xref: /freebsd/sys/vm/vm_page.c (revision c96ae1968a6ab7056427a739bce81bf07447c2d4)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*-
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/malloc.h>
107 #include <sys/mutex.h>
108 #include <sys/proc.h>
109 #include <sys/sysctl.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 #include <machine/md_var.h>
125 
126 /*
127  *	Associated with page of user-allocatable memory is a
128  *	page structure.
129  */
130 
131 struct mtx vm_page_queue_mtx;
132 struct mtx vm_page_queue_free_mtx;
133 
134 vm_page_t vm_page_array = 0;
135 int vm_page_array_size = 0;
136 long first_page = 0;
137 int vm_page_zero_count = 0;
138 
139 static int boot_pages = UMA_BOOT_PAGES;
140 TUNABLE_INT("vm.boot_pages", &boot_pages);
141 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142 	"number of pages allocated for bootstrapping the VM system");
143 
144 /*
145  *	vm_set_page_size:
146  *
147  *	Sets the page size, perhaps based upon the memory
148  *	size.  Must be called before any use of page-size
149  *	dependent functions.
150  */
151 void
152 vm_set_page_size(void)
153 {
154 	if (cnt.v_page_size == 0)
155 		cnt.v_page_size = PAGE_SIZE;
156 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
157 		panic("vm_set_page_size: page size not a power of two");
158 }
159 
160 /*
161  *	vm_page_blacklist_lookup:
162  *
163  *	See if a physical address in this page has been listed
164  *	in the blacklist tunable.  Entries in the tunable are
165  *	separated by spaces or commas.  If an invalid integer is
166  *	encountered then the rest of the string is skipped.
167  */
168 static int
169 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
170 {
171 	vm_paddr_t bad;
172 	char *cp, *pos;
173 
174 	for (pos = list; *pos != '\0'; pos = cp) {
175 		bad = strtoq(pos, &cp, 0);
176 		if (*cp != '\0') {
177 			if (*cp == ' ' || *cp == ',') {
178 				cp++;
179 				if (cp == pos)
180 					continue;
181 			} else
182 				break;
183 		}
184 		if (pa == trunc_page(bad))
185 			return (1);
186 	}
187 	return (0);
188 }
189 
190 /*
191  *	vm_page_startup:
192  *
193  *	Initializes the resident memory module.
194  *
195  *	Allocates memory for the page cells, and
196  *	for the object/offset-to-page hash table headers.
197  *	Each page cell is initialized and placed on the free list.
198  */
199 vm_offset_t
200 vm_page_startup(vm_offset_t vaddr)
201 {
202 	vm_offset_t mapped;
203 	vm_size_t npages;
204 	vm_paddr_t page_range;
205 	vm_paddr_t new_end;
206 	int i;
207 	vm_paddr_t pa;
208 	int nblocks;
209 	vm_paddr_t last_pa;
210 	char *list;
211 
212 	/* the biggest memory array is the second group of pages */
213 	vm_paddr_t end;
214 	vm_paddr_t biggestsize;
215 	vm_paddr_t low_water, high_water;
216 	int biggestone;
217 
218 	vm_paddr_t total;
219 
220 	total = 0;
221 	biggestsize = 0;
222 	biggestone = 0;
223 	nblocks = 0;
224 	vaddr = round_page(vaddr);
225 
226 	for (i = 0; phys_avail[i + 1]; i += 2) {
227 		phys_avail[i] = round_page(phys_avail[i]);
228 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
229 	}
230 
231 	low_water = phys_avail[0];
232 	high_water = phys_avail[1];
233 
234 	for (i = 0; phys_avail[i + 1]; i += 2) {
235 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
236 
237 		if (size > biggestsize) {
238 			biggestone = i;
239 			biggestsize = size;
240 		}
241 		if (phys_avail[i] < low_water)
242 			low_water = phys_avail[i];
243 		if (phys_avail[i + 1] > high_water)
244 			high_water = phys_avail[i + 1];
245 		++nblocks;
246 		total += size;
247 	}
248 
249 	end = phys_avail[biggestone+1];
250 
251 	/*
252 	 * Initialize the locks.
253 	 */
254 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
255 	    MTX_RECURSE);
256 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
257 	    MTX_DEF);
258 
259 	/*
260 	 * Initialize the queue headers for the free queue, the active queue
261 	 * and the inactive queue.
262 	 */
263 	vm_pageq_init();
264 
265 	/*
266 	 * Allocate memory for use when boot strapping the kernel memory
267 	 * allocator.
