1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 36 */ 37 38 /*- 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * Resident memory management module. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_vm.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/counter.h> 77 #include <sys/domainset.h> 78 #include <sys/kernel.h> 79 #include <sys/limits.h> 80 #include <sys/linker.h> 81 #include <sys/lock.h> 82 #include <sys/malloc.h> 83 #include <sys/mman.h> 84 #include <sys/msgbuf.h> 85 #include <sys/mutex.h> 86 #include <sys/proc.h> 87 #include <sys/rwlock.h> 88 #include <sys/sleepqueue.h> 89 #include <sys/sbuf.h> 90 #include <sys/sched.h> 91 #include <sys/smp.h> 92 #include <sys/sysctl.h> 93 #include <sys/vmmeter.h> 94 #include <sys/vnode.h> 95 96 #include <vm/vm.h> 97 #include <vm/pmap.h> 98 #include <vm/vm_param.h> 99 #include <vm/vm_domainset.h> 100 #include <vm/vm_kern.h> 101 #include <vm/vm_map.h> 102 #include <vm/vm_object.h> 103 #include <vm/vm_page.h> 104 #include <vm/vm_pageout.h> 105 #include <vm/vm_phys.h> 106 #include <vm/vm_pagequeue.h> 107 #include <vm/vm_pager.h> 108 #include <vm/vm_radix.h> 109 #include <vm/vm_reserv.h> 110 #include <vm/vm_extern.h> 111 #include <vm/uma.h> 112 #include <vm/uma_int.h> 113 114 #include <machine/md_var.h> 115 116 extern int uma_startup_count(int); 117 extern void uma_startup(void *, int); 118 extern int vmem_startup_count(void); 119 120 struct vm_domain vm_dom[MAXMEMDOM]; 121 122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 123 124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 125 126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 127 /* The following fields are protected by the domainset lock. */ 128 domainset_t __exclusive_cache_line vm_min_domains; 129 domainset_t __exclusive_cache_line vm_severe_domains; 130 static int vm_min_waiters; 131 static int vm_severe_waiters; 132 static int vm_pageproc_waiters; 133 134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0, 135 "VM page statistics"); 136 137 static counter_u64_t queue_ops = EARLY_COUNTER; 138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops, 139 CTLFLAG_RD, &queue_ops, 140 "Number of batched queue operations"); 141 142 static counter_u64_t queue_nops = EARLY_COUNTER; 143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops, 144 CTLFLAG_RD, &queue_nops, 145 "Number of batched queue operations with no effects"); 146 147 static void 148 counter_startup(void) 149 { 150 151 queue_ops = counter_u64_alloc(M_WAITOK); 152 queue_nops = counter_u64_alloc(M_WAITOK); 153 } 154 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL); 155 156 /* 157 * bogus page -- for I/O to/from partially complete buffers, 158 * or for paging into sparsely invalid regions. 159 */ 160 vm_page_t bogus_page; 161 162 vm_page_t vm_page_array; 163 long vm_page_array_size; 164 long first_page; 165 166 static int boot_pages; 167 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 168 &boot_pages, 0, 169 "number of pages allocated for bootstrapping the VM system"); 170 171 static TAILQ_HEAD(, vm_page) blacklist_head; 172 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 173 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 174 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 175 176 static uma_zone_t fakepg_zone; 177 178 static void vm_page_alloc_check(vm_page_t m); 179 static void _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, 180 const char *wmesg, bool nonshared, bool locked); 181 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 182 static void vm_page_dequeue_complete(vm_page_t m); 183 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 184 static bool vm_page_free_prep(vm_page_t m); 185 static void vm_page_free_toq(vm_page_t m); 186 static void vm_page_init(void *dummy); 187 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 188 vm_pindex_t pindex, vm_page_t mpred); 189 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 190 vm_page_t mpred); 191 static void vm_page_mvqueue(vm_page_t m, uint8_t queue); 192 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 193 vm_page_t m_run, vm_paddr_t high); 194 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 195 int req); 196 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 197 int flags); 198 static void vm_page_zone_release(void *arg, void **store, int cnt); 199 200 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 201 202 static void 203 vm_page_init(void *dummy) 204 { 205 206 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 207 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 208 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | 209 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 210 } 211 212 /* 213 * The cache page zone is initialized later since we need to be able to allocate 214 * pages before UMA is fully initialized. 215 */ 216 static void 217 vm_page_init_cache_zones(void *dummy __unused) 218 { 219 struct vm_domain *vmd; 220 struct vm_pgcache *pgcache; 221 int cache, domain, maxcache, pool; 222 223 maxcache = 0; 224 TUNABLE_INT_FETCH("vm.pgcache_zone_max", &maxcache); 225 for (domain = 0; domain < vm_ndomains; domain++) { 226 vmd = VM_DOMAIN(domain); 227 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 228 pgcache = &vmd->vmd_pgcache[pool]; 229 pgcache->domain = domain; 230 pgcache->pool = pool; 231 pgcache->zone = uma_zcache_create("vm pgcache", 232 PAGE_SIZE, NULL, NULL, NULL, NULL, 233 vm_page_zone_import, vm_page_zone_release, pgcache, 234 UMA_ZONE_VM); 235 236 /* 237 * Limit each pool's zone to 0.1% of the pages in the 238 * domain. 239 */ 240 cache = maxcache != 0 ? maxcache : 241 vmd->vmd_page_count / 1000; 242 uma_zone_set_maxcache(pgcache->zone, cache); 243 } 244 } 245 } 246 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 247 248 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 249 #if PAGE_SIZE == 32768 250 #ifdef CTASSERT 251 CTASSERT(sizeof(u_long) >= 8); 252 #endif 253 #endif 254 255 /* 256 * vm_set_page_size: 257 * 258 * Sets the page size, perhaps based upon the memory 259 * size. Must be called before any use of page-size 260 * dependent functions. 261 */ 262 void 263 vm_set_page_size(void) 264 { 265 if (vm_cnt.v_page_size == 0) 266 vm_cnt.v_page_size = PAGE_SIZE; 267 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 268 panic("vm_set_page_size: page size not a power of two"); 269 } 270 271 /* 272 * vm_page_blacklist_next: 273 * 274 * Find the next entry in the provided string of blacklist 275 * addresses. Entries are separated by space, comma, or newline. 276 * If an invalid integer is encountered then the rest of the 277 * string is skipped. Updates the list pointer to the next 278 * character, or NULL if the string is exhausted or invalid. 279 */ 280 static vm_paddr_t 281 vm_page_blacklist_next(char **list, char *end) 282 { 283 vm_paddr_t bad; 284 char *cp, *pos; 285 286 if (list == NULL || *list == NULL) 287 return (0); 288 if (**list =='\0') { 289 *list = NULL; 290 return (0); 291 } 292 293 /* 294 * If there's no end pointer then the buffer is coming from 295 * the kenv and we know it's null-terminated. 296 */ 297 if (end == NULL) 298 end = *list + strlen(*list); 299 300 /* Ensure that strtoq() won't walk off the end */ 301 if (*end != '\0') { 302 if (*end == '\n' || *end == ' ' || *end == ',') 303 *end = '\0'; 304 else { 305 printf("Blacklist not terminated, skipping\n"); 306 *list = NULL; 307 return (0); 308 } 309 } 310 311 for (pos = *list; *pos != '\0'; pos = cp) { 312 bad = strtoq(pos, &cp, 0); 313 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 314 if (bad == 0) { 315 if (++cp < end) 316 continue; 317 else 318 break; 319 } 320 } else 321 break; 322 if (*cp == '\0' || ++cp >= end) 323 *list = NULL; 324 else 325 *list = cp; 326 return (trunc_page(bad)); 327 } 328 printf("Garbage in RAM blacklist, skipping\n"); 329 *list = NULL; 330 return (0); 331 } 332 333 bool 334 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 335 { 336 struct vm_domain *vmd; 337 vm_page_t m; 338 int ret; 339 340 m = vm_phys_paddr_to_vm_page(pa); 341 if (m == NULL) 342 return (true); /* page does not exist, no failure */ 343 344 vmd = vm_pagequeue_domain(m); 345 vm_domain_free_lock(vmd); 346 ret = vm_phys_unfree_page(m); 347 vm_domain_free_unlock(vmd); 348 if (ret != 0) { 349 vm_domain_freecnt_inc(vmd, -1); 350 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 351 if (verbose) 352 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 353 } 354 return (ret); 355 } 356 357 /* 358 * vm_page_blacklist_check: 359 * 360 * Iterate through the provided string of blacklist addresses, pulling 361 * each entry out of the physical allocator free list and putting it 362 * onto a list for reporting via the vm.page_blacklist sysctl. 363 */ 364 static void 365 vm_page_blacklist_check(char *list, char *end) 366 { 367 vm_paddr_t pa; 368 char *next; 369 370 next = list; 371 while (next != NULL) { 372 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 373 continue; 374 vm_page_blacklist_add(pa, bootverbose); 375 } 376 } 377 378 /* 379 * vm_page_blacklist_load: 380 * 381 * Search for a special module named "ram_blacklist". It'll be a 382 * plain text file provided by the user via the loader directive 383 * of the same name. 384 */ 385 static void 386 vm_page_blacklist_load(char **list, char **end) 387 { 388 void *mod; 389 u_char *ptr; 390 u_int len; 391 392 mod = NULL; 393 ptr = NULL; 394 395 mod = preload_search_by_type("ram_blacklist"); 396 if (mod != NULL) { 397 ptr = preload_fetch_addr(mod); 398 len = preload_fetch_size(mod); 399 } 400 *list = ptr; 401 if (ptr != NULL) 402 *end = ptr + len; 403 else 404 *end = NULL; 405 return; 406 } 407 408 static int 409 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 410 { 411 vm_page_t m; 412 struct sbuf sbuf; 413 int error, first; 414 415 first = 1; 416 error = sysctl_wire_old_buffer(req, 0); 417 if (error != 0) 418 return (error); 419 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 420 TAILQ_FOREACH(m, &blacklist_head, listq) { 421 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 422 (uintmax_t)m->phys_addr); 423 first = 0; 424 } 425 error = sbuf_finish(&sbuf); 426 sbuf_delete(&sbuf); 427 return (error); 428 } 429 430 /* 431 * Initialize a dummy page for use in scans of the specified paging queue. 432 * In principle, this function only needs to set the flag PG_MARKER. 433 * Nonetheless, it write busies the page as a safety precaution. 434 */ 435 static void 436 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags) 437 { 438 439 bzero(marker, sizeof(*marker)); 440 marker->flags = PG_MARKER; 441 marker->a.flags = aflags; 442 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 443 marker->a.queue = queue; 444 } 445 446 static void 447 vm_page_domain_init(int domain) 448 { 449 struct vm_domain *vmd; 450 struct vm_pagequeue *pq; 451 int i; 452 453 vmd = VM_DOMAIN(domain); 454 bzero(vmd, sizeof(*vmd)); 455 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 456 "vm inactive pagequeue"; 457 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 458 "vm active pagequeue"; 459 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 460 "vm laundry pagequeue"; 461 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 462 "vm unswappable pagequeue"; 463 vmd->vmd_domain = domain; 464 vmd->vmd_page_count = 0; 465 vmd->vmd_free_count = 0; 466 vmd->vmd_segs = 0; 467 vmd->vmd_oom = FALSE; 468 for (i = 0; i < PQ_COUNT; i++) { 469 pq = &vmd->vmd_pagequeues[i]; 470 TAILQ_INIT(&pq->pq_pl); 471 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 472 MTX_DEF | MTX_DUPOK); 473 pq->pq_pdpages = 0; 474 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 475 } 476 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 477 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 478 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 479 480 /* 481 * inacthead is used to provide FIFO ordering for LRU-bypassing 482 * insertions. 483 */ 484 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 485 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 486 &vmd->vmd_inacthead, plinks.q); 487 488 /* 489 * The clock pages are used to implement active queue scanning without 490 * requeues. Scans start at clock[0], which is advanced after the scan 491 * ends. When the two clock hands meet, they are reset and scanning 492 * resumes from the head of the queue. 493 */ 494 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 495 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 496 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 497 &vmd->vmd_clock[0], plinks.q); 498 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 499 &vmd->vmd_clock[1], plinks.q); 500 } 501 502 /* 503 * Initialize a physical page in preparation for adding it to the free 504 * lists. 505 */ 506 static void 507 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) 508 { 509 510 m->object = NULL; 511 m->ref_count = 0; 512 m->busy_lock = VPB_UNBUSIED; 513 m->flags = m->a.flags = 0; 514 m->phys_addr = pa; 515 m->a.queue = PQ_NONE; 516 m->psind = 0; 517 m->segind = segind; 518 m->order = VM_NFREEORDER; 519 m->pool = VM_FREEPOOL_DEFAULT; 520 m->valid = m->dirty = 0; 521 pmap_page_init(m); 522 } 523 524 #ifndef PMAP_HAS_PAGE_ARRAY 525 static vm_paddr_t 526 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) 527 { 528 vm_paddr_t new_end; 529 530 /* 531 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 532 * However, because this page is allocated from KVM, out-of-bounds 533 * accesses using the direct map will not be trapped. 534 */ 535 *vaddr += PAGE_SIZE; 536 537 /* 538 * Allocate physical memory for the page structures, and map it. 539 */ 540 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 541 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, 542 VM_PROT_READ | VM_PROT_WRITE); 543 vm_page_array_size = page_range; 544 545 return (new_end); 546 } 547 #endif 548 549 /* 550 * vm_page_startup: 551 * 552 * Initializes the resident memory module. Allocates physical memory for 553 * bootstrapping UMA and some data structures that are used to manage 554 * physical pages. Initializes these structures, and populates the free 555 * page queues. 556 */ 557 vm_offset_t 558 vm_page_startup(vm_offset_t vaddr) 559 { 560 struct vm_phys_seg *seg; 561 vm_page_t m; 562 char *list, *listend; 563 vm_offset_t mapped; 564 vm_paddr_t end, high_avail, low_avail, new_end, size; 565 vm_paddr_t page_range __unused; 566 vm_paddr_t last_pa, pa; 567 u_long pagecount; 568 int biggestone, i, segind; 569 #ifdef WITNESS 570 int witness_size; 571 #endif 572 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 573 long ii; 574 #endif 575 576 vaddr = round_page(vaddr); 577 578 vm_phys_early_startup(); 579 biggestone = vm_phys_avail_largest(); 580 end = phys_avail[biggestone+1]; 581 582 /* 583 * Initialize the page and queue locks. 584 */ 585 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 586 for (i = 0; i < PA_LOCK_COUNT; i++) 587 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 588 for (i = 0; i < vm_ndomains; i++) 589 vm_page_domain_init(i); 590 591 /* 592 * Allocate memory for use when boot strapping the kernel memory 593 * allocator. Tell UMA how many zones we are going to create 594 * before going fully functional. UMA will add its zones. 595 * 596 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP, 597 * KMAP ENTRY, MAP ENTRY, VMSPACE. 598 */ 599 boot_pages = uma_startup_count(8); 600 601 #ifndef UMA_MD_SMALL_ALLOC 602 /* vmem_startup() calls uma_prealloc(). */ 603 boot_pages += vmem_startup_count(); 604 /* vm_map_startup() calls uma_prealloc(). */ 605 boot_pages += howmany(MAX_KMAP, 606 slab_ipers(sizeof(struct vm_map), UMA_ALIGN_PTR)); 607 608 /* 609 * Before going fully functional kmem_init() does allocation 610 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem". 611 */ 612 boot_pages += 2; 613 #endif 614 /* 615 * CTFLAG_RDTUN doesn't work during the early boot process, so we must 616 * manually fetch the value. 617 */ 618 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); 619 new_end = end - (boot_pages * UMA_SLAB_SIZE); 620 new_end = trunc_page(new_end); 621 mapped = pmap_map(&vaddr, new_end, end, 622 VM_PROT_READ | VM_PROT_WRITE); 623 bzero((void *)mapped, end - new_end); 624 uma_startup((void *)mapped, boot_pages); 625 626 #ifdef WITNESS 627 witness_size = round_page(witness_startup_count()); 628 new_end -= witness_size; 629 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 630 VM_PROT_READ | VM_PROT_WRITE); 631 bzero((void *)mapped, witness_size); 632 witness_startup((void *)mapped); 633 #endif 634 635 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 636 defined(__i386__) || defined(__mips__) || defined(__riscv) || \ 637 defined(__powerpc64__) 638 /* 639 * Allocate a bitmap to indicate that a random physical page 640 * needs to be included in a minidump. 641 * 642 * The amd64 port needs this to indicate which direct map pages 643 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 644 * 645 * However, i386 still needs this workspace internally within the 646 * minidump code. In theory, they are not needed on i386, but are 647 * included should the sf_buf code decide to use them. 648 */ 649 last_pa = 0; 650 for (i = 0; dump_avail[i + 1] != 0; i += 2) 651 if (dump_avail[i + 1] > last_pa) 652 last_pa = dump_avail[i + 1]; 653 page_range = last_pa / PAGE_SIZE; 654 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 655 new_end -= vm_page_dump_size; 656 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 657 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 658 bzero((void *)vm_page_dump, vm_page_dump_size); 659 #else 660 (void)last_pa; 661 #endif 662 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 663 defined(__riscv) || defined(__powerpc64__) 664 /* 665 * Include the UMA bootstrap pages, witness pages and vm_page_dump 666 * in a crash dump. When pmap_map() uses the direct map, they are 667 * not automatically included. 668 */ 669 for (pa = new_end; pa < end; pa += PAGE_SIZE) 670 dump_add_page(pa); 671 #endif 672 phys_avail[biggestone + 1] = new_end; 673 #ifdef __amd64__ 674 /* 675 * Request that the physical pages underlying the message buffer be 676 * included in a crash dump. Since the message buffer is accessed 677 * through the direct map, they are not automatically included. 678 */ 679 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 680 last_pa = pa + round_page(msgbufsize); 681 while (pa < last_pa) { 682 dump_add_page(pa); 683 pa += PAGE_SIZE; 684 } 685 #endif 686 /* 687 * Compute the number of pages of memory that will be available for 688 * use, taking into account the overhead of a page structure per page. 689 * In other words, solve 690 * "available physical memory" - round_page(page_range * 691 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 692 * for page_range. 