
616  *	The operation never sleeps.
617  */
618 int
619 vm_page_trysbusy(vm_page_t m)
620 {
621 	u_int x;
622 
623 	for (;;) {
624 		x = m->busy_lock;
625 		if ((x & VPB_BIT_SHARED) == 0)
626 			return (0);
627 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
628 			return (1);
629 	}
630 }
631 
632 /*
633  *	vm_page_xunbusy_hard:
634  *
635  *	Called after the first try the exclusive unbusy of a page failed.
636  *	It is assumed that the waiters bit is on.
637  */
638 void
639 vm_page_xunbusy_hard(vm_page_t m)
640 {
641 
642 	vm_page_assert_xbusied(m);
643 
644 	vm_page_lock(m);
645 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
646 	wakeup(m);
647 	vm_page_unlock(m);
648 }
649 
650 /*
651  *	vm_page_flash:
652  *
653  *	Wakeup anyone waiting for the page.
654  *	The ownership bits do not change.
655  *
656  *	The given page must be locked.
657  */
658 void
659 vm_page_flash(vm_page_t m)
660 {
661 	u_int x;
662 
663 	vm_page_lock_assert(m, MA_OWNED);
664 
665 	for (;;) {
666 		x = m->busy_lock;
667 		if ((x & VPB_BIT_WAITERS) == 0)
668 			return;
669 		if (atomic_cmpset_int(&m->busy_lock, x,
670 		    x & (~VPB_BIT_WAITERS)))
671 			break;
672 	}
673 	wakeup(m);
674 }
675 
676 /*
677  * Keep page from being freed by the page daemon
678  * much of the same effect as wiring, except much lower
679  * overhead and should be used only for *very* temporary
680  * holding ("wiring").
681  */
682 void
683 vm_page_hold(vm_page_t mem)
684 {
685 
686 	vm_page_lock_assert(mem, MA_OWNED);
687         mem->hold_count++;
688 }
689 
690 void
691 vm_page_unhold(vm_page_t mem)
692 {
693 
694 	vm_page_lock_assert(mem, MA_OWNED);
695 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
696 	--mem->hold_count;
697 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
698 		vm_page_free_toq(mem);
699 }
700 
701 /*
702  *	vm_page_unhold_pages:
703  *
704  *	Unhold each of the pages that is referenced by the given array.
705  */
706 void
707 vm_page_unhold_pages(vm_page_t *ma, int count)
708 {
709 	struct mtx *mtx, *new_mtx;
710 
711 	mtx = NULL;
712 	for (; count != 0; count--) {
713 		/*
714 		 * Avoid releasing and reacquiring the same page lock.
715 		 */
716 		new_mtx = vm_page_lockptr(*ma);
717 		if (mtx != new_mtx) {
718 			if (mtx != NULL)
719 				mtx_unlock(mtx);
720 			mtx = new_mtx;
721 			mtx_lock(mtx);
722 		}
723 		vm_page_unhold(*ma);
724 		ma++;
725 	}
726 	if (mtx != NULL)
727 		mtx_unlock(mtx);
728 }
729 
730 vm_page_t
731 PHYS_TO_VM_PAGE(vm_paddr_t pa)
732 {
733 	vm_page_t m;
734 
735 #ifdef VM_PHYSSEG_SPARSE
736 	m = vm_phys_paddr_to_vm_page(pa);
737 	if (m == NULL)
738 		m = vm_phys_fictitious_to_vm_page(pa);
739 	return (m);
740 #elif defined(VM_PHYSSEG_DENSE)
741 	long pi;
742 
743 	pi = atop(pa);
744 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
745 		m = &vm_page_array[pi - first_page];
746 		return (m);
747 	}
748 	return (vm_phys_fictitious_to_vm_page(pa));
749 #else
750 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
751 #endif
752 }
753 
754 /*
755  *	vm_page_getfake:
756  *
757  *	Create a fictitious page with the specified physical address and
758  *	memory attribute.  The memory attribute is the only the machine-
759  *	dependent aspect of a fictitious page that must be initialized.
760  */
761 vm_page_t
762 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
763 {
764 	vm_page_t m;
765 
766 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
767 	vm_page_initfake(m, paddr, memattr);
768 	return (m);
769 }
770 
771 void
772 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
773 {
774 
775 	if ((m->flags & PG_FICTITIOUS) != 0) {
776 		/*
777 		 * The page's memattr might have changed since the
778 		 * previous initialization.  Update the pmap to the
779 		 * new memattr.
780 		 */
781 		goto memattr;
782 	}
783 	m->phys_addr = paddr;
784 	m->queue = PQ_NONE;
785 	/* Fictitious pages don't use "segind". */
786 	m->flags = PG_FICTITIOUS;
787 	/* Fictitious pages don't use "order" or "pool". */
788 	m->oflags = VPO_UNMANAGED;
789 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
790 	m->wire_count = 1;
791 	pmap_page_init(m);
792 memattr:
793 	pmap_page_set_memattr(m, memattr);
794 }
795 
796 /*
797  *	vm_page_putfake:
798  *
799  *	Release a fictitious page.
800  */
801 void
802 vm_page_putfake(vm_page_t m)
803 {
804 
805 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
806 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
807 	    ("vm_page_putfake: bad page %p", m));
808 	uma_zfree(fakepg_zone, m);
809 }
810 
811 /*
812  *	vm_page_updatefake:
813  *
814  *	Update the given fictitious page to the specified physical address and
815  *	memory attribute.
816  */
817 void
818 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
819 {
820 
821 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
822 	    ("vm_page_updatefake: bad page %p", m));
823 	m->phys_addr = paddr;
824 	pmap_page_set_memattr(m, memattr);
825 }
826 
827 /*
828  *	vm_page_free:
829  *
830  *	Free a page.
831  */
832 void
833 vm_page_free(vm_page_t m)
834 {
835 
836 	m->flags &= ~PG_ZERO;
837 	vm_page_free_toq(m);
838 }
839 
840 /*
841  *	vm_page_free_zero:
842  *
843  *	Free a page to the zerod-pages queue
844  */
845 void
846 vm_page_free_zero(vm_page_t m)
847 {
848 
849 	m->flags |= PG_ZERO;
850 	vm_page_free_toq(m);
851 }
852 
853 /*
854  * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
855  * array which is not the request page.
856  */
857 void
858 vm_page_readahead_finish(vm_page_t m)
859 {
860 
861 	if (m->valid != 0) {
862 		/*
863 		 * Since the page is not the requested page, whether
864 		 * it should be activated or deactivated is not
865 		 * obvious.  Empirical results have shown that
866 		 * deactivating the page is usually the best choice,
867 		 * unless the page is wanted by another thread.
868 		 */
869 		vm_page_lock(m);
870 		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
871 			vm_page_activate(m);
872 		else
873 			vm_page_deactivate(m);
874 		vm_page_unlock(m);
875 		vm_page_xunbusy(m);
876 	} else {
877 		/*
878 		 * Free the completely invalid page.  Such page state
879 		 * occurs due to the short read operation which did
880 		 * not covered our page at all, or in case when a read
881 		 * error happens.
882 		 */
883 		vm_page_lock(m);
884 		vm_page_free(m);
885 		vm_page_unlock(m);
886 	}
887 }
888 
889 /*
890  *	vm_page_sleep_if_busy:
891  *
892  *	Sleep and release the page queues lock if the page is busied.
893  *	Returns TRUE if the thread slept.
894  *
895  *	The given page must be unlocked and object containing it must
896  *	be locked.
897  */
898 int
899 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
900 {
901 	vm_object_t obj;
902 
903 	vm_page_lock_assert(m, MA_NOTOWNED);
904 	VM_OBJECT_ASSERT_WLOCKED(m->object);
905 
906 	if (vm_page_busied(m)) {
907 		/*
908 		 * The page-specific object must be cached because page
909 		 * identity can change during the sleep, causing the
910 		 * re-lock of a different object.
911 		 * It is assumed that a reference to the object is already
912 		 * held by the callers.
913 		 */
914 		obj = m->object;
915 		vm_page_lock(m);
916 		VM_OBJECT_WUNLOCK(obj);
917 		vm_page_busy_sleep(m, msg);
918 		VM_OBJECT_WLOCK(obj);
919 		return (TRUE);
920 	}
921 	return (FALSE);
922 }
923 
924 /*
925  *	vm_page_dirty_KBI:		[ internal use only ]
926  *
927  *	Set all bits in the page's dirty field.
928  *
929  *	The object containing the specified page must be locked if the
930  *	call is made from the machine-independent layer.
931  *
932  *	See vm_page_clear_dirty_mask().
933  *
934  *	This function should only be called by vm_page_dirty().
935  */
936 void
937 vm_page_dirty_KBI(vm_page_t m)
938 {
939 
940 	/* These assertions refer to this operation by its public name. */
941 	KASSERT((m->flags & PG_CACHED) == 0,
942 	    ("vm_page_dirty: page in cache!"));
943 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
944 	    ("vm_page_dirty: page is invalid!"));
945 	m->dirty = VM_PAGE_BITS_ALL;
946 }
947 
948 /*
949  *	vm_page_insert:		[ internal use only ]
950  *
951  *	Inserts the given mem entry into the object and object list.
952  *
953  *	The object must be locked.
954  */
955 int
956 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
957 {
958 	vm_page_t mpred;
959 
960 	VM_OBJECT_ASSERT_WLOCKED(object);
961 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
962 	return (vm_page_insert_after(m, object, pindex, mpred));
963 }
964 
965 /*
966  *	vm_page_insert_after:
967  *
968  *	Inserts the page "m" into the specified object at offset "pindex".
969  *
970  *	The page "mpred" must immediately precede the offset "pindex" within
971  *	the specified object.
972  *
973  *	The object must be locked.
974  */
975 static int
976 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
977     vm_page_t mpred)
978 {
979 	vm_pindex_t sidx;
980 	vm_object_t sobj;
981 	vm_page_t msucc;
982 
983 	VM_OBJECT_ASSERT_WLOCKED(object);
984 	KASSERT(m->object == NULL,
985 	    ("vm_page_insert_after: page already inserted"));
986 	if (mpred != NULL) {
987 		KASSERT(mpred->object == object,
988 		    ("vm_page_insert_after: object doesn't contain mpred"));
989 		KASSERT(mpred->pindex < pindex,
990 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
991 		msucc = TAILQ_NEXT(mpred, listq);
992 	} else
993 		msucc = TAILQ_FIRST(&object->memq);
994 	if (msucc != NULL)
995 		KASSERT(msucc->pindex > pindex,
996 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
997 
998 	/*
999 	 * Record the object/offset pair in this page
1000 	 */
1001 	sobj = m->object;
1002 	sidx = m->pindex;
1003 	m->object = object;
1004 	m->pindex = pindex;
1005 
1006 	/*
1007 	 * Now link into the object's ordered list of backed pages.
