1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /* 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/lock.h> 105 #include <sys/malloc.h> 106 #include <sys/mutex.h> 107 #include <sys/proc.h> 108 #include <sys/vmmeter.h> 109 #include <sys/vnode.h> 110 111 #include <vm/vm.h> 112 #include <vm/vm_param.h> 113 #include <vm/vm_kern.h> 114 #include <vm/vm_object.h> 115 #include <vm/vm_page.h> 116 #include <vm/vm_pageout.h> 117 #include <vm/vm_pager.h> 118 #include <vm/vm_extern.h> 119 #include <vm/uma.h> 120 #include <vm/uma_int.h> 121 122 /* 123 * Associated with page of user-allocatable memory is a 124 * page structure. 125 */ 126 127 struct mtx vm_page_queue_mtx; 128 struct mtx vm_page_queue_free_mtx; 129 130 vm_page_t vm_page_array = 0; 131 int vm_page_array_size = 0; 132 long first_page = 0; 133 int vm_page_zero_count = 0; 134 135 /* 136 * vm_set_page_size: 137 * 138 * Sets the page size, perhaps based upon the memory 139 * size. Must be called before any use of page-size 140 * dependent functions. 141 */ 142 void 143 vm_set_page_size(void) 144 { 145 if (cnt.v_page_size == 0) 146 cnt.v_page_size = PAGE_SIZE; 147 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 148 panic("vm_set_page_size: page size not a power of two"); 149 } 150 151 /* 152 * vm_page_startup: 153 * 154 * Initializes the resident memory module. 155 * 156 * Allocates memory for the page cells, and 157 * for the object/offset-to-page hash table headers. 158 * Each page cell is initialized and placed on the free list. 159 */ 160 vm_offset_t 161 vm_page_startup(vm_offset_t vaddr) 162 { 163 vm_offset_t mapped; 164 vm_size_t npages; 165 vm_paddr_t page_range; 166 vm_paddr_t new_end; 167 int i; 168 vm_paddr_t pa; 169 int nblocks; 170 vm_paddr_t last_pa; 171 172 /* the biggest memory array is the second group of pages */ 173 vm_paddr_t end; 174 vm_paddr_t biggestsize; 175 int biggestone; 176 177 vm_paddr_t total; 178 vm_size_t bootpages; 179 180 total = 0; 181 biggestsize = 0; 182 biggestone = 0; 183 nblocks = 0; 184 vaddr = round_page(vaddr); 185 186 for (i = 0; phys_avail[i + 1]; i += 2) { 187 phys_avail[i] = round_page(phys_avail[i]); 188 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 189 } 190 191 for (i = 0; phys_avail[i + 1]; i += 2) { 192 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 193 194 if (size > biggestsize) { 195 biggestone = i; 196 biggestsize = size; 197 } 198 ++nblocks; 199 total += size; 200 } 201 202 end = phys_avail[biggestone+1]; 203 204 /* 205 * Initialize the locks. 206 */ 207 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF); 208 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 209 MTX_SPIN); 210 211 /* 212 * Initialize the queue headers for the free queue, the active queue 213 * and the inactive queue. 214 */ 215 vm_pageq_init(); 216 217 /* 218 * Allocate memory for use when boot strapping the kernel memory 219 * allocator. 220 */ 221 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 222 new_end = end - bootpages; 223 new_end = trunc_page(new_end); 224 mapped = pmap_map(&vaddr, new_end, end, 225 VM_PROT_READ | VM_PROT_WRITE); 226 bzero((caddr_t) mapped, end - new_end); 227 uma_startup((caddr_t)mapped); 228 229 /* 230 * Compute the number of pages of memory that will be available for 231 * use (taking into account the overhead of a page structure per 232 * page). 233 */ 234 first_page = phys_avail[0] / PAGE_SIZE; 235 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 236 npages = (total - (page_range * sizeof(struct vm_page)) - 237 (end - new_end)) / PAGE_SIZE; 238 end = new_end; 239 240 /* 241 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 242 */ 243 vaddr += PAGE_SIZE; 244 245 /* 246 * Initialize the mem entry structures now, and put them in the free 247 * queue. 248 */ 249 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 250 mapped = pmap_map(&vaddr, new_end, end, 251 VM_PROT_READ | VM_PROT_WRITE); 252 vm_page_array = (vm_page_t) mapped; 253 phys_avail[biggestone + 1] = new_end; 254 255 /* 256 * Clear all of the page structures 257 */ 258 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 259 vm_page_array_size = page_range; 260 261 /* 262 * Construct the free queue(s) in descending order (by physical 263 * address) so that the first 16MB of physical memory is allocated 264 * last rather than first. On large-memory machines, this avoids 265 * the exhaustion of low physical memory before isa_dmainit has run. 266 */ 267 cnt.v_page_count = 0; 268 cnt.v_free_count = 0; 269 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 270 pa = phys_avail[i]; 271 last_pa = phys_avail[i + 1]; 272 while (pa < last_pa && npages-- > 0) { 273 vm_pageq_add_new_page(pa); 274 pa += PAGE_SIZE; 275 } 276 } 277 return (vaddr); 278 } 279 280 void 281 vm_page_flag_set(vm_page_t m, unsigned short bits) 282 { 283 284 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 285 m->flags |= bits; 286 } 287 288 void 289 vm_page_flag_clear(vm_page_t m, unsigned short bits) 290 { 291 292 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 293 m->flags &= ~bits; 294 } 295 296 void 297 vm_page_busy(vm_page_t m) 298 { 299 KASSERT((m->flags & PG_BUSY) == 0, 300 ("vm_page_busy: page already busy!!!")); 301 vm_page_flag_set(m, PG_BUSY); 302 } 303 304 /* 305 * vm_page_flash: 306 * 307 * wakeup anyone waiting for the page. 308 */ 309 void 310 vm_page_flash(vm_page_t m) 311 { 312 if (m->flags & PG_WANTED) { 313 vm_page_flag_clear(m, PG_WANTED); 314 wakeup(m); 315 } 316 } 317 318 /* 319 * vm_page_wakeup: 320 * 321 * clear the PG_BUSY flag and wakeup anyone waiting for the 322 * page. 323 * 324 */ 325 void 326 vm_page_wakeup(vm_page_t m) 327 { 328 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 329 vm_page_flag_clear(m, PG_BUSY); 330 vm_page_flash(m); 331 } 332 333 void 334 vm_page_io_start(vm_page_t m) 335 { 336 337 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 338 m->busy++; 339 } 340 341 void 342 vm_page_io_finish(vm_page_t m) 343 { 344 345 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 346 m->busy--; 347 if (m->busy == 0) 348 vm_page_flash(m); 349 } 350 351 /* 352 * Keep page from being freed by the page daemon 353 * much of the same effect as wiring, except much lower 354 * overhead and should be used only for *very* temporary 355 * holding ("wiring"). 