xref: /freebsd/sys/vm/vm_page.c (revision c98323078dede7579020518ec84cdcb478e5c142)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/malloc.h>
106 #include <sys/mutex.h>
107 #include <sys/proc.h>
108 #include <sys/vmmeter.h>
109 #include <sys/vnode.h>
110 
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/vm_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 #include <vm/uma_int.h>
121 
122 /*
123  *	Associated with page of user-allocatable memory is a
124  *	page structure.
125  */
126 
127 struct mtx vm_page_queue_mtx;
128 struct mtx vm_page_queue_free_mtx;
129 
130 vm_page_t vm_page_array = 0;
131 int vm_page_array_size = 0;
132 long first_page = 0;
133 int vm_page_zero_count = 0;
134 
135 /*
136  *	vm_set_page_size:
137  *
138  *	Sets the page size, perhaps based upon the memory
139  *	size.  Must be called before any use of page-size
140  *	dependent functions.
141  */
142 void
143 vm_set_page_size(void)
144 {
145 	if (cnt.v_page_size == 0)
146 		cnt.v_page_size = PAGE_SIZE;
147 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
148 		panic("vm_set_page_size: page size not a power of two");
149 }
150 
151 /*
152  *	vm_page_startup:
153  *
154  *	Initializes the resident memory module.
155  *
156  *	Allocates memory for the page cells, and
157  *	for the object/offset-to-page hash table headers.
158  *	Each page cell is initialized and placed on the free list.
159  */
160 vm_offset_t
161 vm_page_startup(vm_offset_t vaddr)
162 {
163 	vm_offset_t mapped;
164 	vm_size_t npages;
165 	vm_paddr_t page_range;
166 	vm_paddr_t new_end;
167 	int i;
168 	vm_paddr_t pa;
169 	int nblocks;
170 	vm_paddr_t last_pa;
171 
172 	/* the biggest memory array is the second group of pages */
173 	vm_paddr_t end;
174 	vm_paddr_t biggestsize;
175 	int biggestone;
176 
177 	vm_paddr_t total;
178 	vm_size_t bootpages;
179 
180 	total = 0;
181 	biggestsize = 0;
182 	biggestone = 0;
183 	nblocks = 0;
184 	vaddr = round_page(vaddr);
185 
186 	for (i = 0; phys_avail[i + 1]; i += 2) {
187 		phys_avail[i] = round_page(phys_avail[i]);
188 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189 	}
190 
191 	for (i = 0; phys_avail[i + 1]; i += 2) {
192 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
193 
194 		if (size > biggestsize) {
195 			biggestone = i;
196 			biggestsize = size;
197 		}
198 		++nblocks;
199 		total += size;
200 	}
201 
202 	end = phys_avail[biggestone+1];
203 
204 	/*
205 	 * Initialize the locks.
206 	 */
207 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
208 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
209 	    MTX_SPIN);
210 
211 	/*
212 	 * Initialize the queue headers for the free queue, the active queue
213 	 * and the inactive queue.
214 	 */
215 	vm_pageq_init();
216 
217 	/*
218 	 * Allocate memory for use when boot strapping the kernel memory
219 	 * allocator.
220 	 */
221 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
222 	new_end = end - bootpages;
223 	new_end = trunc_page(new_end);
224 	mapped = pmap_map(&vaddr, new_end, end,
225 	    VM_PROT_READ | VM_PROT_WRITE);
226 	bzero((caddr_t) mapped, end - new_end);
227 	uma_startup((caddr_t)mapped);
228 
229 	/*
230 	 * Compute the number of pages of memory that will be available for
231 	 * use (taking into account the overhead of a page structure per
232 	 * page).
233 	 */
234 	first_page = phys_avail[0] / PAGE_SIZE;
235 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
236 	npages = (total - (page_range * sizeof(struct vm_page)) -
237 	    (end - new_end)) / PAGE_SIZE;
238 	end = new_end;
239 
240 	/*
241 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
242 	 */
243 	vaddr += PAGE_SIZE;
244 
245 	/*
246 	 * Initialize the mem entry structures now, and put them in the free
247 	 * queue.
248 	 */
249 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
250 	mapped = pmap_map(&vaddr, new_end, end,
251 	    VM_PROT_READ | VM_PROT_WRITE);
252 	vm_page_array = (vm_page_t) mapped;
253 	phys_avail[biggestone + 1] = new_end;
254 
255 	/*
256 	 * Clear all of the page structures
257 	 */
258 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
259 	vm_page_array_size = page_range;
260 
261 	/*
262 	 * Construct the free queue(s) in descending order (by physical
263 	 * address) so that the first 16MB of physical memory is allocated
264 	 * last rather than first.  On large-memory machines, this avoids
265 	 * the exhaustion of low physical memory before isa_dmainit has run.
266 	 */
267 	cnt.v_page_count = 0;
268 	cnt.v_free_count = 0;
269 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
270 		pa = phys_avail[i];
271 		last_pa = phys_avail[i + 1];
272 		while (pa < last_pa && npages-- > 0) {
273 			vm_pageq_add_new_page(pa);
274 			pa += PAGE_SIZE;
275 		}
276 	}
277 	return (vaddr);
278 }
279 
280 void
281 vm_page_flag_set(vm_page_t m, unsigned short bits)
282 {
283 
284 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
285 	m->flags |= bits;
286 }
287 
288 void
289 vm_page_flag_clear(vm_page_t m, unsigned short bits)
290 {
291 
292 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
293 	m->flags &= ~bits;
294 }
295 
296 void
297 vm_page_busy(vm_page_t m)
298 {
299 	KASSERT((m->flags & PG_BUSY) == 0,
300 	    ("vm_page_busy: page already busy!!!"));
301 	vm_page_flag_set(m, PG_BUSY);
302 }
303 
304 /*
305  *      vm_page_flash:
306  *
307  *      wakeup anyone waiting for the page.
308  */
309 void
310 vm_page_flash(vm_page_t m)
311 {
312 	if (m->flags & PG_WANTED) {
313 		vm_page_flag_clear(m, PG_WANTED);
314 		wakeup(m);
315 	}
316 }
317 
318 /*
319  *      vm_page_wakeup:
320  *
321  *      clear the PG_BUSY flag and wakeup anyone waiting for the
322  *      page.