1008 	 */
1009 	if (vm_radix_insert(&object->rtree, m)) {
1010 		m->object = sobj;
1011 		m->pindex = sidx;
1012 		return (1);
1013 	}
1014 	vm_page_insert_radixdone(m, object, mpred);
1015 	return (0);
1016 }
1017 
1018 /*
1019  *	vm_page_insert_radixdone:
1020  *
1021  *	Complete page "m" insertion into the specified object after the
1022  *	radix trie hooking.
1023  *
1024  *	The page "mpred" must precede the offset "m->pindex" within the
1025  *	specified object.
1026  *
1027  *	The object must be locked.
1028  */
1029 static void
1030 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1031 {
1032 
1033 	VM_OBJECT_ASSERT_WLOCKED(object);
1034 	KASSERT(object != NULL && m->object == object,
1035 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1036 	if (mpred != NULL) {
1037 		KASSERT(mpred->object == object,
1038 		    ("vm_page_insert_after: object doesn't contain mpred"));
1039 		KASSERT(mpred->pindex < m->pindex,
1040 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1041 	}
1042 
1043 	if (mpred != NULL)
1044 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1045 	else
1046 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1047 
1048 	/*
1049 	 * Show that the object has one more resident page.
1050 	 */
1051 	object->resident_page_count++;
1052 
1053 	/*
1054 	 * Hold the vnode until the last page is released.
1055 	 */
1056 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1057 		vhold(object->handle);
1058 
1059 	/*
1060 	 * Since we are inserting a new and possibly dirty page,
1061 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1062 	 */
1063 	if (pmap_page_is_write_mapped(m))
1064 		vm_object_set_writeable_dirty(object);
1065 }
1066 
1067 /*
1068  *	vm_page_remove:
1069  *
1070  *	Removes the given mem entry from the object/offset-page
1071  *	table and the object page list, but do not invalidate/terminate
1072  *	the backing store.
1073  *
1074  *	The object must be locked.  The page must be locked if it is managed.
1075  */
1076 void
1077 vm_page_remove(vm_page_t m)
1078 {
1079 	vm_object_t object;
1080 	boolean_t lockacq;
1081 
1082 	if ((m->oflags & VPO_UNMANAGED) == 0)
1083 		vm_page_lock_assert(m, MA_OWNED);
1084 	if ((object = m->object) == NULL)
1085 		return;
1086 	VM_OBJECT_ASSERT_WLOCKED(object);
1087 	if (vm_page_xbusied(m)) {
1088 		lockacq = FALSE;
1089 		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1090 		    !mtx_owned(vm_page_lockptr(m))) {
1091 			lockacq = TRUE;
1092 			vm_page_lock(m);
1093 		}
1094 		vm_page_flash(m);
1095 		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1096 		if (lockacq)
1097 			vm_page_unlock(m);
1098 	}
1099 
1100 	/*
1101 	 * Now remove from the object's list of backed pages.
1102 	 */
1103 	vm_radix_remove(&object->rtree, m->pindex);
1104 	TAILQ_REMOVE(&object->memq, m, listq);
1105 
1106 	/*
1107 	 * And show that the object has one fewer resident page.
1108 	 */
1109 	object->resident_page_count--;
1110 
1111 	/*
1112 	 * The vnode may now be recycled.
1113 	 */
1114 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1115 		vdrop(object->handle);
1116 
1117 	m->object = NULL;
1118 }
1119 
1120 /*
1121  *	vm_page_lookup:
1122  *
1123  *	Returns the page associated with the object/offset
1124  *	pair specified; if none is found, NULL is returned.
1125  *
1126  *	The object must be locked.
1127  */
1128 vm_page_t
1129 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1130 {
1131 
1132 	VM_OBJECT_ASSERT_LOCKED(object);
1133 	return (vm_radix_lookup(&object->rtree, pindex));
1134 }
1135 
1136 /*
1137  *	vm_page_find_least:
1138  *
1139  *	Returns the page associated with the object with least pindex
1140  *	greater than or equal to the parameter pindex, or NULL.
1141  *
1142  *	The object must be locked.
1143  */
1144 vm_page_t
1145 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1146 {
1147 	vm_page_t m;
1148 
1149 	VM_OBJECT_ASSERT_LOCKED(object);
1150 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1151 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1152 	return (m);
1153 }
1154 
1155 /*
1156  * Returns the given page's successor (by pindex) within the object if it is
1157  * resident; if none is found, NULL is returned.
1158  *
1159  * The object must be locked.
1160  */
1161 vm_page_t
1162 vm_page_next(vm_page_t m)
1163 {
1164 	vm_page_t next;
1165 
1166 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1167 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1168 	    next->pindex != m->pindex + 1)
1169 		next = NULL;
1170 	return (next);
1171 }
1172 
1173 /*
1174  * Returns the given page's predecessor (by pindex) within the object if it is
1175  * resident; if none is found, NULL is returned.
1176  *
1177  * The object must be locked.
1178  */
1179 vm_page_t
1180 vm_page_prev(vm_page_t m)
1181 {
1182 	vm_page_t prev;
1183 
1184 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1185 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1186 	    prev->pindex != m->pindex - 1)
1187 		prev = NULL;
1188 	return (prev);
1189 }
1190 
1191 /*
1192  * Uses the page mnew as a replacement for an existing page at index
1193  * pindex which must be already present in the object.
1194  *
1195  * The existing page must not be on a paging queue.
1196  */
1197 vm_page_t
1198 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1199 {
1200 	vm_page_t mold, mpred;
1201 
1202 	VM_OBJECT_ASSERT_WLOCKED(object);
1203 
1204 	/*
1205 	 * This function mostly follows vm_page_insert() and
1206 	 * vm_page_remove() without the radix, object count and vnode
1207 	 * dance.  Double check such functions for more comments.
1208 	 */
1209 	mpred = vm_radix_lookup(&object->rtree, pindex);
1210 	KASSERT(mpred != NULL,
1211 	    ("vm_page_replace: replacing page not present with pindex"));
1212 	mpred = TAILQ_PREV(mpred, respgs, listq);
1213 	if (mpred != NULL)
1214 		KASSERT(mpred->pindex < pindex,
1215 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1216 
1217 	mnew->object = object;
1218 	mnew->pindex = pindex;
1219 	mold = vm_radix_replace(&object->rtree, mnew);
1220 	KASSERT(mold->queue == PQ_NONE,
1221 	    ("vm_page_replace: mold is on a paging queue"));
1222 
1223 	/* Detach the old page from the resident tailq. */
1224 	TAILQ_REMOVE(&object->memq, mold, listq);
1225 
1226 	mold->object = NULL;
1227 	vm_page_xunbusy(mold);
1228 
1229 	/* Insert the new page in the resident tailq. */
1230 	if (mpred != NULL)
1231 		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1232 	else
1233 		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1234 	if (pmap_page_is_write_mapped(mnew))
1235 		vm_object_set_writeable_dirty(object);
1236 	return (mold);
1237 }
1238 
1239 /*
1240  *	vm_page_rename:
1241  *
1242  *	Move the given memory entry from its
1243  *	current object to the specified target object/offset.
1244  *
1245  *	Note: swap associated with the page must be invalidated by the move.  We
1246  *	      have to do this for several reasons:  (1) we aren't freeing the
1247  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1248  *	      moving the page from object A to B, and will then later move
1249  *	      the backing store from A to B and we can't have a conflict.
1250  *
1251  *	Note: we *always* dirty the page.  It is necessary both for the
1252  *	      fact that we moved it, and because we may be invalidating
1253  *	      swap.  If the page is on the cache, we have to deactivate it
1254  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1255  *	      on the cache.
1256  *
1257  *	The objects must be locked.
1258  */
1259 int
1260 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1261 {
1262 	vm_page_t mpred;
1263 	vm_pindex_t opidx;
1264 
1265 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1266 
1267 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1268 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1269 	    ("vm_page_rename: pindex already renamed"));
1270 
1271 	/*
1272 	 * Create a custom version of vm_page_insert() which does not depend
1273 	 * by m_prev and can cheat on the implementation aspects of the
1274 	 * function.
1275 	 */
1276 	opidx = m->pindex;
1277 	m->pindex = new_pindex;
1278 	if (vm_radix_insert(&new_object->rtree, m)) {
1279 		m->pindex = opidx;
1280 		return (1);
1281 	}
1282 
1283 	/*
1284 	 * The operation cannot fail anymore.  The removal must happen before
1285 	 * the listq iterator is tainted.
1286 	 */
1287 	m->pindex = opidx;
1288 	vm_page_lock(m);
1289 	vm_page_remove(m);
1290 
1291 	/* Return back to the new pindex to complete vm_page_insert(). */
1292 	m->pindex = new_pindex;
1293 	m->object = new_object;
1294 	vm_page_unlock(m);
1295 	vm_page_insert_radixdone(m, new_object, mpred);
1296 	vm_page_dirty(m);
1297 	return (0);
1298 }
1299 
1300 /*
1301  *	Convert all of the given object's cached pages that have a
1302  *	pindex within the given range into free pages.  If the value
1303  *	zero is given for "end", then the range's upper bound is
1304  *	infinity.  If the given object is backed by a vnode and it
1305  *	transitions from having one or more cached pages to none, the
1306  *	vnode's hold count is reduced.
1307  */
1308 void
1309 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1310 {
1311 	vm_page_t m;
1312 	boolean_t empty;
1313 
1314 	mtx_lock(&vm_page_queue_free_mtx);
1315 	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1316 		mtx_unlock(&vm_page_queue_free_mtx);
1317 		return;
1318 	}
1319 	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1320 		if (end != 0 && m->pindex >= end)
1321 			break;
1322 		vm_radix_remove(&object->cache, m->pindex);
1323 		vm_page_cache_turn_free(m);
1324 	}
1325 	empty = vm_radix_is_empty(&object->cache);
1326 	mtx_unlock(&vm_page_queue_free_mtx);
1327 	if (object->type == OBJT_VNODE && empty)
1328 		vdrop(object->handle);
1329 }
1330 
1331 /*
1332  *	Returns the cached page that is associated with the given
1333  *	object and offset.  If, however, none exists, returns NULL.