356 */ 357 void 358 vm_page_hold(vm_page_t mem) 359 { 360 361 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 362 mem->hold_count++; 363 } 364 365 void 366 vm_page_unhold(vm_page_t mem) 367 { 368 369 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 370 --mem->hold_count; 371 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 372 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 373 vm_page_free_toq(mem); 374 } 375 376 /* 377 * vm_page_free: 378 * 379 * Free a page 380 * 381 * The clearing of PG_ZERO is a temporary safety until the code can be 382 * reviewed to determine that PG_ZERO is being properly cleared on 383 * write faults or maps. PG_ZERO was previously cleared in 384 * vm_page_alloc(). 385 */ 386 void 387 vm_page_free(vm_page_t m) 388 { 389 vm_page_flag_clear(m, PG_ZERO); 390 vm_page_free_toq(m); 391 vm_page_zero_idle_wakeup(); 392 } 393 394 /* 395 * vm_page_free_zero: 396 * 397 * Free a page to the zerod-pages queue 398 */ 399 void 400 vm_page_free_zero(vm_page_t m) 401 { 402 vm_page_flag_set(m, PG_ZERO); 403 vm_page_free_toq(m); 404 } 405 406 /* 407 * vm_page_sleep_if_busy: 408 * 409 * Sleep and release the page queues lock if PG_BUSY is set or, 410 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 411 * thread slept and the page queues lock was released. 412 * Otherwise, retains the page queues lock and returns FALSE. 413 */ 414 int 415 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 416 { 417 int is_object_locked; 418 419 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 420 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 421 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 422 /* 423 * Remove mtx_owned() after vm_object locking is finished. 424 */ 425 if ((is_object_locked = m->object != NULL && 426 mtx_owned(&m->object->mtx))) 427 mtx_unlock(&m->object->mtx); 428 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 429 if (is_object_locked) 430 mtx_lock(&m->object->mtx); 431 return (TRUE); 432 } 433 return (FALSE); 434 } 435 436 /* 437 * vm_page_dirty: 438 * 439 * make page all dirty 440 */ 441 void 442 vm_page_dirty(vm_page_t m) 443 { 444 KASSERT(m->queue - m->pc != PQ_CACHE, 445 ("vm_page_dirty: page in cache!")); 446 KASSERT(m->queue - m->pc != PQ_FREE, 447 ("vm_page_dirty: page is free!")); 448 m->dirty = VM_PAGE_BITS_ALL; 449 } 450 451 /* 452 * vm_page_splay: 453 * 454 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 455 * the vm_page containing the given pindex. If, however, that 456 * pindex is not found in the vm_object, returns a vm_page that is 457 * adjacent to the pindex, coming before or after it. 458 */ 459 vm_page_t 460 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 461 { 462 struct vm_page dummy; 463 vm_page_t lefttreemax, righttreemin, y; 464 465 if (root == NULL) 466 return (root); 467 lefttreemax = righttreemin = &dummy; 468 for (;; root = y) { 469 if (pindex < root->pindex) { 470 if ((y = root->left) == NULL) 471 break; 472 if (pindex < y->pindex) { 473 /* Rotate right. */ 474 root->left = y->right; 475 y->right = root; 476 root = y; 477 if ((y = root->left) == NULL) 478 break; 479 } 480 /* Link into the new root's right tree. */ 481 righttreemin->left = root; 482 righttreemin = root; 483 } else if (pindex > root->pindex) { 484 if ((y = root->right) == NULL) 485 break; 486 if (pindex > y->pindex) { 487 /* Rotate left. */ 488 root->right = y->left; 489 y->left = root; 490 root = y; 491 if ((y = root->right) == NULL) 492 break; 493 } 494 /* Link into the new root's left tree. */ 495 lefttreemax->right = root; 496 lefttreemax = root; 497 } else 498 break; 499 } 500 /* Assemble the new root. */ 501 lefttreemax->right = root->left; 502 righttreemin->left = root->right; 503 root->left = dummy.right; 504 root->right = dummy.left; 505 return (root); 506 } 507 508 /* 509 * vm_page_insert: [ internal use only ] 510 * 511 * Inserts the given mem entry into the object and object list. 512 * 513 * The pagetables are not updated but will presumably fault the page 514 * in if necessary, or if a kernel page the caller will at some point 515 * enter the page into the kernel's pmap. We are not allowed to block 516 * here so we *can't* do this anyway. 517 * 518 * The object and page must be locked. 519 * This routine may not block. 520 */ 521 void 522 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 523 { 524 vm_page_t root; 525 526 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 527 if (m->object != NULL) 528 panic("vm_page_insert: page already inserted"); 529 530 /* 531 * Record the object/offset pair in this page 532 */ 533 m->object = object; 534 m->pindex = pindex; 535 536 /* 537 * Now link into the object's ordered list of backed pages. 