268 	 */
269 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
270 	new_end = trunc_page(new_end);
271 	mapped = pmap_map(&vaddr, new_end, end,
272 	    VM_PROT_READ | VM_PROT_WRITE);
273 	bzero((void *)mapped, end - new_end);
274 	uma_startup((void *)mapped, boot_pages);
275 
276 #if defined(__amd64__) || defined(__i386__)
277 	/*
278 	 * Allocate a bitmap to indicate that a random physical page
279 	 * needs to be included in a minidump.
280 	 *
281 	 * The amd64 port needs this to indicate which direct map pages
282 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
283 	 *
284 	 * However, i386 still needs this workspace internally within the
285 	 * minidump code.  In theory, they are not needed on i386, but are
286 	 * included should the sf_buf code decide to use them.
287 	 */
288 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
289 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
290 	new_end -= vm_page_dump_size;
291 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
292 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
293 	bzero((void *)vm_page_dump, vm_page_dump_size);
294 #endif
295 	/*
296 	 * Compute the number of pages of memory that will be available for
297 	 * use (taking into account the overhead of a page structure per
298 	 * page).
299 	 */
300 	first_page = low_water / PAGE_SIZE;
301 	page_range = high_water / PAGE_SIZE - first_page;
302 	npages = (total - (page_range * sizeof(struct vm_page)) -
303 	    (end - new_end)) / PAGE_SIZE;
304 	end = new_end;
305 
306 	/*
307 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
308 	 */
309 	vaddr += PAGE_SIZE;
310 
311 	/*
312 	 * Initialize the mem entry structures now, and put them in the free
313 	 * queue.
314 	 */
315 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
316 	mapped = pmap_map(&vaddr, new_end, end,
317 	    VM_PROT_READ | VM_PROT_WRITE);
318 	vm_page_array = (vm_page_t) mapped;
319 #ifdef __amd64__
320 	/*
321 	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
322 	 * so the pages must be tracked for a crashdump to include this data.
323 	 * This includes the vm_page_array and the early UMA bootstrap pages.
324 	 */
325 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
326 		dump_add_page(pa);
327 #endif
328 	phys_avail[biggestone + 1] = new_end;
329 
330 	/*
331 	 * Clear all of the page structures
332 	 */
333 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
334 	vm_page_array_size = page_range;
335 
336 	/*
337 	 * This assertion tests the hypothesis that npages and total are
338 	 * redundant.  XXX
339 	 */
340 	page_range = 0;
341 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
342 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
343 	KASSERT(page_range == npages,
344 	    ("vm_page_startup: inconsistent page counts"));
345 
346 	/*
347 	 * Construct the free queue(s) in descending order (by physical
348 	 * address) so that the first 16MB of physical memory is allocated
349 	 * last rather than first.  On large-memory machines, this avoids
350 	 * the exhaustion of low physical memory before isa_dma_init has run.
351 	 */
352 	cnt.v_page_count = 0;
353 	cnt.v_free_count = 0;
354 	list = getenv("vm.blacklist");
355 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
356 		pa = phys_avail[i];
357 		last_pa = phys_avail[i + 1];
358 		while (pa < last_pa) {
359 			if (list != NULL &&
360 			    vm_page_blacklist_lookup(list, pa))
361 				printf("Skipping page with pa 0x%jx\n",
362 				    (uintmax_t)pa);
363 			else
364 				vm_pageq_add_new_page(pa);
365 			pa += PAGE_SIZE;
366 		}
367 	}
368 	freeenv(list);
369 	return (vaddr);
370 }
371 
372 void
373 vm_page_flag_set(vm_page_t m, unsigned short bits)
374 {
375 
376 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
377 	m->flags |= bits;
378 }
379 
380 void
381 vm_page_flag_clear(vm_page_t m, unsigned short bits)
382 {
383 
384 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
385 	m->flags &= ~bits;
386 }
387 
388 void
389 vm_page_busy(vm_page_t m)
390 {
391 
392 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
393 	KASSERT((m->oflags & VPO_BUSY) == 0,
394 	    ("vm_page_busy: page already busy!!!"));
395 	m->oflags |= VPO_BUSY;
396 }
397 
398 /*
399  *      vm_page_flash:
400  *
401  *      wakeup anyone waiting for the page.