1334  *
1335  *	The free page queue must be locked.
1336  */
1337 static inline vm_page_t
1338 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1339 {
1340 
1341 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1342 	return (vm_radix_lookup(&object->cache, pindex));
1343 }
1344 
1345 /*
1346  *	Remove the given cached page from its containing object's
1347  *	collection of cached pages.
1348  *
1349  *	The free page queue must be locked.
1350  */
1351 static void
1352 vm_page_cache_remove(vm_page_t m)
1353 {
1354 
1355 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1356 	KASSERT((m->flags & PG_CACHED) != 0,
1357 	    ("vm_page_cache_remove: page %p is not cached", m));
1358 	vm_radix_remove(&m->object->cache, m->pindex);
1359 	m->object = NULL;
1360 	vm_cnt.v_cache_count--;
1361 }
1362 
1363 /*
1364  *	Transfer all of the cached pages with offset greater than or
1365  *	equal to 'offidxstart' from the original object's cache to the
1366  *	new object's cache.  However, any cached pages with offset
1367  *	greater than or equal to the new object's size are kept in the
1368  *	original object.  Initially, the new object's cache must be
1369  *	empty.  Offset 'offidxstart' in the original object must
1370  *	correspond to offset zero in the new object.
1371  *
1372  *	The new object must be locked.
1373  */
1374 void
1375 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1376     vm_object_t new_object)
1377 {
1378 	vm_page_t m;
1379 
1380 	/*
1381 	 * Insertion into an object's collection of cached pages
1382 	 * requires the object to be locked.  In contrast, removal does
1383 	 * not.
1384 	 */
1385 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1386 	KASSERT(vm_radix_is_empty(&new_object->cache),
1387 	    ("vm_page_cache_transfer: object %p has cached pages",
1388 	    new_object));
1389 	mtx_lock(&vm_page_queue_free_mtx);
1390 	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1391 	    offidxstart)) != NULL) {
1392 		/*
1393 		 * Transfer all of the pages with offset greater than or
1394 		 * equal to 'offidxstart' from the original object's
1395 		 * cache to the new object's cache.
1396 		 */
1397 		if ((m->pindex - offidxstart) >= new_object->size)
1398 			break;
1399 		vm_radix_remove(&orig_object->cache, m->pindex);
1400 		/* Update the page's object and offset. */
1401 		m->object = new_object;
1402 		m->pindex -= offidxstart;
1403 		if (vm_radix_insert(&new_object->cache, m))
1404 			vm_page_cache_turn_free(m);
1405 	}
1406 	mtx_unlock(&vm_page_queue_free_mtx);
1407 }
1408 
1409 /*
1410  *	Returns TRUE if a cached page is associated with the given object and
1411  *	offset, and FALSE otherwise.
1412  *
1413  *	The object must be locked.
1414  */
1415 boolean_t
1416 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1417 {
1418 	vm_page_t m;
1419 
1420 	/*
1421 	 * Insertion into an object's collection of cached pages requires the
1422 	 * object to be locked.  Therefore, if the object is locked and the
1423 	 * object's collection is empty, there is no need to acquire the free
1424 	 * page queues lock in order to prove that the specified page doesn't
1425 	 * exist.
1426 	 */
1427 	VM_OBJECT_ASSERT_WLOCKED(object);
1428 	if (__predict_true(vm_object_cache_is_empty(object)))
1429 		return (FALSE);
1430 	mtx_lock(&vm_page_queue_free_mtx);
1431 	m = vm_page_cache_lookup(object, pindex);
1432 	mtx_unlock(&vm_page_queue_free_mtx);
1433 	return (m != NULL);
1434 }
1435 
1436 /*
1437  *	vm_page_alloc:
1438  *
1439  *	Allocate and return a page that is associated with the specified
1440  *	object and offset pair.  By default, this page is exclusive busied.
1441  *
1442  *	The caller must always specify an allocation class.
1443  *
1444  *	allocation classes:
1445  *	VM_ALLOC_NORMAL		normal process request
1446  *	VM_ALLOC_SYSTEM		system *really* needs a page
1447  *	VM_ALLOC_INTERRUPT	interrupt time request
1448  *
1449  *	optional allocation flags:
1450  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1451  *				intends to allocate
1452  *	VM_ALLOC_IFCACHED	return page only if it is cached
1453  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1454  *				is cached
1455  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1456  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1457  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1458  *				should not be exclusive busy
1459  *	VM_ALLOC_SBUSY		shared busy the allocated page
1460  *	VM_ALLOC_WIRED		wire the allocated page
1461  *	VM_ALLOC_ZERO		prefer a zeroed page
1462  *
1463  *	This routine may not sleep.
1464  */
1465 vm_page_t
1466 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1467 {
1468 	struct vnode *vp = NULL;
1469 	vm_object_t m_object;
1470 	vm_page_t m, mpred;
1471 	int flags, req_class;
1472 
1473 	mpred = 0;	/* XXX: pacify gcc */
1474 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1475 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1476 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1477 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1478 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1479 	    req));
1480 	if (object != NULL)
1481 		VM_OBJECT_ASSERT_WLOCKED(object);
1482 
1483 	req_class = req & VM_ALLOC_CLASS_MASK;
1484 
1485 	/*
1486 	 * The page daemon is allowed to dig deeper into the free page list.
1487 	 */
1488 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1489 		req_class = VM_ALLOC_SYSTEM;
1490 
1491 	if (object != NULL) {
1492 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1493 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1494 		   ("vm_page_alloc: pindex already allocated"));
1495 	}
1496 
1497 	/*
1498 	 * The page allocation request can came from consumers which already
1499 	 * hold the free page queue mutex, like vm_page_insert() in
1500 	 * vm_page_cache().
1501 	 */
1502 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1503 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1504 	    (req_class == VM_ALLOC_SYSTEM &&
1505 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1506 	    (req_class == VM_ALLOC_INTERRUPT &&
1507 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1508 		/*
1509 		 * Allocate from the free queue if the number of free pages
1510 		 * exceeds the minimum for the request class.
1511 		 */
1512 		if (object != NULL &&
1513 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1514 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1515 				mtx_unlock(&vm_page_queue_free_mtx);
1516 				return (NULL);
1517 			}
1518 			if (vm_phys_unfree_page(m))
1519 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1520 #if VM_NRESERVLEVEL > 0
1521 			else if (!vm_reserv_reactivate_page(m))
1522 #else
1523 			else
1524 #endif
1525 				panic("vm_page_alloc: cache page %p is missing"
1526 				    " from the free queue", m);
1527 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1528 			mtx_unlock(&vm_page_queue_free_mtx);
1529 			return (NULL);
1530 #if VM_NRESERVLEVEL > 0
1531 		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1532 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1533 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1534 #else
1535 		} else {
1536 #endif
1537 			m = vm_phys_alloc_pages(object != NULL ?
1538 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1539 #if VM_NRESERVLEVEL > 0
1540 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1541 				m = vm_phys_alloc_pages(object != NULL ?
1542 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1543 				    0);
1544 			}
1545 #endif
1546 		}
1547 	} else {
1548 		/*
1549 		 * Not allocatable, give up.
1550 		 */
1551 		mtx_unlock(&vm_page_queue_free_mtx);
1552 		atomic_add_int(&vm_pageout_deficit,
1553 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1554 		pagedaemon_wakeup();
1555 		return (NULL);
1556 	}
1557 
1558 	/*
1559 	 *  At this point we had better have found a good page.
1560 	 */
1561 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1562 	KASSERT(m->queue == PQ_NONE,
1563 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1564 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1565 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1566 	KASSERT(!vm_page_sbusied(m),
1567 	    ("vm_page_alloc: page %p is busy", m));
1568 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1569 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1570 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1571 	    pmap_page_get_memattr(m)));
1572 	if ((m->flags & PG_CACHED) != 0) {
1573 		KASSERT((m->flags & PG_ZERO) == 0,
1574 		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1575 		KASSERT(m->valid != 0,
1576 		    ("vm_page_alloc: cached page %p is invalid", m));
1577 		if (m->object == object && m->pindex == pindex)
1578 			vm_cnt.v_reactivated++;
1579 		else
1580 			m->valid = 0;
1581 		m_object = m->object;
1582 		vm_page_cache_remove(m);
1583 		if (m_object->type == OBJT_VNODE &&
1584 		    vm_object_cache_is_empty(m_object))
1585 			vp = m_object->handle;
1586 	} else {
1587 		KASSERT(m->valid == 0,
1588 		    ("vm_page_alloc: free page %p is valid", m));
1589 		vm_phys_freecnt_adj(m, -1);
1590 		if ((m->flags & PG_ZERO) != 0)
1591 			vm_page_zero_count--;
1592 	}
1593 	mtx_unlock(&vm_page_queue_free_mtx);
1594 
1595 	/*
1596 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1597 	 */
1598 	flags = 0;
1599 	if ((req & VM_ALLOC_ZERO) != 0)
1600 		flags = PG_ZERO;
1601 	flags &= m->flags;
1602 	if ((req & VM_ALLOC_NODUMP) != 0)
1603 		flags |= PG_NODUMP;
1604 	m->flags = flags;
1605 	m->aflags = 0;
1606 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1607 	    VPO_UNMANAGED : 0;
1608 	m->busy_lock = VPB_UNBUSIED;
1609 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1610 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1611 	if ((req & VM_ALLOC_SBUSY) != 0)
1612 		m->busy_lock = VPB_SHARERS_WORD(1);
1613 	if (req & VM_ALLOC_WIRED) {
1614 		/*
1615 		 * The page lock is not required for wiring a page until that
1616 		 * page is inserted into the object.
1617 		 */
1618 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1619 		m->wire_count = 1;
1620 	}
1621 	m->act_count = 0;
1622 
1623 	if (object != NULL) {
1624 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1625 			/* See the comment below about hold count. */
1626 			if (vp != NULL)
1627 				vdrop(vp);
1628 			pagedaemon_wakeup();
1629 			if (req & VM_ALLOC_WIRED) {
1630 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1631 				m->wire_count = 0;
1632 			}
1633 			m->object = NULL;
1634 			vm_page_free(m);
1635 			return (NULL);
1636 		}
1637 
1638 		/* Ignore device objects; the pager sets "memattr" for them. */
1639 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1640 		    (object->flags & OBJ_FICTITIOUS) == 0)
1641 			pmap_page_set_memattr(m, object->memattr);
1642 	} else
1643 		m->pindex = pindex;
1644 
1645 	/*
1646 	 * The following call to vdrop() must come after the above call
1647 	 * to vm_page_insert() in case both affect the same object and
1648 	 * vnode.  Otherwise, the affected vnode's hold count could
1649 	 * temporarily become zero.