693 */ 694 low_avail = phys_avail[0]; 695 high_avail = phys_avail[1]; 696 for (i = 0; i < vm_phys_nsegs; i++) { 697 if (vm_phys_segs[i].start < low_avail) 698 low_avail = vm_phys_segs[i].start; 699 if (vm_phys_segs[i].end > high_avail) 700 high_avail = vm_phys_segs[i].end; 701 } 702 /* Skip the first chunk. It is already accounted for. */ 703 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 704 if (phys_avail[i] < low_avail) 705 low_avail = phys_avail[i]; 706 if (phys_avail[i + 1] > high_avail) 707 high_avail = phys_avail[i + 1]; 708 } 709 first_page = low_avail / PAGE_SIZE; 710 #ifdef VM_PHYSSEG_SPARSE 711 size = 0; 712 for (i = 0; i < vm_phys_nsegs; i++) 713 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 714 for (i = 0; phys_avail[i + 1] != 0; i += 2) 715 size += phys_avail[i + 1] - phys_avail[i]; 716 #elif defined(VM_PHYSSEG_DENSE) 717 size = high_avail - low_avail; 718 #else 719 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 720 #endif 721 722 #ifdef PMAP_HAS_PAGE_ARRAY 723 pmap_page_array_startup(size / PAGE_SIZE); 724 biggestone = vm_phys_avail_largest(); 725 end = new_end = phys_avail[biggestone + 1]; 726 #else 727 #ifdef VM_PHYSSEG_DENSE 728 /* 729 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 730 * the overhead of a page structure per page only if vm_page_array is 731 * allocated from the last physical memory chunk. Otherwise, we must 732 * allocate page structures representing the physical memory 733 * underlying vm_page_array, even though they will not be used. 734 */ 735 if (new_end != high_avail) 736 page_range = size / PAGE_SIZE; 737 else 738 #endif 739 { 740 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 741 742 /* 743 * If the partial bytes remaining are large enough for 744 * a page (PAGE_SIZE) without a corresponding 745 * 'struct vm_page', then new_end will contain an 746 * extra page after subtracting the length of the VM 747 * page array. Compensate by subtracting an extra 748 * page from new_end. 749 */ 750 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 751 if (new_end == high_avail) 752 high_avail -= PAGE_SIZE; 753 new_end -= PAGE_SIZE; 754 } 755 } 756 end = new_end; 757 new_end = vm_page_array_alloc(&vaddr, end, page_range); 758 #endif 759 760 #if VM_NRESERVLEVEL > 0 761 /* 762 * Allocate physical memory for the reservation management system's 763 * data structures, and map it. 764 */ 765 new_end = vm_reserv_startup(&vaddr, new_end); 766 #endif 767 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 768 defined(__riscv) || defined(__powerpc64__) 769 /* 770 * Include vm_page_array and vm_reserv_array in a crash dump. 771 */ 772 for (pa = new_end; pa < end; pa += PAGE_SIZE) 773 dump_add_page(pa); 774 #endif 775 phys_avail[biggestone + 1] = new_end; 776 777 /* 778 * Add physical memory segments corresponding to the available 779 * physical pages. 780 */ 781 for (i = 0; phys_avail[i + 1] != 0; i += 2) 782 if (vm_phys_avail_size(i) != 0) 783 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 784 785 /* 786 * Initialize the physical memory allocator. 787 */ 788 vm_phys_init(); 789 790 /* 791 * Initialize the page structures and add every available page to the 792 * physical memory allocator's free lists. 793 */ 794 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 795 for (ii = 0; ii < vm_page_array_size; ii++) { 796 m = &vm_page_array[ii]; 797 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0); 798 m->flags = PG_FICTITIOUS; 799 } 800 #endif 801 vm_cnt.v_page_count = 0; 802 for (segind = 0; segind < vm_phys_nsegs; segind++) { 803 seg = &vm_phys_segs[segind]; 804 for (m = seg->first_page, pa = seg->start; pa < seg->end; 805 m++, pa += PAGE_SIZE) 806 vm_page_init_page(m, pa, segind); 807 808 /* 809 * Add the segment to the free lists only if it is covered by 810 * one of the ranges in phys_avail. Because we've added the 811 * ranges to the vm_phys_segs array, we can assume that each 812 * segment is either entirely contained in one of the ranges, 813 * or doesn't overlap any of them. 814 */ 815 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 816 struct vm_domain *vmd; 817 818 if (seg->start < phys_avail[i] || 819 seg->end > phys_avail[i + 1]) 820 continue; 821 822 m = seg->first_page; 823 pagecount = (u_long)atop(seg->end - seg->start); 824 825 vmd = VM_DOMAIN(seg->domain); 826 vm_domain_free_lock(vmd); 827 vm_phys_enqueue_contig(m, pagecount); 828 vm_domain_free_unlock(vmd); 829 vm_domain_freecnt_inc(vmd, pagecount); 830 vm_cnt.v_page_count += (u_int)pagecount; 831 832 vmd = VM_DOMAIN(seg->domain); 833 vmd->vmd_page_count += (u_int)pagecount; 834 vmd->vmd_segs |= 1UL << m->segind; 835 break; 836 } 837 } 838 839 /* 840 * Remove blacklisted pages from the physical memory allocator. 841 */ 842 TAILQ_INIT(&blacklist_head); 843 vm_page_blacklist_load(&list, &listend); 844 vm_page_blacklist_check(list, listend); 845 846 list = kern_getenv("vm.blacklist"); 847 vm_page_blacklist_check(list, NULL); 848 849 freeenv(list); 850 #if VM_NRESERVLEVEL > 0 851 /* 852 * Initialize the reservation management system. 853 */ 854 vm_reserv_init(); 855 #endif 856 857 return (vaddr); 858 } 859 860 void 861 vm_page_reference(vm_page_t m) 862 { 863 864 vm_page_aflag_set(m, PGA_REFERENCED); 865 } 866 867 static bool 868 vm_page_acquire_flags(vm_page_t m, int allocflags) 869 { 870 bool locked; 871 872 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0) 873 locked = vm_page_trysbusy(m); 874 else 875 locked = vm_page_tryxbusy(m); 876 if (locked && (allocflags & VM_ALLOC_WIRED) != 0) 877 vm_page_wire(m); 878 return (locked); 879 } 880 881 static bool 882 vm_page_busy_sleep_flags(vm_object_t object, vm_page_t m, const char *wchan, 883 int allocflags) 884 { 885 886 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 887 return (false); 888 /* 889 * Reference the page before unlocking and 890 * sleeping so that the page daemon is less 891 * likely to reclaim it. 892 */ 893 if ((allocflags & VM_ALLOC_NOCREAT) == 0) 894 vm_page_aflag_set(m, PGA_REFERENCED); 895 vm_page_busy_sleep(m, wchan, (allocflags & 896 VM_ALLOC_IGN_SBUSY) != 0); 897 VM_OBJECT_WLOCK(object); 898 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 899 return (false); 900 return (true); 901 } 902 903 /* 904 * vm_page_busy_acquire: 905 * 906 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop 907 * and drop the object lock if necessary. 908 */ 909 bool 910 vm_page_busy_acquire(vm_page_t m, int allocflags) 911 { 912 vm_object_t obj; 913 bool locked; 914 915 /* 916 * The page-specific object must be cached because page 917 * identity can change during the sleep, causing the 918 * re-lock of a different object. 919 * It is assumed that a reference to the object is already 920 * held by the callers. 921 */ 922 obj = m->object; 923 for (;;) { 924 if (vm_page_acquire_flags(m, allocflags)) 925 return (true); 926 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 927 return (false); 928 if (obj != NULL) 929 locked = VM_OBJECT_WOWNED(obj); 930 else 931 locked = false; 932 MPASS(locked || vm_page_wired(m)); 933 _vm_page_busy_sleep(obj, m, "vmpba", 934 (allocflags & VM_ALLOC_SBUSY) != 0, locked); 935 if (locked) 936 VM_OBJECT_WLOCK(obj); 937 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 938 return (false); 939 KASSERT(m->object == obj || m->object == NULL, 940 ("vm_page_busy_acquire: page %p does not belong to %p", 941 m, obj)); 942 } 943 } 944 945 /* 946 * vm_page_busy_downgrade: 947 * 948 * Downgrade an exclusive busy page into a single shared busy page. 949 */ 950 void 951 vm_page_busy_downgrade(vm_page_t m) 952 { 953 u_int x; 954 955 vm_page_assert_xbusied(m); 956 957 x = m->busy_lock; 958 for (;;) { 959 if (atomic_fcmpset_rel_int(&m->busy_lock, 960 &x, VPB_SHARERS_WORD(1))) 961 break; 962 } 963 if ((x & VPB_BIT_WAITERS) != 0) 964 wakeup(m); 965 } 966 967 /* 968 * 969 * vm_page_busy_tryupgrade: 970 * 971 * Attempt to upgrade a single shared busy into an exclusive busy. 972 */ 973 int 974 vm_page_busy_tryupgrade(vm_page_t m) 975 { 976 u_int ce, x; 977 978 vm_page_assert_sbusied(m); 979 980 x = m->busy_lock; 981 ce = VPB_CURTHREAD_EXCLUSIVE; 982 for (;;) { 983 if (VPB_SHARERS(x) > 1) 984 return (0); 985 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 986 ("vm_page_busy_tryupgrade: invalid lock state")); 987 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x, 988 ce | (x & VPB_BIT_WAITERS))) 989 continue; 990 return (1); 991 } 992 } 993 994 /* 995 * vm_page_sbusied: 996 * 997 * Return a positive value if the page is shared busied, 0 otherwise. 998 */ 999 int 1000 vm_page_sbusied(vm_page_t m) 1001 { 1002 u_int x; 1003 1004 x = m->busy_lock; 1005 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 1006 } 1007 1008 /* 1009 * vm_page_sunbusy: 1010 * 1011 * Shared unbusy a page. 1012 */ 1013 void 1014 vm_page_sunbusy(vm_page_t m) 1015 { 1016 u_int x; 1017 1018 vm_page_assert_sbusied(m); 1019 1020 x = m->busy_lock; 1021 for (;;) { 1022 if (VPB_SHARERS(x) > 1) { 1023 if (atomic_fcmpset_int(&m->busy_lock, &x, 1024 x - VPB_ONE_SHARER)) 1025 break; 1026 continue; 1027 } 1028 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 1029 ("vm_page_sunbusy: invalid lock state")); 1030 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1031 continue; 1032 if ((x & VPB_BIT_WAITERS) == 0) 1033 break; 1034 wakeup(m); 1035 break; 1036 } 1037 } 1038 1039 /* 1040 * vm_page_busy_sleep: 1041 * 1042 * Sleep if the page is busy, using the page pointer as wchan. 1043 * This is used to implement the hard-path of busying mechanism. 1044 * 1045 * If nonshared is true, sleep only if the page is xbusy. 1046 * 1047 * The object lock must be held on entry and will be released on exit. 1048 */ 1049 void 1050 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared) 1051 { 1052 vm_object_t obj; 1053 1054 obj = m->object; 1055 VM_OBJECT_ASSERT_LOCKED(obj); 1056 vm_page_lock_assert(m, MA_NOTOWNED); 1057 1058 _vm_page_busy_sleep(obj, m, wmesg, nonshared, true); 1059 } 1060 1061 static void 1062 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg, 1063 bool nonshared, bool locked) 1064 { 1065 u_int x; 1066 1067 /* 1068 * If the object is busy we must wait for that to drain to zero 1069 * before trying the page again. 1070 */ 1071 if (obj != NULL && vm_object_busied(obj)) { 1072 if (locked) 1073 VM_OBJECT_DROP(obj); 1074 vm_object_busy_wait(obj, wmesg); 1075 return; 1076 } 1077 sleepq_lock(m); 1078 x = m->busy_lock; 1079 if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) || 1080 ((x & VPB_BIT_WAITERS) == 0 && 1081 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) { 1082 if (locked) 1083 VM_OBJECT_DROP(obj); 1084 sleepq_release(m); 1085 return; 1086 } 1087 if (locked) 1088 VM_OBJECT_DROP(obj); 1089 DROP_GIANT(); 1090 sleepq_add(m, NULL, wmesg, 0, 0); 1091 sleepq_wait(m, PVM); 1092 PICKUP_GIANT(); 1093 } 1094 1095 /* 1096 * vm_page_trysbusy: 1097 * 1098 * Try to shared busy a page. 1099 * If the operation succeeds 1 is returned otherwise 0. 1100 * The operation never sleeps. 1101 */ 1102 int 1103 vm_page_trysbusy(vm_page_t m) 1104 { 1105 vm_object_t obj; 1106 u_int x; 1107 1108 obj = m->object; 1109 x = m->busy_lock; 1110 for (;;) { 1111 if ((x & VPB_BIT_SHARED) == 0) 1112 return (0); 1113 /* 1114 * Reduce the window for transient busies that will trigger 1115 * false negatives in vm_page_ps_test(). 1116 */ 1117 if (obj != NULL && vm_object_busied(obj)) 1118 return (0); 1119 if (atomic_fcmpset_acq_int(&m->busy_lock, &x, 1120 x + VPB_ONE_SHARER)) 1121 break; 1122 } 1123 1124 /* Refetch the object now that we're guaranteed that it is stable. */ 1125 obj = m->object; 1126 if (obj != NULL && vm_object_busied(obj)) { 1127 vm_page_sunbusy(m); 1128 return (0); 1129 } 1130 return (1); 1131 } 1132 1133 /* 1134 * vm_page_tryxbusy: 1135 * 1136 * Try to exclusive busy a page. 1137 * If the operation succeeds 1 is returned otherwise 0. 1138 * The operation never sleeps. 1139 */ 1140 int 1141 vm_page_tryxbusy(vm_page_t m) 1142 { 1143 vm_object_t obj; 1144 1145 if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED, 1146 VPB_CURTHREAD_EXCLUSIVE) == 0) 1147 return (0); 1148 1149 obj = m->object; 1150 if (obj != NULL && vm_object_busied(obj)) { 1151 vm_page_xunbusy(m); 1152 return (0); 1153 } 1154 return (1); 1155 } 1156 1157 static void 1158 vm_page_xunbusy_hard_tail(vm_page_t m) 1159 { 1160 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1161 /* Wake the waiter. */ 1162 wakeup(m); 1163 } 1164 1165 /* 1166 * vm_page_xunbusy_hard: 1167 * 1168 * Called when unbusy has failed because there is a waiter. 1169 */ 1170 void 1171 vm_page_xunbusy_hard(vm_page_t m) 1172 { 1173 vm_page_assert_xbusied(m); 1174 vm_page_xunbusy_hard_tail(m); 1175 } 1176 1177 void 1178 vm_page_xunbusy_hard_unchecked(vm_page_t m) 1179 { 1180 vm_page_assert_xbusied_unchecked(m); 1181 vm_page_xunbusy_hard_tail(m); 1182 } 1183 1184 /* 1185 * Avoid releasing and reacquiring the same page lock. 1186 */ 1187 void 1188 vm_page_change_lock(vm_page_t m, struct mtx **mtx) 1189 { 1190 struct mtx *mtx1; 1191 1192 mtx1 = vm_page_lockptr(m); 1193 if (*mtx == mtx1) 1194 return; 1195 if (*mtx != NULL) 1196 mtx_unlock(*mtx); 1197 *mtx = mtx1; 1198 mtx_lock(mtx1); 1199 } 1200 1201 /* 1202 * vm_page_unhold_pages: 1203 * 1204 * Unhold each of the pages that is referenced by the given array. 1205 */ 1206 void 1207 vm_page_unhold_pages(vm_page_t *ma, int count) 1208 { 1209 1210 for (; count != 0; count--) { 1211 vm_page_unwire(*ma, PQ_ACTIVE); 1212 ma++; 1213 } 1214 } 1215 1216 vm_page_t 1217 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1218 { 1219 vm_page_t m; 1220 1221 #ifdef VM_PHYSSEG_SPARSE 1222 m = vm_phys_paddr_to_vm_page(pa); 1223 if (m == NULL) 1224 m = vm_phys_fictitious_to_vm_page(pa); 1225 return (m); 1226 #elif defined(VM_PHYSSEG_DENSE) 1227 long pi; 1228 1229 pi = atop(pa); 1230 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1231 m = &vm_page_array[pi - first_page]; 1232 return (m); 1233 } 1234 return (vm_phys_fictitious_to_vm_page(pa)); 1235 #else 1236 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1237 #endif 1238 } 1239 1240 /* 1241 * vm_page_getfake: 1242 * 1243 * Create a fictitious page with the specified physical address and 1244 * memory attribute. The memory attribute is the only the machine- 1245 * dependent aspect of a fictitious page that must be initialized. 1246 */ 1247 vm_page_t 1248 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1249 { 1250 vm_page_t m; 1251 1252 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1253 vm_page_initfake(m, paddr, memattr); 1254 return (m); 1255 } 1256 1257 void 1258 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1259 { 1260 1261 if ((m->flags & PG_FICTITIOUS) != 0) { 1262 /* 1263 * The page's memattr might have changed since the 1264 * previous initialization. Update the pmap to the 1265 * new memattr. 1266 */ 1267 goto memattr; 1268 } 1269 m->phys_addr = paddr; 1270 m->a.queue = PQ_NONE; 1271 /* Fictitious pages don't use "segind". */ 1272 m->flags = PG_FICTITIOUS; 1273 /* Fictitious pages don't use "order" or "pool". */ 1274 m->oflags = VPO_UNMANAGED; 1275 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 1276 /* Fictitious pages are unevictable. */ 1277 m->ref_count = 1; 1278 pmap_page_init(m); 1279 memattr: 1280 pmap_page_set_memattr(m, memattr); 1281 } 1282 1283 /* 1284 * vm_page_putfake: 1285 * 1286 * Release a fictitious page. 1287 */ 1288 void 1289 vm_page_putfake(vm_page_t m) 1290 { 1291 1292 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1293 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1294 ("vm_page_putfake: bad page %p", m)); 1295 vm_page_xunbusy(m); 1296 uma_zfree(fakepg_zone, m); 1297 } 1298 1299 /* 1300 * vm_page_updatefake: 1301 * 1302 * Update the given fictitious page to the specified physical address and 1303 * memory attribute. 1304 */ 1305 void 1306 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1307 { 1308 1309 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1310 ("vm_page_updatefake: bad page %p", m)); 1311 m->phys_addr = paddr; 1312 pmap_page_set_memattr(m, memattr); 1313 } 1314 1315 /* 1316 * vm_page_free: 1317 * 1318 * Free a page. 1319 */ 1320 void 1321 vm_page_free(vm_page_t m) 1322 { 1323 1324 m->flags &= ~PG_ZERO; 1325 vm_page_free_toq(m); 1326 } 1327 1328 /* 1329 * vm_page_free_zero: 1330 * 1331 * Free a page to the zerod-pages queue 1332 */ 1333 void 1334 vm_page_free_zero(vm_page_t m) 1335 { 1336 1337 m->flags |= PG_ZERO; 1338 vm_page_free_toq(m); 1339 } 1340 1341 /* 1342 * Unbusy and handle the page queueing for a page from a getpages request that 1343 * was optionally read ahead or behind. 1344 */ 1345 void 1346 vm_page_readahead_finish(vm_page_t m) 1347 { 1348 1349 /* We shouldn't put invalid pages on queues. */ 1350 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m)); 1351 1352 /* 1353 * Since the page is not the actually needed one, whether it should 1354 * be activated or deactivated is not obvious. Empirical results 1355 * have shown that deactivating the page is usually the best choice, 1356 * unless the page is wanted by another thread. 1357 */ 1358 vm_page_lock(m); 1359 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 1360 vm_page_activate(m); 1361 else 1362 vm_page_deactivate(m); 1363 vm_page_unlock(m); 1364 vm_page_xunbusy_unchecked(m); 1365 } 1366 1367 /* 1368 * vm_page_sleep_if_busy: 1369 * 1370 * Sleep and release the object lock if the page is busied. 1371 * Returns TRUE if the thread slept. 1372 * 1373 * The given page must be unlocked and object containing it must 1374 * be locked. 1375 */ 1376 int 1377 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 1378 { 1379 vm_object_t obj; 1380 1381 vm_page_lock_assert(m, MA_NOTOWNED); 1382 VM_OBJECT_ASSERT_WLOCKED(m->object); 1383 1384 /* 1385 * The page-specific object must be cached because page 1386 * identity can change during the sleep, causing the 1387 * re-lock of a different object. 1388 * It is assumed that a reference to the object is already 1389 * held by the callers. 1390 */ 1391 obj = m->object; 1392 if (vm_page_busied(m) || (obj != NULL && obj->busy)) { 1393 vm_page_busy_sleep(m, msg, false); 1394 VM_OBJECT_WLOCK(obj); 1395 return (TRUE); 1396 } 1397 return (FALSE); 1398 } 1399 1400 /* 1401 * vm_page_sleep_if_xbusy: 1402 * 1403 * Sleep and release the object lock if the page is xbusied. 1404 * Returns TRUE if the thread slept. 1405 * 1406 * The given page must be unlocked and object containing it must 1407 * be locked. 1408 */ 1409 int 1410 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg) 1411 { 1412 vm_object_t obj; 1413 1414 vm_page_lock_assert(m, MA_NOTOWNED); 1415 VM_OBJECT_ASSERT_WLOCKED(m->object); 1416 1417 /* 1418 * The page-specific object must be cached because page 1419 * identity can change during the sleep, causing the 1420 * re-lock of a different object. 1421 * It is assumed that a reference to the object is already 1422 * held by the callers. 1423 */ 1424 obj = m->object; 1425 if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) { 1426 vm_page_busy_sleep(m, msg, true); 1427 VM_OBJECT_WLOCK(obj); 1428 return (TRUE); 1429 } 1430 return (FALSE); 1431 } 1432 1433 /* 1434 * vm_page_dirty_KBI: [ internal use only ] 1435 * 1436 * Set all bits in the page's dirty field. 