323  *
324  */
325 void
326 vm_page_wakeup(vm_page_t m)
327 {
328 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
329 	vm_page_flag_clear(m, PG_BUSY);
330 	vm_page_flash(m);
331 }
332 
333 void
334 vm_page_io_start(vm_page_t m)
335 {
336 
337 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
338 	m->busy++;
339 }
340 
341 void
342 vm_page_io_finish(vm_page_t m)
343 {
344 
345 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
346 	m->busy--;
347 	if (m->busy == 0)
348 		vm_page_flash(m);
349 }
350 
351 /*
352  * Keep page from being freed by the page daemon
353  * much of the same effect as wiring, except much lower
354  * overhead and should be used only for *very* temporary
355  * holding ("wiring").
356  */
357 void
358 vm_page_hold(vm_page_t mem)
359 {
360 
361 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
362         mem->hold_count++;
363 }
364 
365 void
366 vm_page_unhold(vm_page_t mem)
367 {
368 
369 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
370 	--mem->hold_count;
371 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
372 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
373 		vm_page_free_toq(mem);
374 }
375 
376 /*
377  *	vm_page_free:
378  *
379  *	Free a page
380  *
381  *	The clearing of PG_ZERO is a temporary safety until the code can be
382  *	reviewed to determine that PG_ZERO is being properly cleared on
383  *	write faults or maps.  PG_ZERO was previously cleared in
384  *	vm_page_alloc().
385  */
386 void
387 vm_page_free(vm_page_t m)
388 {
389 	vm_page_flag_clear(m, PG_ZERO);
390 	vm_page_free_toq(m);
391 	vm_page_zero_idle_wakeup();
392 }
393 
394 /*
395  *	vm_page_free_zero:
396  *
397  *	Free a page to the zerod-pages queue
398  */
399 void
400 vm_page_free_zero(vm_page_t m)
401 {
402 	vm_page_flag_set(m, PG_ZERO);
403 	vm_page_free_toq(m);
404 }
405 
406 /*
407  *	vm_page_sleep_if_busy:
408  *
409  *	Sleep and release the page queues lock if PG_BUSY is set or,
410  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
411  *	thread slept and the page queues lock was released.
412  *	Otherwise, retains the page queues lock and returns FALSE.
413  */
414 int
415 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
416 {
417 	int is_object_locked;
418 
419 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
420 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
421 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
422 		/*
423 		 * Remove mtx_owned() after vm_object locking is finished.
424 		 */
425 		if ((is_object_locked = m->object != NULL &&
426 		     mtx_owned(&m->object->mtx)))
427 			mtx_unlock(&m->object->mtx);
428 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
429 		if (is_object_locked)
430 			mtx_lock(&m->object->mtx);
431 		return (TRUE);
432 	}
433 	return (FALSE);
434 }
435 
436 /*
437  *	vm_page_dirty:
438  *
439  *	make page all dirty
440  */
441 void
442 vm_page_dirty(vm_page_t m)
443 {
444 	KASSERT(m->queue - m->pc != PQ_CACHE,
445 	    ("vm_page_dirty: page in cache!"));
446 	KASSERT(m->queue - m->pc != PQ_FREE,
447 	    ("vm_page_dirty: page is free!"));
448 	m->dirty = VM_PAGE_BITS_ALL;
449 }
450 
451 /*
452  *	vm_page_splay:
453  *
454  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
455  *	the vm_page containing the given pindex.  If, however, that
456  *	pindex is not found in the vm_object, returns a vm_page that is
457  *	adjacent to the pindex, coming before or after it.
458  */
459 vm_page_t
460 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
461 {
462 	struct vm_page dummy;
463 	vm_page_t lefttreemax, righttreemin, y;
464 
465 	if (root == NULL)
466 		return (root);
467 	lefttreemax = righttreemin = &dummy;
468 	for (;; root = y) {
469 		if (pindex < root->pindex) {
470 			if ((y = root->left) == NULL)
471 				break;
472 			if (pindex < y->pindex) {
473 				/* Rotate right. */
474 				root->left = y->right;
475 				y->right = root;
476 				root = y;
477 				if ((y = root->left) == NULL)
478 					break;
479 			}
480 			/* Link into the new root's right tree. */
481 			righttreemin->left = root;
482 			righttreemin = root;
483 		} else if (pindex > root->pindex) {
484 			if ((y = root->right) == NULL)
485 				break;
486 			if (pindex > y->pindex) {
487 				/* Rotate left. */
488 				root->right = y->left;
489 				y->left = root;
490 				root = y;
491 				if ((y = root->right) == NULL)
492 					break;
493 			}
494 			/* Link into the new root's left tree. */
495 			lefttreemax->right = root;
496 			lefttreemax = root;
497 		} else
498 			break;
499 	}
500 	/* Assemble the new root. */
501 	lefttreemax->right = root->left;
502 	righttreemin->left = root->right;
503 	root->left = dummy.right;
504 	root->right = dummy.left;
505 	return (root);
506 }
507 
508 /*
509  *	vm_page_insert:		[ internal use only ]
510  *
511  *	Inserts the given mem entry into the object and object list.
512  *
513  *	The pagetables are not updated but will presumably fault the page
514  *	in if necessary, or if a kernel page the caller will at some point
515  *	enter the page into the kernel's pmap.  We are not allowed to block
516  *	here so we *can't* do this anyway.
517  *
518  *	The object and page must be locked.
519  *	This routine may not block.
520  */
521 void
522 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
523 {
524 	vm_page_t root;
525 
526 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
527 	if (m->object != NULL)
528 		panic("vm_page_insert: page already inserted");
529 
530 	/*
531 	 * Record the object/offset pair in this page
532 	 */
533 	m->object = object;
534 	m->pindex = pindex;
535 
536 	/*
537 	 * Now link into the object's ordered list of backed pages.