1650 	 */
1651 	if (vp != NULL)
1652 		vdrop(vp);
1653 
1654 	/*
1655 	 * Don't wakeup too often - wakeup the pageout daemon when
1656 	 * we would be nearly out of memory.
1657 	 */
1658 	if (vm_paging_needed())
1659 		pagedaemon_wakeup();
1660 
1661 	return (m);
1662 }
1663 
1664 static void
1665 vm_page_alloc_contig_vdrop(struct spglist *lst)
1666 {
1667 
1668 	while (!SLIST_EMPTY(lst)) {
1669 		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1670 		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1671 	}
1672 }
1673 
1674 /*
1675  *	vm_page_alloc_contig:
1676  *
1677  *	Allocate a contiguous set of physical pages of the given size "npages"
1678  *	from the free lists.  All of the physical pages must be at or above
1679  *	the given physical address "low" and below the given physical address
1680  *	"high".  The given value "alignment" determines the alignment of the
1681  *	first physical page in the set.  If the given value "boundary" is
1682  *	non-zero, then the set of physical pages cannot cross any physical
1683  *	address boundary that is a multiple of that value.  Both "alignment"
1684  *	and "boundary" must be a power of two.
1685  *
1686  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1687  *	then the memory attribute setting for the physical pages is configured
1688  *	to the object's memory attribute setting.  Otherwise, the memory
1689  *	attribute setting for the physical pages is configured to "memattr",
1690  *	overriding the object's memory attribute setting.  However, if the
1691  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1692  *	memory attribute setting for the physical pages cannot be configured
1693  *	to VM_MEMATTR_DEFAULT.
1694  *
1695  *	The caller must always specify an allocation class.
1696  *
1697  *	allocation classes:
1698  *	VM_ALLOC_NORMAL		normal process request
1699  *	VM_ALLOC_SYSTEM		system *really* needs a page
1700  *	VM_ALLOC_INTERRUPT	interrupt time request
1701  *
1702  *	optional allocation flags:
1703  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1704  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1705  *				should not be exclusive busy
1706  *	VM_ALLOC_SBUSY		shared busy the allocated page
1707  *	VM_ALLOC_WIRED		wire the allocated page
1708  *	VM_ALLOC_ZERO		prefer a zeroed page
1709  *
1710  *	This routine may not sleep.
1711  */
1712 vm_page_t
1713 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1714     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1715     vm_paddr_t boundary, vm_memattr_t memattr)
1716 {
1717 	struct vnode *drop;
1718 	struct spglist deferred_vdrop_list;
1719 	vm_page_t m, m_tmp, m_ret;
1720 	u_int flags;
1721 	int req_class;
1722 
1723 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1724 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1725 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1726 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1727 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1728 	    req));
1729 	if (object != NULL) {
1730 		VM_OBJECT_ASSERT_WLOCKED(object);
1731 		KASSERT(object->type == OBJT_PHYS,
1732 		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1733 		    object));
1734 	}
1735 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1736 	req_class = req & VM_ALLOC_CLASS_MASK;
1737 
1738 	/*
1739 	 * The page daemon is allowed to dig deeper into the free page list.
1740 	 */
1741 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1742 		req_class = VM_ALLOC_SYSTEM;
1743 
1744 	SLIST_INIT(&deferred_vdrop_list);
1745 	mtx_lock(&vm_page_queue_free_mtx);
1746 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1747 	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1748 	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1749 	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1750 	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1751 #if VM_NRESERVLEVEL > 0
1752 retry:
1753 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1754 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1755 		    low, high, alignment, boundary)) == NULL)
1756 #endif
1757 			m_ret = vm_phys_alloc_contig(npages, low, high,
1758 			    alignment, boundary);
1759 	} else {
1760 		mtx_unlock(&vm_page_queue_free_mtx);
1761 		atomic_add_int(&vm_pageout_deficit, npages);
1762 		pagedaemon_wakeup();
1763 		return (NULL);
1764 	}
1765 	if (m_ret != NULL)
1766 		for (m = m_ret; m < &m_ret[npages]; m++) {
1767 			drop = vm_page_alloc_init(m);
1768 			if (drop != NULL) {
1769 				/*
1770 				 * Enqueue the vnode for deferred vdrop().
1771 				 */
1772 				m->plinks.s.pv = drop;
1773 				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1774 				    plinks.s.ss);
1775 			}
1776 		}
1777 	else {
1778 #if VM_NRESERVLEVEL > 0
1779 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1780 		    boundary))
1781 			goto retry;
1782 #endif
1783 	}
1784 	mtx_unlock(&vm_page_queue_free_mtx);
1785 	if (m_ret == NULL)
1786 		return (NULL);
1787 
1788 	/*
1789 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1790 	 */
1791 	flags = 0;
1792 	if ((req & VM_ALLOC_ZERO) != 0)
1793 		flags = PG_ZERO;
1794 	if ((req & VM_ALLOC_NODUMP) != 0)
1795 		flags |= PG_NODUMP;
1796 	if ((req & VM_ALLOC_WIRED) != 0)
1797 		atomic_add_int(&vm_cnt.v_wire_count, npages);
1798 	if (object != NULL) {
1799 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1800 		    memattr == VM_MEMATTR_DEFAULT)
1801 			memattr = object->memattr;
1802 	}
1803 	for (m = m_ret; m < &m_ret[npages]; m++) {
1804 		m->aflags = 0;
1805 		m->flags = (m->flags | PG_NODUMP) & flags;
1806 		m->busy_lock = VPB_UNBUSIED;
1807 		if (object != NULL) {
1808 			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1809 				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1810 			if ((req & VM_ALLOC_SBUSY) != 0)
1811 				m->busy_lock = VPB_SHARERS_WORD(1);
1812 		}
1813 		if ((req & VM_ALLOC_WIRED) != 0)
1814 			m->wire_count = 1;
1815 		/* Unmanaged pages don't use "act_count". */
1816 		m->oflags = VPO_UNMANAGED;
1817 		if (object != NULL) {
1818 			if (vm_page_insert(m, object, pindex)) {
1819 				vm_page_alloc_contig_vdrop(
1820 				    &deferred_vdrop_list);
1821 				if (vm_paging_needed())
1822 					pagedaemon_wakeup();
1823 				if ((req & VM_ALLOC_WIRED) != 0)
1824 					atomic_subtract_int(&vm_cnt.v_wire_count,
1825 					    npages);
1826 				for (m_tmp = m, m = m_ret;
1827 				    m < &m_ret[npages]; m++) {
1828 					if ((req & VM_ALLOC_WIRED) != 0)
1829 						m->wire_count = 0;
1830 					if (m >= m_tmp)
1831 						m->object = NULL;
1832 					vm_page_free(m);
1833 				}
1834 				return (NULL);
1835 			}
1836 		} else
1837 			m->pindex = pindex;
1838 		if (memattr != VM_MEMATTR_DEFAULT)
1839 			pmap_page_set_memattr(m, memattr);
1840 		pindex++;
1841 	}
1842 	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1843 	if (vm_paging_needed())
1844 		pagedaemon_wakeup();
1845 	return (m_ret);
1846 }
1847 
1848 /*
1849  * Initialize a page that has been freshly dequeued from a freelist.
1850  * The caller has to drop the vnode returned, if it is not NULL.
1851  *
1852  * This function may only be used to initialize unmanaged pages.
1853  *
1854  * To be called with vm_page_queue_free_mtx held.
1855  */
1856 static struct vnode *
1857 vm_page_alloc_init(vm_page_t m)
1858 {
1859 	struct vnode *drop;
1860 	vm_object_t m_object;
1861 
1862 	KASSERT(m->queue == PQ_NONE,
1863 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1864 	    m, m->queue));
1865 	KASSERT(m->wire_count == 0,
1866 	    ("vm_page_alloc_init: page %p is wired", m));
1867 	KASSERT(m->hold_count == 0,
1868 	    ("vm_page_alloc_init: page %p is held", m));
1869 	KASSERT(!vm_page_sbusied(m),
1870 	    ("vm_page_alloc_init: page %p is busy", m));
1871 	KASSERT(m->dirty == 0,
1872 	    ("vm_page_alloc_init: page %p is dirty", m));
1873 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1874 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1875 	    m, pmap_page_get_memattr(m)));
1876 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1877 	drop = NULL;
1878 	if ((m->flags & PG_CACHED) != 0) {
1879 		KASSERT((m->flags & PG_ZERO) == 0,
1880 		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1881 		m->valid = 0;
1882 		m_object = m->object;
1883 		vm_page_cache_remove(m);
1884 		if (m_object->type == OBJT_VNODE &&
1885 		    vm_object_cache_is_empty(m_object))
1886 			drop = m_object->handle;
1887 	} else {
1888 		KASSERT(m->valid == 0,
1889 		    ("vm_page_alloc_init: free page %p is valid", m));
1890 		vm_phys_freecnt_adj(m, -1);
1891 		if ((m->flags & PG_ZERO) != 0)
1892 			vm_page_zero_count--;
1893 	}
1894 	return (drop);
1895 }
1896 
1897 /*
1898  * 	vm_page_alloc_freelist:
1899  *
1900  *	Allocate a physical page from the specified free page list.
1901  *
1902  *	The caller must always specify an allocation class.
1903  *
1904  *	allocation classes:
1905  *	VM_ALLOC_NORMAL		normal process request
1906  *	VM_ALLOC_SYSTEM		system *really* needs a page
1907  *	VM_ALLOC_INTERRUPT	interrupt time request
1908  *
1909  *	optional allocation flags:
1910  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1911  *				intends to allocate
1912  *	VM_ALLOC_WIRED		wire the allocated page
1913  *	VM_ALLOC_ZERO		prefer a zeroed page
1914  *
1915  *	This routine may not sleep.
1916  */
1917 vm_page_t
1918 vm_page_alloc_freelist(int flind, int req)
1919 {
1920 	struct vnode *drop;
1921 	vm_page_t m;
1922 	u_int flags;
1923 	int req_class;
1924 
1925 	req_class = req & VM_ALLOC_CLASS_MASK;
1926 
1927 	/*
1928 	 * The page daemon is allowed to dig deeper into the free page list.