538 */ 539 root = object->root; 540 if (root == NULL) { 541 m->left = NULL; 542 m->right = NULL; 543 TAILQ_INSERT_TAIL(&object->memq, m, listq); 544 } else { 545 root = vm_page_splay(pindex, root); 546 if (pindex < root->pindex) { 547 m->left = root->left; 548 m->right = root; 549 root->left = NULL; 550 TAILQ_INSERT_BEFORE(root, m, listq); 551 } else if (pindex == root->pindex) 552 panic("vm_page_insert: offset already allocated"); 553 else { 554 m->right = root->right; 555 m->left = root; 556 root->right = NULL; 557 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 558 } 559 } 560 object->root = m; 561 object->generation++; 562 563 /* 564 * show that the object has one more resident page. 565 */ 566 object->resident_page_count++; 567 568 /* 569 * Since we are inserting a new and possibly dirty page, 570 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 571 */ 572 if (m->flags & PG_WRITEABLE) 573 vm_object_set_writeable_dirty(object); 574 } 575 576 /* 577 * vm_page_remove: 578 * NOTE: used by device pager as well -wfj 579 * 580 * Removes the given mem entry from the object/offset-page 581 * table and the object page list, but do not invalidate/terminate 582 * the backing store. 583 * 584 * The object and page must be locked. 585 * The underlying pmap entry (if any) is NOT removed here. 586 * This routine may not block. 587 */ 588 void 589 vm_page_remove(vm_page_t m) 590 { 591 vm_object_t object; 592 vm_page_t root; 593 594 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 595 if (m->object == NULL) 596 return; 597 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 598 if ((m->flags & PG_BUSY) == 0) { 599 panic("vm_page_remove: page not busy"); 600 } 601 602 /* 603 * Basically destroy the page. 604 */ 605 vm_page_wakeup(m); 606 607 object = m->object; 608 609 /* 610 * Now remove from the object's list of backed pages. 611 */ 612 if (m != object->root) 613 vm_page_splay(m->pindex, object->root); 614 if (m->left == NULL) 615 root = m->right; 616 else { 617 root = vm_page_splay(m->pindex, m->left); 618 root->right = m->right; 619 } 620 object->root = root; 621 TAILQ_REMOVE(&object->memq, m, listq); 622 623 /* 624 * And show that the object has one fewer resident page. 625 */ 626 object->resident_page_count--; 627 object->generation++; 628 629 m->object = NULL; 630 } 631 632 /* 633 * vm_page_lookup: 634 * 635 * Returns the page associated with the object/offset 636 * pair specified; if none is found, NULL is returned. 637 * 638 * The object must be locked. 639 * This routine may not block. 640 * This is a critical path routine 641 */ 642 vm_page_t 643 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 644 { 645 vm_page_t m; 646 647 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 648 if ((m = object->root) != NULL && m->pindex != pindex) { 649 m = vm_page_splay(pindex, m); 650 if ((object->root = m)->pindex != pindex) 651 m = NULL; 652 } 653 return (m); 654 } 655 656 /* 657 * vm_page_rename: 658 * 659 * Move the given memory entry from its 660 * current object to the specified target object/offset. 661 * 662 * The object must be locked. 663 * This routine may not block. 664 * 665 * Note: swap associated with the page must be invalidated by the move. We 666 * have to do this for several reasons: (1) we aren't freeing the 667 * page, (2) we are dirtying the page, (3) the VM system is probably 668 * moving the page from object A to B, and will then later move 669 * the backing store from A to B and we can't have a conflict. 670 * 671 * Note: we *always* dirty the page. It is necessary both for the 672 * fact that we moved it, and because we may be invalidating 673 * swap. If the page is on the cache, we have to deactivate it 674 * or vm_page_dirty() will panic. Dirty pages are not allowed 675 * on the cache. 676 */ 677 void 678 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 679 { 680 681 vm_page_remove(m); 682 vm_page_insert(m, new_object, new_pindex); 683 if (m->queue - m->pc == PQ_CACHE) 684 vm_page_deactivate(m); 685 vm_page_dirty(m); 686 } 687 688 /* 689 * vm_page_select_cache: 690 * 691 * Find a page on the cache queue with color optimization. As pages 692 * might be found, but not applicable, they are deactivated. This 693 * keeps us from using potentially busy cached pages. 694 * 695 * This routine may not block. 696 */ 697 vm_page_t 698 vm_page_select_cache(int color) 699 { 700 vm_page_t m; 701 702 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 703 while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) { 704 if ((m->flags & PG_BUSY) == 0 && m->busy == 0 && 705 m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) || 706 VM_OBJECT_LOCKED(m->object))) { 707 KASSERT(m->dirty == 0, 708 ("Found dirty cache page %p", m)); 709 KASSERT(!pmap_page_is_mapped(m), 710 ("Found mapped cache page %p", m)); 711 KASSERT((m->flags & PG_UNMANAGED) == 0, 712 ("Found unmanaged cache page %p", m)); 713 KASSERT(m->wire_count == 0, 714 ("Found wired cache page %p", m)); 715 break; 716 } 717 vm_page_deactivate(m); 718 } 719 return (m); 720 } 721 722 /* 723 * vm_page_alloc: 724 * 725 * Allocate and return a memory cell associated 726 * with this VM object/offset pair. 727 * 728 * page_req classes: 729 * VM_ALLOC_NORMAL normal process request 730 * VM_ALLOC_SYSTEM system *really* needs a page 731 * VM_ALLOC_INTERRUPT interrupt time request 732 * VM_ALLOC_ZERO zero page 733 * 734 * This routine may not block. 