1437 * 1438 * The object containing the specified page must be locked if the 1439 * call is made from the machine-independent layer. 1440 * 1441 * See vm_page_clear_dirty_mask(). 1442 * 1443 * This function should only be called by vm_page_dirty(). 1444 */ 1445 void 1446 vm_page_dirty_KBI(vm_page_t m) 1447 { 1448 1449 /* Refer to this operation by its public name. */ 1450 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!")); 1451 m->dirty = VM_PAGE_BITS_ALL; 1452 } 1453 1454 /* 1455 * vm_page_insert: [ internal use only ] 1456 * 1457 * Inserts the given mem entry into the object and object list. 1458 * 1459 * The object must be locked. 1460 */ 1461 int 1462 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1463 { 1464 vm_page_t mpred; 1465 1466 VM_OBJECT_ASSERT_WLOCKED(object); 1467 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1468 return (vm_page_insert_after(m, object, pindex, mpred)); 1469 } 1470 1471 /* 1472 * vm_page_insert_after: 1473 * 1474 * Inserts the page "m" into the specified object at offset "pindex". 1475 * 1476 * The page "mpred" must immediately precede the offset "pindex" within 1477 * the specified object. 1478 * 1479 * The object must be locked. 1480 */ 1481 static int 1482 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1483 vm_page_t mpred) 1484 { 1485 vm_page_t msucc; 1486 1487 VM_OBJECT_ASSERT_WLOCKED(object); 1488 KASSERT(m->object == NULL, 1489 ("vm_page_insert_after: page already inserted")); 1490 if (mpred != NULL) { 1491 KASSERT(mpred->object == object, 1492 ("vm_page_insert_after: object doesn't contain mpred")); 1493 KASSERT(mpred->pindex < pindex, 1494 ("vm_page_insert_after: mpred doesn't precede pindex")); 1495 msucc = TAILQ_NEXT(mpred, listq); 1496 } else 1497 msucc = TAILQ_FIRST(&object->memq); 1498 if (msucc != NULL) 1499 KASSERT(msucc->pindex > pindex, 1500 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1501 1502 /* 1503 * Record the object/offset pair in this page. 1504 */ 1505 m->object = object; 1506 m->pindex = pindex; 1507 m->ref_count |= VPRC_OBJREF; 1508 1509 /* 1510 * Now link into the object's ordered list of backed pages. 1511 */ 1512 if (vm_radix_insert(&object->rtree, m)) { 1513 m->object = NULL; 1514 m->pindex = 0; 1515 m->ref_count &= ~VPRC_OBJREF; 1516 return (1); 1517 } 1518 vm_page_insert_radixdone(m, object, mpred); 1519 return (0); 1520 } 1521 1522 /* 1523 * vm_page_insert_radixdone: 1524 * 1525 * Complete page "m" insertion into the specified object after the 1526 * radix trie hooking. 1527 * 1528 * The page "mpred" must precede the offset "m->pindex" within the 1529 * specified object. 1530 * 1531 * The object must be locked. 1532 */ 1533 static void 1534 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1535 { 1536 1537 VM_OBJECT_ASSERT_WLOCKED(object); 1538 KASSERT(object != NULL && m->object == object, 1539 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1540 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1541 ("vm_page_insert_radixdone: page %p is missing object ref", m)); 1542 if (mpred != NULL) { 1543 KASSERT(mpred->object == object, 1544 ("vm_page_insert_radixdone: object doesn't contain mpred")); 1545 KASSERT(mpred->pindex < m->pindex, 1546 ("vm_page_insert_radixdone: mpred doesn't precede pindex")); 1547 } 1548 1549 if (mpred != NULL) 1550 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1551 else 1552 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1553 1554 /* 1555 * Show that the object has one more resident page. 1556 */ 1557 object->resident_page_count++; 1558 1559 /* 1560 * Hold the vnode until the last page is released. 1561 */ 1562 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1563 vhold(object->handle); 1564 1565 /* 1566 * Since we are inserting a new and possibly dirty page, 1567 * update the object's generation count. 1568 */ 1569 if (pmap_page_is_write_mapped(m)) 1570 vm_object_set_writeable_dirty(object); 1571 } 1572 1573 /* 1574 * Do the work to remove a page from its object. The caller is responsible for 1575 * updating the page's fields to reflect this removal. 1576 */ 1577 static void 1578 vm_page_object_remove(vm_page_t m) 1579 { 1580 vm_object_t object; 1581 vm_page_t mrem; 1582 1583 vm_page_assert_xbusied(m); 1584 object = m->object; 1585 VM_OBJECT_ASSERT_WLOCKED(object); 1586 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1587 ("page %p is missing its object ref", m)); 1588 1589 /* Deferred free of swap space. */ 1590 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1591 vm_pager_page_unswapped(m); 1592 1593 mrem = vm_radix_remove(&object->rtree, m->pindex); 1594 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1595 1596 /* 1597 * Now remove from the object's list of backed pages. 1598 */ 1599 TAILQ_REMOVE(&object->memq, m, listq); 1600 1601 /* 1602 * And show that the object has one fewer resident page. 1603 */ 1604 object->resident_page_count--; 1605 1606 /* 1607 * The vnode may now be recycled. 1608 */ 1609 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1610 vdrop(object->handle); 1611 } 1612 1613 /* 1614 * vm_page_remove: 1615 * 1616 * Removes the specified page from its containing object, but does not 1617 * invalidate any backing storage. Returns true if the object's reference 1618 * was the last reference to the page, and false otherwise. 1619 * 1620 * The object must be locked and the page must be exclusively busied. 1621 * The exclusive busy will be released on return. If this is not the 1622 * final ref and the caller does not hold a wire reference it may not 1623 * continue to access the page. 1624 */ 1625 bool 1626 vm_page_remove(vm_page_t m) 1627 { 1628 bool dropped; 1629 1630 dropped = vm_page_remove_xbusy(m); 1631 vm_page_xunbusy(m); 1632 1633 return (dropped); 1634 } 1635 1636 /* 1637 * vm_page_remove_xbusy 1638 * 1639 * Removes the page but leaves the xbusy held. Returns true if this 1640 * removed the final ref and false otherwise. 1641 */ 1642 bool 1643 vm_page_remove_xbusy(vm_page_t m) 1644 { 1645 1646 vm_page_object_remove(m); 1647 m->object = NULL; 1648 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1649 } 1650 1651 /* 1652 * vm_page_lookup: 1653 * 1654 * Returns the page associated with the object/offset 1655 * pair specified; if none is found, NULL is returned. 1656 * 1657 * The object must be locked. 1658 */ 1659 vm_page_t 1660 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1661 { 1662 1663 VM_OBJECT_ASSERT_LOCKED(object); 1664 return (vm_radix_lookup(&object->rtree, pindex)); 1665 } 1666 1667 /* 1668 * vm_page_find_least: 1669 * 1670 * Returns the page associated with the object with least pindex 1671 * greater than or equal to the parameter pindex, or NULL. 1672 * 1673 * The object must be locked. 1674 */ 1675 vm_page_t 1676 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1677 { 1678 vm_page_t m; 1679 1680 VM_OBJECT_ASSERT_LOCKED(object); 1681 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1682 m = vm_radix_lookup_ge(&object->rtree, pindex); 1683 return (m); 1684 } 1685 1686 /* 1687 * Returns the given page's successor (by pindex) within the object if it is 1688 * resident; if none is found, NULL is returned. 1689 * 1690 * The object must be locked. 1691 */ 1692 vm_page_t 1693 vm_page_next(vm_page_t m) 1694 { 1695 vm_page_t next; 1696 1697 VM_OBJECT_ASSERT_LOCKED(m->object); 1698 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1699 MPASS(next->object == m->object); 1700 if (next->pindex != m->pindex + 1) 1701 next = NULL; 1702 } 1703 return (next); 1704 } 1705 1706 /* 1707 * Returns the given page's predecessor (by pindex) within the object if it is 1708 * resident; if none is found, NULL is returned. 1709 * 1710 * The object must be locked. 1711 */ 1712 vm_page_t 1713 vm_page_prev(vm_page_t m) 1714 { 1715 vm_page_t prev; 1716 1717 VM_OBJECT_ASSERT_LOCKED(m->object); 1718 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1719 MPASS(prev->object == m->object); 1720 if (prev->pindex != m->pindex - 1) 1721 prev = NULL; 1722 } 1723 return (prev); 1724 } 1725 1726 /* 1727 * Uses the page mnew as a replacement for an existing page at index 1728 * pindex which must be already present in the object. 1729 * 1730 * Both pages must be exclusively busied on enter. The old page is 1731 * unbusied on exit. 1732 * 1733 * A return value of true means mold is now free. If this is not the 1734 * final ref and the caller does not hold a wire reference it may not 1735 * continue to access the page. 1736 */ 1737 static bool 1738 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1739 vm_page_t mold) 1740 { 1741 vm_page_t mret; 1742 bool dropped; 1743 1744 VM_OBJECT_ASSERT_WLOCKED(object); 1745 vm_page_assert_xbusied(mnew); 1746 vm_page_assert_xbusied(mold); 1747 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0, 1748 ("vm_page_replace: page %p already in object", mnew)); 1749 1750 /* 1751 * This function mostly follows vm_page_insert() and 1752 * vm_page_remove() without the radix, object count and vnode 1753 * dance. Double check such functions for more comments. 1754 */ 1755 1756 mnew->object = object; 1757 mnew->pindex = pindex; 1758 atomic_set_int(&mnew->ref_count, VPRC_OBJREF); 1759 mret = vm_radix_replace(&object->rtree, mnew); 1760 KASSERT(mret == mold, 1761 ("invalid page replacement, mold=%p, mret=%p", mold, mret)); 1762 KASSERT((mold->oflags & VPO_UNMANAGED) == 1763 (mnew->oflags & VPO_UNMANAGED), 1764 ("vm_page_replace: mismatched VPO_UNMANAGED")); 1765 1766 /* Keep the resident page list in sorted order. */ 1767 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1768 TAILQ_REMOVE(&object->memq, mold, listq); 1769 mold->object = NULL; 1770 1771 /* 1772 * The object's resident_page_count does not change because we have 1773 * swapped one page for another, but the generation count should 1774 * change if the page is dirty. 1775 */ 1776 if (pmap_page_is_write_mapped(mnew)) 1777 vm_object_set_writeable_dirty(object); 1778 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF; 1779 vm_page_xunbusy(mold); 1780 1781 return (dropped); 1782 } 1783 1784 void 1785 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1786 vm_page_t mold) 1787 { 1788 1789 if (vm_page_replace_hold(mnew, object, pindex, mold)) 1790 vm_page_free(mold); 1791 } 1792 1793 /* 1794 * vm_page_rename: 1795 * 1796 * Move the given memory entry from its 1797 * current object to the specified target object/offset. 1798 * 1799 * Note: swap associated with the page must be invalidated by the move. We 1800 * have to do this for several reasons: (1) we aren't freeing the 1801 * page, (2) we are dirtying the page, (3) the VM system is probably 1802 * moving the page from object A to B, and will then later move 1803 * the backing store from A to B and we can't have a conflict. 1804 * 1805 * Note: we *always* dirty the page. It is necessary both for the 1806 * fact that we moved it, and because we may be invalidating 1807 * swap. 1808 * 1809 * The objects must be locked. 1810 */ 1811 int 1812 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1813 { 1814 vm_page_t mpred; 1815 vm_pindex_t opidx; 1816 1817 VM_OBJECT_ASSERT_WLOCKED(new_object); 1818 1819 KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m)); 1820 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1821 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1822 ("vm_page_rename: pindex already renamed")); 1823 1824 /* 1825 * Create a custom version of vm_page_insert() which does not depend 1826 * by m_prev and can cheat on the implementation aspects of the 1827 * function. 1828 */ 1829 opidx = m->pindex; 1830 m->pindex = new_pindex; 1831 if (vm_radix_insert(&new_object->rtree, m)) { 1832 m->pindex = opidx; 1833 return (1); 1834 } 1835 1836 /* 1837 * The operation cannot fail anymore. The removal must happen before 1838 * the listq iterator is tainted. 1839 */ 1840 m->pindex = opidx; 1841 vm_page_object_remove(m); 1842 1843 /* Return back to the new pindex to complete vm_page_insert(). */ 1844 m->pindex = new_pindex; 1845 m->object = new_object; 1846 1847 vm_page_insert_radixdone(m, new_object, mpred); 1848 vm_page_dirty(m); 1849 return (0); 1850 } 1851 1852 /* 1853 * vm_page_alloc: 1854 * 1855 * Allocate and return a page that is associated with the specified 1856 * object and offset pair. By default, this page is exclusive busied. 1857 * 1858 * The caller must always specify an allocation class. 1859 * 1860 * allocation classes: 1861 * VM_ALLOC_NORMAL normal process request 1862 * VM_ALLOC_SYSTEM system *really* needs a page 1863 * VM_ALLOC_INTERRUPT interrupt time request 1864 * 1865 * optional allocation flags: 1866 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1867 * intends to allocate 1868 * VM_ALLOC_NOBUSY do not exclusive busy the page 1869 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1870 * VM_ALLOC_NOOBJ page is not associated with an object and 1871 * should not be exclusive busy 1872 * VM_ALLOC_SBUSY shared busy the allocated page 1873 * VM_ALLOC_WIRED wire the allocated page 1874 * VM_ALLOC_ZERO prefer a zeroed page 1875 */ 1876 vm_page_t 1877 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1878 { 1879 1880 return (vm_page_alloc_after(object, pindex, req, object != NULL ? 1881 vm_radix_lookup_le(&object->rtree, pindex) : NULL)); 1882 } 1883 1884 vm_page_t 1885 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1886 int req) 1887 { 1888 1889 return (vm_page_alloc_domain_after(object, pindex, domain, req, 1890 object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : 1891 NULL)); 1892 } 1893 1894 /* 1895 * Allocate a page in the specified object with the given page index. To 1896 * optimize insertion of the page into the object, the caller must also specifiy 1897 * the resident page in the object with largest index smaller than the given 1898 * page index, or NULL if no such page exists. 1899 */ 1900 vm_page_t 1901 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 1902 int req, vm_page_t mpred) 1903 { 1904 struct vm_domainset_iter di; 1905 vm_page_t m; 1906 int domain; 1907 1908 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1909 do { 1910 m = vm_page_alloc_domain_after(object, pindex, domain, req, 1911 mpred); 1912 if (m != NULL) 1913 break; 1914 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1915 1916 return (m); 1917 } 1918 1919 /* 1920 * Returns true if the number of free pages exceeds the minimum 1921 * for the request class and false otherwise. 1922 */ 1923 static int 1924 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages) 1925 { 1926 u_int limit, old, new; 1927 1928 if (req_class == VM_ALLOC_INTERRUPT) 1929 limit = 0; 1930 else if (req_class == VM_ALLOC_SYSTEM) 1931 limit = vmd->vmd_interrupt_free_min; 1932 else 1933 limit = vmd->vmd_free_reserved; 1934 1935 /* 1936 * Attempt to reserve the pages. Fail if we're below the limit. 1937 */ 1938 limit += npages; 1939 old = vmd->vmd_free_count; 1940 do { 1941 if (old < limit) 1942 return (0); 1943 new = old - npages; 1944 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 1945 1946 /* Wake the page daemon if we've crossed the threshold. */ 1947 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 1948 pagedaemon_wakeup(vmd->vmd_domain); 1949 1950 /* Only update bitsets on transitions. */ 1951 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 1952 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 1953 vm_domain_set(vmd); 1954 1955 return (1); 1956 } 1957 1958 int 1959 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 1960 { 1961 int req_class; 1962 1963 /* 1964 * The page daemon is allowed to dig deeper into the free page list. 1965 */ 1966 req_class = req & VM_ALLOC_CLASS_MASK; 1967 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1968 req_class = VM_ALLOC_SYSTEM; 1969 return (_vm_domain_allocate(vmd, req_class, npages)); 1970 } 1971 1972 vm_page_t 1973 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 1974 int req, vm_page_t mpred) 1975 { 1976 struct vm_domain *vmd; 1977 vm_page_t m; 1978 int flags, pool; 1979 1980 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1981 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1982 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1983 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1984 ("inconsistent object(%p)/req(%x)", object, req)); 1985 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1986 ("Can't sleep and retry object insertion.")); 1987 KASSERT(mpred == NULL || mpred->pindex < pindex, 1988 ("mpred %p doesn't precede pindex 0x%jx", mpred, 1989 (uintmax_t)pindex)); 1990 if (object != NULL) 1991 VM_OBJECT_ASSERT_WLOCKED(object); 1992 1993 flags = 0; 1994 m = NULL; 1995 pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT; 1996 again: 1997 #if VM_NRESERVLEVEL > 0 1998 /* 1999 * Can we allocate the page from a reservation? 2000 */ 2001 if (vm_object_reserv(object) && 2002 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != 2003 NULL) { 2004 domain = vm_phys_domain(m); 2005 vmd = VM_DOMAIN(domain); 2006 goto found; 2007 } 2008 #endif 2009 vmd = VM_DOMAIN(domain); 2010 if (vmd->vmd_pgcache[pool].zone != NULL) { 2011 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT); 2012 if (m != NULL) { 2013 flags |= PG_PCPU_CACHE; 2014 goto found; 2015 } 2016 } 2017 if (vm_domain_allocate(vmd, req, 1)) { 2018 /* 2019 * If not, allocate it from the free page queues. 2020 */ 2021 vm_domain_free_lock(vmd); 2022 m = vm_phys_alloc_pages(domain, pool, 0); 2023 vm_domain_free_unlock(vmd); 2024 if (m == NULL) { 2025 vm_domain_freecnt_inc(vmd, 1); 2026 #if VM_NRESERVLEVEL > 0 2027 if (vm_reserv_reclaim_inactive(domain)) 2028 goto again; 2029 #endif 2030 } 2031 } 2032 if (m == NULL) { 2033 /* 2034 * Not allocatable, give up. 2035 */ 2036 if (vm_domain_alloc_fail(vmd, object, req)) 2037 goto again; 2038 return (NULL); 2039 } 2040 2041 /* 2042 * At this point we had better have found a good page. 2043 */ 2044 found: 2045 vm_page_dequeue(m); 2046 vm_page_alloc_check(m); 2047 2048 /* 2049 * Initialize the page. Only the PG_ZERO flag is inherited. 2050 */ 2051 if ((req & VM_ALLOC_ZERO) != 0) 2052 flags |= (m->flags & PG_ZERO); 2053 if ((req & VM_ALLOC_NODUMP) != 0) 2054 flags |= PG_NODUMP; 2055 m->flags = flags; 2056 m->a.flags = 0; 2057 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 2058 VPO_UNMANAGED : 0; 2059 m->busy_lock = VPB_UNBUSIED; 2060 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 2061 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2062 if ((req & VM_ALLOC_SBUSY) != 0) 2063 m->busy_lock = VPB_SHARERS_WORD(1); 2064 if (req & VM_ALLOC_WIRED) { 2065 /* 2066 * The page lock is not required for wiring a page until that 2067 * page is inserted into the object. 