1929 	 */
1930 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1931 		req_class = VM_ALLOC_SYSTEM;
1932 
1933 	/*
1934 	 * Do not allocate reserved pages unless the req has asked for it.
1935 	 */
1936 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1937 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1938 	    (req_class == VM_ALLOC_SYSTEM &&
1939 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1940 	    (req_class == VM_ALLOC_INTERRUPT &&
1941 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
1942 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1943 	else {
1944 		mtx_unlock(&vm_page_queue_free_mtx);
1945 		atomic_add_int(&vm_pageout_deficit,
1946 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1947 		pagedaemon_wakeup();
1948 		return (NULL);
1949 	}
1950 	if (m == NULL) {
1951 		mtx_unlock(&vm_page_queue_free_mtx);
1952 		return (NULL);
1953 	}
1954 	drop = vm_page_alloc_init(m);
1955 	mtx_unlock(&vm_page_queue_free_mtx);
1956 
1957 	/*
1958 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1959 	 */
1960 	m->aflags = 0;
1961 	flags = 0;
1962 	if ((req & VM_ALLOC_ZERO) != 0)
1963 		flags = PG_ZERO;
1964 	m->flags &= flags;
1965 	if ((req & VM_ALLOC_WIRED) != 0) {
1966 		/*
1967 		 * The page lock is not required for wiring a page that does
1968 		 * not belong to an object.
1969 		 */
1970 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1971 		m->wire_count = 1;
1972 	}
1973 	/* Unmanaged pages don't use "act_count". */
1974 	m->oflags = VPO_UNMANAGED;
1975 	if (drop != NULL)
1976 		vdrop(drop);
1977 	if (vm_paging_needed())
1978 		pagedaemon_wakeup();
1979 	return (m);
1980 }
1981 
1982 /*
1983  *	vm_wait:	(also see VM_WAIT macro)
1984  *
1985  *	Sleep until free pages are available for allocation.
1986  *	- Called in various places before memory allocations.
1987  */
1988 void
1989 vm_wait(void)
1990 {
1991 
1992 	mtx_lock(&vm_page_queue_free_mtx);
1993 	if (curproc == pageproc) {
1994 		vm_pageout_pages_needed = 1;
1995 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1996 		    PDROP | PSWP, "VMWait", 0);
1997 	} else {
1998 		if (!vm_pages_needed) {
1999 			vm_pages_needed = 1;
2000 			wakeup(&vm_pages_needed);
2001 		}
2002 		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2003 		    "vmwait", 0);
2004 	}
2005 }
2006 
2007 /*
2008  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2009  *
2010  *	Sleep until free pages are available for allocation.
2011  *	- Called only in vm_fault so that processes page faulting
2012  *	  can be easily tracked.
2013  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2014  *	  processes will be able to grab memory first.  Do not change
2015  *	  this balance without careful testing first.
2016  */
2017 void
2018 vm_waitpfault(void)
2019 {
2020 
2021 	mtx_lock(&vm_page_queue_free_mtx);
2022 	if (!vm_pages_needed) {
2023 		vm_pages_needed = 1;
2024 		wakeup(&vm_pages_needed);
2025 	}
2026 	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2027 	    "pfault", 0);
2028 }
2029 
2030 struct vm_pagequeue *
2031 vm_page_pagequeue(vm_page_t m)
2032 {
2033 
2034 	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2035 }
2036 
2037 /*
2038  *	vm_page_dequeue:
2039  *
2040  *	Remove the given page from its current page queue.
2041  *
2042  *	The page must be locked.
2043  */
2044 void
2045 vm_page_dequeue(vm_page_t m)
2046 {
2047 	struct vm_pagequeue *pq;
2048 
2049 	vm_page_assert_locked(m);
2050 	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2051 	    m));
2052 	pq = vm_page_pagequeue(m);
2053 	vm_pagequeue_lock(pq);
2054 	m->queue = PQ_NONE;
2055 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2056 	vm_pagequeue_cnt_dec(pq);
2057 	vm_pagequeue_unlock(pq);
2058 }
2059 
2060 /*
2061  *	vm_page_dequeue_locked:
2062  *
2063  *	Remove the given page from its current page queue.
2064  *
2065  *	The page and page queue must be locked.
2066  */
2067 void
2068 vm_page_dequeue_locked(vm_page_t m)
2069 {
2070 	struct vm_pagequeue *pq;
2071 
2072 	vm_page_lock_assert(m, MA_OWNED);
2073 	pq = vm_page_pagequeue(m);
2074 	vm_pagequeue_assert_locked(pq);
2075 	m->queue = PQ_NONE;
2076 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2077 	vm_pagequeue_cnt_dec(pq);
2078 }
2079 
2080 /*
2081  *	vm_page_enqueue:
2082  *
2083  *	Add the given page to the specified page queue.
2084  *
2085  *	The page must be locked.
2086  */
2087 static void
2088 vm_page_enqueue(uint8_t queue, vm_page_t m)
2089 {
2090 	struct vm_pagequeue *pq;
2091 
2092 	vm_page_lock_assert(m, MA_OWNED);
2093 	KASSERT(queue < PQ_COUNT,
2094 	    ("vm_page_enqueue: invalid queue %u request for page %p",
2095 	    queue, m));
2096 	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2097 	vm_pagequeue_lock(pq);
2098 	m->queue = queue;
2099 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2100 	vm_pagequeue_cnt_inc(pq);
2101 	vm_pagequeue_unlock(pq);
2102 }
2103 
2104 /*
2105  *	vm_page_requeue:
2106  *
2107  *	Move the given page to the tail of its current page queue.
2108  *
2109  *	The page must be locked.
2110  */
2111 void
2112 vm_page_requeue(vm_page_t m)
2113 {
2114 	struct vm_pagequeue *pq;
2115 
2116 	vm_page_lock_assert(m, MA_OWNED);
2117 	KASSERT(m->queue != PQ_NONE,
2118 	    ("vm_page_requeue: page %p is not queued", m));
2119 	pq = vm_page_pagequeue(m);
2120 	vm_pagequeue_lock(pq);
2121 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2122 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2123 	vm_pagequeue_unlock(pq);
2124 }
2125 
2126 /*
2127  *	vm_page_requeue_locked:
2128  *
2129  *	Move the given page to the tail of its current page queue.
2130  *
2131  *	The page queue must be locked.
2132  */
2133 void
2134 vm_page_requeue_locked(vm_page_t m)
2135 {
2136 	struct vm_pagequeue *pq;
2137 
2138 	KASSERT(m->queue != PQ_NONE,
2139 	    ("vm_page_requeue_locked: page %p is not queued", m));
2140 	pq = vm_page_pagequeue(m);
2141 	vm_pagequeue_assert_locked(pq);
2142 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2143 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2144 }
2145 
2146 /*
2147  *	vm_page_activate:
2148  *
2149  *	Put the specified page on the active list (if appropriate).
2150  *	Ensure that act_count is at least ACT_INIT but do not otherwise
2151  *	mess with it.
2152  *
2153  *	The page must be locked.
2154  */
2155 void
2156 vm_page_activate(vm_page_t m)
2157 {
2158 	int queue;
2159 
2160 	vm_page_lock_assert(m, MA_OWNED);
2161 	if ((queue = m->queue) != PQ_ACTIVE) {
2162 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2163 			if (m->act_count < ACT_INIT)
2164 				m->act_count = ACT_INIT;
2165 			if (queue != PQ_NONE)
2166 				vm_page_dequeue(m);
2167 			vm_page_enqueue(PQ_ACTIVE, m);
2168 		} else
2169 			KASSERT(queue == PQ_NONE,
2170 			    ("vm_page_activate: wired page %p is queued", m));
2171 	} else {
2172 		if (m->act_count < ACT_INIT)
2173 			m->act_count = ACT_INIT;
2174 	}
2175 }
2176 
2177 /*
2178  *	vm_page_free_wakeup:
2179  *
2180  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2181  *	routine is called when a page has been added to the cache or free
2182  *	queues.
2183  *
2184  *	The page queues must be locked.
2185  */
2186 static inline void
2187 vm_page_free_wakeup(void)
2188 {
2189 
2190 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2191 	/*
2192 	 * if pageout daemon needs pages, then tell it that there are
2193 	 * some free.
2194 	 */
2195 	if (vm_pageout_pages_needed &&
2196 	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2197 		wakeup(&vm_pageout_pages_needed);
2198 		vm_pageout_pages_needed = 0;
2199 	}
2200 	/*
2201 	 * wakeup processes that are waiting on memory if we hit a
2202 	 * high water mark. And wakeup scheduler process if we have
2203 	 * lots of memory. this process will swapin processes.
2204 	 */
2205 	if (vm_pages_needed && !vm_page_count_min()) {
2206 		vm_pages_needed = 0;
2207 		wakeup(&vm_cnt.v_free_count);
2208 	}
2209 }
2210 
2211 /*
2212  *	Turn a cached page into a free page, by changing its attributes.
2213  *	Keep the statistics up-to-date.
2214  *
2215  *	The free page queue must be locked.
2216  */
2217 static void
2218 vm_page_cache_turn_free(vm_page_t m)
2219 {
2220 
2221 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2222 
2223 	m->object = NULL;
2224 	m->valid = 0;
2225 	KASSERT((m->flags & PG_CACHED) != 0,
2226 	    ("vm_page_cache_turn_free: page %p is not cached", m));
2227 	m->flags &= ~PG_CACHED;
2228 	vm_cnt.v_cache_count--;
2229 	vm_phys_freecnt_adj(m, 1);
2230 }
2231 
2232 /*
2233  *	vm_page_free_toq:
2234  *
2235  *	Returns the given page to the free list,
2236  *	disassociating it with any VM object.
2237  *
2238  *	The object must be locked.  The page must be locked if it is managed.
2239  */
2240 void
2241 vm_page_free_toq(vm_page_t m)
2242 {
2243 
2244 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2245 		vm_page_lock_assert(m, MA_OWNED);
2246 		KASSERT(!pmap_page_is_mapped(m),
2247 		    ("vm_page_free_toq: freeing mapped page %p", m));
2248 	} else
2249 		KASSERT(m->queue == PQ_NONE,
2250 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2251 	PCPU_INC(cnt.v_tfree);
2252 
2253 	if (vm_page_sbusied(m))
2254 		panic("vm_page_free: freeing busy page %p", m);
2255 
2256 	/*
2257 	 * Unqueue, then remove page.  Note that we cannot destroy
2258 	 * the page here because we do not want to call the pager's
2259 	 * callback routine until after we've put the page on the
2260 	 * appropriate free queue.