735 * 736 * Additional special handling is required when called from an 737 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 738 * the page cache in this case. 739 */ 740 vm_page_t 741 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 742 { 743 vm_object_t m_object; 744 vm_page_t m = NULL; 745 int color, flags, page_req; 746 747 page_req = req & VM_ALLOC_CLASS_MASK; 748 749 if ((req & VM_ALLOC_NOOBJ) == 0) { 750 KASSERT(object != NULL, 751 ("vm_page_alloc: NULL object.")); 752 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 753 color = (pindex + object->pg_color) & PQ_L2_MASK; 754 } else 755 color = pindex & PQ_L2_MASK; 756 757 /* 758 * The pager is allowed to eat deeper into the free page list. 759 */ 760 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 761 page_req = VM_ALLOC_SYSTEM; 762 }; 763 764 loop: 765 mtx_lock_spin(&vm_page_queue_free_mtx); 766 if (cnt.v_free_count > cnt.v_free_reserved || 767 (page_req == VM_ALLOC_SYSTEM && 768 cnt.v_cache_count == 0 && 769 cnt.v_free_count > cnt.v_interrupt_free_min) || 770 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 771 /* 772 * Allocate from the free queue if the number of free pages 773 * exceeds the minimum for the request class. 774 */ 775 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 776 } else if (page_req != VM_ALLOC_INTERRUPT) { 777 mtx_unlock_spin(&vm_page_queue_free_mtx); 778 /* 779 * Allocatable from cache (non-interrupt only). On success, 780 * we must free the page and try again, thus ensuring that 781 * cnt.v_*_free_min counters are replenished. 782 */ 783 vm_page_lock_queues(); 784 if ((m = vm_page_select_cache(color)) == NULL) { 785 #if defined(DIAGNOSTIC) 786 if (cnt.v_cache_count > 0) 787 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 788 #endif 789 vm_page_unlock_queues(); 790 atomic_add_int(&vm_pageout_deficit, 1); 791 pagedaemon_wakeup(); 792 return (NULL); 793 } 794 m_object = m->object; 795 VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED); 796 vm_page_busy(m); 797 vm_page_free(m); 798 vm_page_unlock_queues(); 799 if (m_object != object) 800 VM_OBJECT_UNLOCK(m_object); 801 goto loop; 802 } else { 803 /* 804 * Not allocatable from cache from interrupt, give up. 805 */ 806 mtx_unlock_spin(&vm_page_queue_free_mtx); 807 atomic_add_int(&vm_pageout_deficit, 1); 808 pagedaemon_wakeup(); 809 return (NULL); 810 } 811 812 /* 813 * At this point we had better have found a good page. 814 */ 815 816 KASSERT( 817 m != NULL, 818 ("vm_page_alloc(): missing page on free queue") 819 ); 820 821 /* 822 * Remove from free queue 823 */ 824 vm_pageq_remove_nowakeup(m); 825 826 /* 827 * Initialize structure. Only the PG_ZERO flag is inherited. 828 */ 829 flags = PG_BUSY; 830 if (m->flags & PG_ZERO) { 831 vm_page_zero_count--; 832 if (req & VM_ALLOC_ZERO) 833 flags = PG_ZERO | PG_BUSY; 834 } 835 if (req & VM_ALLOC_NOOBJ) 836 flags &= ~PG_BUSY; 837 m->flags = flags; 838 if (req & VM_ALLOC_WIRED) { 839 atomic_add_int(&cnt.v_wire_count, 1); 840 m->wire_count = 1; 841 } else 842 m->wire_count = 0; 843 m->hold_count = 0; 844 m->act_count = 0; 845 m->busy = 0; 846 m->valid = 0; 847 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 848 mtx_unlock_spin(&vm_page_queue_free_mtx); 849 850 if ((req & VM_ALLOC_NOOBJ) == 0) 851 vm_page_insert(m, object, pindex); 852 else 853 m->pindex = pindex; 854 855 /* 856 * Don't wakeup too often - wakeup the pageout daemon when 857 * we would be nearly out of memory. 858 */ 859 if (vm_paging_needed()) 860 pagedaemon_wakeup(); 861 862 return (m); 863 } 864 865 /* 866 * vm_wait: (also see VM_WAIT macro) 867 * 868 * Block until free pages are available for allocation 869 * - Called in various places before memory allocations. 870 */ 871 void 872 vm_wait(void) 873 { 874 875 vm_page_lock_queues(); 876 if (curproc == pageproc) { 877 vm_pageout_pages_needed = 1; 878 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx, 879 PDROP | PSWP, "VMWait", 0); 880 } else { 881 if (!vm_pages_needed) { 882 vm_pages_needed = 1; 883 wakeup(&vm_pages_needed); 884 } 885 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM, 886 "vmwait", 0); 887 } 888 } 889 890 /* 891 * vm_waitpfault: (also see VM_WAITPFAULT macro) 892 * 893 * Block until free pages are available for allocation 894 * - Called only in vm_fault so that processes page faulting 895 * can be easily tracked. 896 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 897 * processes will be able to grab memory first. Do not change 898 * this balance without careful testing first. 899 */ 900 void 901 vm_waitpfault(void) 902 { 903 904 vm_page_lock_queues(); 905 if (!vm_pages_needed) { 906 vm_pages_needed = 1; 907 wakeup(&vm_pages_needed); 908 } 909 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER, 910 "pfault", 0); 911 } 912 913 /* 914 * vm_page_activate: 915 * 916 * Put the specified page on the active list (if appropriate). 917 * Ensure that act_count is at least ACT_INIT but do not otherwise 918 * mess with it. 919 * 920 * The page queues must be locked. 921 * This routine may not block. 922 */ 923 void 924 vm_page_activate(vm_page_t m) 925 { 926 927 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 928 if (m->queue != PQ_ACTIVE) { 929 if ((m->queue - m->pc) == PQ_CACHE) 930 cnt.v_reactivated++; 931 vm_pageq_remove(m); 932 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 933 if (m->act_count < ACT_INIT) 934 m->act_count = ACT_INIT; 935 vm_pageq_enqueue(PQ_ACTIVE, m); 936 } 937 } else { 938 if (m->act_count < ACT_INIT) 939 m->act_count = ACT_INIT; 940 } 941 } 942 943 /* 944 * vm_page_free_wakeup: 945 * 946 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 947 * routine is called when a page has been added to the cache or free 948 * queues. 949 * 950 * The page queues must be locked. 951 * This routine may not block. 