538 	 */
539 	root = object->root;
540 	if (root == NULL) {
541 		m->left = NULL;
542 		m->right = NULL;
543 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
544 	} else {
545 		root = vm_page_splay(pindex, root);
546 		if (pindex < root->pindex) {
547 			m->left = root->left;
548 			m->right = root;
549 			root->left = NULL;
550 			TAILQ_INSERT_BEFORE(root, m, listq);
551 		} else if (pindex == root->pindex)
552 			panic("vm_page_insert: offset already allocated");
553 		else {
554 			m->right = root->right;
555 			m->left = root;
556 			root->right = NULL;
557 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
558 		}
559 	}
560 	object->root = m;
561 	object->generation++;
562 
563 	/*
564 	 * show that the object has one more resident page.
565 	 */
566 	object->resident_page_count++;
567 
568 	/*
569 	 * Since we are inserting a new and possibly dirty page,
570 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
571 	 */
572 	if (m->flags & PG_WRITEABLE)
573 		vm_object_set_writeable_dirty(object);
574 }
575 
576 /*
577  *	vm_page_remove:
578  *				NOTE: used by device pager as well -wfj
579  *
580  *	Removes the given mem entry from the object/offset-page
581  *	table and the object page list, but do not invalidate/terminate
582  *	the backing store.
583  *
584  *	The object and page must be locked.
585  *	The underlying pmap entry (if any) is NOT removed here.
586  *	This routine may not block.
587  */
588 void
589 vm_page_remove(vm_page_t m)
590 {
591 	vm_object_t object;
592 	vm_page_t root;
593 
594 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
595 	if (m->object == NULL)
596 		return;
597 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
598 	if ((m->flags & PG_BUSY) == 0) {
599 		panic("vm_page_remove: page not busy");
600 	}
601 
602 	/*
603 	 * Basically destroy the page.
604 	 */
605 	vm_page_wakeup(m);
606 
607 	object = m->object;
608 
609 	/*
610 	 * Now remove from the object's list of backed pages.
611 	 */
612 	if (m != object->root)
613 		vm_page_splay(m->pindex, object->root);
614 	if (m->left == NULL)
615 		root = m->right;
616 	else {
617 		root = vm_page_splay(m->pindex, m->left);
618 		root->right = m->right;
619 	}
620 	object->root = root;
621 	TAILQ_REMOVE(&object->memq, m, listq);
622 
623 	/*
624 	 * And show that the object has one fewer resident page.
625 	 */
626 	object->resident_page_count--;
627 	object->generation++;
628 
629 	m->object = NULL;
630 }
631 
632 /*
633  *	vm_page_lookup:
634  *
635  *	Returns the page associated with the object/offset
636  *	pair specified; if none is found, NULL is returned.
637  *
638  *	The object must be locked.
639  *	This routine may not block.
640  *	This is a critical path routine
641  */
642 vm_page_t
643 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
644 {
645 	vm_page_t m;
646 
647 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
648 	if ((m = object->root) != NULL && m->pindex != pindex) {
649 		m = vm_page_splay(pindex, m);
650 		if ((object->root = m)->pindex != pindex)
651 			m = NULL;
652 	}
653 	return (m);
654 }
655 
656 /*
657  *	vm_page_rename:
658  *
659  *	Move the given memory entry from its
660  *	current object to the specified target object/offset.
661  *
662  *	The object must be locked.
663  *	This routine may not block.
664  *
665  *	Note: swap associated with the page must be invalidated by the move.  We
666  *	      have to do this for several reasons:  (1) we aren't freeing the
667  *	      page, (2) we are dirtying the page, (3) the VM system is probably
668  *	      moving the page from object A to B, and will then later move
669  *	      the backing store from A to B and we can't have a conflict.
670  *
671  *	Note: we *always* dirty the page.  It is necessary both for the
672  *	      fact that we moved it, and because we may be invalidating
673  *	      swap.  If the page is on the cache, we have to deactivate it
674  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
675  *	      on the cache.
676  */
677 void
678 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
679 {
680 
681 	vm_page_remove(m);
682 	vm_page_insert(m, new_object, new_pindex);
683 	if (m->queue - m->pc == PQ_CACHE)
684 		vm_page_deactivate(m);
685 	vm_page_dirty(m);
686 }
687 
688 /*
689  *	vm_page_select_cache:
690  *
691  *	Find a page on the cache queue with color optimization.  As pages
692  *	might be found, but not applicable, they are deactivated.  This
693  *	keeps us from using potentially busy cached pages.
694  *
695  *	This routine may not block.
696  */
697 vm_page_t
698 vm_page_select_cache(int color)
699 {
700 	vm_page_t m;
701 
702 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
703 	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
704 		if ((m->flags & PG_BUSY) == 0 && m->busy == 0 &&
705 		    m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) ||
706 		    VM_OBJECT_LOCKED(m->object))) {
707 			KASSERT(m->dirty == 0,
708 			    ("Found dirty cache page %p", m));
709 			KASSERT(!pmap_page_is_mapped(m),
710 			    ("Found mapped cache page %p", m));
711 			KASSERT((m->flags & PG_UNMANAGED) == 0,
712 			    ("Found unmanaged cache page %p", m));
713 			KASSERT(m->wire_count == 0,
714 			    ("Found wired cache page %p", m));
715 			break;
716 		}
717 		vm_page_deactivate(m);
718 	}
719 	return (m);
720 }
721 
722 /*
723  *	vm_page_alloc:
724  *
725  *	Allocate and return a memory cell associated
726  *	with this VM object/offset pair.
727  *
728  *	page_req classes:
729  *	VM_ALLOC_NORMAL		normal process request
730  *	VM_ALLOC_SYSTEM		system *really* needs a page
731  *	VM_ALLOC_INTERRUPT	interrupt time request
732  *	VM_ALLOC_ZERO		zero page
733  *
734  *	This routine may not block.
735  *
736  *	Additional special handling is required when called from an
737  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
738  *	the page cache in this case.