2261 	 */
2262 	vm_page_remque(m);
2263 	vm_page_remove(m);
2264 
2265 	/*
2266 	 * If fictitious remove object association and
2267 	 * return, otherwise delay object association removal.
2268 	 */
2269 	if ((m->flags & PG_FICTITIOUS) != 0) {
2270 		return;
2271 	}
2272 
2273 	m->valid = 0;
2274 	vm_page_undirty(m);
2275 
2276 	if (m->wire_count != 0)
2277 		panic("vm_page_free: freeing wired page %p", m);
2278 	if (m->hold_count != 0) {
2279 		m->flags &= ~PG_ZERO;
2280 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2281 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2282 		m->flags |= PG_UNHOLDFREE;
2283 	} else {
2284 		/*
2285 		 * Restore the default memory attribute to the page.
2286 		 */
2287 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2288 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2289 
2290 		/*
2291 		 * Insert the page into the physical memory allocator's
2292 		 * cache/free page queues.
2293 		 */
2294 		mtx_lock(&vm_page_queue_free_mtx);
2295 		vm_phys_freecnt_adj(m, 1);
2296 #if VM_NRESERVLEVEL > 0
2297 		if (!vm_reserv_free_page(m))
2298 #else
2299 		if (TRUE)
2300 #endif
2301 			vm_phys_free_pages(m, 0);
2302 		if ((m->flags & PG_ZERO) != 0)
2303 			++vm_page_zero_count;
2304 		else
2305 			vm_page_zero_idle_wakeup();
2306 		vm_page_free_wakeup();
2307 		mtx_unlock(&vm_page_queue_free_mtx);
2308 	}
2309 }
2310 
2311 /*
2312  *	vm_page_wire:
2313  *
2314  *	Mark this page as wired down by yet
2315  *	another map, removing it from paging queues
2316  *	as necessary.
2317  *
2318  *	If the page is fictitious, then its wire count must remain one.
2319  *
2320  *	The page must be locked.
2321  */
2322 void
2323 vm_page_wire(vm_page_t m)
2324 {
2325 
2326 	/*
2327 	 * Only bump the wire statistics if the page is not already wired,
2328 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2329 	 * it is already off the queues).
2330 	 */
2331 	vm_page_lock_assert(m, MA_OWNED);
2332 	if ((m->flags & PG_FICTITIOUS) != 0) {
2333 		KASSERT(m->wire_count == 1,
2334 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2335 		    m));
2336 		return;
2337 	}
2338 	if (m->wire_count == 0) {
2339 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2340 		    m->queue == PQ_NONE,
2341 		    ("vm_page_wire: unmanaged page %p is queued", m));
2342 		vm_page_remque(m);
2343 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2344 	}
2345 	m->wire_count++;
2346 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2347 }
2348 
2349 /*
2350  * vm_page_unwire:
2351  *
2352  * Release one wiring of the specified page, potentially enabling it to be
2353  * paged again.  If paging is enabled, then the value of the parameter
2354  * "queue" determines the queue to which the page is added.
2355  *
2356  * However, unless the page belongs to an object, it is not enqueued because
2357  * it cannot be paged out.
2358  *
2359  * If a page is fictitious, then its wire count must always be one.
2360  *
2361  * A managed page must be locked.
2362  */
2363 void
2364 vm_page_unwire(vm_page_t m, uint8_t queue)
2365 {
2366 
2367 	KASSERT(queue < PQ_COUNT,
2368 	    ("vm_page_unwire: invalid queue %u request for page %p",
2369 	    queue, m));
2370 	if ((m->oflags & VPO_UNMANAGED) == 0)
2371 		vm_page_lock_assert(m, MA_OWNED);
2372 	if ((m->flags & PG_FICTITIOUS) != 0) {
2373 		KASSERT(m->wire_count == 1,
2374 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2375 		return;
2376 	}
2377 	if (m->wire_count > 0) {
2378 		m->wire_count--;
2379 		if (m->wire_count == 0) {
2380 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2381 			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2382 			    m->object == NULL)
2383 				return;
2384 			if (queue == PQ_INACTIVE)
2385 				m->flags &= ~PG_WINATCFLS;
2386 			vm_page_enqueue(queue, m);
2387 		}
2388 	} else
2389 		panic("vm_page_unwire: page %p's wire count is zero", m);
2390 }
2391 
2392 /*
2393  * Move the specified page to the inactive queue.
2394  *
2395  * Many pages placed on the inactive queue should actually go
2396  * into the cache, but it is difficult to figure out which.  What
2397  * we do instead, if the inactive target is well met, is to put
2398  * clean pages at the head of the inactive queue instead of the tail.
2399  * This will cause them to be moved to the cache more quickly and
2400  * if not actively re-referenced, reclaimed more quickly.  If we just
2401  * stick these pages at the end of the inactive queue, heavy filesystem
2402  * meta-data accesses can cause an unnecessary paging load on memory bound
2403  * processes.  This optimization causes one-time-use metadata to be
2404  * reused more quickly.
2405  *
2406  * Normally athead is 0 resulting in LRU operation.  athead is set
2407  * to 1 if we want this page to be 'as if it were placed in the cache',
2408  * except without unmapping it from the process address space.
2409  *
2410  * The page must be locked.
2411  */
2412 static inline void
2413 _vm_page_deactivate(vm_page_t m, int athead)
2414 {
2415 	struct vm_pagequeue *pq;
2416 	int queue;
2417 
2418 	vm_page_lock_assert(m, MA_OWNED);
2419 
2420 	/*
2421 	 * Ignore if already inactive.
2422 	 */
2423 	if ((queue = m->queue) == PQ_INACTIVE)
2424 		return;
2425 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2426 		if (queue != PQ_NONE)
2427 			vm_page_dequeue(m);
2428 		m->flags &= ~PG_WINATCFLS;
2429 		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2430 		vm_pagequeue_lock(pq);
2431 		m->queue = PQ_INACTIVE;
2432 		if (athead)
2433 			TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2434 		else
2435 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2436 		vm_pagequeue_cnt_inc(pq);
2437 		vm_pagequeue_unlock(pq);
2438 	}
2439 }
2440 
2441 /*
2442  * Move the specified page to the inactive queue.
2443  *
2444  * The page must be locked.
2445  */
2446 void
2447 vm_page_deactivate(vm_page_t m)
2448 {
2449 
2450 	_vm_page_deactivate(m, 0);
2451 }
2452 
2453 /*
2454  * vm_page_try_to_cache:
2455  *
2456  * Returns 0 on failure, 1 on success
2457  */
2458 int
2459 vm_page_try_to_cache(vm_page_t m)
2460 {
2461 
2462 	vm_page_lock_assert(m, MA_OWNED);
2463 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2464 	if (m->dirty || m->hold_count || m->wire_count ||
2465 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2466 		return (0);
2467 	pmap_remove_all(m);
2468 	if (m->dirty)
2469 		return (0);
2470 	vm_page_cache(m);
2471 	return (1);
2472 }
2473 
2474 /*
2475  * vm_page_try_to_free()
2476  *
2477  *	Attempt to free the page.  If we cannot free it, we do nothing.
2478  *	1 is returned on success, 0 on failure.
2479  */
2480 int
2481 vm_page_try_to_free(vm_page_t m)
2482 {
2483 
2484 	vm_page_lock_assert(m, MA_OWNED);
2485 	if (m->object != NULL)
2486 		VM_OBJECT_ASSERT_WLOCKED(m->object);
2487 	if (m->dirty || m->hold_count || m->wire_count ||
2488 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2489 		return (0);
2490 	pmap_remove_all(m);
2491 	if (m->dirty)
2492 		return (0);
2493 	vm_page_free(m);
2494 	return (1);
2495 }
2496 
2497 /*
2498  * vm_page_cache
2499  *
2500  * Put the specified page onto the page cache queue (if appropriate).
2501  *
2502  * The object and page must be locked.
2503  */
2504 void
2505 vm_page_cache(vm_page_t m)
2506 {
2507 	vm_object_t object;
2508 	boolean_t cache_was_empty;
2509 
2510 	vm_page_lock_assert(m, MA_OWNED);
2511 	object = m->object;
2512 	VM_OBJECT_ASSERT_WLOCKED(object);
2513 	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2514 	    m->hold_count || m->wire_count)
2515 		panic("vm_page_cache: attempting to cache busy page");
2516 	KASSERT(!pmap_page_is_mapped(m),
2517 	    ("vm_page_cache: page %p is mapped", m));
2518 	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2519 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2520 	    (object->type == OBJT_SWAP &&
2521 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2522 		/*
2523 		 * Hypothesis: A cache-eligible page belonging to a
2524 		 * default object or swap object but without a backing
2525 		 * store must be zero filled.
2526 		 */
2527 		vm_page_free(m);
2528 		return;
2529 	}
2530 	KASSERT((m->flags & PG_CACHED) == 0,
2531 	    ("vm_page_cache: page %p is already cached", m));
2532 
2533 	/*
2534 	 * Remove the page from the paging queues.
2535 	 */
2536 	vm_page_remque(m);
2537 
2538 	/*
2539 	 * Remove the page from the object's collection of resident
2540 	 * pages.
2541 	 */
2542 	vm_radix_remove(&object->rtree, m->pindex);
2543 	TAILQ_REMOVE(&object->memq, m, listq);
2544 	object->resident_page_count--;
2545 
2546 	/*
2547 	 * Restore the default memory attribute to the page.
2548 	 */
2549 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2550 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2551 
2552 	/*
2553 	 * Insert the page into the object's collection of cached pages
2554 	 * and the physical memory allocator's cache/free page queues.
2555 	 */
2556 	m->flags &= ~PG_ZERO;
2557 	mtx_lock(&vm_page_queue_free_mtx);
2558 	cache_was_empty = vm_radix_is_empty(&object->cache);
2559 	if (vm_radix_insert(&object->cache, m)) {
2560 		mtx_unlock(&vm_page_queue_free_mtx);
2561 		if (object->resident_page_count == 0)
2562 			vdrop(object->handle);
2563 		m->object = NULL;
2564 		vm_page_free(m);
2565 		return;
2566 	}
2567 
2568 	/*
2569 	 * The above call to vm_radix_insert() could reclaim the one pre-
2570 	 * existing cached page from this object, resulting in a call to
2571 	 * vdrop().