952 */ 953 static __inline void 954 vm_page_free_wakeup(void) 955 { 956 957 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 958 /* 959 * if pageout daemon needs pages, then tell it that there are 960 * some free. 961 */ 962 if (vm_pageout_pages_needed && 963 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 964 wakeup(&vm_pageout_pages_needed); 965 vm_pageout_pages_needed = 0; 966 } 967 /* 968 * wakeup processes that are waiting on memory if we hit a 969 * high water mark. And wakeup scheduler process if we have 970 * lots of memory. this process will swapin processes. 971 */ 972 if (vm_pages_needed && !vm_page_count_min()) { 973 vm_pages_needed = 0; 974 wakeup(&cnt.v_free_count); 975 } 976 } 977 978 /* 979 * vm_page_free_toq: 980 * 981 * Returns the given page to the PQ_FREE list, 982 * disassociating it with any VM object. 983 * 984 * Object and page must be locked prior to entry. 985 * This routine may not block. 986 */ 987 988 void 989 vm_page_free_toq(vm_page_t m) 990 { 991 struct vpgqueues *pq; 992 vm_object_t object = m->object; 993 994 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 995 cnt.v_tfree++; 996 997 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 998 printf( 999 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1000 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1001 m->hold_count); 1002 if ((m->queue - m->pc) == PQ_FREE) 1003 panic("vm_page_free: freeing free page"); 1004 else 1005 panic("vm_page_free: freeing busy page"); 1006 } 1007 1008 /* 1009 * unqueue, then remove page. Note that we cannot destroy 1010 * the page here because we do not want to call the pager's 1011 * callback routine until after we've put the page on the 1012 * appropriate free queue. 1013 */ 1014 vm_pageq_remove_nowakeup(m); 1015 vm_page_remove(m); 1016 1017 /* 1018 * If fictitious remove object association and 1019 * return, otherwise delay object association removal. 1020 */ 1021 if ((m->flags & PG_FICTITIOUS) != 0) { 1022 return; 1023 } 1024 1025 m->valid = 0; 1026 vm_page_undirty(m); 1027 1028 if (m->wire_count != 0) { 1029 if (m->wire_count > 1) { 1030 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1031 m->wire_count, (long)m->pindex); 1032 } 1033 panic("vm_page_free: freeing wired page"); 1034 } 1035 1036 /* 1037 * If we've exhausted the object's resident pages we want to free 1038 * it up. 1039 */ 1040 if (object && 1041 (object->type == OBJT_VNODE) && 1042 ((object->flags & OBJ_DEAD) == 0) 1043 ) { 1044 struct vnode *vp = (struct vnode *)object->handle; 1045 1046 if (vp) { 1047 VI_LOCK(vp); 1048 if (VSHOULDFREE(vp)) 1049 vfree(vp); 1050 VI_UNLOCK(vp); 1051 } 1052 } 1053 1054 /* 1055 * Clear the UNMANAGED flag when freeing an unmanaged page. 1056 */ 1057 if (m->flags & PG_UNMANAGED) { 1058 m->flags &= ~PG_UNMANAGED; 1059 } 1060 1061 if (m->hold_count != 0) { 1062 m->flags &= ~PG_ZERO; 1063 m->queue = PQ_HOLD; 1064 } else 1065 m->queue = PQ_FREE + m->pc; 1066 pq = &vm_page_queues[m->queue]; 1067 mtx_lock_spin(&vm_page_queue_free_mtx); 1068 pq->lcnt++; 1069 ++(*pq->cnt); 1070 1071 /* 1072 * Put zero'd pages on the end ( where we look for zero'd pages 1073 * first ) and non-zerod pages at the head. 1074 */ 1075 if (m->flags & PG_ZERO) { 1076 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1077 ++vm_page_zero_count; 1078 } else { 1079 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1080 } 1081 mtx_unlock_spin(&vm_page_queue_free_mtx); 1082 vm_page_free_wakeup(); 1083 } 1084 1085 /* 1086 * vm_page_unmanage: 1087 * 1088 * Prevent PV management from being done on the page. The page is 1089 * removed from the paging queues as if it were wired, and as a 1090 * consequence of no longer being managed the pageout daemon will not 1091 * touch it (since there is no way to locate the pte mappings for the 1092 * page). madvise() calls that mess with the pmap will also no longer 1093 * operate on the page. 1094 * 1095 * Beyond that the page is still reasonably 'normal'. Freeing the page 1096 * will clear the flag. 1097 * 1098 * This routine is used by OBJT_PHYS objects - objects using unswappable 1099 * physical memory as backing store rather then swap-backed memory and 1100 * will eventually be extended to support 4MB unmanaged physical 1101 * mappings. 1102 */ 1103 void 1104 vm_page_unmanage(vm_page_t m) 1105 { 1106 1107 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1108 if ((m->flags & PG_UNMANAGED) == 0) { 1109 if (m->wire_count == 0) 1110 vm_pageq_remove(m); 1111 } 1112 vm_page_flag_set(m, PG_UNMANAGED); 1113 } 1114 1115 /* 1116 * vm_page_wire: 1117 * 1118 * Mark this page as wired down by yet 1119 * another map, removing it from paging queues 1120 * as necessary. 1121 * 1122 * The page queues must be locked. 1123 * This routine may not block. 1124 */ 1125 void 1126 vm_page_wire(vm_page_t m) 1127 { 1128 1129 /* 1130 * Only bump the wire statistics if the page is not already wired, 1131 * and only unqueue the page if it is on some queue (if it is unmanaged 1132 * it is already off the queues). 1133 */ 1134 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1135 if (m->flags & PG_FICTITIOUS) 1136 return; 1137 if (m->wire_count == 0) { 1138 if ((m->flags & PG_UNMANAGED) == 0) 1139 vm_pageq_remove(m); 1140 atomic_add_int(&cnt.v_wire_count, 1); 1141 } 1142 m->wire_count++; 1143 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1144 } 1145 1146 /* 1147 * vm_page_unwire: 1148 * 1149 * Release one wiring of this page, potentially 1150 * enabling it to be paged again. 1151 * 1152 * Many pages placed on the inactive queue should actually go 1153 * into the cache, but it is difficult to figure out which. What 1154 * we do instead, if the inactive target is well met, is to put 1155 * clean pages at the head of the inactive queue instead of the tail. 1156 * This will cause them to be moved to the cache more quickly and 1157 * if not actively re-referenced, freed more quickly. If we just 1158 * stick these pages at the end of the inactive queue, heavy filesystem 1159 * meta-data accesses can cause an unnecessary paging load on memory bound 1160 * processes. This optimization causes one-time-use metadata to be 1161 * reused more quickly. 