739  */
740 vm_page_t
741 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
742 {
743 	vm_object_t m_object;
744 	vm_page_t m = NULL;
745 	int color, flags, page_req;
746 
747 	page_req = req & VM_ALLOC_CLASS_MASK;
748 
749 	if ((req & VM_ALLOC_NOOBJ) == 0) {
750 		KASSERT(object != NULL,
751 		    ("vm_page_alloc: NULL object."));
752 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
753 		color = (pindex + object->pg_color) & PQ_L2_MASK;
754 	} else
755 		color = pindex & PQ_L2_MASK;
756 
757 	/*
758 	 * The pager is allowed to eat deeper into the free page list.
759 	 */
760 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
761 		page_req = VM_ALLOC_SYSTEM;
762 	};
763 
764 loop:
765 	mtx_lock_spin(&vm_page_queue_free_mtx);
766 	if (cnt.v_free_count > cnt.v_free_reserved ||
767 	    (page_req == VM_ALLOC_SYSTEM &&
768 	     cnt.v_cache_count == 0 &&
769 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
770 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
771 		/*
772 		 * Allocate from the free queue if the number of free pages
773 		 * exceeds the minimum for the request class.
774 		 */
775 		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
776 	} else if (page_req != VM_ALLOC_INTERRUPT) {
777 		mtx_unlock_spin(&vm_page_queue_free_mtx);
778 		/*
779 		 * Allocatable from cache (non-interrupt only).  On success,
780 		 * we must free the page and try again, thus ensuring that
781 		 * cnt.v_*_free_min counters are replenished.
782 		 */
783 		vm_page_lock_queues();
784 		if ((m = vm_page_select_cache(color)) == NULL) {
785 #if defined(DIAGNOSTIC)
786 			if (cnt.v_cache_count > 0)
787 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
788 #endif
789 			vm_page_unlock_queues();
790 			atomic_add_int(&vm_pageout_deficit, 1);
791 			pagedaemon_wakeup();
792 			return (NULL);
793 		}
794 		m_object = m->object;
795 		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
796 		vm_page_busy(m);
797 		vm_page_free(m);
798 		vm_page_unlock_queues();
799 		if (m_object != object)
800 			VM_OBJECT_UNLOCK(m_object);
801 		goto loop;
802 	} else {
803 		/*
804 		 * Not allocatable from cache from interrupt, give up.
805 		 */
806 		mtx_unlock_spin(&vm_page_queue_free_mtx);
807 		atomic_add_int(&vm_pageout_deficit, 1);
808 		pagedaemon_wakeup();
809 		return (NULL);
810 	}
811 
812 	/*
813 	 *  At this point we had better have found a good page.
814 	 */
815 
816 	KASSERT(
817 	    m != NULL,
818 	    ("vm_page_alloc(): missing page on free queue")
819 	);
820 
821 	/*
822 	 * Remove from free queue
823 	 */
824 	vm_pageq_remove_nowakeup(m);
825 
826 	/*
827 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
828 	 */
829 	flags = PG_BUSY;
830 	if (m->flags & PG_ZERO) {
831 		vm_page_zero_count--;
832 		if (req & VM_ALLOC_ZERO)
833 			flags = PG_ZERO | PG_BUSY;
834 	}
835 	if (req & VM_ALLOC_NOOBJ)
836 		flags &= ~PG_BUSY;
837 	m->flags = flags;
838 	if (req & VM_ALLOC_WIRED) {
839 		atomic_add_int(&cnt.v_wire_count, 1);
840 		m->wire_count = 1;
841 	} else
842 		m->wire_count = 0;
843 	m->hold_count = 0;
844 	m->act_count = 0;
845 	m->busy = 0;
846 	m->valid = 0;
847 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
848 	mtx_unlock_spin(&vm_page_queue_free_mtx);
849 
850 	if ((req & VM_ALLOC_NOOBJ) == 0)
851 		vm_page_insert(m, object, pindex);
852 	else
853 		m->pindex = pindex;
854 
855 	/*
856 	 * Don't wakeup too often - wakeup the pageout daemon when
857 	 * we would be nearly out of memory.
858 	 */
859 	if (vm_paging_needed())
860 		pagedaemon_wakeup();
861 
862 	return (m);
863 }
864 
865 /*
866  *	vm_wait:	(also see VM_WAIT macro)
867  *
868  *	Block until free pages are available for allocation
869  *	- Called in various places before memory allocations.
870  */
871 void
872 vm_wait(void)
873 {
874 
875 	vm_page_lock_queues();
876 	if (curproc == pageproc) {
877 		vm_pageout_pages_needed = 1;
878 		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
879 		    PDROP | PSWP, "VMWait", 0);
880 	} else {
881 		if (!vm_pages_needed) {
882 			vm_pages_needed = 1;
883 			wakeup(&vm_pages_needed);
884 		}
885 		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
886 		    "vmwait", 0);
887 	}
888 }
889 
890 /*
891  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
892  *
893  *	Block until free pages are available for allocation
894  *	- Called only in vm_fault so that processes page faulting
895  *	  can be easily tracked.
896  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
897  *	  processes will be able to grab memory first.  Do not change
898  *	  this balance without careful testing first.
899  */
900 void
901 vm_waitpfault(void)
902 {
903 
904 	vm_page_lock_queues();
905 	if (!vm_pages_needed) {
906 		vm_pages_needed = 1;
907 		wakeup(&vm_pages_needed);
908 	}
909 	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
910 	    "pfault", 0);
911 }
912 
913 /*
914  *	vm_page_activate:
915  *
916  *	Put the specified page on the active list (if appropriate).
917  *	Ensure that act_count is at least ACT_INIT but do not otherwise
918  *	mess with it.
919  *
920  *	The page queues must be locked.
921  *	This routine may not block.
922  */
923 void
924 vm_page_activate(vm_page_t m)
925 {
926 
927 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
928 	if (m->queue != PQ_ACTIVE) {
929 		if ((m->queue - m->pc) == PQ_CACHE)
930 			cnt.v_reactivated++;
931 		vm_pageq_remove(m);
932 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
933 			if (m->act_count < ACT_INIT)
934 				m->act_count = ACT_INIT;
935 			vm_pageq_enqueue(PQ_ACTIVE, m);
936 		}
937 	} else {
938 		if (m->act_count < ACT_INIT)
939 			m->act_count = ACT_INIT;
940 	}
941 }
942 
943 /*
944  *	vm_page_free_wakeup:
945  *
946  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
947  *	routine is called when a page has been added to the cache or free
948  *	queues.