2068 */ 2069 vm_wire_add(1); 2070 m->ref_count = 1; 2071 } 2072 m->a.act_count = 0; 2073 2074 if (object != NULL) { 2075 if (vm_page_insert_after(m, object, pindex, mpred)) { 2076 if (req & VM_ALLOC_WIRED) { 2077 vm_wire_sub(1); 2078 m->ref_count = 0; 2079 } 2080 KASSERT(m->object == NULL, ("page %p has object", m)); 2081 m->oflags = VPO_UNMANAGED; 2082 m->busy_lock = VPB_UNBUSIED; 2083 /* Don't change PG_ZERO. */ 2084 vm_page_free_toq(m); 2085 if (req & VM_ALLOC_WAITFAIL) { 2086 VM_OBJECT_WUNLOCK(object); 2087 vm_radix_wait(); 2088 VM_OBJECT_WLOCK(object); 2089 } 2090 return (NULL); 2091 } 2092 2093 /* Ignore device objects; the pager sets "memattr" for them. */ 2094 if (object->memattr != VM_MEMATTR_DEFAULT && 2095 (object->flags & OBJ_FICTITIOUS) == 0) 2096 pmap_page_set_memattr(m, object->memattr); 2097 } else 2098 m->pindex = pindex; 2099 2100 return (m); 2101 } 2102 2103 /* 2104 * vm_page_alloc_contig: 2105 * 2106 * Allocate a contiguous set of physical pages of the given size "npages" 2107 * from the free lists. All of the physical pages must be at or above 2108 * the given physical address "low" and below the given physical address 2109 * "high". The given value "alignment" determines the alignment of the 2110 * first physical page in the set. If the given value "boundary" is 2111 * non-zero, then the set of physical pages cannot cross any physical 2112 * address boundary that is a multiple of that value. Both "alignment" 2113 * and "boundary" must be a power of two. 2114 * 2115 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 2116 * then the memory attribute setting for the physical pages is configured 2117 * to the object's memory attribute setting. Otherwise, the memory 2118 * attribute setting for the physical pages is configured to "memattr", 2119 * overriding the object's memory attribute setting. However, if the 2120 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 2121 * memory attribute setting for the physical pages cannot be configured 2122 * to VM_MEMATTR_DEFAULT. 2123 * 2124 * The specified object may not contain fictitious pages. 2125 * 2126 * The caller must always specify an allocation class. 2127 * 2128 * allocation classes: 2129 * VM_ALLOC_NORMAL normal process request 2130 * VM_ALLOC_SYSTEM system *really* needs a page 2131 * VM_ALLOC_INTERRUPT interrupt time request 2132 * 2133 * optional allocation flags: 2134 * VM_ALLOC_NOBUSY do not exclusive busy the page 2135 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2136 * VM_ALLOC_NOOBJ page is not associated with an object and 2137 * should not be exclusive busy 2138 * VM_ALLOC_SBUSY shared busy the allocated page 2139 * VM_ALLOC_WIRED wire the allocated page 2140 * VM_ALLOC_ZERO prefer a zeroed page 2141 */ 2142 vm_page_t 2143 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 2144 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2145 vm_paddr_t boundary, vm_memattr_t memattr) 2146 { 2147 struct vm_domainset_iter di; 2148 vm_page_t m; 2149 int domain; 2150 2151 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2152 do { 2153 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 2154 npages, low, high, alignment, boundary, memattr); 2155 if (m != NULL) 2156 break; 2157 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2158 2159 return (m); 2160 } 2161 2162 vm_page_t 2163 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 2164 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2165 vm_paddr_t boundary, vm_memattr_t memattr) 2166 { 2167 struct vm_domain *vmd; 2168 vm_page_t m, m_ret, mpred; 2169 u_int busy_lock, flags, oflags; 2170 2171 mpred = NULL; /* XXX: pacify gcc */ 2172 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 2173 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 2174 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2175 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2176 ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object, 2177 req)); 2178 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 2179 ("Can't sleep and retry object insertion.")); 2180 if (object != NULL) { 2181 VM_OBJECT_ASSERT_WLOCKED(object); 2182 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 2183 ("vm_page_alloc_contig: object %p has fictitious pages", 2184 object)); 2185 } 2186 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2187 2188 if (object != NULL) { 2189 mpred = vm_radix_lookup_le(&object->rtree, pindex); 2190 KASSERT(mpred == NULL || mpred->pindex != pindex, 2191 ("vm_page_alloc_contig: pindex already allocated")); 2192 } 2193 2194 /* 2195 * Can we allocate the pages without the number of free pages falling 2196 * below the lower bound for the allocation class? 2197 */ 2198 m_ret = NULL; 2199 again: 2200 #if VM_NRESERVLEVEL > 0 2201 /* 2202 * Can we allocate the pages from a reservation? 2203 */ 2204 if (vm_object_reserv(object) && 2205 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, 2206 mpred, npages, low, high, alignment, boundary)) != NULL) { 2207 domain = vm_phys_domain(m_ret); 2208 vmd = VM_DOMAIN(domain); 2209 goto found; 2210 } 2211 #endif 2212 vmd = VM_DOMAIN(domain); 2213 if (vm_domain_allocate(vmd, req, npages)) { 2214 /* 2215 * allocate them from the free page queues. 2216 */ 2217 vm_domain_free_lock(vmd); 2218 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2219 alignment, boundary); 2220 vm_domain_free_unlock(vmd); 2221 if (m_ret == NULL) { 2222 vm_domain_freecnt_inc(vmd, npages); 2223 #if VM_NRESERVLEVEL > 0 2224 if (vm_reserv_reclaim_contig(domain, npages, low, 2225 high, alignment, boundary)) 2226 goto again; 2227 #endif 2228 } 2229 } 2230 if (m_ret == NULL) { 2231 if (vm_domain_alloc_fail(vmd, object, req)) 2232 goto again; 2233 return (NULL); 2234 } 2235 #if VM_NRESERVLEVEL > 0 2236 found: 2237 #endif 2238 for (m = m_ret; m < &m_ret[npages]; m++) { 2239 vm_page_dequeue(m); 2240 vm_page_alloc_check(m); 2241 } 2242 2243 /* 2244 * Initialize the pages. Only the PG_ZERO flag is inherited. 2245 */ 2246 flags = 0; 2247 if ((req & VM_ALLOC_ZERO) != 0) 2248 flags = PG_ZERO; 2249 if ((req & VM_ALLOC_NODUMP) != 0) 2250 flags |= PG_NODUMP; 2251 oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 2252 VPO_UNMANAGED : 0; 2253 busy_lock = VPB_UNBUSIED; 2254 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 2255 busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2256 if ((req & VM_ALLOC_SBUSY) != 0) 2257 busy_lock = VPB_SHARERS_WORD(1); 2258 if ((req & VM_ALLOC_WIRED) != 0) 2259 vm_wire_add(npages); 2260 if (object != NULL) { 2261 if (object->memattr != VM_MEMATTR_DEFAULT && 2262 memattr == VM_MEMATTR_DEFAULT) 2263 memattr = object->memattr; 2264 } 2265 for (m = m_ret; m < &m_ret[npages]; m++) { 2266 m->a.flags = 0; 2267 m->flags = (m->flags | PG_NODUMP) & flags; 2268 m->busy_lock = busy_lock; 2269 if ((req & VM_ALLOC_WIRED) != 0) 2270 m->ref_count = 1; 2271 m->a.act_count = 0; 2272 m->oflags = oflags; 2273 if (object != NULL) { 2274 if (vm_page_insert_after(m, object, pindex, mpred)) { 2275 if ((req & VM_ALLOC_WIRED) != 0) 2276 vm_wire_sub(npages); 2277 KASSERT(m->object == NULL, 2278 ("page %p has object", m)); 2279 mpred = m; 2280 for (m = m_ret; m < &m_ret[npages]; m++) { 2281 if (m <= mpred && 2282 (req & VM_ALLOC_WIRED) != 0) 2283 m->ref_count = 0; 2284 m->oflags = VPO_UNMANAGED; 2285 m->busy_lock = VPB_UNBUSIED; 2286 /* Don't change PG_ZERO. */ 2287 vm_page_free_toq(m); 2288 } 2289 if (req & VM_ALLOC_WAITFAIL) { 2290 VM_OBJECT_WUNLOCK(object); 2291 vm_radix_wait(); 2292 VM_OBJECT_WLOCK(object); 2293 } 2294 return (NULL); 2295 } 2296 mpred = m; 2297 } else 2298 m->pindex = pindex; 2299 if (memattr != VM_MEMATTR_DEFAULT) 2300 pmap_page_set_memattr(m, memattr); 2301 pindex++; 2302 } 2303 return (m_ret); 2304 } 2305 2306 /* 2307 * Check a page that has been freshly dequeued from a freelist. 2308 */ 2309 static void 2310 vm_page_alloc_check(vm_page_t m) 2311 { 2312 2313 KASSERT(m->object == NULL, ("page %p has object", m)); 2314 KASSERT(m->a.queue == PQ_NONE && 2315 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 2316 ("page %p has unexpected queue %d, flags %#x", 2317 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK))); 2318 KASSERT(m->ref_count == 0, ("page %p has references", m)); 2319 KASSERT(!vm_page_busied(m), ("page %p is busy", m)); 2320 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2321 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2322 ("page %p has unexpected memattr %d", 2323 m, pmap_page_get_memattr(m))); 2324 KASSERT(m->valid == 0, ("free page %p is valid", m)); 2325 } 2326 2327 /* 2328 * vm_page_alloc_freelist: 2329 * 2330 * Allocate a physical page from the specified free page list. 2331 * 2332 * The caller must always specify an allocation class. 2333 * 2334 * allocation classes: 2335 * VM_ALLOC_NORMAL normal process request 2336 * VM_ALLOC_SYSTEM system *really* needs a page 2337 * VM_ALLOC_INTERRUPT interrupt time request 2338 * 2339 * optional allocation flags: 2340 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2341 * intends to allocate 2342 * VM_ALLOC_WIRED wire the allocated page 2343 * VM_ALLOC_ZERO prefer a zeroed page 2344 */ 2345 vm_page_t 2346 vm_page_alloc_freelist(int freelist, int req) 2347 { 2348 struct vm_domainset_iter di; 2349 vm_page_t m; 2350 int domain; 2351 2352 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2353 do { 2354 m = vm_page_alloc_freelist_domain(domain, freelist, req); 2355 if (m != NULL) 2356 break; 2357 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2358 2359 return (m); 2360 } 2361 2362 vm_page_t 2363 vm_page_alloc_freelist_domain(int domain, int freelist, int req) 2364 { 2365 struct vm_domain *vmd; 2366 vm_page_t m; 2367 u_int flags; 2368 2369 m = NULL; 2370 vmd = VM_DOMAIN(domain); 2371 again: 2372 if (vm_domain_allocate(vmd, req, 1)) { 2373 vm_domain_free_lock(vmd); 2374 m = vm_phys_alloc_freelist_pages(domain, freelist, 2375 VM_FREEPOOL_DIRECT, 0); 2376 vm_domain_free_unlock(vmd); 2377 if (m == NULL) 2378 vm_domain_freecnt_inc(vmd, 1); 2379 } 2380 if (m == NULL) { 2381 if (vm_domain_alloc_fail(vmd, NULL, req)) 2382 goto again; 2383 return (NULL); 2384 } 2385 vm_page_dequeue(m); 2386 vm_page_alloc_check(m); 2387 2388 /* 2389 * Initialize the page. Only the PG_ZERO flag is inherited. 2390 */ 2391 m->a.flags = 0; 2392 flags = 0; 2393 if ((req & VM_ALLOC_ZERO) != 0) 2394 flags = PG_ZERO; 2395 m->flags &= flags; 2396 if ((req & VM_ALLOC_WIRED) != 0) { 2397 /* 2398 * The page lock is not required for wiring a page that does 2399 * not belong to an object. 2400 */ 2401 vm_wire_add(1); 2402 m->ref_count = 1; 2403 } 2404 /* Unmanaged pages don't use "act_count". */ 2405 m->oflags = VPO_UNMANAGED; 2406 return (m); 2407 } 2408 2409 static int 2410 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2411 { 2412 struct vm_domain *vmd; 2413 struct vm_pgcache *pgcache; 2414 int i; 2415 2416 pgcache = arg; 2417 vmd = VM_DOMAIN(pgcache->domain); 2418 2419 /* 2420 * The page daemon should avoid creating extra memory pressure since its 2421 * main purpose is to replenish the store of free pages. 2422 */ 2423 if (vmd->vmd_severeset || curproc == pageproc || 2424 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2425 return (0); 2426 domain = vmd->vmd_domain; 2427 vm_domain_free_lock(vmd); 2428 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2429 (vm_page_t *)store); 2430 vm_domain_free_unlock(vmd); 2431 if (cnt != i) 2432 vm_domain_freecnt_inc(vmd, cnt - i); 2433 2434 return (i); 2435 } 2436 2437 static void 2438 vm_page_zone_release(void *arg, void **store, int cnt) 2439 { 2440 struct vm_domain *vmd; 2441 struct vm_pgcache *pgcache; 2442 vm_page_t m; 2443 int i; 2444 2445 pgcache = arg; 2446 vmd = VM_DOMAIN(pgcache->domain); 2447 vm_domain_free_lock(vmd); 2448 for (i = 0; i < cnt; i++) { 2449 m = (vm_page_t)store[i]; 2450 vm_phys_free_pages(m, 0); 2451 } 2452 vm_domain_free_unlock(vmd); 2453 vm_domain_freecnt_inc(vmd, cnt); 2454 } 2455 2456 #define VPSC_ANY 0 /* No restrictions. */ 2457 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2458 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2459 2460 /* 2461 * vm_page_scan_contig: 2462 * 2463 * Scan vm_page_array[] between the specified entries "m_start" and 2464 * "m_end" for a run of contiguous physical pages that satisfy the 2465 * specified conditions, and return the lowest page in the run. The 2466 * specified "alignment" determines the alignment of the lowest physical 2467 * page in the run. If the specified "boundary" is non-zero, then the 2468 * run of physical pages cannot span a physical address that is a 2469 * multiple of "boundary". 2470 * 2471 * "m_end" is never dereferenced, so it need not point to a vm_page 2472 * structure within vm_page_array[]. 2473 * 2474 * "npages" must be greater than zero. "m_start" and "m_end" must not 2475 * span a hole (or discontiguity) in the physical address space. Both 2476 * "alignment" and "boundary" must be a power of two. 2477 */ 2478 vm_page_t 2479 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2480 u_long alignment, vm_paddr_t boundary, int options) 2481 { 2482 struct mtx *m_mtx; 2483 vm_object_t object; 2484 vm_paddr_t pa; 2485 vm_page_t m, m_run; 2486 #if VM_NRESERVLEVEL > 0 2487 int level; 2488 #endif 2489 int m_inc, order, run_ext, run_len; 2490 2491 KASSERT(npages > 0, ("npages is 0")); 2492 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2493 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2494 m_run = NULL; 2495 run_len = 0; 2496 m_mtx = NULL; 2497 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2498 KASSERT((m->flags & PG_MARKER) == 0, 2499 ("page %p is PG_MARKER", m)); 2500 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1, 2501 ("fictitious page %p has invalid ref count", m)); 2502 2503 /* 2504 * If the current page would be the start of a run, check its 2505 * physical address against the end, alignment, and boundary 2506 * conditions. If it doesn't satisfy these conditions, either 2507 * terminate the scan or advance to the next page that 2508 * satisfies the failed condition. 2509 */ 2510 if (run_len == 0) { 2511 KASSERT(m_run == NULL, ("m_run != NULL")); 2512 if (m + npages > m_end) 2513 break; 2514 pa = VM_PAGE_TO_PHYS(m); 2515 if ((pa & (alignment - 1)) != 0) { 2516 m_inc = atop(roundup2(pa, alignment) - pa); 2517 continue; 2518 } 2519 if (rounddown2(pa ^ (pa + ptoa(npages) - 1), 2520 boundary) != 0) { 2521 m_inc = atop(roundup2(pa, boundary) - pa); 2522 continue; 2523 } 2524 } else 2525 KASSERT(m_run != NULL, ("m_run == NULL")); 2526 2527 vm_page_change_lock(m, &m_mtx); 2528 m_inc = 1; 2529 retry: 2530 if (vm_page_wired(m)) 2531 run_ext = 0; 2532 #if VM_NRESERVLEVEL > 0 2533 else if ((level = vm_reserv_level(m)) >= 0 && 2534 (options & VPSC_NORESERV) != 0) { 2535 run_ext = 0; 2536 /* Advance to the end of the reservation. */ 2537 pa = VM_PAGE_TO_PHYS(m); 2538 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2539 pa); 2540 } 2541 #endif 2542 else if ((object = m->object) != NULL) { 2543 /* 2544 * The page is considered eligible for relocation if 2545 * and only if it could be laundered or reclaimed by 2546 * the page daemon. 2547 */ 2548 if (!VM_OBJECT_TRYRLOCK(object)) { 2549 mtx_unlock(m_mtx); 2550 VM_OBJECT_RLOCK(object); 2551 mtx_lock(m_mtx); 2552 if (m->object != object) { 2553 /* 2554 * The page may have been freed. 2555 */ 2556 VM_OBJECT_RUNLOCK(object); 2557 goto retry; 2558 } 2559 } 2560 /* Don't care: PG_NODUMP, PG_ZERO. */ 2561 if (object->type != OBJT_DEFAULT && 2562 object->type != OBJT_SWAP && 2563 object->type != OBJT_VNODE) { 2564 run_ext = 0; 2565 #if VM_NRESERVLEVEL > 0 2566 } else if ((options & VPSC_NOSUPER) != 0 && 2567 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2568 run_ext = 0; 2569 /* Advance to the end of the superpage. */ 2570 pa = VM_PAGE_TO_PHYS(m); 2571 m_inc = atop(roundup2(pa + 1, 2572 vm_reserv_size(level)) - pa); 2573 #endif 2574 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2575 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) && 2576 !vm_page_wired(m)) { 2577 /* 2578 * The page is allocated but eligible for 2579 * relocation. Extend the current run by one 2580 * page. 2581 */ 2582 KASSERT(pmap_page_get_memattr(m) == 2583 VM_MEMATTR_DEFAULT, 2584 ("page %p has an unexpected memattr", m)); 2585 KASSERT((m->oflags & (VPO_SWAPINPROG | 2586 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2587 ("page %p has unexpected oflags", m)); 2588 /* Don't care: PGA_NOSYNC. */ 2589 run_ext = 1; 2590 } else 2591 run_ext = 0; 2592 VM_OBJECT_RUNLOCK(object); 2593 #if VM_NRESERVLEVEL > 0 2594 } else if (level >= 0) { 2595 /* 2596 * The page is reserved but not yet allocated. In 2597 * other words, it is still free. Extend the current 2598 * run by one page. 2599 */ 2600 run_ext = 1; 2601 #endif 2602 } else if ((order = m->order) < VM_NFREEORDER) { 2603 /* 2604 * The page is enqueued in the physical memory 2605 * allocator's free page queues. Moreover, it is the 2606 * first page in a power-of-two-sized run of 2607 * contiguous free pages. Add these pages to the end 2608 * of the current run, and jump ahead. 2609 */ 2610 run_ext = 1 << order; 2611 m_inc = 1 << order; 2612 } else { 2613 /* 2614 * Skip the page for one of the following reasons: (1) 2615 * It is enqueued in the physical memory allocator's 2616 * free page queues. However, it is not the first 2617 * page in a run of contiguous free pages. (This case 2618 * rarely occurs because the scan is performed in 2619 * ascending order.) (2) It is not reserved, and it is 2620 * transitioning from free to allocated. (Conversely, 2621 * the transition from allocated to free for managed 2622 * pages is blocked by the page lock.) (3) It is 2623 * allocated but not contained by an object and not 2624 * wired, e.g., allocated by Xen's balloon driver. 2625 */ 2626 run_ext = 0; 2627 } 2628 2629 /* 2630 * Extend or reset the current run of pages. 2631 */ 2632 if (run_ext > 0) { 2633 if (run_len == 0) 2634 m_run = m; 2635 run_len += run_ext; 2636 } else { 2637 if (run_len > 0) { 2638 m_run = NULL; 2639 run_len = 0; 2640 } 2641 } 2642 } 2643 if (m_mtx != NULL) 2644 mtx_unlock(m_mtx); 2645 if (run_len >= npages) 2646 return (m_run); 2647 return (NULL); 2648 } 2649 2650 /* 2651 * vm_page_reclaim_run: 2652 * 2653 * Try to relocate each of the allocated virtual pages within the 2654 * specified run of physical pages to a new physical address. Free the 2655 * physical pages underlying the relocated virtual pages. A virtual page 2656 * is relocatable if and only if it could be laundered or reclaimed by 2657 * the page daemon. Whenever possible, a virtual page is relocated to a 2658 * physical address above "high". 2659 * 2660 * Returns 0 if every physical page within the run was already free or 2661 * just freed by a successful relocation. Otherwise, returns a non-zero 2662 * value indicating why the last attempt to relocate a virtual page was 2663 * unsuccessful. 2664 * 2665 * "req_class" must be an allocation class. 2666 */ 2667 static int 2668 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2669 vm_paddr_t high) 2670 { 2671 struct vm_domain *vmd; 2672 struct mtx *m_mtx; 2673 struct spglist free; 2674 vm_object_t object; 2675 vm_paddr_t pa; 2676 vm_page_t m, m_end, m_new; 2677 int error, order, req; 2678 2679 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2680 ("req_class is not an allocation class")); 2681 SLIST_INIT(&free); 2682 error = 0; 2683 m = m_run; 2684 m_end = m_run + npages; 2685 m_mtx = NULL; 2686 for (; error == 0 && m < m_end; m++) { 2687 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2688 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2689 2690 /* 2691 * Avoid releasing and reacquiring the same page lock. 2692 */ 2693 vm_page_change_lock(m, &m_mtx); 2694 retry: 2695 /* 2696 * Racily check for wirings. Races are handled below. 