1162 * 1163 * BUT, if we are in a low-memory situation we have no choice but to 1164 * put clean pages on the cache queue. 1165 * 1166 * A number of routines use vm_page_unwire() to guarantee that the page 1167 * will go into either the inactive or active queues, and will NEVER 1168 * be placed in the cache - for example, just after dirtying a page. 1169 * dirty pages in the cache are not allowed. 1170 * 1171 * The page queues must be locked. 1172 * This routine may not block. 1173 */ 1174 void 1175 vm_page_unwire(vm_page_t m, int activate) 1176 { 1177 1178 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1179 if (m->flags & PG_FICTITIOUS) 1180 return; 1181 if (m->wire_count > 0) { 1182 m->wire_count--; 1183 if (m->wire_count == 0) { 1184 atomic_subtract_int(&cnt.v_wire_count, 1); 1185 if (m->flags & PG_UNMANAGED) { 1186 ; 1187 } else if (activate) 1188 vm_pageq_enqueue(PQ_ACTIVE, m); 1189 else { 1190 vm_page_flag_clear(m, PG_WINATCFLS); 1191 vm_pageq_enqueue(PQ_INACTIVE, m); 1192 } 1193 } 1194 } else { 1195 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1196 } 1197 } 1198 1199 1200 /* 1201 * Move the specified page to the inactive queue. If the page has 1202 * any associated swap, the swap is deallocated. 1203 * 1204 * Normally athead is 0 resulting in LRU operation. athead is set 1205 * to 1 if we want this page to be 'as if it were placed in the cache', 1206 * except without unmapping it from the process address space. 1207 * 1208 * This routine may not block. 1209 */ 1210 static __inline void 1211 _vm_page_deactivate(vm_page_t m, int athead) 1212 { 1213 1214 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1215 1216 /* 1217 * Ignore if already inactive. 1218 */ 1219 if (m->queue == PQ_INACTIVE) 1220 return; 1221 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1222 if ((m->queue - m->pc) == PQ_CACHE) 1223 cnt.v_reactivated++; 1224 vm_page_flag_clear(m, PG_WINATCFLS); 1225 vm_pageq_remove(m); 1226 if (athead) 1227 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1228 else 1229 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1230 m->queue = PQ_INACTIVE; 1231 vm_page_queues[PQ_INACTIVE].lcnt++; 1232 cnt.v_inactive_count++; 1233 } 1234 } 1235 1236 void 1237 vm_page_deactivate(vm_page_t m) 1238 { 1239 _vm_page_deactivate(m, 0); 1240 } 1241 1242 /* 1243 * vm_page_try_to_cache: 1244 * 1245 * Returns 0 on failure, 1 on success 1246 */ 1247 int 1248 vm_page_try_to_cache(vm_page_t m) 1249 { 1250 1251 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1252 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1253 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1254 return (0); 1255 } 1256 pmap_remove_all(m); 1257 if (m->dirty) 1258 return (0); 1259 vm_page_cache(m); 1260 return (1); 1261 } 1262 1263 /* 1264 * vm_page_try_to_free() 1265 * 1266 * Attempt to free the page. If we cannot free it, we do nothing. 1267 * 1 is returned on success, 0 on failure. 1268 */ 1269 int 1270 vm_page_try_to_free(vm_page_t m) 1271 { 1272 1273 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1274 if (m->object != NULL) 1275 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1276 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1277 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1278 return (0); 1279 } 1280 pmap_remove_all(m); 1281 if (m->dirty) 1282 return (0); 1283 vm_page_busy(m); 1284 vm_page_free(m); 1285 return (1); 1286 } 1287 1288 /* 1289 * vm_page_cache 1290 * 1291 * Put the specified page onto the page cache queue (if appropriate). 1292 * 1293 * This routine may not block. 1294 */ 1295 void 1296 vm_page_cache(vm_page_t m) 1297 { 1298 1299 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1300 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 1301 m->hold_count || m->wire_count) { 1302 printf("vm_page_cache: attempting to cache busy page\n"); 1303 return; 1304 } 1305 if ((m->queue - m->pc) == PQ_CACHE) 1306 return; 1307 1308 /* 1309 * Remove all pmaps and indicate that the page is not 1310 * writeable or mapped. 1311 */ 1312 pmap_remove_all(m); 1313 if (m->dirty != 0) { 1314 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1315 (long)m->pindex); 1316 } 1317 vm_pageq_remove_nowakeup(m); 1318 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1319 vm_page_free_wakeup(); 1320 } 1321 1322 /* 1323 * vm_page_dontneed 1324 * 1325 * Cache, deactivate, or do nothing as appropriate. This routine 1326 * is typically used by madvise() MADV_DONTNEED. 1327 * 1328 * Generally speaking we want to move the page into the cache so 1329 * it gets reused quickly. However, this can result in a silly syndrome 1330 * due to the page recycling too quickly. Small objects will not be 1331 * fully cached. On the otherhand, if we move the page to the inactive 1332 * queue we wind up with a problem whereby very large objects 1333 * unnecessarily blow away our inactive and cache queues. 1334 * 1335 * The solution is to move the pages based on a fixed weighting. We 1336 * either leave them alone, deactivate them, or move them to the cache, 1337 * where moving them to the cache has the highest weighting. 1338 * By forcing some pages into other queues we eventually force the 1339 * system to balance the queues, potentially recovering other unrelated 1340 * space from active. The idea is to not force this to happen too 1341 * often. 