949  *
950  *	The page queues must be locked.
951  *	This routine may not block.
952  */
953 static __inline void
954 vm_page_free_wakeup(void)
955 {
956 
957 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
958 	/*
959 	 * if pageout daemon needs pages, then tell it that there are
960 	 * some free.
961 	 */
962 	if (vm_pageout_pages_needed &&
963 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
964 		wakeup(&vm_pageout_pages_needed);
965 		vm_pageout_pages_needed = 0;
966 	}
967 	/*
968 	 * wakeup processes that are waiting on memory if we hit a
969 	 * high water mark. And wakeup scheduler process if we have
970 	 * lots of memory. this process will swapin processes.
971 	 */
972 	if (vm_pages_needed && !vm_page_count_min()) {
973 		vm_pages_needed = 0;
974 		wakeup(&cnt.v_free_count);
975 	}
976 }
977 
978 /*
979  *	vm_page_free_toq:
980  *
981  *	Returns the given page to the PQ_FREE list,
982  *	disassociating it with any VM object.
983  *
984  *	Object and page must be locked prior to entry.
985  *	This routine may not block.
986  */
987 
988 void
989 vm_page_free_toq(vm_page_t m)
990 {
991 	struct vpgqueues *pq;
992 	vm_object_t object = m->object;
993 
994 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
995 	cnt.v_tfree++;
996 
997 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
998 		printf(
999 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1000 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1001 		    m->hold_count);
1002 		if ((m->queue - m->pc) == PQ_FREE)
1003 			panic("vm_page_free: freeing free page");
1004 		else
1005 			panic("vm_page_free: freeing busy page");
1006 	}
1007 
1008 	/*
1009 	 * unqueue, then remove page.  Note that we cannot destroy
1010 	 * the page here because we do not want to call the pager's
1011 	 * callback routine until after we've put the page on the
1012 	 * appropriate free queue.
1013 	 */
1014 	vm_pageq_remove_nowakeup(m);
1015 	vm_page_remove(m);
1016 
1017 	/*
1018 	 * If fictitious remove object association and
1019 	 * return, otherwise delay object association removal.
1020 	 */
1021 	if ((m->flags & PG_FICTITIOUS) != 0) {
1022 		return;
1023 	}
1024 
1025 	m->valid = 0;
1026 	vm_page_undirty(m);
1027 
1028 	if (m->wire_count != 0) {
1029 		if (m->wire_count > 1) {
1030 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1031 				m->wire_count, (long)m->pindex);
1032 		}
1033 		panic("vm_page_free: freeing wired page");
1034 	}
1035 
1036 	/*
1037 	 * If we've exhausted the object's resident pages we want to free
1038 	 * it up.
1039 	 */
1040 	if (object &&
1041 	    (object->type == OBJT_VNODE) &&
1042 	    ((object->flags & OBJ_DEAD) == 0)
1043 	) {
1044 		struct vnode *vp = (struct vnode *)object->handle;
1045 
1046 		if (vp) {
1047 			VI_LOCK(vp);
1048 			if (VSHOULDFREE(vp))
1049 				vfree(vp);
1050 			VI_UNLOCK(vp);
1051 		}
1052 	}
1053 
1054 	/*
1055 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1056 	 */
1057 	if (m->flags & PG_UNMANAGED) {
1058 		m->flags &= ~PG_UNMANAGED;
1059 	}
1060 
1061 	if (m->hold_count != 0) {
1062 		m->flags &= ~PG_ZERO;
1063 		m->queue = PQ_HOLD;
1064 	} else
1065 		m->queue = PQ_FREE + m->pc;
1066 	pq = &vm_page_queues[m->queue];
1067 	mtx_lock_spin(&vm_page_queue_free_mtx);
1068 	pq->lcnt++;
1069 	++(*pq->cnt);
1070 
1071 	/*
1072 	 * Put zero'd pages on the end ( where we look for zero'd pages
1073 	 * first ) and non-zerod pages at the head.
1074 	 */
1075 	if (m->flags & PG_ZERO) {
1076 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1077 		++vm_page_zero_count;
1078 	} else {
1079 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1080 	}
1081 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1082 	vm_page_free_wakeup();
1083 }
1084 
1085 /*
1086  *	vm_page_unmanage:
1087  *
1088  * 	Prevent PV management from being done on the page.  The page is
1089  *	removed from the paging queues as if it were wired, and as a
1090  *	consequence of no longer being managed the pageout daemon will not
1091  *	touch it (since there is no way to locate the pte mappings for the
1092  *	page).  madvise() calls that mess with the pmap will also no longer
1093  *	operate on the page.
1094  *
1095  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1096  *	will clear the flag.
1097  *
1098  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1099  *	physical memory as backing store rather then swap-backed memory and
1100  *	will eventually be extended to support 4MB unmanaged physical
1101  *	mappings.
1102  */
1103 void
1104 vm_page_unmanage(vm_page_t m)
1105 {
1106 
1107 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1108 	if ((m->flags & PG_UNMANAGED) == 0) {
1109 		if (m->wire_count == 0)
1110 			vm_pageq_remove(m);
1111 	}
1112 	vm_page_flag_set(m, PG_UNMANAGED);
1113 }
1114 
1115 /*
1116  *	vm_page_wire:
1117  *
1118  *	Mark this page as wired down by yet
1119  *	another map, removing it from paging queues
1120  *	as necessary.
1121  *
1122  *	The page queues must be locked.
1123  *	This routine may not block.
1124  */
1125 void
1126 vm_page_wire(vm_page_t m)
1127 {
1128 
1129 	/*
1130 	 * Only bump the wire statistics if the page is not already wired,
1131 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1132 	 * it is already off the queues).