402  */
403 void
404 vm_page_flash(vm_page_t m)
405 {
406 
407 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
408 	if (m->oflags & VPO_WANTED) {
409 		m->oflags &= ~VPO_WANTED;
410 		wakeup(m);
411 	}
412 }
413 
414 /*
415  *      vm_page_wakeup:
416  *
417  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
418  *      page.
419  *
420  */
421 void
422 vm_page_wakeup(vm_page_t m)
423 {
424 
425 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
426 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
427 	m->oflags &= ~VPO_BUSY;
428 	vm_page_flash(m);
429 }
430 
431 void
432 vm_page_io_start(vm_page_t m)
433 {
434 
435 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
436 	m->busy++;
437 }
438 
439 void
440 vm_page_io_finish(vm_page_t m)
441 {
442 
443 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
444 	m->busy--;
445 	if (m->busy == 0)
446 		vm_page_flash(m);
447 }
448 
449 /*
450  * Keep page from being freed by the page daemon
451  * much of the same effect as wiring, except much lower
452  * overhead and should be used only for *very* temporary
453  * holding ("wiring").
454  */
455 void
456 vm_page_hold(vm_page_t mem)
457 {
458 
459 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
460         mem->hold_count++;
461 }
462 
463 void
464 vm_page_unhold(vm_page_t mem)
465 {
466 
467 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
468 	--mem->hold_count;
469 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
470 	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
471 		vm_page_free_toq(mem);
472 }
473 
474 /*
475  *	vm_page_free:
476  *
477  *	Free a page
478  *
479  *	The clearing of PG_ZERO is a temporary safety until the code can be
480  *	reviewed to determine that PG_ZERO is being properly cleared on
481  *	write faults or maps.  PG_ZERO was previously cleared in
482  *	vm_page_alloc().
483  */
484 void
485 vm_page_free(vm_page_t m)
486 {
487 	vm_page_flag_clear(m, PG_ZERO);
488 	vm_page_free_toq(m);
489 	vm_page_zero_idle_wakeup();
490 }
491 
492 /*
493  *	vm_page_free_zero:
494  *
495  *	Free a page to the zerod-pages queue
496  */
497 void
498 vm_page_free_zero(vm_page_t m)
499 {
500 	vm_page_flag_set(m, PG_ZERO);
501 	vm_page_free_toq(m);
502 }
503 
504 /*
505  *	vm_page_sleep:
506  *
507  *	Sleep and release the page queues lock.
508  *
509  *	The object containing the given page must be locked.
510  */
511 void
512 vm_page_sleep(vm_page_t m, const char *msg)
513 {
514 
515 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
516 	if (!mtx_owned(&vm_page_queue_mtx))
517 		vm_page_lock_queues();
518 	vm_page_flag_set(m, PG_REFERENCED);
519 	vm_page_unlock_queues();
520 
521 	/*
522 	 * It's possible that while we sleep, the page will get
523 	 * unbusied and freed.  If we are holding the object
524 	 * lock, we will assume we hold a reference to the object
525 	 * such that even if m->object changes, we can re-lock
526 	 * it.
527 	 */
528 	m->oflags |= VPO_WANTED;
529 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
530 }
531 
532 /*
533  *	vm_page_dirty:
534  *
535  *	make page all dirty
536  */
537 void
538 vm_page_dirty(vm_page_t m)
539 {
540 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
541 	    ("vm_page_dirty: page in cache!"));
542 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
543 	    ("vm_page_dirty: page is free!"));
544 	m->dirty = VM_PAGE_BITS_ALL;
545 }
546 
547 /*
548  *	vm_page_splay:
549  *
550  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
551  *	the vm_page containing the given pindex.  If, however, that
552  *	pindex is not found in the vm_object, returns a vm_page that is
553  *	adjacent to the pindex, coming before or after it.