1342 */ 1343 void 1344 vm_page_dontneed(vm_page_t m) 1345 { 1346 static int dnweight; 1347 int dnw; 1348 int head; 1349 1350 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1351 dnw = ++dnweight; 1352 1353 /* 1354 * occassionally leave the page alone 1355 */ 1356 if ((dnw & 0x01F0) == 0 || 1357 m->queue == PQ_INACTIVE || 1358 m->queue - m->pc == PQ_CACHE 1359 ) { 1360 if (m->act_count >= ACT_INIT) 1361 --m->act_count; 1362 return; 1363 } 1364 1365 if (m->dirty == 0 && pmap_is_modified(m)) 1366 vm_page_dirty(m); 1367 1368 if (m->dirty || (dnw & 0x0070) == 0) { 1369 /* 1370 * Deactivate the page 3 times out of 32. 1371 */ 1372 head = 0; 1373 } else { 1374 /* 1375 * Cache the page 28 times out of every 32. Note that 1376 * the page is deactivated instead of cached, but placed 1377 * at the head of the queue instead of the tail. 1378 */ 1379 head = 1; 1380 } 1381 _vm_page_deactivate(m, head); 1382 } 1383 1384 /* 1385 * Grab a page, waiting until we are waken up due to the page 1386 * changing state. We keep on waiting, if the page continues 1387 * to be in the object. If the page doesn't exist, first allocate it 1388 * and then conditionally zero it. 1389 * 1390 * This routine may block. 1391 */ 1392 vm_page_t 1393 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1394 { 1395 vm_page_t m; 1396 1397 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1398 retrylookup: 1399 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1400 vm_page_lock_queues(); 1401 if (m->busy || (m->flags & PG_BUSY)) { 1402 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1403 VM_OBJECT_UNLOCK(object); 1404 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0); 1405 VM_OBJECT_LOCK(object); 1406 if ((allocflags & VM_ALLOC_RETRY) == 0) 1407 return (NULL); 1408 goto retrylookup; 1409 } else { 1410 if (allocflags & VM_ALLOC_WIRED) 1411 vm_page_wire(m); 1412 vm_page_busy(m); 1413 vm_page_unlock_queues(); 1414 return (m); 1415 } 1416 } 1417 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1418 if (m == NULL) { 1419 VM_OBJECT_UNLOCK(object); 1420 VM_WAIT; 1421 VM_OBJECT_LOCK(object); 1422 if ((allocflags & VM_ALLOC_RETRY) == 0) 1423 return (NULL); 1424 goto retrylookup; 1425 } 1426 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1427 pmap_zero_page(m); 1428 return (m); 1429 } 1430 1431 /* 1432 * Mapping function for valid bits or for dirty bits in 1433 * a page. May not block. 1434 * 1435 * Inputs are required to range within a page. 1436 */ 1437 __inline int 1438 vm_page_bits(int base, int size) 1439 { 1440 int first_bit; 1441 int last_bit; 1442 1443 KASSERT( 1444 base + size <= PAGE_SIZE, 1445 ("vm_page_bits: illegal base/size %d/%d", base, size) 1446 ); 1447 1448 if (size == 0) /* handle degenerate case */ 1449 return (0); 1450 1451 first_bit = base >> DEV_BSHIFT; 1452 last_bit = (base + size - 1) >> DEV_BSHIFT; 1453 1454 return ((2 << last_bit) - (1 << first_bit)); 1455 } 1456 1457 /* 1458 * vm_page_set_validclean: 1459 * 1460 * Sets portions of a page valid and clean. The arguments are expected 1461 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1462 * of any partial chunks touched by the range. The invalid portion of 1463 * such chunks will be zero'd. 1464 * 1465 * This routine may not block. 1466 * 1467 * (base + size) must be less then or equal to PAGE_SIZE. 1468 */ 1469 void 1470 vm_page_set_validclean(vm_page_t m, int base, int size) 1471 { 1472 int pagebits; 1473 int frag; 1474 int endoff; 1475 1476 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1477 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1478 if (size == 0) /* handle degenerate case */ 1479 return; 1480 1481 /* 1482 * If the base is not DEV_BSIZE aligned and the valid 1483 * bit is clear, we have to zero out a portion of the 1484 * first block. 1485 */ 1486 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1487 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1488 pmap_zero_page_area(m, frag, base - frag); 1489 1490 /* 1491 * If the ending offset is not DEV_BSIZE aligned and the 1492 * valid bit is clear, we have to zero out a portion of 1493 * the last block. 1494 */ 1495 endoff = base + size; 1496 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1497 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1498 pmap_zero_page_area(m, endoff, 1499 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1500 1501 /* 1502 * Set valid, clear dirty bits. If validating the entire 1503 * page we can safely clear the pmap modify bit. We also 1504 * use this opportunity to clear the PG_NOSYNC flag. If a process 1505 * takes a write fault on a MAP_NOSYNC memory area the flag will 1506 * be set again. 1507 * 1508 * We set valid bits inclusive of any overlap, but we can only 1509 * clear dirty bits for DEV_BSIZE chunks that are fully within 1510 * the range. 1511 */ 1512 pagebits = vm_page_bits(base, size); 1513 m->valid |= pagebits; 1514 #if 0 /* NOT YET */ 1515 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1516 frag = DEV_BSIZE - frag; 1517 base += frag; 1518 size -= frag; 1519 if (size < 0) 1520 size = 0; 1521 } 1522 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1523 #endif 1524 m->dirty &= ~pagebits; 1525 if (base == 0 && size == PAGE_SIZE) { 1526 pmap_clear_modify(m); 1527 vm_page_flag_clear(m, PG_NOSYNC); 1528 } 1529 } 1530 1531 void 1532 vm_page_clear_dirty(vm_page_t m, int base, int size) 1533 { 1534 1535 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1536 m->dirty &= ~vm_page_bits(base, size); 1537 } 1538 1539 /* 1540 * vm_page_set_invalid: 1541 * 1542 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1543 * valid and dirty bits for the effected areas are cleared. 