2572 	 */
2573 	if (!cache_was_empty)
2574 		cache_was_empty = vm_radix_is_singleton(&object->cache);
2575 
2576 	m->flags |= PG_CACHED;
2577 	vm_cnt.v_cache_count++;
2578 	PCPU_INC(cnt.v_tcached);
2579 #if VM_NRESERVLEVEL > 0
2580 	if (!vm_reserv_free_page(m)) {
2581 #else
2582 	if (TRUE) {
2583 #endif
2584 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2585 		vm_phys_free_pages(m, 0);
2586 	}
2587 	vm_page_free_wakeup();
2588 	mtx_unlock(&vm_page_queue_free_mtx);
2589 
2590 	/*
2591 	 * Increment the vnode's hold count if this is the object's only
2592 	 * cached page.  Decrement the vnode's hold count if this was
2593 	 * the object's only resident page.
2594 	 */
2595 	if (object->type == OBJT_VNODE) {
2596 		if (cache_was_empty && object->resident_page_count != 0)
2597 			vhold(object->handle);
2598 		else if (!cache_was_empty && object->resident_page_count == 0)
2599 			vdrop(object->handle);
2600 	}
2601 }
2602 
2603 /*
2604  * vm_page_advise
2605  *
2606  *	Cache, deactivate, or do nothing as appropriate.  This routine
2607  *	is used by madvise().
2608  *
2609  *	Generally speaking we want to move the page into the cache so
2610  *	it gets reused quickly.  However, this can result in a silly syndrome
2611  *	due to the page recycling too quickly.  Small objects will not be
2612  *	fully cached.  On the other hand, if we move the page to the inactive
2613  *	queue we wind up with a problem whereby very large objects
2614  *	unnecessarily blow away our inactive and cache queues.
2615  *
2616  *	The solution is to move the pages based on a fixed weighting.  We
2617  *	either leave them alone, deactivate them, or move them to the cache,
2618  *	where moving them to the cache has the highest weighting.
2619  *	By forcing some pages into other queues we eventually force the
2620  *	system to balance the queues, potentially recovering other unrelated
2621  *	space from active.  The idea is to not force this to happen too
2622  *	often.
2623  *
2624  *	The object and page must be locked.
2625  */
2626 void
2627 vm_page_advise(vm_page_t m, int advice)
2628 {
2629 	int dnw, head;
2630 
2631 	vm_page_assert_locked(m);
2632 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2633 	if (advice == MADV_FREE) {
2634 		/*
2635 		 * Mark the page clean.  This will allow the page to be freed
2636 		 * up by the system.  However, such pages are often reused
2637 		 * quickly by malloc() so we do not do anything that would
2638 		 * cause a page fault if we can help it.
2639 		 *
2640 		 * Specifically, we do not try to actually free the page now
2641 		 * nor do we try to put it in the cache (which would cause a
2642 		 * page fault on reuse).
2643 		 *
2644 		 * But we do make the page is freeable as we can without
2645 		 * actually taking the step of unmapping it.
2646 		 */
2647 		m->dirty = 0;
2648 		m->act_count = 0;
2649 	} else if (advice != MADV_DONTNEED)
2650 		return;
2651 	dnw = PCPU_GET(dnweight);
2652 	PCPU_INC(dnweight);
2653 
2654 	/*
2655 	 * Occasionally leave the page alone.
2656 	 */
2657 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2658 		if (m->act_count >= ACT_INIT)
2659 			--m->act_count;
2660 		return;
2661 	}
2662 
2663 	/*
2664 	 * Clear any references to the page.  Otherwise, the page daemon will
2665 	 * immediately reactivate the page.
2666 	 */
2667 	vm_page_aflag_clear(m, PGA_REFERENCED);
2668 
2669 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2670 		vm_page_dirty(m);
2671 
2672 	if (m->dirty || (dnw & 0x0070) == 0) {
2673 		/*
2674 		 * Deactivate the page 3 times out of 32.
2675 		 */
2676 		head = 0;
2677 	} else {
2678 		/*
2679 		 * Cache the page 28 times out of every 32.  Note that
2680 		 * the page is deactivated instead of cached, but placed
2681 		 * at the head of the queue instead of the tail.
2682 		 */
2683 		head = 1;
2684 	}
2685 	_vm_page_deactivate(m, head);
2686 }
2687 
2688 /*
2689  * Grab a page, waiting until we are waken up due to the page
2690  * changing state.  We keep on waiting, if the page continues
2691  * to be in the object.  If the page doesn't exist, first allocate it
2692  * and then conditionally zero it.
2693  *
2694  * This routine may sleep.
2695  *
2696  * The object must be locked on entry.  The lock will, however, be released
2697  * and reacquired if the routine sleeps.
2698  */
2699 vm_page_t
2700 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2701 {
2702 	vm_page_t m;
2703 	int sleep;
2704 
2705 	VM_OBJECT_ASSERT_WLOCKED(object);
2706 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2707 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2708 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2709 retrylookup:
2710 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2711 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2712 		    vm_page_xbusied(m) : vm_page_busied(m);
2713 		if (sleep) {
2714 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
2715 				return (NULL);
2716 			/*
2717 			 * Reference the page before unlocking and
2718 			 * sleeping so that the page daemon is less
2719 			 * likely to reclaim it.
2720 			 */
2721 			vm_page_aflag_set(m, PGA_REFERENCED);
2722 			vm_page_lock(m);
2723 			VM_OBJECT_WUNLOCK(object);
2724 			vm_page_busy_sleep(m, "pgrbwt");
2725 			VM_OBJECT_WLOCK(object);
2726 			goto retrylookup;
2727 		} else {
2728 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2729 				vm_page_lock(m);
2730 				vm_page_wire(m);
2731 				vm_page_unlock(m);
2732 			}
2733 			if ((allocflags &
2734 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2735 				vm_page_xbusy(m);
2736 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2737 				vm_page_sbusy(m);
2738 			return (m);
2739 		}
2740 	}
2741 	m = vm_page_alloc(object, pindex, allocflags);
2742 	if (m == NULL) {
2743 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
2744 			return (NULL);
2745 		VM_OBJECT_WUNLOCK(object);
2746 		VM_WAIT;
2747 		VM_OBJECT_WLOCK(object);
2748 		goto retrylookup;
2749 	} else if (m->valid != 0)
2750 		return (m);
2751 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2752 		pmap_zero_page(m);
2753 	return (m);
2754 }
2755 
2756 /*
2757  * Mapping function for valid or dirty bits in a page.
2758  *
2759  * Inputs are required to range within a page.
2760  */
2761 vm_page_bits_t
2762 vm_page_bits(int base, int size)
2763 {
2764 	int first_bit;
2765 	int last_bit;
2766 
2767 	KASSERT(
2768 	    base + size <= PAGE_SIZE,
2769 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2770 	);
2771 
2772 	if (size == 0)		/* handle degenerate case */
2773 		return (0);
2774 
2775 	first_bit = base >> DEV_BSHIFT;
2776 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2777 
2778 	return (((vm_page_bits_t)2 << last_bit) -
2779 	    ((vm_page_bits_t)1 << first_bit));
2780 }
2781 
2782 /*
2783  *	vm_page_set_valid_range:
2784  *
2785  *	Sets portions of a page valid.  The arguments are expected
2786  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2787  *	of any partial chunks touched by the range.  The invalid portion of
2788  *	such chunks will be zeroed.
2789  *
2790  *	(base + size) must be less then or equal to PAGE_SIZE.
2791  */
2792 void
2793 vm_page_set_valid_range(vm_page_t m, int base, int size)
2794 {
2795 	int endoff, frag;
2796 
2797 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2798 	if (size == 0)	/* handle degenerate case */
2799 		return;
2800 
2801 	/*
2802 	 * If the base is not DEV_BSIZE aligned and the valid
2803 	 * bit is clear, we have to zero out a portion of the
2804 	 * first block.
2805 	 */
2806 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2807 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2808 		pmap_zero_page_area(m, frag, base - frag);
2809 
2810 	/*
2811 	 * If the ending offset is not DEV_BSIZE aligned and the
2812 	 * valid bit is clear, we have to zero out a portion of
2813 	 * the last block.
2814 	 */
2815 	endoff = base + size;
2816 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2817 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2818 		pmap_zero_page_area(m, endoff,
2819 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2820 
2821 	/*
2822 	 * Assert that no previously invalid block that is now being validated
2823 	 * is already dirty.
2824 	 */
2825 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2826 	    ("vm_page_set_valid_range: page %p is dirty", m));
2827 
2828 	/*
2829 	 * Set valid bits inclusive of any overlap.
2830 	 */
2831 	m->valid |= vm_page_bits(base, size);
2832 }
2833 
2834 /*
2835  * Clear the given bits from the specified page's dirty field.
2836  */
2837 static __inline void
2838 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2839 {
2840 	uintptr_t addr;
2841 #if PAGE_SIZE < 16384
2842 	int shift;
2843 #endif
2844 
2845 	/*
2846 	 * If the object is locked and the page is neither exclusive busy nor
2847 	 * write mapped, then the page's dirty field cannot possibly be
2848 	 * set by a concurrent pmap operation.
2849 	 */
2850 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2851 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2852 		m->dirty &= ~pagebits;
2853 	else {
2854 		/*
2855 		 * The pmap layer can call vm_page_dirty() without
2856 		 * holding a distinguished lock.  The combination of
2857 		 * the object's lock and an atomic operation suffice
2858 		 * to guarantee consistency of the page dirty field.
2859 		 *
2860 		 * For PAGE_SIZE == 32768 case, compiler already
2861 		 * properly aligns the dirty field, so no forcible
2862 		 * alignment is needed. Only require existence of
2863 		 * atomic_clear_64 when page size is 32768.
2864 		 */
2865 		addr = (uintptr_t)&m->dirty;
2866 #if PAGE_SIZE == 32768
2867 		atomic_clear_64((uint64_t *)addr, pagebits);
2868 #elif PAGE_SIZE == 16384
2869 		atomic_clear_32((uint32_t *)addr, pagebits);
2870 #else		/* PAGE_SIZE <= 8192 */
2871 		/*
2872 		 * Use a trick to perform a 32-bit atomic on the
2873 		 * containing aligned word, to not depend on the existence
2874 		 * of atomic_clear_{8, 16}.