2697 */ 2698 if (vm_page_wired(m)) 2699 error = EBUSY; 2700 else if ((object = m->object) != NULL) { 2701 /* 2702 * The page is relocated if and only if it could be 2703 * laundered or reclaimed by the page daemon. 2704 */ 2705 if (!VM_OBJECT_TRYWLOCK(object)) { 2706 mtx_unlock(m_mtx); 2707 VM_OBJECT_WLOCK(object); 2708 mtx_lock(m_mtx); 2709 if (m->object != object) { 2710 /* 2711 * The page may have been freed. 2712 */ 2713 VM_OBJECT_WUNLOCK(object); 2714 goto retry; 2715 } 2716 } 2717 /* Don't care: PG_NODUMP, PG_ZERO. */ 2718 if (object->type != OBJT_DEFAULT && 2719 object->type != OBJT_SWAP && 2720 object->type != OBJT_VNODE) 2721 error = EINVAL; 2722 else if (object->memattr != VM_MEMATTR_DEFAULT) 2723 error = EINVAL; 2724 else if (vm_page_queue(m) != PQ_NONE && 2725 vm_page_tryxbusy(m) != 0) { 2726 if (vm_page_wired(m)) { 2727 vm_page_xunbusy(m); 2728 error = EBUSY; 2729 goto unlock; 2730 } 2731 KASSERT(pmap_page_get_memattr(m) == 2732 VM_MEMATTR_DEFAULT, 2733 ("page %p has an unexpected memattr", m)); 2734 KASSERT(m->oflags == 0, 2735 ("page %p has unexpected oflags", m)); 2736 /* Don't care: PGA_NOSYNC. */ 2737 if (!vm_page_none_valid(m)) { 2738 /* 2739 * First, try to allocate a new page 2740 * that is above "high". Failing 2741 * that, try to allocate a new page 2742 * that is below "m_run". Allocate 2743 * the new page between the end of 2744 * "m_run" and "high" only as a last 2745 * resort. 2746 */ 2747 req = req_class | VM_ALLOC_NOOBJ; 2748 if ((m->flags & PG_NODUMP) != 0) 2749 req |= VM_ALLOC_NODUMP; 2750 if (trunc_page(high) != 2751 ~(vm_paddr_t)PAGE_MASK) { 2752 m_new = vm_page_alloc_contig( 2753 NULL, 0, req, 1, 2754 round_page(high), 2755 ~(vm_paddr_t)0, 2756 PAGE_SIZE, 0, 2757 VM_MEMATTR_DEFAULT); 2758 } else 2759 m_new = NULL; 2760 if (m_new == NULL) { 2761 pa = VM_PAGE_TO_PHYS(m_run); 2762 m_new = vm_page_alloc_contig( 2763 NULL, 0, req, 1, 2764 0, pa - 1, PAGE_SIZE, 0, 2765 VM_MEMATTR_DEFAULT); 2766 } 2767 if (m_new == NULL) { 2768 pa += ptoa(npages); 2769 m_new = vm_page_alloc_contig( 2770 NULL, 0, req, 1, 2771 pa, high, PAGE_SIZE, 0, 2772 VM_MEMATTR_DEFAULT); 2773 } 2774 if (m_new == NULL) { 2775 vm_page_xunbusy(m); 2776 error = ENOMEM; 2777 goto unlock; 2778 } 2779 2780 /* 2781 * Unmap the page and check for new 2782 * wirings that may have been acquired 2783 * through a pmap lookup. 2784 */ 2785 if (object->ref_count != 0 && 2786 !vm_page_try_remove_all(m)) { 2787 vm_page_free(m_new); 2788 error = EBUSY; 2789 goto unlock; 2790 } 2791 2792 /* 2793 * Replace "m" with the new page. For 2794 * vm_page_replace(), "m" must be busy 2795 * and dequeued. Finally, change "m" 2796 * as if vm_page_free() was called. 2797 */ 2798 m_new->a.flags = m->a.flags & 2799 ~PGA_QUEUE_STATE_MASK; 2800 KASSERT(m_new->oflags == VPO_UNMANAGED, 2801 ("page %p is managed", m_new)); 2802 m_new->oflags = 0; 2803 pmap_copy_page(m, m_new); 2804 m_new->valid = m->valid; 2805 m_new->dirty = m->dirty; 2806 m->flags &= ~PG_ZERO; 2807 vm_page_dequeue(m); 2808 if (vm_page_replace_hold(m_new, object, 2809 m->pindex, m) && 2810 vm_page_free_prep(m)) 2811 SLIST_INSERT_HEAD(&free, m, 2812 plinks.s.ss); 2813 2814 /* 2815 * The new page must be deactivated 2816 * before the object is unlocked. 2817 */ 2818 vm_page_change_lock(m_new, &m_mtx); 2819 vm_page_deactivate(m_new); 2820 } else { 2821 m->flags &= ~PG_ZERO; 2822 vm_page_dequeue(m); 2823 if (vm_page_free_prep(m)) 2824 SLIST_INSERT_HEAD(&free, m, 2825 plinks.s.ss); 2826 KASSERT(m->dirty == 0, 2827 ("page %p is dirty", m)); 2828 } 2829 } else 2830 error = EBUSY; 2831 unlock: 2832 VM_OBJECT_WUNLOCK(object); 2833 } else { 2834 MPASS(vm_phys_domain(m) == domain); 2835 vmd = VM_DOMAIN(domain); 2836 vm_domain_free_lock(vmd); 2837 order = m->order; 2838 if (order < VM_NFREEORDER) { 2839 /* 2840 * The page is enqueued in the physical memory 2841 * allocator's free page queues. Moreover, it 2842 * is the first page in a power-of-two-sized 2843 * run of contiguous free pages. Jump ahead 2844 * to the last page within that run, and 2845 * continue from there. 2846 */ 2847 m += (1 << order) - 1; 2848 } 2849 #if VM_NRESERVLEVEL > 0 2850 else if (vm_reserv_is_page_free(m)) 2851 order = 0; 2852 #endif 2853 vm_domain_free_unlock(vmd); 2854 if (order == VM_NFREEORDER) 2855 error = EINVAL; 2856 } 2857 } 2858 if (m_mtx != NULL) 2859 mtx_unlock(m_mtx); 2860 if ((m = SLIST_FIRST(&free)) != NULL) { 2861 int cnt; 2862 2863 vmd = VM_DOMAIN(domain); 2864 cnt = 0; 2865 vm_domain_free_lock(vmd); 2866 do { 2867 MPASS(vm_phys_domain(m) == domain); 2868 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 2869 vm_phys_free_pages(m, 0); 2870 cnt++; 2871 } while ((m = SLIST_FIRST(&free)) != NULL); 2872 vm_domain_free_unlock(vmd); 2873 vm_domain_freecnt_inc(vmd, cnt); 2874 } 2875 return (error); 2876 } 2877 2878 #define NRUNS 16 2879 2880 CTASSERT(powerof2(NRUNS)); 2881 2882 #define RUN_INDEX(count) ((count) & (NRUNS - 1)) 2883 2884 #define MIN_RECLAIM 8 2885 2886 /* 2887 * vm_page_reclaim_contig: 2888 * 2889 * Reclaim allocated, contiguous physical memory satisfying the specified 2890 * conditions by relocating the virtual pages using that physical memory. 2891 * Returns true if reclamation is successful and false otherwise. Since 2892 * relocation requires the allocation of physical pages, reclamation may 2893 * fail due to a shortage of free pages. When reclamation fails, callers 2894 * are expected to perform vm_wait() before retrying a failed allocation 2895 * operation, e.g., vm_page_alloc_contig(). 2896 * 2897 * The caller must always specify an allocation class through "req". 2898 * 2899 * allocation classes: 2900 * VM_ALLOC_NORMAL normal process request 2901 * VM_ALLOC_SYSTEM system *really* needs a page 2902 * VM_ALLOC_INTERRUPT interrupt time request 2903 * 2904 * The optional allocation flags are ignored. 2905 * 2906 * "npages" must be greater than zero. Both "alignment" and "boundary" 2907 * must be a power of two. 2908 */ 2909 bool 2910 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 2911 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2912 { 2913 struct vm_domain *vmd; 2914 vm_paddr_t curr_low; 2915 vm_page_t m_run, m_runs[NRUNS]; 2916 u_long count, reclaimed; 2917 int error, i, options, req_class; 2918 2919 KASSERT(npages > 0, ("npages is 0")); 2920 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2921 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2922 req_class = req & VM_ALLOC_CLASS_MASK; 2923 2924 /* 2925 * The page daemon is allowed to dig deeper into the free page list. 2926 */ 2927 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2928 req_class = VM_ALLOC_SYSTEM; 2929 2930 /* 2931 * Return if the number of free pages cannot satisfy the requested 2932 * allocation. 2933 */ 2934 vmd = VM_DOMAIN(domain); 2935 count = vmd->vmd_free_count; 2936 if (count < npages + vmd->vmd_free_reserved || (count < npages + 2937 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 2938 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 2939 return (false); 2940 2941 /* 2942 * Scan up to three times, relaxing the restrictions ("options") on 2943 * the reclamation of reservations and superpages each time. 2944 */ 2945 for (options = VPSC_NORESERV;;) { 2946 /* 2947 * Find the highest runs that satisfy the given constraints 2948 * and restrictions, and record them in "m_runs". 2949 */ 2950 curr_low = low; 2951 count = 0; 2952 for (;;) { 2953 m_run = vm_phys_scan_contig(domain, npages, curr_low, 2954 high, alignment, boundary, options); 2955 if (m_run == NULL) 2956 break; 2957 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); 2958 m_runs[RUN_INDEX(count)] = m_run; 2959 count++; 2960 } 2961 2962 /* 2963 * Reclaim the highest runs in LIFO (descending) order until 2964 * the number of reclaimed pages, "reclaimed", is at least 2965 * MIN_RECLAIM. Reset "reclaimed" each time because each 2966 * reclamation is idempotent, and runs will (likely) recur 2967 * from one scan to the next as restrictions are relaxed. 2968 */ 2969 reclaimed = 0; 2970 for (i = 0; count > 0 && i < NRUNS; i++) { 2971 count--; 2972 m_run = m_runs[RUN_INDEX(count)]; 2973 error = vm_page_reclaim_run(req_class, domain, npages, 2974 m_run, high); 2975 if (error == 0) { 2976 reclaimed += npages; 2977 if (reclaimed >= MIN_RECLAIM) 2978 return (true); 2979 } 2980 } 2981 2982 /* 2983 * Either relax the restrictions on the next scan or return if 2984 * the last scan had no restrictions. 2985 */ 2986 if (options == VPSC_NORESERV) 2987 options = VPSC_NOSUPER; 2988 else if (options == VPSC_NOSUPER) 2989 options = VPSC_ANY; 2990 else if (options == VPSC_ANY) 2991 return (reclaimed != 0); 2992 } 2993 } 2994 2995 bool 2996 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 2997 u_long alignment, vm_paddr_t boundary) 2998 { 2999 struct vm_domainset_iter di; 3000 int domain; 3001 bool ret; 3002 3003 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 3004 do { 3005 ret = vm_page_reclaim_contig_domain(domain, req, npages, low, 3006 high, alignment, boundary); 3007 if (ret) 3008 break; 3009 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 3010 3011 return (ret); 3012 } 3013 3014 /* 3015 * Set the domain in the appropriate page level domainset. 3016 */ 3017 void 3018 vm_domain_set(struct vm_domain *vmd) 3019 { 3020 3021 mtx_lock(&vm_domainset_lock); 3022 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 3023 vmd->vmd_minset = 1; 3024 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 3025 } 3026 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 3027 vmd->vmd_severeset = 1; 3028 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 3029 } 3030 mtx_unlock(&vm_domainset_lock); 3031 } 3032 3033 /* 3034 * Clear the domain from the appropriate page level domainset. 3035 */ 3036 void 3037 vm_domain_clear(struct vm_domain *vmd) 3038 { 3039 3040 mtx_lock(&vm_domainset_lock); 3041 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 3042 vmd->vmd_minset = 0; 3043 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 3044 if (vm_min_waiters != 0) { 3045 vm_min_waiters = 0; 3046 wakeup(&vm_min_domains); 3047 } 3048 } 3049 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 3050 vmd->vmd_severeset = 0; 3051 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 3052 if (vm_severe_waiters != 0) { 3053 vm_severe_waiters = 0; 3054 wakeup(&vm_severe_domains); 3055 } 3056 } 3057 3058 /* 3059 * If pageout daemon needs pages, then tell it that there are 3060 * some free. 3061 */ 3062 if (vmd->vmd_pageout_pages_needed && 3063 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 3064 wakeup(&vmd->vmd_pageout_pages_needed); 3065 vmd->vmd_pageout_pages_needed = 0; 3066 } 3067 3068 /* See comments in vm_wait_doms(). */ 3069 if (vm_pageproc_waiters) { 3070 vm_pageproc_waiters = 0; 3071 wakeup(&vm_pageproc_waiters); 3072 } 3073 mtx_unlock(&vm_domainset_lock); 3074 } 3075 3076 /* 3077 * Wait for free pages to exceed the min threshold globally. 3078 */ 3079 void 3080 vm_wait_min(void) 3081 { 3082 3083 mtx_lock(&vm_domainset_lock); 3084 while (vm_page_count_min()) { 3085 vm_min_waiters++; 3086 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 3087 } 3088 mtx_unlock(&vm_domainset_lock); 3089 } 3090 3091 /* 3092 * Wait for free pages to exceed the severe threshold globally. 3093 */ 3094 void 3095 vm_wait_severe(void) 3096 { 3097 3098 mtx_lock(&vm_domainset_lock); 3099 while (vm_page_count_severe()) { 3100 vm_severe_waiters++; 3101 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 3102 "vmwait", 0); 3103 } 3104 mtx_unlock(&vm_domainset_lock); 3105 } 3106 3107 u_int 3108 vm_wait_count(void) 3109 { 3110 3111 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 3112 } 3113 3114 void 3115 vm_wait_doms(const domainset_t *wdoms) 3116 { 3117 3118 /* 3119 * We use racey wakeup synchronization to avoid expensive global 3120 * locking for the pageproc when sleeping with a non-specific vm_wait. 3121 * To handle this, we only sleep for one tick in this instance. It 3122 * is expected that most allocations for the pageproc will come from 3123 * kmem or vm_page_grab* which will use the more specific and 3124 * race-free vm_wait_domain(). 3125 */ 3126 if (curproc == pageproc) { 3127 mtx_lock(&vm_domainset_lock); 3128 vm_pageproc_waiters++; 3129 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP, 3130 "pageprocwait", 1); 3131 } else { 3132 /* 3133 * XXX Ideally we would wait only until the allocation could 3134 * be satisfied. This condition can cause new allocators to 3135 * consume all freed pages while old allocators wait. 3136 */ 3137 mtx_lock(&vm_domainset_lock); 3138 if (vm_page_count_min_set(wdoms)) { 3139 vm_min_waiters++; 3140 msleep(&vm_min_domains, &vm_domainset_lock, 3141 PVM | PDROP, "vmwait", 0); 3142 } else 3143 mtx_unlock(&vm_domainset_lock); 3144 } 3145 } 3146 3147 /* 3148 * vm_wait_domain: 3149 * 3150 * Sleep until free pages are available for allocation. 3151 * - Called in various places after failed memory allocations. 3152 */ 3153 void 3154 vm_wait_domain(int domain) 3155 { 3156 struct vm_domain *vmd; 3157 domainset_t wdom; 3158 3159 vmd = VM_DOMAIN(domain); 3160 vm_domain_free_assert_unlocked(vmd); 3161 3162 if (curproc == pageproc) { 3163 mtx_lock(&vm_domainset_lock); 3164 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 3165 vmd->vmd_pageout_pages_needed = 1; 3166 msleep(&vmd->vmd_pageout_pages_needed, 3167 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 3168 } else 3169 mtx_unlock(&vm_domainset_lock); 3170 } else { 3171 if (pageproc == NULL) 3172 panic("vm_wait in early boot"); 3173 DOMAINSET_ZERO(&wdom); 3174 DOMAINSET_SET(vmd->vmd_domain, &wdom); 3175 vm_wait_doms(&wdom); 3176 } 3177 } 3178 3179 /* 3180 * vm_wait: 3181 * 3182 * Sleep until free pages are available for allocation in the 3183 * affinity domains of the obj. If obj is NULL, the domain set 3184 * for the calling thread is used. 3185 * Called in various places after failed memory allocations. 3186 */ 3187 void 3188 vm_wait(vm_object_t obj) 3189 { 3190 struct domainset *d; 3191 3192 d = NULL; 3193 3194 /* 3195 * Carefully fetch pointers only once: the struct domainset 3196 * itself is ummutable but the pointer might change. 3197 */ 3198 if (obj != NULL) 3199 d = obj->domain.dr_policy; 3200 if (d == NULL) 3201 d = curthread->td_domain.dr_policy; 3202 3203 vm_wait_doms(&d->ds_mask); 3204 } 3205 3206 /* 3207 * vm_domain_alloc_fail: 3208 * 3209 * Called when a page allocation function fails. Informs the 3210 * pagedaemon and performs the requested wait. Requires the 3211 * domain_free and object lock on entry. Returns with the 3212 * object lock held and free lock released. Returns an error when 3213 * retry is necessary. 3214 * 3215 */ 3216 static int 3217 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3218 { 3219 3220 vm_domain_free_assert_unlocked(vmd); 3221 3222 atomic_add_int(&vmd->vmd_pageout_deficit, 3223 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3224 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3225 if (object != NULL) 3226 VM_OBJECT_WUNLOCK(object); 3227 vm_wait_domain(vmd->vmd_domain); 3228 if (object != NULL) 3229 VM_OBJECT_WLOCK(object); 3230 if (req & VM_ALLOC_WAITOK) 3231 return (EAGAIN); 3232 } 3233 3234 return (0); 3235 } 3236 3237 /* 3238 * vm_waitpfault: 3239 * 3240 * Sleep until free pages are available for allocation. 3241 * - Called only in vm_fault so that processes page faulting 3242 * can be easily tracked. 3243 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3244 * processes will be able to grab memory first. Do not change 3245 * this balance without careful testing first. 3246 */ 3247 void 3248 vm_waitpfault(struct domainset *dset, int timo) 3249 { 3250 3251 /* 3252 * XXX Ideally we would wait only until the allocation could 3253 * be satisfied. This condition can cause new allocators to 3254 * consume all freed pages while old allocators wait. 3255 */ 3256 mtx_lock(&vm_domainset_lock); 3257 if (vm_page_count_min_set(&dset->ds_mask)) { 3258 vm_min_waiters++; 3259 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3260 "pfault", timo); 3261 } else 3262 mtx_unlock(&vm_domainset_lock); 3263 } 3264 3265 static struct vm_pagequeue * 3266 vm_page_pagequeue(vm_page_t m) 3267 { 3268 3269 uint8_t queue; 3270 3271 if ((queue = atomic_load_8(&m->a.queue)) == PQ_NONE) 3272 return (NULL); 3273 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); 3274 } 3275 3276 static inline void 3277 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m) 3278 { 3279 struct vm_domain *vmd; 3280 uint16_t qflags; 3281 3282 CRITICAL_ASSERT(curthread); 3283 vm_pagequeue_assert_locked(pq); 3284 3285 /* 3286 * The page daemon is allowed to set m->a.queue = PQ_NONE without 3287 * the page queue lock held. In this case it is about to free the page, 3288 * which must not have any queue state. 3289 */ 3290 qflags = atomic_load_16(&m->a.flags); 3291 KASSERT(pq == vm_page_pagequeue(m) || 3292 (qflags & PGA_QUEUE_STATE_MASK) == 0, 3293 ("page %p doesn't belong to queue %p but has aflags %#x", 3294 m, pq, qflags)); 3295 3296 if ((qflags & PGA_DEQUEUE) != 0) { 3297 if (__predict_true((qflags & PGA_ENQUEUED) != 0)) 3298 vm_pagequeue_remove(pq, m); 3299 vm_page_dequeue_complete(m); 3300 counter_u64_add(queue_ops, 1); 3301 } else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) { 3302 if ((qflags & PGA_ENQUEUED) != 0) 3303 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3304 else { 3305 vm_pagequeue_cnt_inc(pq); 3306 vm_page_aflag_set(m, PGA_ENQUEUED); 3307 } 3308 3309 /* 3310 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. 3311 * In particular, if both flags are set in close succession, 3312 * only PGA_REQUEUE_HEAD will be applied, even if it was set 3313 * first. 3314 */ 3315 if ((qflags & PGA_REQUEUE_HEAD) != 0) { 3316 KASSERT(m->a.queue == PQ_INACTIVE, 3317 ("head enqueue not supported for page %p", m)); 3318 vmd = vm_pagequeue_domain(m); 3319 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3320 } else 3321 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3322 3323 vm_page_aflag_clear(m, qflags & (PGA_REQUEUE | 3324 PGA_REQUEUE_HEAD)); 3325 counter_u64_add(queue_ops, 1); 3326 } else { 3327 counter_u64_add(queue_nops, 1); 3328 } 3329 } 3330 3331 static void 3332 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3333 uint8_t queue) 3334 { 3335 vm_page_t m; 3336 int i; 3337 3338 for (i = 0; i < bq->bq_cnt; i++) { 3339 m = bq->bq_pa[i]; 3340 if (__predict_false(m->a.queue != queue)) 3341 continue; 3342 vm_pqbatch_process_page(pq, m); 3343 } 3344 vm_batchqueue_init(bq); 3345 } 3346 3347 /* 3348 * vm_page_pqbatch_submit: [ internal use only ] 3349 * 3350 * Enqueue a page in the specified page queue's batched work queue. 