554  */
555 vm_page_t
556 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
557 {
558 	struct vm_page dummy;
559 	vm_page_t lefttreemax, righttreemin, y;
560 
561 	if (root == NULL)
562 		return (root);
563 	lefttreemax = righttreemin = &dummy;
564 	for (;; root = y) {
565 		if (pindex < root->pindex) {
566 			if ((y = root->left) == NULL)
567 				break;
568 			if (pindex < y->pindex) {
569 				/* Rotate right. */
570 				root->left = y->right;
571 				y->right = root;
572 				root = y;
573 				if ((y = root->left) == NULL)
574 					break;
575 			}
576 			/* Link into the new root's right tree. */
577 			righttreemin->left = root;
578 			righttreemin = root;
579 		} else if (pindex > root->pindex) {
580 			if ((y = root->right) == NULL)
581 				break;
582 			if (pindex > y->pindex) {
583 				/* Rotate left. */
584 				root->right = y->left;
585 				y->left = root;
586 				root = y;
587 				if ((y = root->right) == NULL)
588 					break;
589 			}
590 			/* Link into the new root's left tree. */
591 			lefttreemax->right = root;
592 			lefttreemax = root;
593 		} else
594 			break;
595 	}
596 	/* Assemble the new root. */
597 	lefttreemax->right = root->left;
598 	righttreemin->left = root->right;
599 	root->left = dummy.right;
600 	root->right = dummy.left;
601 	return (root);
602 }
603 
604 /*
605  *	vm_page_insert:		[ internal use only ]
606  *
607  *	Inserts the given mem entry into the object and object list.
608  *
609  *	The pagetables are not updated but will presumably fault the page
610  *	in if necessary, or if a kernel page the caller will at some point
611  *	enter the page into the kernel's pmap.  We are not allowed to block
612  *	here so we *can't* do this anyway.
613  *
614  *	The object and page must be locked.
615  *	This routine may not block.
616  */
617 void
618 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
619 {
620 	vm_page_t root;
621 
622 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
623 	if (m->object != NULL)
624 		panic("vm_page_insert: page already inserted");
625 
626 	/*
627 	 * Record the object/offset pair in this page
628 	 */
629 	m->object = object;
630 	m->pindex = pindex;
631 
632 	/*
633 	 * Now link into the object's ordered list of backed pages.
634 	 */
635 	root = object->root;
636 	if (root == NULL) {
637 		m->left = NULL;
638 		m->right = NULL;
639 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
640 	} else {
641 		root = vm_page_splay(pindex, root);
642 		if (pindex < root->pindex) {
643 			m->left = root->left;
644 			m->right = root;
645 			root->left = NULL;
646 			TAILQ_INSERT_BEFORE(root, m, listq);
647 		} else if (pindex == root->pindex)
648 			panic("vm_page_insert: offset already allocated");
649 		else {
650 			m->right = root->right;
651 			m->left = root;
652 			root->right = NULL;
653 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
654 		}
655 	}
656 	object->root = m;
657 	object->generation++;
658 
659 	/*
660 	 * show that the object has one more resident page.
661 	 */
662 	object->resident_page_count++;
663 	/*
664 	 * Hold the vnode until the last page is released.
665 	 */
666 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
667 		vhold((struct vnode *)object->handle);
668 
669 	/*
670 	 * Since we are inserting a new and possibly dirty page,
671 	 * update the object's OBJ_MIGHTBEDIRTY flag.
672 	 */
673 	if (m->flags & PG_WRITEABLE)
674 		vm_object_set_writeable_dirty(object);
675 }
676 
677 /*
678  *	vm_page_remove:
679  *				NOTE: used by device pager as well -wfj
680  *
681  *	Removes the given mem entry from the object/offset-page
682  *	table and the object page list, but do not invalidate/terminate
683  *	the backing store.
684  *
685  *	The object and page must be locked.
686  *	The underlying pmap entry (if any) is NOT removed here.
687  *	This routine may not block.
688  */
689 void
690 vm_page_remove(vm_page_t m)
691 {
692 	vm_object_t object;
693 	vm_page_t root;
694 
695 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
696 	if ((object = m->object) == NULL)
697 		return;
698 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
699 	if (m->oflags & VPO_BUSY) {
700 		m->oflags &= ~VPO_BUSY;
701 		vm_page_flash(m);
702 	}
703 
704 	/*
705 	 * Now remove from the object's list of backed pages.
706 	 */
707 	if (m != object->root)
708 		vm_page_splay(m->pindex, object->root);
709 	if (m->left == NULL)
710 		root = m->right;
711 	else {
712 		root = vm_page_splay(m->pindex, m->left);
713 		root->right = m->right;
714 	}
715 	object->root = root;
716 	TAILQ_REMOVE(&object->memq, m, listq);
717 
718 	/*
719 	 * And show that the object has one fewer resident page.
720 	 */
721 	object->resident_page_count--;
722 	object->generation++;
723 	/*
724 	 * The vnode may now be recycled.
725 	 */
726 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
727 		vdrop((struct vnode *)object->handle);
728 
729 	m->object = NULL;
730 }
731 
732 /*
733  *	vm_page_lookup:
734  *
735  *	Returns the page associated with the object/offset
736  *	pair specified; if none is found, NULL is returned.