2875 		 */
2876 		shift = addr & (sizeof(uint32_t) - 1);
2877 #if BYTE_ORDER == BIG_ENDIAN
2878 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2879 #else
2880 		shift *= NBBY;
2881 #endif
2882 		addr &= ~(sizeof(uint32_t) - 1);
2883 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2884 #endif		/* PAGE_SIZE */
2885 	}
2886 }
2887 
2888 /*
2889  *	vm_page_set_validclean:
2890  *
2891  *	Sets portions of a page valid and clean.  The arguments are expected
2892  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2893  *	of any partial chunks touched by the range.  The invalid portion of
2894  *	such chunks will be zero'd.
2895  *
2896  *	(base + size) must be less then or equal to PAGE_SIZE.
2897  */
2898 void
2899 vm_page_set_validclean(vm_page_t m, int base, int size)
2900 {
2901 	vm_page_bits_t oldvalid, pagebits;
2902 	int endoff, frag;
2903 
2904 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2905 	if (size == 0)	/* handle degenerate case */
2906 		return;
2907 
2908 	/*
2909 	 * If the base is not DEV_BSIZE aligned and the valid
2910 	 * bit is clear, we have to zero out a portion of the
2911 	 * first block.
2912 	 */
2913 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2914 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2915 		pmap_zero_page_area(m, frag, base - frag);
2916 
2917 	/*
2918 	 * If the ending offset is not DEV_BSIZE aligned and the
2919 	 * valid bit is clear, we have to zero out a portion of
2920 	 * the last block.
2921 	 */
2922 	endoff = base + size;
2923 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2924 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2925 		pmap_zero_page_area(m, endoff,
2926 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2927 
2928 	/*
2929 	 * Set valid, clear dirty bits.  If validating the entire
2930 	 * page we can safely clear the pmap modify bit.  We also
2931 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2932 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2933 	 * be set again.
2934 	 *
2935 	 * We set valid bits inclusive of any overlap, but we can only
2936 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2937 	 * the range.
2938 	 */
2939 	oldvalid = m->valid;
2940 	pagebits = vm_page_bits(base, size);
2941 	m->valid |= pagebits;
2942 #if 0	/* NOT YET */
2943 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2944 		frag = DEV_BSIZE - frag;
2945 		base += frag;
2946 		size -= frag;
2947 		if (size < 0)
2948 			size = 0;
2949 	}
2950 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2951 #endif
2952 	if (base == 0 && size == PAGE_SIZE) {
2953 		/*
2954 		 * The page can only be modified within the pmap if it is
2955 		 * mapped, and it can only be mapped if it was previously
2956 		 * fully valid.
2957 		 */
2958 		if (oldvalid == VM_PAGE_BITS_ALL)
2959 			/*
2960 			 * Perform the pmap_clear_modify() first.  Otherwise,
2961 			 * a concurrent pmap operation, such as
2962 			 * pmap_protect(), could clear a modification in the
2963 			 * pmap and set the dirty field on the page before
2964 			 * pmap_clear_modify() had begun and after the dirty
2965 			 * field was cleared here.
2966 			 */
2967 			pmap_clear_modify(m);
2968 		m->dirty = 0;
2969 		m->oflags &= ~VPO_NOSYNC;
2970 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2971 		m->dirty &= ~pagebits;
2972 	else
2973 		vm_page_clear_dirty_mask(m, pagebits);
2974 }
2975 
2976 void
2977 vm_page_clear_dirty(vm_page_t m, int base, int size)
2978 {
2979 
2980 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2981 }
2982 
2983 /*
2984  *	vm_page_set_invalid:
2985  *
2986  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2987  *	valid and dirty bits for the effected areas are cleared.
2988  */
2989 void
2990 vm_page_set_invalid(vm_page_t m, int base, int size)
2991 {
2992 	vm_page_bits_t bits;
2993 	vm_object_t object;
2994 
2995 	object = m->object;
2996 	VM_OBJECT_ASSERT_WLOCKED(object);
2997 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
2998 	    size >= object->un_pager.vnp.vnp_size)
2999 		bits = VM_PAGE_BITS_ALL;
3000 	else
3001 		bits = vm_page_bits(base, size);
3002 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
3003 		pmap_remove_all(m);
3004 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3005 	    !pmap_page_is_mapped(m),
3006 	    ("vm_page_set_invalid: page %p is mapped", m));
3007 	m->valid &= ~bits;
3008 	m->dirty &= ~bits;
3009 }
3010 
3011 /*
3012  * vm_page_zero_invalid()
3013  *
3014  *	The kernel assumes that the invalid portions of a page contain
3015  *	garbage, but such pages can be mapped into memory by user code.
3016  *	When this occurs, we must zero out the non-valid portions of the
3017  *	page so user code sees what it expects.
3018  *
3019  *	Pages are most often semi-valid when the end of a file is mapped
3020  *	into memory and the file's size is not page aligned.
3021  */
3022 void
3023 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3024 {
3025 	int b;
3026 	int i;
3027 
3028 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3029 	/*
3030 	 * Scan the valid bits looking for invalid sections that
3031 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3032 	 * valid bit may be set ) have already been zerod by
3033 	 * vm_page_set_validclean().
3034 	 */
3035 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3036 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3037 		    (m->valid & ((vm_page_bits_t)1 << i))) {
3038 			if (i > b) {
3039 				pmap_zero_page_area(m,
3040 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3041 			}
3042 			b = i + 1;
3043 		}
3044 	}
3045 
3046 	/*
3047 	 * setvalid is TRUE when we can safely set the zero'd areas
3048 	 * as being valid.  We can do this if there are no cache consistancy
3049 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3050 	 */
3051 	if (setvalid)
3052 		m->valid = VM_PAGE_BITS_ALL;
3053 }
3054 
3055 /*
3056  *	vm_page_is_valid:
3057  *
3058  *	Is (partial) page valid?  Note that the case where size == 0
3059  *	will return FALSE in the degenerate case where the page is
3060  *	entirely invalid, and TRUE otherwise.
3061  */
3062 int
3063 vm_page_is_valid(vm_page_t m, int base, int size)
3064 {
3065 	vm_page_bits_t bits;
3066 
3067 	VM_OBJECT_ASSERT_LOCKED(m->object);
3068 	bits = vm_page_bits(base, size);
3069 	return (m->valid != 0 && (m->valid & bits) == bits);
3070 }
3071 
3072 /*
3073  *	vm_page_ps_is_valid:
3074  *
3075  *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3076  */
3077 boolean_t
3078 vm_page_ps_is_valid(vm_page_t m)
3079 {
3080 	int i, npages;
3081 
3082 	VM_OBJECT_ASSERT_LOCKED(m->object);
3083 	npages = atop(pagesizes[m->psind]);
3084 
3085 	/*
3086 	 * The physically contiguous pages that make up a superpage, i.e., a
3087 	 * page with a page size index ("psind") greater than zero, will
3088 	 * occupy adjacent entries in vm_page_array[].
3089 	 */
3090 	for (i = 0; i < npages; i++) {
3091 		if (m[i].valid != VM_PAGE_BITS_ALL)
3092 			return (FALSE);
3093 	}
3094 	return (TRUE);
3095 }
3096 
3097 /*
3098  * Set the page's dirty bits if the page is modified.
3099  */
3100 void
3101 vm_page_test_dirty(vm_page_t m)
3102 {
3103 
3104 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3105 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3106 		vm_page_dirty(m);
3107 }
3108 
3109 void
3110 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3111 {
3112 
3113 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3114 }
3115 
3116 void
3117 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3118 {
3119 
3120 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3121 }
3122 
3123 int
3124 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3125 {
3126 
3127 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3128 }
3129 
3130 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3131 void
3132 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3133 {
3134 
3135 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3136 }
3137 
3138 void
3139 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3140 {
3141 
3142 	mtx_assert_(vm_page_lockptr(m), a, file, line);
3143 }
3144 #endif
3145 
3146 #ifdef INVARIANTS
3147 void
3148 vm_page_object_lock_assert(vm_page_t m)
3149 {
3150 
3151 	/*
3152 	 * Certain of the page's fields may only be modified by the
3153 	 * holder of the containing object's lock or the exclusive busy.
3154 	 * holder.  Unfortunately, the holder of the write busy is
3155 	 * not recorded, and thus cannot be checked here.
3156 	 */
3157 	if (m->object != NULL && !vm_page_xbusied(m))
3158 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3159 }
3160 
3161 void
3162 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3163 {
3164 
3165 	if ((bits & PGA_WRITEABLE) == 0)
3166 		return;
3167 
3168 	/*
3169 	 * The PGA_WRITEABLE flag can only be set if the page is
3170 	 * managed, is exclusively busied or the object is locked.
3171 	 * Currently, this flag is only set by pmap_enter().
3172 	 */
3173 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3174 	    ("PGA_WRITEABLE on unmanaged page"));
3175 	if (!vm_page_xbusied(m))
3176 		VM_OBJECT_ASSERT_LOCKED(m->object);
3177 }
3178 #endif
3179 
3180 #include "opt_ddb.h"
3181 #ifdef DDB
3182 #include <sys/kernel.h>
3183 
3184 #include <ddb/ddb.h>
3185 
3186 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3187 {
3188 	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3189 	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3190 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3191 	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3192 	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3193 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3194 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3195 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3196 	db_printf("vm_cnt.v_cache_min: %d\n", vm_cnt.v_cache_min);
3197 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3198 }
3199 
3200 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3201 {
3202 	int dom;
3203 
3204 	db_printf("pq_free %d pq_cache %d\n",
3205 	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3206 	for (dom = 0; dom < vm_ndomains; dom++) {
3207 		db_printf(
3208 	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3209 		    dom,
3210 		    vm_dom[dom].vmd_page_count,
3211 		    vm_dom[dom].vmd_free_count,
3212 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3213 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3214 		    vm_dom[dom].vmd_pass);
3215 	}
3216 }
3217 
3218 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3219 {
3220 	vm_page_t m;
3221 	boolean_t phys;
3222 
3223 	if (!have_addr) {
3224 		db_printf("show pginfo addr\n");
3225 		return;
3226 	}
3227 
3228 	phys = strchr(modif, 'p') != NULL;
3229 	if (phys)
3230 		m = PHYS_TO_VM_PAGE(addr);
3231 	else
3232 		m = (vm_page_t)addr;
3233 	db_printf(
3234     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3235     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3236 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3237 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3238 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3239 }
3240 #endif /* DDB */
3241