1133 	 */
1134 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1135 	if (m->flags & PG_FICTITIOUS)
1136 		return;
1137 	if (m->wire_count == 0) {
1138 		if ((m->flags & PG_UNMANAGED) == 0)
1139 			vm_pageq_remove(m);
1140 		atomic_add_int(&cnt.v_wire_count, 1);
1141 	}
1142 	m->wire_count++;
1143 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1144 }
1145 
1146 /*
1147  *	vm_page_unwire:
1148  *
1149  *	Release one wiring of this page, potentially
1150  *	enabling it to be paged again.
1151  *
1152  *	Many pages placed on the inactive queue should actually go
1153  *	into the cache, but it is difficult to figure out which.  What
1154  *	we do instead, if the inactive target is well met, is to put
1155  *	clean pages at the head of the inactive queue instead of the tail.
1156  *	This will cause them to be moved to the cache more quickly and
1157  *	if not actively re-referenced, freed more quickly.  If we just
1158  *	stick these pages at the end of the inactive queue, heavy filesystem
1159  *	meta-data accesses can cause an unnecessary paging load on memory bound
1160  *	processes.  This optimization causes one-time-use metadata to be
1161  *	reused more quickly.
1162  *
1163  *	BUT, if we are in a low-memory situation we have no choice but to
1164  *	put clean pages on the cache queue.
1165  *
1166  *	A number of routines use vm_page_unwire() to guarantee that the page
1167  *	will go into either the inactive or active queues, and will NEVER
1168  *	be placed in the cache - for example, just after dirtying a page.
1169  *	dirty pages in the cache are not allowed.
1170  *
1171  *	The page queues must be locked.
1172  *	This routine may not block.
1173  */
1174 void
1175 vm_page_unwire(vm_page_t m, int activate)
1176 {
1177 
1178 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1179 	if (m->flags & PG_FICTITIOUS)
1180 		return;
1181 	if (m->wire_count > 0) {
1182 		m->wire_count--;
1183 		if (m->wire_count == 0) {
1184 			atomic_subtract_int(&cnt.v_wire_count, 1);
1185 			if (m->flags & PG_UNMANAGED) {
1186 				;
1187 			} else if (activate)
1188 				vm_pageq_enqueue(PQ_ACTIVE, m);
1189 			else {
1190 				vm_page_flag_clear(m, PG_WINATCFLS);
1191 				vm_pageq_enqueue(PQ_INACTIVE, m);
1192 			}
1193 		}
1194 	} else {
1195 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1196 	}
1197 }
1198 
1199 
1200 /*
1201  * Move the specified page to the inactive queue.  If the page has
1202  * any associated swap, the swap is deallocated.
1203  *
1204  * Normally athead is 0 resulting in LRU operation.  athead is set
1205  * to 1 if we want this page to be 'as if it were placed in the cache',
1206  * except without unmapping it from the process address space.
1207  *
1208  * This routine may not block.
1209  */
1210 static __inline void
1211 _vm_page_deactivate(vm_page_t m, int athead)
1212 {
1213 
1214 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1215 
1216 	/*
1217 	 * Ignore if already inactive.
1218 	 */
1219 	if (m->queue == PQ_INACTIVE)
1220 		return;
1221 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1222 		if ((m->queue - m->pc) == PQ_CACHE)
1223 			cnt.v_reactivated++;
1224 		vm_page_flag_clear(m, PG_WINATCFLS);
1225 		vm_pageq_remove(m);
1226 		if (athead)
1227 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1228 		else
1229 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1230 		m->queue = PQ_INACTIVE;
1231 		vm_page_queues[PQ_INACTIVE].lcnt++;
1232 		cnt.v_inactive_count++;
1233 	}
1234 }
1235 
1236 void
1237 vm_page_deactivate(vm_page_t m)
1238 {
1239     _vm_page_deactivate(m, 0);
1240 }
1241 
1242 /*
1243  * vm_page_try_to_cache:
1244  *
1245  * Returns 0 on failure, 1 on success
1246  */
1247 int
1248 vm_page_try_to_cache(vm_page_t m)
1249 {
1250 
1251 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1252 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1253 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1254 		return (0);
1255 	}
1256 	pmap_remove_all(m);
1257 	if (m->dirty)
1258 		return (0);
1259 	vm_page_cache(m);
1260 	return (1);
1261 }
1262 
1263 /*
1264  * vm_page_try_to_free()
1265  *
1266  *	Attempt to free the page.  If we cannot free it, we do nothing.
1267  *	1 is returned on success, 0 on failure.
1268  */
1269 int
1270 vm_page_try_to_free(vm_page_t m)
1271 {
1272 
1273 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1274 	if (m->object != NULL)
1275 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1276 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1277 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1278 		return (0);
1279 	}
1280 	pmap_remove_all(m);
1281 	if (m->dirty)
1282 		return (0);
1283 	vm_page_busy(m);
1284 	vm_page_free(m);
1285 	return (1);
1286 }
1287 
1288 /*
1289  * vm_page_cache
1290  *
1291  * Put the specified page onto the page cache queue (if appropriate).
1292  *
1293  * This routine may not block.
1294  */
1295 void
1296 vm_page_cache(vm_page_t m)
1297 {
1298 
1299 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1300 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1301 	    m->hold_count || m->wire_count) {
1302 		printf("vm_page_cache: attempting to cache busy page\n");
1303 		return;
1304 	}
1305 	if ((m->queue - m->pc) == PQ_CACHE)
1306 		return;
1307 
1308 	/*
1309 	 * Remove all pmaps and indicate that the page is not
1310 	 * writeable or mapped.
1311 	 */
1312 	pmap_remove_all(m);
1313 	if (m->dirty != 0) {
1314 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1315 			(long)m->pindex);
1316 	}
1317 	vm_pageq_remove_nowakeup(m);
1318 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1319 	vm_page_free_wakeup();
1320 }
1321 
1322 /*
1323  * vm_page_dontneed
1324  *
1325  *	Cache, deactivate, or do nothing as appropriate.  This routine
1326  *	is typically used by madvise() MADV_DONTNEED.
1327  *
1328  *	Generally speaking we want to move the page into the cache so
1329  *	it gets reused quickly.  However, this can result in a silly syndrome
1330  *	due to the page recycling too quickly.  Small objects will not be
1331  *	fully cached.  On the otherhand, if we move the page to the inactive
1332  *	queue we wind up with a problem whereby very large objects
1333  *	unnecessarily blow away our inactive and cache queues.