737  *
738  *	The object must be locked.
739  *	This routine may not block.
740  *	This is a critical path routine
741  */
742 vm_page_t
743 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
744 {
745 	vm_page_t m;
746 
747 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
748 	if ((m = object->root) != NULL && m->pindex != pindex) {
749 		m = vm_page_splay(pindex, m);
750 		if ((object->root = m)->pindex != pindex)
751 			m = NULL;
752 	}
753 	return (m);
754 }
755 
756 /*
757  *	vm_page_rename:
758  *
759  *	Move the given memory entry from its
760  *	current object to the specified target object/offset.
761  *
762  *	The object must be locked.
763  *	This routine may not block.
764  *
765  *	Note: swap associated with the page must be invalidated by the move.  We
766  *	      have to do this for several reasons:  (1) we aren't freeing the
767  *	      page, (2) we are dirtying the page, (3) the VM system is probably
768  *	      moving the page from object A to B, and will then later move
769  *	      the backing store from A to B and we can't have a conflict.
770  *
771  *	Note: we *always* dirty the page.  It is necessary both for the
772  *	      fact that we moved it, and because we may be invalidating
773  *	      swap.  If the page is on the cache, we have to deactivate it
774  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
775  *	      on the cache.
776  */
777 void
778 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
779 {
780 
781 	vm_page_remove(m);
782 	vm_page_insert(m, new_object, new_pindex);
783 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
784 		vm_page_deactivate(m);
785 	vm_page_dirty(m);
786 }
787 
788 /*
789  *	vm_page_select_cache:
790  *
791  *	Move a page of the given color from the cache queue to the free
792  *	queue.  As pages might be found, but are not applicable, they are
793  *	deactivated.
794  *
795  *	This routine may not block.
796  */
797 vm_page_t
798 vm_page_select_cache(int color)
799 {
800 	vm_object_t object;
801 	vm_page_t m;
802 	boolean_t was_trylocked;
803 
804 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
805 	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
806 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
807 		KASSERT(!pmap_page_is_mapped(m),
808 		    ("Found mapped cache page %p", m));
809 		KASSERT((m->flags & PG_UNMANAGED) == 0,
810 		    ("Found unmanaged cache page %p", m));
811 		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
812 		if (m->hold_count == 0 && (object = m->object,
813 		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
814 		    VM_OBJECT_LOCKED(object))) {
815 			KASSERT((m->oflags & VPO_BUSY) == 0 && m->busy == 0,
816 			    ("Found busy cache page %p", m));
817 			vm_page_free(m);
818 			if (was_trylocked)
819 				VM_OBJECT_UNLOCK(object);
820 			break;
821 		}
822 		vm_page_deactivate(m);
823 	}
824 	return (m);
825 }
826 
827 /*
828  *	vm_page_alloc:
829  *
830  *	Allocate and return a memory cell associated
831  *	with this VM object/offset pair.
832  *
833  *	page_req classes:
834  *	VM_ALLOC_NORMAL		normal process request
835  *	VM_ALLOC_SYSTEM		system *really* needs a page
836  *	VM_ALLOC_INTERRUPT	interrupt time request
837  *	VM_ALLOC_ZERO		zero page
838  *
839  *	This routine may not block.
840  *
841  *	Additional special handling is required when called from an
842  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
843  *	the page cache in this case.
844  */
845 vm_page_t
846 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
847 {
848 	vm_page_t m = NULL;
849 	int color, flags, page_req;
850 
851 	page_req = req & VM_ALLOC_CLASS_MASK;
852 	KASSERT(curthread->td_intr_nesting_level == 0 ||
853 	    page_req == VM_ALLOC_INTERRUPT,
854 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
855 
856 	if ((req & VM_ALLOC_NOOBJ) == 0) {
857 		KASSERT(object != NULL,
858 		    ("vm_page_alloc: NULL object."));
859 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
860 		color = (pindex + object->pg_color) & PQ_COLORMASK;
861 	} else
862 		color = pindex & PQ_COLORMASK;
863 
864 	/*
865 	 * The pager is allowed to eat deeper into the free page list.
866 	 */
867 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
868 		page_req = VM_ALLOC_SYSTEM;
869 	};
870 
871 loop:
872 	mtx_lock(&vm_page_queue_free_mtx);
873 	if (cnt.v_free_count > cnt.v_free_reserved ||
874 	    (page_req == VM_ALLOC_SYSTEM &&
875 	     cnt.v_cache_count == 0 &&
876 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
877 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
878 		/*
879 		 * Allocate from the free queue if the number of free pages
880 		 * exceeds the minimum for the request class.