3351 * The caller must have encoded the requested operation in the page 3352 * structure's a.flags field. 3353 */ 3354 void 3355 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) 3356 { 3357 struct vm_batchqueue *bq; 3358 struct vm_pagequeue *pq; 3359 int domain; 3360 3361 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3362 ("page %p is unmanaged", m)); 3363 KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL, 3364 ("missing synchronization for page %p", m)); 3365 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 3366 3367 domain = vm_phys_domain(m); 3368 pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue]; 3369 3370 critical_enter(); 3371 bq = DPCPU_PTR(pqbatch[domain][queue]); 3372 if (vm_batchqueue_insert(bq, m)) { 3373 critical_exit(); 3374 return; 3375 } 3376 critical_exit(); 3377 vm_pagequeue_lock(pq); 3378 critical_enter(); 3379 bq = DPCPU_PTR(pqbatch[domain][queue]); 3380 vm_pqbatch_process(pq, bq, queue); 3381 3382 /* 3383 * The page may have been logically dequeued before we acquired the 3384 * page queue lock. In this case, since we either hold the page lock 3385 * or the page is being freed, a different thread cannot be concurrently 3386 * enqueuing the page. 3387 */ 3388 if (__predict_true(m->a.queue == queue)) 3389 vm_pqbatch_process_page(pq, m); 3390 else { 3391 KASSERT(m->a.queue == PQ_NONE, 3392 ("invalid queue transition for page %p", m)); 3393 KASSERT((m->a.flags & PGA_ENQUEUED) == 0, 3394 ("page %p is enqueued with invalid queue index", m)); 3395 } 3396 vm_pagequeue_unlock(pq); 3397 critical_exit(); 3398 } 3399 3400 /* 3401 * vm_page_pqbatch_drain: [ internal use only ] 3402 * 3403 * Force all per-CPU page queue batch queues to be drained. This is 3404 * intended for use in severe memory shortages, to ensure that pages 3405 * do not remain stuck in the batch queues. 3406 */ 3407 void 3408 vm_page_pqbatch_drain(void) 3409 { 3410 struct thread *td; 3411 struct vm_domain *vmd; 3412 struct vm_pagequeue *pq; 3413 int cpu, domain, queue; 3414 3415 td = curthread; 3416 CPU_FOREACH(cpu) { 3417 thread_lock(td); 3418 sched_bind(td, cpu); 3419 thread_unlock(td); 3420 3421 for (domain = 0; domain < vm_ndomains; domain++) { 3422 vmd = VM_DOMAIN(domain); 3423 for (queue = 0; queue < PQ_COUNT; queue++) { 3424 pq = &vmd->vmd_pagequeues[queue]; 3425 vm_pagequeue_lock(pq); 3426 critical_enter(); 3427 vm_pqbatch_process(pq, 3428 DPCPU_PTR(pqbatch[domain][queue]), queue); 3429 critical_exit(); 3430 vm_pagequeue_unlock(pq); 3431 } 3432 } 3433 } 3434 thread_lock(td); 3435 sched_unbind(td); 3436 thread_unlock(td); 3437 } 3438 3439 /* 3440 * Complete the logical removal of a page from a page queue. We must be 3441 * careful to synchronize with the page daemon, which may be concurrently 3442 * examining the page with only the page lock held. The page must not be 3443 * in a state where it appears to be logically enqueued. 3444 */ 3445 static void 3446 vm_page_dequeue_complete(vm_page_t m) 3447 { 3448 3449 m->a.queue = PQ_NONE; 3450 atomic_thread_fence_rel(); 3451 vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK); 3452 } 3453 3454 /* 3455 * vm_page_dequeue_deferred: [ internal use only ] 3456 * 3457 * Request removal of the given page from its current page 3458 * queue. Physical removal from the queue may be deferred 3459 * indefinitely. 3460 * 3461 * The page must be locked. 3462 */ 3463 void 3464 vm_page_dequeue_deferred(vm_page_t m) 3465 { 3466 uint8_t queue; 3467 3468 vm_page_assert_locked(m); 3469 3470 if ((queue = vm_page_queue(m)) == PQ_NONE) 3471 return; 3472 3473 /* 3474 * Set PGA_DEQUEUE if it is not already set to handle a concurrent call 3475 * to vm_page_dequeue_deferred_free(). In particular, avoid modifying 3476 * the page's queue state once vm_page_dequeue_deferred_free() has been 3477 * called. In the event of a race, two batch queue entries for the page 3478 * will be created, but the second will have no effect. 3479 */ 3480 if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE, PGA_DEQUEUE)) 3481 vm_page_pqbatch_submit(m, queue); 3482 } 3483 3484 /* 3485 * A variant of vm_page_dequeue_deferred() that does not assert the page 3486 * lock and is only to be called from vm_page_free_prep(). Because the 3487 * page is being freed, we can assume that nothing other than the page 3488 * daemon is scheduling queue operations on this page, so we get for 3489 * free the mutual exclusion that is otherwise provided by the page lock. 3490 * To handle races, the page daemon must take care to atomically check 3491 * for PGA_DEQUEUE when updating queue state. 3492 */ 3493 static void 3494 vm_page_dequeue_deferred_free(vm_page_t m) 3495 { 3496 uint8_t queue; 3497 3498 KASSERT(m->ref_count == 0, ("page %p has references", m)); 3499 3500 for (;;) { 3501 if ((m->a.flags & PGA_DEQUEUE) != 0) 3502 return; 3503 atomic_thread_fence_acq(); 3504 if ((queue = atomic_load_8(&m->a.queue)) == PQ_NONE) 3505 return; 3506 if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE, 3507 PGA_DEQUEUE)) { 3508 vm_page_pqbatch_submit(m, queue); 3509 break; 3510 } 3511 } 3512 } 3513 3514 /* 3515 * vm_page_dequeue: 3516 * 3517 * Remove the page from whichever page queue it's in, if any. 3518 * The page must either be locked or unallocated. This constraint 3519 * ensures that the queue state of the page will remain consistent 3520 * after this function returns. 3521 */ 3522 void 3523 vm_page_dequeue(vm_page_t m) 3524 { 3525 struct vm_pagequeue *pq, *pq1; 3526 uint16_t aflags; 3527 3528 KASSERT(mtx_owned(vm_page_lockptr(m)) || m->ref_count == 0, 3529 ("page %p is allocated and unlocked", m)); 3530 3531 for (pq = vm_page_pagequeue(m);; pq = pq1) { 3532 if (pq == NULL) { 3533 /* 3534 * A thread may be concurrently executing 3535 * vm_page_dequeue_complete(). Ensure that all queue 3536 * state is cleared before we return. 3537 */ 3538 aflags = atomic_load_16(&m->a.flags); 3539 if ((aflags & PGA_QUEUE_STATE_MASK) == 0) 3540 return; 3541 KASSERT((aflags & PGA_DEQUEUE) != 0, 3542 ("page %p has unexpected queue state flags %#x", 3543 m, aflags)); 3544 3545 /* 3546 * Busy wait until the thread updating queue state is 3547 * finished. Such a thread must be executing in a 3548 * critical section. 3549 */ 3550 cpu_spinwait(); 3551 pq1 = vm_page_pagequeue(m); 3552 continue; 3553 } 3554 vm_pagequeue_lock(pq); 3555 if ((pq1 = vm_page_pagequeue(m)) == pq) 3556 break; 3557 vm_pagequeue_unlock(pq); 3558 } 3559 KASSERT(pq == vm_page_pagequeue(m), 3560 ("%s: page %p migrated directly between queues", __func__, m)); 3561 KASSERT((m->a.flags & PGA_DEQUEUE) != 0 || 3562 mtx_owned(vm_page_lockptr(m)), 3563 ("%s: queued unlocked page %p", __func__, m)); 3564 3565 if ((m->a.flags & PGA_ENQUEUED) != 0) 3566 vm_pagequeue_remove(pq, m); 3567 vm_page_dequeue_complete(m); 3568 vm_pagequeue_unlock(pq); 3569 } 3570 3571 /* 3572 * Schedule the given page for insertion into the specified page queue. 3573 * Physical insertion of the page may be deferred indefinitely. 3574 */ 3575 static void 3576 vm_page_enqueue(vm_page_t m, uint8_t queue) 3577 { 3578 3579 vm_page_assert_locked(m); 3580 KASSERT(m->a.queue == PQ_NONE && 3581 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 3582 ("%s: page %p is already enqueued", __func__, m)); 3583 KASSERT(m->ref_count > 0, 3584 ("%s: page %p does not carry any references", __func__, m)); 3585 3586 m->a.queue = queue; 3587 if ((m->a.flags & PGA_REQUEUE) == 0) 3588 vm_page_aflag_set(m, PGA_REQUEUE); 3589 vm_page_pqbatch_submit(m, queue); 3590 } 3591 3592 /* 3593 * vm_page_requeue: [ internal use only ] 3594 * 3595 * Schedule a requeue of the given page. 3596 * 3597 * The page must be locked. 3598 */ 3599 void 3600 vm_page_requeue(vm_page_t m) 3601 { 3602 3603 vm_page_assert_locked(m); 3604 KASSERT(vm_page_queue(m) != PQ_NONE, 3605 ("%s: page %p is not logically enqueued", __func__, m)); 3606 KASSERT(m->ref_count > 0, 3607 ("%s: page %p does not carry any references", __func__, m)); 3608 3609 if ((m->a.flags & PGA_REQUEUE) == 0) 3610 vm_page_aflag_set(m, PGA_REQUEUE); 3611 vm_page_pqbatch_submit(m, atomic_load_8(&m->a.queue)); 3612 } 3613 3614 /* 3615 * vm_page_swapqueue: [ internal use only ] 3616 * 3617 * Move the page from one queue to another, or to the tail of its 3618 * current queue, in the face of a possible concurrent call to 3619 * vm_page_dequeue_deferred_free(). 3620 */ 3621 void 3622 vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq) 3623 { 3624 struct vm_pagequeue *pq; 3625 vm_page_t next; 3626 bool queued; 3627 3628 KASSERT(oldq < PQ_COUNT && newq < PQ_COUNT && oldq != newq, 3629 ("vm_page_swapqueue: invalid queues (%d, %d)", oldq, newq)); 3630 vm_page_assert_locked(m); 3631 3632 pq = &vm_pagequeue_domain(m)->vmd_pagequeues[oldq]; 3633 vm_pagequeue_lock(pq); 3634 3635 /* 3636 * The physical queue state might change at any point before the page 3637 * queue lock is acquired, so we must verify that we hold the correct 3638 * lock before proceeding. 3639 */ 3640 if (__predict_false(m->a.queue != oldq)) { 3641 vm_pagequeue_unlock(pq); 3642 return; 3643 } 3644 3645 /* 3646 * Once the queue index of the page changes, there is nothing 3647 * synchronizing with further updates to the physical queue state. 3648 * Therefore we must remove the page from the queue now in anticipation 3649 * of a successful commit, and be prepared to roll back. 3650 */ 3651 if (__predict_true((m->a.flags & PGA_ENQUEUED) != 0)) { 3652 next = TAILQ_NEXT(m, plinks.q); 3653 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3654 vm_page_aflag_clear(m, PGA_ENQUEUED); 3655 queued = true; 3656 } else { 3657 queued = false; 3658 } 3659 3660 /* 3661 * Atomically update the queue field and set PGA_REQUEUE while 3662 * ensuring that PGA_DEQUEUE has not been set. 3663 */ 3664 if (__predict_false(!vm_page_pqstate_cmpset(m, oldq, newq, PGA_DEQUEUE, 3665 PGA_REQUEUE))) { 3666 if (queued) { 3667 vm_page_aflag_set(m, PGA_ENQUEUED); 3668 if (next != NULL) 3669 TAILQ_INSERT_BEFORE(next, m, plinks.q); 3670 else 3671 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3672 } 3673 vm_pagequeue_unlock(pq); 3674 return; 3675 } 3676 vm_pagequeue_cnt_dec(pq); 3677 vm_pagequeue_unlock(pq); 3678 vm_page_pqbatch_submit(m, newq); 3679 } 3680 3681 /* 3682 * vm_page_free_prep: 3683 * 3684 * Prepares the given page to be put on the free list, 3685 * disassociating it from any VM object. The caller may return 3686 * the page to the free list only if this function returns true. 3687 * 3688 * The object must be locked. The page must be locked if it is 3689 * managed. 3690 */ 3691 static bool 3692 vm_page_free_prep(vm_page_t m) 3693 { 3694 3695 /* 3696 * Synchronize with threads that have dropped a reference to this 3697 * page. 3698 */ 3699 atomic_thread_fence_acq(); 3700 3701 if (vm_page_sbusied(m)) 3702 panic("vm_page_free_prep: freeing shared busy page %p", m); 3703 3704 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 3705 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 3706 uint64_t *p; 3707 int i; 3708 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 3709 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 3710 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 3711 m, i, (uintmax_t)*p)); 3712 } 3713 #endif 3714 if ((m->oflags & VPO_UNMANAGED) == 0) { 3715 KASSERT(!pmap_page_is_mapped(m), 3716 ("vm_page_free_prep: freeing mapped page %p", m)); 3717 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0, 3718 ("vm_page_free_prep: mapping flags set in page %p", m)); 3719 } else { 3720 KASSERT(m->a.queue == PQ_NONE, 3721 ("vm_page_free_prep: unmanaged page %p is queued", m)); 3722 } 3723 VM_CNT_INC(v_tfree); 3724 3725 if (m->object != NULL) { 3726 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) == 3727 ((m->object->flags & OBJ_UNMANAGED) != 0), 3728 ("vm_page_free_prep: managed flag mismatch for page %p", 3729 m)); 3730 vm_page_object_remove(m); 3731 3732 /* 3733 * The object reference can be released without an atomic 3734 * operation. 3735 */ 3736 KASSERT((m->flags & PG_FICTITIOUS) != 0 || 3737 m->ref_count == VPRC_OBJREF, 3738 ("vm_page_free_prep: page %p has unexpected ref_count %u", 3739 m, m->ref_count)); 3740 m->object = NULL; 3741 m->ref_count -= VPRC_OBJREF; 3742 vm_page_xunbusy(m); 3743 } 3744 3745 if (vm_page_xbusied(m)) 3746 panic("vm_page_free_prep: freeing exclusive busy page %p", m); 3747 3748 /* 3749 * If fictitious remove object association and 3750 * return. 3751 */ 3752 if ((m->flags & PG_FICTITIOUS) != 0) { 3753 KASSERT(m->ref_count == 1, 3754 ("fictitious page %p is referenced", m)); 3755 KASSERT(m->a.queue == PQ_NONE, 3756 ("fictitious page %p is queued", m)); 3757 return (false); 3758 } 3759 3760 /* 3761 * Pages need not be dequeued before they are returned to the physical 3762 * memory allocator, but they must at least be marked for a deferred 3763 * dequeue. 3764 */ 3765 if ((m->oflags & VPO_UNMANAGED) == 0) 3766 vm_page_dequeue_deferred_free(m); 3767 3768 m->valid = 0; 3769 vm_page_undirty(m); 3770 3771 if (m->ref_count != 0) 3772 panic("vm_page_free_prep: page %p has references", m); 3773 3774 /* 3775 * Restore the default memory attribute to the page. 3776 */ 3777 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 3778 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 3779 3780 #if VM_NRESERVLEVEL > 0 3781 /* 3782 * Determine whether the page belongs to a reservation. If the page was 3783 * allocated from a per-CPU cache, it cannot belong to a reservation, so 3784 * as an optimization, we avoid the check in that case. 3785 */ 3786 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 3787 return (false); 3788 #endif 3789 3790 return (true); 3791 } 3792 3793 /* 3794 * vm_page_free_toq: 3795 * 3796 * Returns the given page to the free list, disassociating it 3797 * from any VM object. 3798 * 3799 * The object must be locked. The page must be locked if it is 3800 * managed. 3801 */ 3802 static void 3803 vm_page_free_toq(vm_page_t m) 3804 { 3805 struct vm_domain *vmd; 3806 uma_zone_t zone; 3807 3808 if (!vm_page_free_prep(m)) 3809 return; 3810 3811 vmd = vm_pagequeue_domain(m); 3812 zone = vmd->vmd_pgcache[m->pool].zone; 3813 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 3814 uma_zfree(zone, m); 3815 return; 3816 } 3817 vm_domain_free_lock(vmd); 3818 vm_phys_free_pages(m, 0); 3819 vm_domain_free_unlock(vmd); 3820 vm_domain_freecnt_inc(vmd, 1); 3821 } 3822 3823 /* 3824 * vm_page_free_pages_toq: 3825 * 3826 * Returns a list of pages to the free list, disassociating it 3827 * from any VM object. In other words, this is equivalent to 3828 * calling vm_page_free_toq() for each page of a list of VM objects. 3829 * 3830 * The objects must be locked. The pages must be locked if it is 3831 * managed. 3832 */ 3833 void 3834 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 3835 { 3836 vm_page_t m; 3837 int count; 3838 3839 if (SLIST_EMPTY(free)) 3840 return; 3841 3842 count = 0; 3843 while ((m = SLIST_FIRST(free)) != NULL) { 3844 count++; 3845 SLIST_REMOVE_HEAD(free, plinks.s.ss); 3846 vm_page_free_toq(m); 3847 } 3848 3849 if (update_wire_count) 3850 vm_wire_sub(count); 3851 } 3852 3853 /* 3854 * Mark this page as wired down, preventing reclamation by the page daemon 3855 * or when the containing object is destroyed. 3856 */ 3857 void 3858 vm_page_wire(vm_page_t m) 3859 { 3860 u_int old; 3861 3862 KASSERT(m->object != NULL, 3863 ("vm_page_wire: page %p does not belong to an object", m)); 3864 if (!vm_page_busied(m) && !vm_object_busied(m->object)) 3865 VM_OBJECT_ASSERT_LOCKED(m->object); 3866 KASSERT((m->flags & PG_FICTITIOUS) == 0 || 3867 VPRC_WIRE_COUNT(m->ref_count) >= 1, 3868 ("vm_page_wire: fictitious page %p has zero wirings", m)); 3869 3870 old = atomic_fetchadd_int(&m->ref_count, 1); 3871 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX, 3872 ("vm_page_wire: counter overflow for page %p", m)); 3873 if (VPRC_WIRE_COUNT(old) == 0) 3874 vm_wire_add(1); 3875 } 3876 3877 /* 3878 * Attempt to wire a mapped page following a pmap lookup of that page. 3879 * This may fail if a thread is concurrently tearing down mappings of the page. 3880 * The transient failure is acceptable because it translates to the 3881 * failure of the caller pmap_extract_and_hold(), which should be then 3882 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages(). 3883 */ 3884 bool 3885 vm_page_wire_mapped(vm_page_t m) 3886 { 3887 u_int old; 3888 3889 old = m->ref_count; 3890 do { 3891 KASSERT(old > 0, 3892 ("vm_page_wire_mapped: wiring unreferenced page %p", m)); 3893 if ((old & VPRC_BLOCKED) != 0) 3894 return (false); 3895 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1)); 3896 3897 if (VPRC_WIRE_COUNT(old) == 0) 3898 vm_wire_add(1); 3899 return (true); 3900 } 3901 3902 /* 3903 * Release one wiring of the specified page, potentially allowing it to be 3904 * paged out. 3905 * 3906 * Only managed pages belonging to an object can be paged out. If the number 3907 * of wirings transitions to zero and the page is eligible for page out, then 3908 * the page is added to the specified paging queue. If the released wiring 3909 * represented the last reference to the page, the page is freed. 3910 * 3911 * A managed page must be locked. 3912 */ 3913 void 3914 vm_page_unwire(vm_page_t m, uint8_t queue) 3915 { 3916 u_int old; 3917 bool locked; 3918 3919 KASSERT(queue < PQ_COUNT, 3920 ("vm_page_unwire: invalid queue %u request for page %p", queue, m)); 3921 3922 if ((m->oflags & VPO_UNMANAGED) != 0) { 3923 if (vm_page_unwire_noq(m) && m->ref_count == 0) 3924 vm_page_free(m); 3925 return; 3926 } 3927 3928 /* 3929 * Update LRU state before releasing the wiring reference. 3930 * We only need to do this once since we hold the page lock. 3931 * Use a release store when updating the reference count to 3932 * synchronize with vm_page_free_prep(). 3933 */ 3934 old = m->ref_count; 3935 locked = false; 3936 do { 3937 KASSERT(VPRC_WIRE_COUNT(old) > 0, 3938 ("vm_page_unwire: wire count underflow for page %p", m)); 3939 if (!locked && VPRC_WIRE_COUNT(old) == 1) { 3940 vm_page_lock(m); 3941 locked = true; 3942 if (queue == PQ_ACTIVE && vm_page_queue(m) == PQ_ACTIVE) 3943 vm_page_reference(m); 3944 else 3945 vm_page_mvqueue(m, queue); 3946 } 3947 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1)); 3948 3949 /* 3950 * Release the lock only after the wiring is released, to ensure that 3951 * the page daemon does not encounter and dequeue the page while it is 3952 * still wired. 3953 */ 3954 if (locked) 3955 vm_page_unlock(m); 3956 3957 if (VPRC_WIRE_COUNT(old) == 1) { 3958 vm_wire_sub(1); 3959 if (old == 1) 3960 vm_page_free(m); 3961 } 3962 } 3963 3964 /* 3965 * Unwire a page without (re-)inserting it into a page queue. It is up 3966 * to the caller to enqueue, requeue, or free the page as appropriate. 3967 * In most cases involving managed pages, vm_page_unwire() should be used 3968 * instead. 