1334  *
1335  *	The solution is to move the pages based on a fixed weighting.  We
1336  *	either leave them alone, deactivate them, or move them to the cache,
1337  *	where moving them to the cache has the highest weighting.
1338  *	By forcing some pages into other queues we eventually force the
1339  *	system to balance the queues, potentially recovering other unrelated
1340  *	space from active.  The idea is to not force this to happen too
1341  *	often.
1342  */
1343 void
1344 vm_page_dontneed(vm_page_t m)
1345 {
1346 	static int dnweight;
1347 	int dnw;
1348 	int head;
1349 
1350 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1351 	dnw = ++dnweight;
1352 
1353 	/*
1354 	 * occassionally leave the page alone
1355 	 */
1356 	if ((dnw & 0x01F0) == 0 ||
1357 	    m->queue == PQ_INACTIVE ||
1358 	    m->queue - m->pc == PQ_CACHE
1359 	) {
1360 		if (m->act_count >= ACT_INIT)
1361 			--m->act_count;
1362 		return;
1363 	}
1364 
1365 	if (m->dirty == 0 && pmap_is_modified(m))
1366 		vm_page_dirty(m);
1367 
1368 	if (m->dirty || (dnw & 0x0070) == 0) {
1369 		/*
1370 		 * Deactivate the page 3 times out of 32.
1371 		 */
1372 		head = 0;
1373 	} else {
1374 		/*
1375 		 * Cache the page 28 times out of every 32.  Note that
1376 		 * the page is deactivated instead of cached, but placed
1377 		 * at the head of the queue instead of the tail.
1378 		 */
1379 		head = 1;
1380 	}
1381 	_vm_page_deactivate(m, head);
1382 }
1383 
1384 /*
1385  * Grab a page, waiting until we are waken up due to the page
1386  * changing state.  We keep on waiting, if the page continues
1387  * to be in the object.  If the page doesn't exist, first allocate it
1388  * and then conditionally zero it.
1389  *
1390  * This routine may block.
1391  */
1392 vm_page_t
1393 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1394 {
1395 	vm_page_t m;
1396 
1397 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1398 retrylookup:
1399 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1400 		vm_page_lock_queues();
1401 		if (m->busy || (m->flags & PG_BUSY)) {
1402 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1403 			VM_OBJECT_UNLOCK(object);
1404 			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1405 			VM_OBJECT_LOCK(object);
1406 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1407 				return (NULL);
1408 			goto retrylookup;
1409 		} else {
1410 			if (allocflags & VM_ALLOC_WIRED)
1411 				vm_page_wire(m);
1412 			vm_page_busy(m);
1413 			vm_page_unlock_queues();
1414 			return (m);
1415 		}
1416 	}
1417 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1418 	if (m == NULL) {
1419 		VM_OBJECT_UNLOCK(object);
1420 		VM_WAIT;
1421 		VM_OBJECT_LOCK(object);
1422 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1423 			return (NULL);
1424 		goto retrylookup;
1425 	}
1426 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1427 		pmap_zero_page(m);
1428 	return (m);
1429 }
1430 
1431 /*
1432  * Mapping function for valid bits or for dirty bits in
1433  * a page.  May not block.
1434  *
1435  * Inputs are required to range within a page.
1436  */
1437 __inline int
1438 vm_page_bits(int base, int size)
1439 {
1440 	int first_bit;
1441 	int last_bit;
1442 
1443 	KASSERT(
1444 	    base + size <= PAGE_SIZE,
1445 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1446 	);
1447 
1448 	if (size == 0)		/* handle degenerate case */
1449 		return (0);
1450 
1451 	first_bit = base >> DEV_BSHIFT;
1452 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1453 
1454 	return ((2 << last_bit) - (1 << first_bit));
1455 }
1456 
1457 /*
1458  *	vm_page_set_validclean:
1459  *
1460  *	Sets portions of a page valid and clean.  The arguments are expected
1461  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1462  *	of any partial chunks touched by the range.  The invalid portion of
1463  *	such chunks will be zero'd.
1464  *
1465  *	This routine may not block.
1466  *
1467  *	(base + size) must be less then or equal to PAGE_SIZE.
1468  */
1469 void
1470 vm_page_set_validclean(vm_page_t m, int base, int size)
1471 {
1472 	int pagebits;
1473 	int frag;
1474 	int endoff;
1475 
1476 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1477 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1478 	if (size == 0)	/* handle degenerate case */
1479 		return;
1480 
1481 	/*
1482 	 * If the base is not DEV_BSIZE aligned and the valid
1483 	 * bit is clear, we have to zero out a portion of the
1484 	 * first block.
1485 	 */
1486 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1487 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1488 		pmap_zero_page_area(m, frag, base - frag);
1489 
1490 	/*
1491 	 * If the ending offset is not DEV_BSIZE aligned and the
1492 	 * valid bit is clear, we have to zero out a portion of
1493 	 * the last block.
1494 	 */
1495 	endoff = base + size;
1496 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1497 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1498 		pmap_zero_page_area(m, endoff,
1499 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1500 
1501 	/*
1502 	 * Set valid, clear dirty bits.  If validating the entire
1503 	 * page we can safely clear the pmap modify bit.  We also
1504 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1505 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1506 	 * be set again.
1507 	 *
1508 	 * We set valid bits inclusive of any overlap, but we can only
1509 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1510 	 * the range.
1511 	 */
1512 	pagebits = vm_page_bits(base, size);
1513 	m->valid |= pagebits;
1514 #if 0	/* NOT YET */
1515 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1516 		frag = DEV_BSIZE - frag;
1517 		base += frag;
1518 		size -= frag;
1519 		if (size < 0)
1520 			size = 0;
1521 	}
1522 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1523 #endif
1524 	m->dirty &= ~pagebits;
1525 	if (base == 0 && size == PAGE_SIZE) {
1526 		pmap_clear_modify(m);
1527 		vm_page_flag_clear(m, PG_NOSYNC);
1528 	}
1529 }
1530 
1531 void
1532 vm_page_clear_dirty(vm_page_t m, int base, int size)
1533 {
1534 
1535 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1536 	m->dirty &= ~vm_page_bits(base, size);
1537 }
1538 
1539 /*
1540  *	vm_page_set_invalid:
1541  *
1542  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1543  *	valid and dirty bits for the effected areas are cleared.