1544 * 1545 * May not block. 1546 */ 1547 void 1548 vm_page_set_invalid(vm_page_t m, int base, int size) 1549 { 1550 int bits; 1551 1552 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1553 bits = vm_page_bits(base, size); 1554 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1555 m->valid &= ~bits; 1556 m->dirty &= ~bits; 1557 m->object->generation++; 1558 } 1559 1560 /* 1561 * vm_page_zero_invalid() 1562 * 1563 * The kernel assumes that the invalid portions of a page contain 1564 * garbage, but such pages can be mapped into memory by user code. 1565 * When this occurs, we must zero out the non-valid portions of the 1566 * page so user code sees what it expects. 1567 * 1568 * Pages are most often semi-valid when the end of a file is mapped 1569 * into memory and the file's size is not page aligned. 1570 */ 1571 void 1572 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1573 { 1574 int b; 1575 int i; 1576 1577 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1578 /* 1579 * Scan the valid bits looking for invalid sections that 1580 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1581 * valid bit may be set ) have already been zerod by 1582 * vm_page_set_validclean(). 1583 */ 1584 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1585 if (i == (PAGE_SIZE / DEV_BSIZE) || 1586 (m->valid & (1 << i)) 1587 ) { 1588 if (i > b) { 1589 pmap_zero_page_area(m, 1590 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1591 } 1592 b = i + 1; 1593 } 1594 } 1595 1596 /* 1597 * setvalid is TRUE when we can safely set the zero'd areas 1598 * as being valid. We can do this if there are no cache consistancy 1599 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1600 */ 1601 if (setvalid) 1602 m->valid = VM_PAGE_BITS_ALL; 1603 } 1604 1605 /* 1606 * vm_page_is_valid: 1607 * 1608 * Is (partial) page valid? Note that the case where size == 0 1609 * will return FALSE in the degenerate case where the page is 1610 * entirely invalid, and TRUE otherwise. 1611 * 1612 * May not block. 1613 */ 1614 int 1615 vm_page_is_valid(vm_page_t m, int base, int size) 1616 { 1617 int bits = vm_page_bits(base, size); 1618 1619 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1620 if (m->valid && ((m->valid & bits) == bits)) 1621 return 1; 1622 else 1623 return 0; 1624 } 1625 1626 /* 1627 * update dirty bits from pmap/mmu. May not block. 1628 */ 1629 void 1630 vm_page_test_dirty(vm_page_t m) 1631 { 1632 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1633 vm_page_dirty(m); 1634 } 1635 } 1636 1637 int so_zerocp_fullpage = 0; 1638 1639 void 1640 vm_page_cowfault(vm_page_t m) 1641 { 1642 vm_page_t mnew; 1643 vm_object_t object; 1644 vm_pindex_t pindex; 1645 1646 object = m->object; 1647 pindex = m->pindex; 1648 vm_page_busy(m); 1649 1650 retry_alloc: 1651 vm_page_remove(m); 1652 /* 1653 * An interrupt allocation is requested because the page 1654 * queues lock is held. 1655 */ 1656 mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT); 1657 if (mnew == NULL) { 1658 vm_page_insert(m, object, pindex); 1659 vm_page_unlock_queues(); 1660 VM_OBJECT_UNLOCK(object); 1661 VM_WAIT; 1662 VM_OBJECT_LOCK(object); 1663 vm_page_lock_queues(); 1664 goto retry_alloc; 1665 } 1666 1667 if (m->cow == 0) { 1668 /* 1669 * check to see if we raced with an xmit complete when 1670 * waiting to allocate a page. If so, put things back 1671 * the way they were 1672 */ 1673 vm_page_busy(mnew); 1674 vm_page_free(mnew); 1675 vm_page_insert(m, object, pindex); 1676 } else { /* clear COW & copy page */ 1677 if (!so_zerocp_fullpage) 1678 pmap_copy_page(m, mnew); 1679 mnew->valid = VM_PAGE_BITS_ALL; 1680 vm_page_dirty(mnew); 1681 vm_page_flag_clear(mnew, PG_BUSY); 1682 } 1683 } 1684 1685 void 1686 vm_page_cowclear(vm_page_t m) 1687 { 1688 1689 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1690 if (m->cow) { 1691 m->cow--; 1692 /* 1693 * let vm_fault add back write permission lazily 1694 */ 1695 } 1696 /* 1697 * sf_buf_free() will free the page, so we needn't do it here 1698 */ 1699 } 1700 1701 void 1702 vm_page_cowsetup(vm_page_t m) 1703 { 1704 1705 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1706 m->cow++; 1707 pmap_page_protect(m, VM_PROT_READ); 1708 } 1709 1710 #include "opt_ddb.h" 1711 #ifdef DDB 1712 #include <sys/kernel.h> 1713 1714 #include <ddb/ddb.h> 1715 1716 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1717 { 1718 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1719 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1720 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1721 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1722 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1723 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1724 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1725 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1726 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1727 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1728 } 1729 1730 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1731 { 1732 int i; 1733 db_printf("PQ_FREE:"); 1734 for (i = 0; i < PQ_L2_SIZE; i++) { 1735 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1736 } 1737 db_printf("\n"); 1738 1739 db_printf("PQ_CACHE:"); 1740 for (i = 0; i < PQ_L2_SIZE; i++) { 1741 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1742 } 1743 db_printf("\n"); 1744 1745 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1746 vm_page_queues[PQ_ACTIVE].lcnt, 1747 vm_page_queues[PQ_INACTIVE].lcnt); 1748 } 1749 #endif /* DDB */ 1750