3969 */ 3970 bool 3971 vm_page_unwire_noq(vm_page_t m) 3972 { 3973 u_int old; 3974 3975 old = vm_page_drop(m, 1); 3976 KASSERT(VPRC_WIRE_COUNT(old) != 0, 3977 ("vm_page_unref: counter underflow for page %p", m)); 3978 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1, 3979 ("vm_page_unref: missing ref on fictitious page %p", m)); 3980 3981 if (VPRC_WIRE_COUNT(old) > 1) 3982 return (false); 3983 vm_wire_sub(1); 3984 return (true); 3985 } 3986 3987 /* 3988 * Ensure that the page is in the specified page queue. If the page is 3989 * active or being moved to the active queue, ensure that its act_count is 3990 * at least ACT_INIT but do not otherwise mess with it. Otherwise, ensure that 3991 * the page is at the tail of its page queue. 3992 * 3993 * The page may be wired. The caller should release its wiring reference 3994 * before releasing the page lock, otherwise the page daemon may immediately 3995 * dequeue the page. 3996 * 3997 * A managed page must be locked. 3998 */ 3999 static __always_inline void 4000 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue) 4001 { 4002 4003 vm_page_assert_locked(m); 4004 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4005 ("vm_page_mvqueue: page %p is unmanaged", m)); 4006 KASSERT(m->ref_count > 0, 4007 ("%s: page %p does not carry any references", __func__, m)); 4008 4009 if (vm_page_queue(m) != nqueue) { 4010 vm_page_dequeue(m); 4011 vm_page_enqueue(m, nqueue); 4012 } else if (nqueue != PQ_ACTIVE) { 4013 vm_page_requeue(m); 4014 } 4015 4016 if (nqueue == PQ_ACTIVE && m->a.act_count < ACT_INIT) 4017 m->a.act_count = ACT_INIT; 4018 } 4019 4020 /* 4021 * Put the specified page on the active list (if appropriate). 4022 */ 4023 void 4024 vm_page_activate(vm_page_t m) 4025 { 4026 4027 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) 4028 return; 4029 vm_page_mvqueue(m, PQ_ACTIVE); 4030 } 4031 4032 /* 4033 * Move the specified page to the tail of the inactive queue, or requeue 4034 * the page if it is already in the inactive queue. 4035 */ 4036 void 4037 vm_page_deactivate(vm_page_t m) 4038 { 4039 4040 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) 4041 return; 4042 vm_page_mvqueue(m, PQ_INACTIVE); 4043 } 4044 4045 /* 4046 * Move the specified page close to the head of the inactive queue, 4047 * bypassing LRU. A marker page is used to maintain FIFO ordering. 4048 * As with regular enqueues, we use a per-CPU batch queue to reduce 4049 * contention on the page queue lock. 4050 */ 4051 static void 4052 _vm_page_deactivate_noreuse(vm_page_t m) 4053 { 4054 4055 vm_page_assert_locked(m); 4056 4057 if (!vm_page_inactive(m)) { 4058 vm_page_dequeue(m); 4059 m->a.queue = PQ_INACTIVE; 4060 } 4061 if ((m->a.flags & PGA_REQUEUE_HEAD) == 0) 4062 vm_page_aflag_set(m, PGA_REQUEUE_HEAD); 4063 vm_page_pqbatch_submit(m, PQ_INACTIVE); 4064 } 4065 4066 void 4067 vm_page_deactivate_noreuse(vm_page_t m) 4068 { 4069 4070 KASSERT(m->object != NULL, 4071 ("vm_page_deactivate_noreuse: page %p has no object", m)); 4072 4073 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_wired(m)) 4074 _vm_page_deactivate_noreuse(m); 4075 } 4076 4077 /* 4078 * Put a page in the laundry, or requeue it if it is already there. 4079 */ 4080 void 4081 vm_page_launder(vm_page_t m) 4082 { 4083 4084 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) 4085 return; 4086 vm_page_mvqueue(m, PQ_LAUNDRY); 4087 } 4088 4089 /* 4090 * Put a page in the PQ_UNSWAPPABLE holding queue. 4091 */ 4092 void 4093 vm_page_unswappable(vm_page_t m) 4094 { 4095 4096 vm_page_assert_locked(m); 4097 KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0, 4098 ("page %p already unswappable", m)); 4099 4100 vm_page_dequeue(m); 4101 vm_page_enqueue(m, PQ_UNSWAPPABLE); 4102 } 4103 4104 static void 4105 vm_page_release_toq(vm_page_t m, int flags) 4106 { 4107 4108 vm_page_assert_locked(m); 4109 4110 /* 4111 * Use a check of the valid bits to determine whether we should 4112 * accelerate reclamation of the page. The object lock might not be 4113 * held here, in which case the check is racy. At worst we will either 4114 * accelerate reclamation of a valid page and violate LRU, or 4115 * unnecessarily defer reclamation of an invalid page. 4116 * 4117 * If we were asked to not cache the page, place it near the head of the 4118 * inactive queue so that is reclaimed sooner. 4119 */ 4120 if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0) 4121 _vm_page_deactivate_noreuse(m); 4122 else if (vm_page_active(m)) 4123 vm_page_reference(m); 4124 else 4125 vm_page_mvqueue(m, PQ_INACTIVE); 4126 } 4127 4128 /* 4129 * Unwire a page and either attempt to free it or re-add it to the page queues. 4130 */ 4131 void 4132 vm_page_release(vm_page_t m, int flags) 4133 { 4134 vm_object_t object; 4135 u_int old; 4136 bool locked; 4137 4138 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4139 ("vm_page_release: page %p is unmanaged", m)); 4140 4141 if ((flags & VPR_TRYFREE) != 0) { 4142 for (;;) { 4143 object = (vm_object_t)atomic_load_ptr(&m->object); 4144 if (object == NULL) 4145 break; 4146 /* Depends on type-stability. */ 4147 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) 4148 break; 4149 if (object == m->object) { 4150 vm_page_release_locked(m, flags); 4151 VM_OBJECT_WUNLOCK(object); 4152 return; 4153 } 4154 VM_OBJECT_WUNLOCK(object); 4155 } 4156 } 4157 4158 /* 4159 * Update LRU state before releasing the wiring reference. 4160 * Use a release store when updating the reference count to 4161 * synchronize with vm_page_free_prep(). 4162 */ 4163 old = m->ref_count; 4164 locked = false; 4165 do { 4166 KASSERT(VPRC_WIRE_COUNT(old) > 0, 4167 ("vm_page_unwire: wire count underflow for page %p", m)); 4168 if (!locked && VPRC_WIRE_COUNT(old) == 1) { 4169 vm_page_lock(m); 4170 locked = true; 4171 vm_page_release_toq(m, flags); 4172 } 4173 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1)); 4174 4175 /* 4176 * Release the lock only after the wiring is released, to ensure that 4177 * the page daemon does not encounter and dequeue the page while it is 4178 * still wired. 4179 */ 4180 if (locked) 4181 vm_page_unlock(m); 4182 4183 if (VPRC_WIRE_COUNT(old) == 1) { 4184 vm_wire_sub(1); 4185 if (old == 1) 4186 vm_page_free(m); 4187 } 4188 } 4189 4190 /* See vm_page_release(). */ 4191 void 4192 vm_page_release_locked(vm_page_t m, int flags) 4193 { 4194 4195 VM_OBJECT_ASSERT_WLOCKED(m->object); 4196 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4197 ("vm_page_release_locked: page %p is unmanaged", m)); 4198 4199 if (vm_page_unwire_noq(m)) { 4200 if ((flags & VPR_TRYFREE) != 0 && 4201 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 4202 m->dirty == 0 && vm_page_tryxbusy(m)) { 4203 vm_page_free(m); 4204 } else { 4205 vm_page_lock(m); 4206 vm_page_release_toq(m, flags); 4207 vm_page_unlock(m); 4208 } 4209 } 4210 } 4211 4212 static bool 4213 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t)) 4214 { 4215 u_int old; 4216 4217 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0, 4218 ("vm_page_try_blocked_op: page %p has no object", m)); 4219 KASSERT(vm_page_busied(m), 4220 ("vm_page_try_blocked_op: page %p is not busy", m)); 4221 VM_OBJECT_ASSERT_LOCKED(m->object); 4222 4223 old = m->ref_count; 4224 do { 4225 KASSERT(old != 0, 4226 ("vm_page_try_blocked_op: page %p has no references", m)); 4227 if (VPRC_WIRE_COUNT(old) != 0) 4228 return (false); 4229 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED)); 4230 4231 (op)(m); 4232 4233 /* 4234 * If the object is read-locked, new wirings may be created via an 4235 * object lookup. 4236 */ 4237 old = vm_page_drop(m, VPRC_BLOCKED); 4238 KASSERT(!VM_OBJECT_WOWNED(m->object) || 4239 old == (VPRC_BLOCKED | VPRC_OBJREF), 4240 ("vm_page_try_blocked_op: unexpected refcount value %u for %p", 4241 old, m)); 4242 return (true); 4243 } 4244 4245 /* 4246 * Atomically check for wirings and remove all mappings of the page. 4247 */ 4248 bool 4249 vm_page_try_remove_all(vm_page_t m) 4250 { 4251 4252 return (vm_page_try_blocked_op(m, pmap_remove_all)); 4253 } 4254 4255 /* 4256 * Atomically check for wirings and remove all writeable mappings of the page. 4257 */ 4258 bool 4259 vm_page_try_remove_write(vm_page_t m) 4260 { 4261 4262 return (vm_page_try_blocked_op(m, pmap_remove_write)); 4263 } 4264 4265 /* 4266 * vm_page_advise 4267 * 4268 * Apply the specified advice to the given page. 4269 * 4270 * The object and page must be locked. 4271 */ 4272 void 4273 vm_page_advise(vm_page_t m, int advice) 4274 { 4275 4276 vm_page_assert_locked(m); 4277 VM_OBJECT_ASSERT_WLOCKED(m->object); 4278 if (advice == MADV_FREE) 4279 /* 4280 * Mark the page clean. This will allow the page to be freed 4281 * without first paging it out. MADV_FREE pages are often 4282 * quickly reused by malloc(3), so we do not do anything that 4283 * would result in a page fault on a later access. 4284 */ 4285 vm_page_undirty(m); 4286 else if (advice != MADV_DONTNEED) { 4287 if (advice == MADV_WILLNEED) 4288 vm_page_activate(m); 4289 return; 4290 } 4291 4292 /* 4293 * Clear any references to the page. Otherwise, the page daemon will 4294 * immediately reactivate the page. 4295 */ 4296 vm_page_aflag_clear(m, PGA_REFERENCED); 4297 4298 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 4299 vm_page_dirty(m); 4300 4301 /* 4302 * Place clean pages near the head of the inactive queue rather than 4303 * the tail, thus defeating the queue's LRU operation and ensuring that 4304 * the page will be reused quickly. Dirty pages not already in the 4305 * laundry are moved there. 4306 */ 4307 if (m->dirty == 0) 4308 vm_page_deactivate_noreuse(m); 4309 else if (!vm_page_in_laundry(m)) 4310 vm_page_launder(m); 4311 } 4312 4313 static inline int 4314 vm_page_grab_pflags(int allocflags) 4315 { 4316 int pflags; 4317 4318 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 4319 (allocflags & VM_ALLOC_WIRED) != 0, 4320 ("vm_page_grab_pflags: the pages must be busied or wired")); 4321 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4322 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4323 ("vm_page_grab_pflags: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY " 4324 "mismatch")); 4325 pflags = allocflags & 4326 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL | 4327 VM_ALLOC_NOBUSY); 4328 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4329 pflags |= VM_ALLOC_WAITFAIL; 4330 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4331 pflags |= VM_ALLOC_SBUSY; 4332 4333 return (pflags); 4334 } 4335 4336 /* 4337 * Grab a page, waiting until we are waken up due to the page 4338 * changing state. We keep on waiting, if the page continues 4339 * to be in the object. If the page doesn't exist, first allocate it 4340 * and then conditionally zero it. 4341 * 4342 * This routine may sleep. 4343 * 4344 * The object must be locked on entry. The lock will, however, be released 4345 * and reacquired if the routine sleeps. 4346 */ 4347 vm_page_t 4348 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 4349 { 4350 vm_page_t m; 4351 int pflags; 4352 4353 VM_OBJECT_ASSERT_WLOCKED(object); 4354 pflags = vm_page_grab_pflags(allocflags); 4355 retrylookup: 4356 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4357 if (!vm_page_acquire_flags(m, allocflags)) { 4358 if (vm_page_busy_sleep_flags(object, m, "pgrbwt", 4359 allocflags)) 4360 goto retrylookup; 4361 return (NULL); 4362 } 4363 goto out; 4364 } 4365 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4366 return (NULL); 4367 m = vm_page_alloc(object, pindex, pflags); 4368 if (m == NULL) { 4369 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4370 return (NULL); 4371 goto retrylookup; 4372 } 4373 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 4374 pmap_zero_page(m); 4375 4376 out: 4377 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4378 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4379 vm_page_sunbusy(m); 4380 else 4381 vm_page_xunbusy(m); 4382 } 4383 return (m); 4384 } 4385 4386 /* 4387 * Grab a page and make it valid, paging in if necessary. Pages missing from 4388 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied 4389 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought 4390 * in simultaneously. Additional pages will be left on a paging queue but 4391 * will neither be wired nor busy regardless of allocflags. 4392 */ 4393 int 4394 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags) 4395 { 4396 vm_page_t m; 4397 vm_page_t ma[VM_INITIAL_PAGEIN]; 4398 bool sleep, xbusy; 4399 int after, i, pflags, rv; 4400 4401 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4402 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4403 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4404 KASSERT((allocflags & 4405 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4406 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags)); 4407 VM_OBJECT_ASSERT_WLOCKED(object); 4408 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY); 4409 pflags |= VM_ALLOC_WAITFAIL; 4410 4411 retrylookup: 4412 xbusy = false; 4413 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4414 /* 4415 * If the page is fully valid it can only become invalid 4416 * with the object lock held. If it is not valid it can 4417 * become valid with the busy lock held. Therefore, we 4418 * may unnecessarily lock the exclusive busy here if we 4419 * race with I/O completion not using the object lock. 4420 * However, we will not end up with an invalid page and a 4421 * shared lock. 4422 */ 4423 if (!vm_page_all_valid(m) || 4424 (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) { 4425 sleep = !vm_page_tryxbusy(m); 4426 xbusy = true; 4427 } else 4428 sleep = !vm_page_trysbusy(m); 4429 if (sleep) { 4430 (void)vm_page_busy_sleep_flags(object, m, "pgrbwt", 4431 allocflags); 4432 goto retrylookup; 4433 } 4434 if ((allocflags & VM_ALLOC_NOCREAT) != 0 && 4435 !vm_page_all_valid(m)) { 4436 if (xbusy) 4437 vm_page_xunbusy(m); 4438 else 4439 vm_page_sunbusy(m); 4440 *mp = NULL; 4441 return (VM_PAGER_FAIL); 4442 } 4443 if ((allocflags & VM_ALLOC_WIRED) != 0) 4444 vm_page_wire(m); 4445 if (vm_page_all_valid(m)) 4446 goto out; 4447 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4448 *mp = NULL; 4449 return (VM_PAGER_FAIL); 4450 } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) { 4451 xbusy = true; 4452 } else { 4453 goto retrylookup; 4454 } 4455 4456 vm_page_assert_xbusied(m); 4457 MPASS(xbusy); 4458 if (vm_pager_has_page(object, pindex, NULL, &after)) { 4459 after = MIN(after, VM_INITIAL_PAGEIN); 4460 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT); 4461 after = MAX(after, 1); 4462 ma[0] = m; 4463 for (i = 1; i < after; i++) { 4464 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { 4465 if (ma[i]->valid || !vm_page_tryxbusy(ma[i])) 4466 break; 4467 } else { 4468 ma[i] = vm_page_alloc(object, m->pindex + i, 4469 VM_ALLOC_NORMAL); 4470 if (ma[i] == NULL) 4471 break; 4472 } 4473 } 4474 after = i; 4475 rv = vm_pager_get_pages(object, ma, after, NULL, NULL); 4476 /* Pager may have replaced a page. */ 4477 m = ma[0]; 4478 if (rv != VM_PAGER_OK) { 4479 if ((allocflags & VM_ALLOC_WIRED) != 0) 4480 vm_page_unwire_noq(m); 4481 for (i = 0; i < after; i++) { 4482 if (!vm_page_wired(ma[i])) 4483 vm_page_free(ma[i]); 4484 else 4485 vm_page_xunbusy(ma[i]); 4486 } 4487 *mp = NULL; 4488 return (rv); 4489 } 4490 for (i = 1; i < after; i++) 4491 vm_page_readahead_finish(ma[i]); 4492 MPASS(vm_page_all_valid(m)); 4493 } else { 4494 vm_page_zero_invalid(m, TRUE); 4495 } 4496 out: 4497 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4498 if (xbusy) 4499 vm_page_xunbusy(m); 4500 else 4501 vm_page_sunbusy(m); 4502 } 4503 if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy) 4504 vm_page_busy_downgrade(m); 4505 *mp = m; 4506 return (VM_PAGER_OK); 4507 } 4508 4509 /* 4510 * Return the specified range of pages from the given object. For each 4511 * page offset within the range, if a page already exists within the object 4512 * at that offset and it is busy, then wait for it to change state. If, 4513 * instead, the page doesn't exist, then allocate it. 4514 * 4515 * The caller must always specify an allocation class. 4516 * 4517 * allocation classes: 4518 * VM_ALLOC_NORMAL normal process request 4519 * VM_ALLOC_SYSTEM system *really* needs the pages 4520 * 4521 * The caller must always specify that the pages are to be busied and/or 4522 * wired. 4523 * 4524 * optional allocation flags: 4525 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 4526 * VM_ALLOC_NOBUSY do not exclusive busy the page 4527 * VM_ALLOC_NOWAIT do not sleep 4528 * VM_ALLOC_SBUSY set page to sbusy state 4529 * VM_ALLOC_WIRED wire the pages 4530 * VM_ALLOC_ZERO zero and validate any invalid pages 4531 * 4532 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 4533 * may return a partial prefix of the requested range. 4534 */ 4535 int 4536 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 4537 vm_page_t *ma, int count) 4538 { 4539 vm_page_t m, mpred; 4540 int pflags; 4541 int i; 4542 4543 VM_OBJECT_ASSERT_WLOCKED(object); 4544 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 4545 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 4546 4547 pflags = vm_page_grab_pflags(allocflags); 4548 if (count == 0) 4549 return (0); 4550 4551 i = 0; 4552 retrylookup: 4553 m = vm_radix_lookup_le(&object->rtree, pindex + i); 4554 if (m == NULL || m->pindex != pindex + i) { 4555 mpred = m; 4556 m = NULL; 4557 } else 4558 mpred = TAILQ_PREV(m, pglist, listq); 4559 for (; i < count; i++) { 4560 if (m != NULL) { 4561 if (!vm_page_acquire_flags(m, allocflags)) { 4562 if (vm_page_busy_sleep_flags(object, m, 4563 "grbmaw", allocflags)) 4564 goto retrylookup; 4565 break; 4566 } 4567 } else { 4568 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4569 break; 4570 m = vm_page_alloc_after(object, pindex + i, 4571 pflags | VM_ALLOC_COUNT(count - i), mpred); 4572 if (m == NULL) { 4573 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4574 break; 4575 goto retrylookup; 4576 } 4577 } 4578 if (vm_page_none_valid(m) && 4579 (allocflags & VM_ALLOC_ZERO) != 0) { 4580 if ((m->flags & PG_ZERO) == 0) 4581 pmap_zero_page(m); 4582 vm_page_valid(m); 4583 } 4584 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4585 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4586 vm_page_sunbusy(m); 4587 else 4588 vm_page_xunbusy(m); 4589 } 4590 ma[i] = mpred = m; 4591 m = vm_page_next(m); 4592 } 4593 return (i); 4594 } 4595 4596 /* 4597 * Mapping function for valid or dirty bits in a page. 4598 * 4599 * Inputs are required to range within a page. 4600 */ 4601 vm_page_bits_t 4602 vm_page_bits(int base, int size) 4603 { 4604 int first_bit; 4605 int last_bit; 4606 4607 KASSERT( 4608 base + size <= PAGE_SIZE, 4609 ("vm_page_bits: illegal base/size %d/%d", base, size) 4610 ); 4611 4612 if (size == 0) /* handle degenerate case */ 4613 return (0); 4614 4615 first_bit = base >> DEV_BSHIFT; 4616 last_bit = (base + size - 1) >> DEV_BSHIFT; 4617 4618 return (((vm_page_bits_t)2 << last_bit) - 4619 ((vm_page_bits_t)1 << first_bit)); 4620 } 4621 4622 void 4623 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set) 4624 { 4625 4626 #if PAGE_SIZE == 32768 4627 atomic_set_64((uint64_t *)bits, set); 4628 #elif PAGE_SIZE == 16384 4629 atomic_set_32((uint32_t *)bits, set); 4630 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16) 4631 atomic_set_16((uint16_t *)bits, set); 4632 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8) 4633 atomic_set_8((uint8_t *)bits, set); 4634 #else /* PAGE_SIZE <= 8192 */ 4635 uintptr_t addr; 4636 int shift; 4637 4638 addr = (uintptr_t)bits; 4639 /* 4640 * Use a trick to perform a 32-bit atomic on the 4641 * containing aligned word, to not depend on the existence 4642 * of atomic_{set, clear}_{8, 16}. 