1544  *
1545  *	May not block.
1546  */
1547 void
1548 vm_page_set_invalid(vm_page_t m, int base, int size)
1549 {
1550 	int bits;
1551 
1552 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1553 	bits = vm_page_bits(base, size);
1554 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1555 	m->valid &= ~bits;
1556 	m->dirty &= ~bits;
1557 	m->object->generation++;
1558 }
1559 
1560 /*
1561  * vm_page_zero_invalid()
1562  *
1563  *	The kernel assumes that the invalid portions of a page contain
1564  *	garbage, but such pages can be mapped into memory by user code.
1565  *	When this occurs, we must zero out the non-valid portions of the
1566  *	page so user code sees what it expects.
1567  *
1568  *	Pages are most often semi-valid when the end of a file is mapped
1569  *	into memory and the file's size is not page aligned.
1570  */
1571 void
1572 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1573 {
1574 	int b;
1575 	int i;
1576 
1577 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1578 	/*
1579 	 * Scan the valid bits looking for invalid sections that
1580 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1581 	 * valid bit may be set ) have already been zerod by
1582 	 * vm_page_set_validclean().
1583 	 */
1584 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1585 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1586 		    (m->valid & (1 << i))
1587 		) {
1588 			if (i > b) {
1589 				pmap_zero_page_area(m,
1590 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1591 			}
1592 			b = i + 1;
1593 		}
1594 	}
1595 
1596 	/*
1597 	 * setvalid is TRUE when we can safely set the zero'd areas
1598 	 * as being valid.  We can do this if there are no cache consistancy
1599 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1600 	 */
1601 	if (setvalid)
1602 		m->valid = VM_PAGE_BITS_ALL;
1603 }
1604 
1605 /*
1606  *	vm_page_is_valid:
1607  *
1608  *	Is (partial) page valid?  Note that the case where size == 0
1609  *	will return FALSE in the degenerate case where the page is
1610  *	entirely invalid, and TRUE otherwise.
1611  *
1612  *	May not block.
1613  */
1614 int
1615 vm_page_is_valid(vm_page_t m, int base, int size)
1616 {
1617 	int bits = vm_page_bits(base, size);
1618 
1619 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1620 	if (m->valid && ((m->valid & bits) == bits))
1621 		return 1;
1622 	else
1623 		return 0;
1624 }
1625 
1626 /*
1627  * update dirty bits from pmap/mmu.  May not block.
1628  */
1629 void
1630 vm_page_test_dirty(vm_page_t m)
1631 {
1632 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1633 		vm_page_dirty(m);
1634 	}
1635 }
1636 
1637 int so_zerocp_fullpage = 0;
1638 
1639 void
1640 vm_page_cowfault(vm_page_t m)
1641 {
1642 	vm_page_t mnew;
1643 	vm_object_t object;
1644 	vm_pindex_t pindex;
1645 
1646 	object = m->object;
1647 	pindex = m->pindex;
1648 	vm_page_busy(m);
1649 
1650  retry_alloc:
1651 	vm_page_remove(m);
1652 	/*
1653 	 * An interrupt allocation is requested because the page
1654 	 * queues lock is held.
1655 	 */
1656 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1657 	if (mnew == NULL) {
1658 		vm_page_insert(m, object, pindex);
1659 		vm_page_unlock_queues();
1660 		VM_OBJECT_UNLOCK(object);
1661 		VM_WAIT;
1662 		VM_OBJECT_LOCK(object);
1663 		vm_page_lock_queues();
1664 		goto retry_alloc;
1665 	}
1666 
1667 	if (m->cow == 0) {
1668 		/*
1669 		 * check to see if we raced with an xmit complete when
1670 		 * waiting to allocate a page.  If so, put things back
1671 		 * the way they were
1672 		 */
1673 		vm_page_busy(mnew);
1674 		vm_page_free(mnew);
1675 		vm_page_insert(m, object, pindex);
1676 	} else { /* clear COW & copy page */
1677 		if (!so_zerocp_fullpage)
1678 			pmap_copy_page(m, mnew);
1679 		mnew->valid = VM_PAGE_BITS_ALL;
1680 		vm_page_dirty(mnew);
1681 		vm_page_flag_clear(mnew, PG_BUSY);
1682 	}
1683 }
1684 
1685 void
1686 vm_page_cowclear(vm_page_t m)
1687 {
1688 
1689 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1690 	if (m->cow) {
1691 		m->cow--;
1692 		/*
1693 		 * let vm_fault add back write permission  lazily
1694 		 */
1695 	}
1696 	/*
1697 	 *  sf_buf_free() will free the page, so we needn't do it here
1698 	 */
1699 }
1700 
1701 void
1702 vm_page_cowsetup(vm_page_t m)
1703 {
1704 
1705 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1706 	m->cow++;
1707 	pmap_page_protect(m, VM_PROT_READ);
1708 }
1709 
1710 #include "opt_ddb.h"
1711 #ifdef DDB
1712 #include <sys/kernel.h>
1713 
1714 #include <ddb/ddb.h>
1715 
1716 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1717 {
1718 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1719 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1720 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1721 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1722 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1723 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1724 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1725 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1726 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1727 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1728 }
1729 
1730 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1731 {
1732 	int i;
1733 	db_printf("PQ_FREE:");
1734 	for (i = 0; i < PQ_L2_SIZE; i++) {
1735 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1736 	}
1737 	db_printf("\n");
1738 
1739 	db_printf("PQ_CACHE:");
1740 	for (i = 0; i < PQ_L2_SIZE; i++) {
1741 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1742 	}
1743 	db_printf("\n");
1744 
1745 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1746 		vm_page_queues[PQ_ACTIVE].lcnt,
1747 		vm_page_queues[PQ_INACTIVE].lcnt);
1748 }
1749 #endif /* DDB */
1750