4643 */ 4644 shift = addr & (sizeof(uint32_t) - 1); 4645 #if BYTE_ORDER == BIG_ENDIAN 4646 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 4647 #else 4648 shift *= NBBY; 4649 #endif 4650 addr &= ~(sizeof(uint32_t) - 1); 4651 atomic_set_32((uint32_t *)addr, set << shift); 4652 #endif /* PAGE_SIZE */ 4653 } 4654 4655 static inline void 4656 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear) 4657 { 4658 4659 #if PAGE_SIZE == 32768 4660 atomic_clear_64((uint64_t *)bits, clear); 4661 #elif PAGE_SIZE == 16384 4662 atomic_clear_32((uint32_t *)bits, clear); 4663 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16) 4664 atomic_clear_16((uint16_t *)bits, clear); 4665 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8) 4666 atomic_clear_8((uint8_t *)bits, clear); 4667 #else /* PAGE_SIZE <= 8192 */ 4668 uintptr_t addr; 4669 int shift; 4670 4671 addr = (uintptr_t)bits; 4672 /* 4673 * Use a trick to perform a 32-bit atomic on the 4674 * containing aligned word, to not depend on the existence 4675 * of atomic_{set, clear}_{8, 16}. 4676 */ 4677 shift = addr & (sizeof(uint32_t) - 1); 4678 #if BYTE_ORDER == BIG_ENDIAN 4679 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 4680 #else 4681 shift *= NBBY; 4682 #endif 4683 addr &= ~(sizeof(uint32_t) - 1); 4684 atomic_clear_32((uint32_t *)addr, clear << shift); 4685 #endif /* PAGE_SIZE */ 4686 } 4687 4688 static inline vm_page_bits_t 4689 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits) 4690 { 4691 #if PAGE_SIZE == 32768 4692 uint64_t old; 4693 4694 old = *bits; 4695 while (atomic_fcmpset_64(bits, &old, newbits) == 0); 4696 return (old); 4697 #elif PAGE_SIZE == 16384 4698 uint32_t old; 4699 4700 old = *bits; 4701 while (atomic_fcmpset_32(bits, &old, newbits) == 0); 4702 return (old); 4703 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16) 4704 uint16_t old; 4705 4706 old = *bits; 4707 while (atomic_fcmpset_16(bits, &old, newbits) == 0); 4708 return (old); 4709 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8) 4710 uint8_t old; 4711 4712 old = *bits; 4713 while (atomic_fcmpset_8(bits, &old, newbits) == 0); 4714 return (old); 4715 #else /* PAGE_SIZE <= 4096*/ 4716 uintptr_t addr; 4717 uint32_t old, new, mask; 4718 int shift; 4719 4720 addr = (uintptr_t)bits; 4721 /* 4722 * Use a trick to perform a 32-bit atomic on the 4723 * containing aligned word, to not depend on the existence 4724 * of atomic_{set, swap, clear}_{8, 16}. 4725 */ 4726 shift = addr & (sizeof(uint32_t) - 1); 4727 #if BYTE_ORDER == BIG_ENDIAN 4728 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 4729 #else 4730 shift *= NBBY; 4731 #endif 4732 addr &= ~(sizeof(uint32_t) - 1); 4733 mask = VM_PAGE_BITS_ALL << shift; 4734 4735 old = *bits; 4736 do { 4737 new = old & ~mask; 4738 new |= newbits << shift; 4739 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0); 4740 return (old >> shift); 4741 #endif /* PAGE_SIZE */ 4742 } 4743 4744 /* 4745 * vm_page_set_valid_range: 4746 * 4747 * Sets portions of a page valid. The arguments are expected 4748 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4749 * of any partial chunks touched by the range. The invalid portion of 4750 * such chunks will be zeroed. 4751 * 4752 * (base + size) must be less then or equal to PAGE_SIZE. 4753 */ 4754 void 4755 vm_page_set_valid_range(vm_page_t m, int base, int size) 4756 { 4757 int endoff, frag; 4758 vm_page_bits_t pagebits; 4759 4760 vm_page_assert_busied(m); 4761 if (size == 0) /* handle degenerate case */ 4762 return; 4763 4764 /* 4765 * If the base is not DEV_BSIZE aligned and the valid 4766 * bit is clear, we have to zero out a portion of the 4767 * first block. 4768 */ 4769 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4770 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 4771 pmap_zero_page_area(m, frag, base - frag); 4772 4773 /* 4774 * If the ending offset is not DEV_BSIZE aligned and the 4775 * valid bit is clear, we have to zero out a portion of 4776 * the last block. 4777 */ 4778 endoff = base + size; 4779 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4780 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 4781 pmap_zero_page_area(m, endoff, 4782 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4783 4784 /* 4785 * Assert that no previously invalid block that is now being validated 4786 * is already dirty. 4787 */ 4788 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 4789 ("vm_page_set_valid_range: page %p is dirty", m)); 4790 4791 /* 4792 * Set valid bits inclusive of any overlap. 4793 */ 4794 pagebits = vm_page_bits(base, size); 4795 if (vm_page_xbusied(m)) 4796 m->valid |= pagebits; 4797 else 4798 vm_page_bits_set(m, &m->valid, pagebits); 4799 } 4800 4801 /* 4802 * Set the page dirty bits and free the invalid swap space if 4803 * present. Returns the previous dirty bits. 4804 */ 4805 vm_page_bits_t 4806 vm_page_set_dirty(vm_page_t m) 4807 { 4808 vm_page_bits_t old; 4809 4810 VM_PAGE_OBJECT_BUSY_ASSERT(m); 4811 4812 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) { 4813 old = m->dirty; 4814 m->dirty = VM_PAGE_BITS_ALL; 4815 } else 4816 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL); 4817 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0) 4818 vm_pager_page_unswapped(m); 4819 4820 return (old); 4821 } 4822 4823 /* 4824 * Clear the given bits from the specified page's dirty field. 4825 */ 4826 static __inline void 4827 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 4828 { 4829 4830 vm_page_assert_busied(m); 4831 4832 /* 4833 * If the page is xbusied and not write mapped we are the 4834 * only thread that can modify dirty bits. Otherwise, The pmap 4835 * layer can call vm_page_dirty() without holding a distinguished 4836 * lock. The combination of page busy and atomic operations 4837 * suffice to guarantee consistency of the page dirty field. 4838 */ 4839 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 4840 m->dirty &= ~pagebits; 4841 else 4842 vm_page_bits_clear(m, &m->dirty, pagebits); 4843 } 4844 4845 /* 4846 * vm_page_set_validclean: 4847 * 4848 * Sets portions of a page valid and clean. The arguments are expected 4849 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4850 * of any partial chunks touched by the range. The invalid portion of 4851 * such chunks will be zero'd. 4852 * 4853 * (base + size) must be less then or equal to PAGE_SIZE. 4854 */ 4855 void 4856 vm_page_set_validclean(vm_page_t m, int base, int size) 4857 { 4858 vm_page_bits_t oldvalid, pagebits; 4859 int endoff, frag; 4860 4861 vm_page_assert_busied(m); 4862 if (size == 0) /* handle degenerate case */ 4863 return; 4864 4865 /* 4866 * If the base is not DEV_BSIZE aligned and the valid 4867 * bit is clear, we have to zero out a portion of the 4868 * first block. 4869 */ 4870 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4871 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 4872 pmap_zero_page_area(m, frag, base - frag); 4873 4874 /* 4875 * If the ending offset is not DEV_BSIZE aligned and the 4876 * valid bit is clear, we have to zero out a portion of 4877 * the last block. 4878 */ 4879 endoff = base + size; 4880 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4881 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 4882 pmap_zero_page_area(m, endoff, 4883 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4884 4885 /* 4886 * Set valid, clear dirty bits. If validating the entire 4887 * page we can safely clear the pmap modify bit. We also 4888 * use this opportunity to clear the PGA_NOSYNC flag. If a process 4889 * takes a write fault on a MAP_NOSYNC memory area the flag will 4890 * be set again. 4891 * 4892 * We set valid bits inclusive of any overlap, but we can only 4893 * clear dirty bits for DEV_BSIZE chunks that are fully within 4894 * the range. 4895 */ 4896 oldvalid = m->valid; 4897 pagebits = vm_page_bits(base, size); 4898 if (vm_page_xbusied(m)) 4899 m->valid |= pagebits; 4900 else 4901 vm_page_bits_set(m, &m->valid, pagebits); 4902 #if 0 /* NOT YET */ 4903 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 4904 frag = DEV_BSIZE - frag; 4905 base += frag; 4906 size -= frag; 4907 if (size < 0) 4908 size = 0; 4909 } 4910 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 4911 #endif 4912 if (base == 0 && size == PAGE_SIZE) { 4913 /* 4914 * The page can only be modified within the pmap if it is 4915 * mapped, and it can only be mapped if it was previously 4916 * fully valid. 4917 */ 4918 if (oldvalid == VM_PAGE_BITS_ALL) 4919 /* 4920 * Perform the pmap_clear_modify() first. Otherwise, 4921 * a concurrent pmap operation, such as 4922 * pmap_protect(), could clear a modification in the 4923 * pmap and set the dirty field on the page before 4924 * pmap_clear_modify() had begun and after the dirty 4925 * field was cleared here. 4926 */ 4927 pmap_clear_modify(m); 4928 m->dirty = 0; 4929 vm_page_aflag_clear(m, PGA_NOSYNC); 4930 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m)) 4931 m->dirty &= ~pagebits; 4932 else 4933 vm_page_clear_dirty_mask(m, pagebits); 4934 } 4935 4936 void 4937 vm_page_clear_dirty(vm_page_t m, int base, int size) 4938 { 4939 4940 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 4941 } 4942 4943 /* 4944 * vm_page_set_invalid: 4945 * 4946 * Invalidates DEV_BSIZE'd chunks within a page. Both the 4947 * valid and dirty bits for the effected areas are cleared. 4948 */ 4949 void 4950 vm_page_set_invalid(vm_page_t m, int base, int size) 4951 { 4952 vm_page_bits_t bits; 4953 vm_object_t object; 4954 4955 /* 4956 * The object lock is required so that pages can't be mapped 4957 * read-only while we're in the process of invalidating them. 4958 */ 4959 object = m->object; 4960 VM_OBJECT_ASSERT_WLOCKED(object); 4961 vm_page_assert_busied(m); 4962 4963 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 4964 size >= object->un_pager.vnp.vnp_size) 4965 bits = VM_PAGE_BITS_ALL; 4966 else 4967 bits = vm_page_bits(base, size); 4968 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0) 4969 pmap_remove_all(m); 4970 KASSERT((bits == 0 && vm_page_all_valid(m)) || 4971 !pmap_page_is_mapped(m), 4972 ("vm_page_set_invalid: page %p is mapped", m)); 4973 if (vm_page_xbusied(m)) { 4974 m->valid &= ~bits; 4975 m->dirty &= ~bits; 4976 } else { 4977 vm_page_bits_clear(m, &m->valid, bits); 4978 vm_page_bits_clear(m, &m->dirty, bits); 4979 } 4980 } 4981 4982 /* 4983 * vm_page_invalid: 4984 * 4985 * Invalidates the entire page. The page must be busy, unmapped, and 4986 * the enclosing object must be locked. The object locks protects 4987 * against concurrent read-only pmap enter which is done without 4988 * busy. 4989 */ 4990 void 4991 vm_page_invalid(vm_page_t m) 4992 { 4993 4994 vm_page_assert_busied(m); 4995 VM_OBJECT_ASSERT_LOCKED(m->object); 4996 MPASS(!pmap_page_is_mapped(m)); 4997 4998 if (vm_page_xbusied(m)) 4999 m->valid = 0; 5000 else 5001 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL); 5002 } 5003 5004 /* 5005 * vm_page_zero_invalid() 5006 * 5007 * The kernel assumes that the invalid portions of a page contain 5008 * garbage, but such pages can be mapped into memory by user code. 5009 * When this occurs, we must zero out the non-valid portions of the 5010 * page so user code sees what it expects. 5011 * 5012 * Pages are most often semi-valid when the end of a file is mapped 5013 * into memory and the file's size is not page aligned. 5014 */ 5015 void 5016 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 5017 { 5018 int b; 5019 int i; 5020 5021 /* 5022 * Scan the valid bits looking for invalid sections that 5023 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 5024 * valid bit may be set ) have already been zeroed by 5025 * vm_page_set_validclean(). 5026 */ 5027 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 5028 if (i == (PAGE_SIZE / DEV_BSIZE) || 5029 (m->valid & ((vm_page_bits_t)1 << i))) { 5030 if (i > b) { 5031 pmap_zero_page_area(m, 5032 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 5033 } 5034 b = i + 1; 5035 } 5036 } 5037 5038 /* 5039 * setvalid is TRUE when we can safely set the zero'd areas 5040 * as being valid. We can do this if there are no cache consistancy 5041 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 5042 */ 5043 if (setvalid) 5044 vm_page_valid(m); 5045 } 5046 5047 /* 5048 * vm_page_is_valid: 5049 * 5050 * Is (partial) page valid? Note that the case where size == 0 5051 * will return FALSE in the degenerate case where the page is 5052 * entirely invalid, and TRUE otherwise. 5053 * 5054 * Some callers envoke this routine without the busy lock held and 5055 * handle races via higher level locks. Typical callers should 5056 * hold a busy lock to prevent invalidation. 5057 */ 5058 int 5059 vm_page_is_valid(vm_page_t m, int base, int size) 5060 { 5061 vm_page_bits_t bits; 5062 5063 bits = vm_page_bits(base, size); 5064 return (m->valid != 0 && (m->valid & bits) == bits); 5065 } 5066 5067 /* 5068 * Returns true if all of the specified predicates are true for the entire 5069 * (super)page and false otherwise. 5070 */ 5071 bool 5072 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) 5073 { 5074 vm_object_t object; 5075 int i, npages; 5076 5077 object = m->object; 5078 if (skip_m != NULL && skip_m->object != object) 5079 return (false); 5080 VM_OBJECT_ASSERT_LOCKED(object); 5081 npages = atop(pagesizes[m->psind]); 5082 5083 /* 5084 * The physically contiguous pages that make up a superpage, i.e., a 5085 * page with a page size index ("psind") greater than zero, will 5086 * occupy adjacent entries in vm_page_array[]. 5087 */ 5088 for (i = 0; i < npages; i++) { 5089 /* Always test object consistency, including "skip_m". */ 5090 if (m[i].object != object) 5091 return (false); 5092 if (&m[i] == skip_m) 5093 continue; 5094 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 5095 return (false); 5096 if ((flags & PS_ALL_DIRTY) != 0) { 5097 /* 5098 * Calling vm_page_test_dirty() or pmap_is_modified() 5099 * might stop this case from spuriously returning 5100 * "false". However, that would require a write lock 5101 * on the object containing "m[i]". 5102 */ 5103 if (m[i].dirty != VM_PAGE_BITS_ALL) 5104 return (false); 5105 } 5106 if ((flags & PS_ALL_VALID) != 0 && 5107 m[i].valid != VM_PAGE_BITS_ALL) 5108 return (false); 5109 } 5110 return (true); 5111 } 5112 5113 /* 5114 * Set the page's dirty bits if the page is modified. 5115 */ 5116 void 5117 vm_page_test_dirty(vm_page_t m) 5118 { 5119 5120 vm_page_assert_busied(m); 5121 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 5122 vm_page_dirty(m); 5123 } 5124 5125 void 5126 vm_page_valid(vm_page_t m) 5127 { 5128 5129 vm_page_assert_busied(m); 5130 if (vm_page_xbusied(m)) 5131 m->valid = VM_PAGE_BITS_ALL; 5132 else 5133 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL); 5134 } 5135 5136 void 5137 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 5138 { 5139 5140 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 5141 } 5142 5143 void 5144 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 5145 { 5146 5147 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 5148 } 5149 5150 int 5151 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 5152 { 5153 5154 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 5155 } 5156 5157 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 5158 void 5159 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 5160 { 5161 5162 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 5163 } 5164 5165 void 5166 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 5167 { 5168 5169 mtx_assert_(vm_page_lockptr(m), a, file, line); 5170 } 5171 #endif 5172 5173 #ifdef INVARIANTS 5174 void 5175 vm_page_object_busy_assert(vm_page_t m) 5176 { 5177 5178 /* 5179 * Certain of the page's fields may only be modified by the 5180 * holder of a page or object busy. 5181 */ 5182 if (m->object != NULL && !vm_page_busied(m)) 5183 VM_OBJECT_ASSERT_BUSY(m->object); 5184 } 5185 5186 void 5187 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits) 5188 { 5189 5190 if ((bits & PGA_WRITEABLE) == 0) 5191 return; 5192 5193 /* 5194 * The PGA_WRITEABLE flag can only be set if the page is 5195 * managed, is exclusively busied or the object is locked. 5196 * Currently, this flag is only set by pmap_enter(). 5197 */ 5198 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 5199 ("PGA_WRITEABLE on unmanaged page")); 5200 if (!vm_page_xbusied(m)) 5201 VM_OBJECT_ASSERT_BUSY(m->object); 5202 } 5203 #endif 5204 5205 #include "opt_ddb.h" 5206 #ifdef DDB 5207 #include <sys/kernel.h> 5208 5209 #include <ddb/ddb.h> 5210 5211 DB_SHOW_COMMAND(page, vm_page_print_page_info) 5212 { 5213 5214 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 5215 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 5216 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 5217 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 5218 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 5219 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 5220 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 5221 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 5222 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 5223 } 5224 5225 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 5226 { 5227 int dom; 5228 5229 db_printf("pq_free %d\n", vm_free_count()); 5230 for (dom = 0; dom < vm_ndomains; dom++) { 5231 db_printf( 5232 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 5233 dom, 5234 vm_dom[dom].vmd_page_count, 5235 vm_dom[dom].vmd_free_count, 5236 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 5237 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 5238 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 5239 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 5240 } 5241 } 5242 5243 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 5244 { 5245 vm_page_t m; 5246 boolean_t phys, virt; 5247 5248 if (!have_addr) { 5249 db_printf("show pginfo addr\n"); 5250 return; 5251 } 5252 5253 phys = strchr(modif, 'p') != NULL; 5254 virt = strchr(modif, 'v') != NULL; 5255 if (virt) 5256 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 5257 else if (phys) 5258 m = PHYS_TO_VM_PAGE(addr); 5259 else 5260 m = (vm_page_t)addr; 5261 db_printf( 5262 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n" 5263 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 5264 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 5265 m->a.queue, m->ref_count, m->a.flags, m->oflags, 5266 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty); 5267 } 5268 #endif /* DDB */ 5269