881 		 */
882 		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
883 	} else if (page_req != VM_ALLOC_INTERRUPT) {
884 		mtx_unlock(&vm_page_queue_free_mtx);
885 		/*
886 		 * Allocatable from cache (non-interrupt only).  On success,
887 		 * we must free the page and try again, thus ensuring that
888 		 * cnt.v_*_free_min counters are replenished.
889 		 */
890 		vm_page_lock_queues();
891 		if ((m = vm_page_select_cache(color)) == NULL) {
892 			KASSERT(cnt.v_cache_count == 0,
893 			    ("vm_page_alloc: cache queue is missing %d pages",
894 			    cnt.v_cache_count));
895 			vm_page_unlock_queues();
896 			atomic_add_int(&vm_pageout_deficit, 1);
897 			pagedaemon_wakeup();
898 
899 			if (page_req != VM_ALLOC_SYSTEM)
900 				return (NULL);
901 
902 			mtx_lock(&vm_page_queue_free_mtx);
903 			if (cnt.v_free_count <= cnt.v_interrupt_free_min) {
904 				mtx_unlock(&vm_page_queue_free_mtx);
905 				return (NULL);
906 			}
907 			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
908 		} else {
909 			vm_page_unlock_queues();
910 			goto loop;
911 		}
912 	} else {
913 		/*
914 		 * Not allocatable from cache from interrupt, give up.
915 		 */
916 		mtx_unlock(&vm_page_queue_free_mtx);
917 		atomic_add_int(&vm_pageout_deficit, 1);
918 		pagedaemon_wakeup();
919 		return (NULL);
920 	}
921 
922 	/*
923 	 *  At this point we had better have found a good page.
924 	 */
925 
926 	KASSERT(
927 	    m != NULL,
928 	    ("vm_page_alloc(): missing page on free queue")
929 	);
930 
931 	/*
932 	 * Remove from free queue
933 	 */
934 	vm_pageq_remove_nowakeup(m);
935 
936 	/*
937 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
938 	 */
939 	flags = 0;
940 	if (m->flags & PG_ZERO) {
941 		vm_page_zero_count--;
942 		if (req & VM_ALLOC_ZERO)
943 			flags = PG_ZERO;
944 	}
945 	m->flags = flags;
946 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
947 		m->oflags = 0;
948 	else
949 		m->oflags = VPO_BUSY;
950 	if (req & VM_ALLOC_WIRED) {
951 		atomic_add_int(&cnt.v_wire_count, 1);
952 		m->wire_count = 1;
953 	} else
954 		m->wire_count = 0;
955 	m->hold_count = 0;
956 	m->act_count = 0;
957 	m->busy = 0;
958 	m->valid = 0;
959 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
960 	mtx_unlock(&vm_page_queue_free_mtx);
961 
962 	if ((req & VM_ALLOC_NOOBJ) == 0)
963 		vm_page_insert(m, object, pindex);
964 	else
965 		m->pindex = pindex;
966 
967 	/*
968 	 * Don't wakeup too often - wakeup the pageout daemon when
969 	 * we would be nearly out of memory.
970 	 */
971 	if (vm_paging_needed())
972 		pagedaemon_wakeup();
973 
974 	return (m);
975 }
976 
977 /*
978  *	vm_wait:	(also see VM_WAIT macro)
979  *
980  *	Block until free pages are available for allocation
981  *	- Called in various places before memory allocations.
982  */
983 void
984 vm_wait(void)
985 {
986 
987 	vm_page_lock_queues();
988 	if (curproc == pageproc) {
989 		vm_pageout_pages_needed = 1;
990 		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
991 		    PDROP | PSWP, "VMWait", 0);
992 	} else {
993 		if (!vm_pages_needed) {
994 			vm_pages_needed = 1;
995 			wakeup(&vm_pages_needed);
996 		}
997 		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
998 		    "vmwait", 0);
999 	}
1000 }
1001 
1002 /*
1003  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1004  *
1005  *	Block until free pages are available for allocation
1006  *	- Called only in vm_fault so that processes page faulting
1007  *	  can be easily tracked.
1008  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1009  *	  processes will be able to grab memory first.  Do not change
1010  *	  this balance without careful testing first.
1011  */
1012 void
1013 vm_waitpfault(void)
1014 {
1015 
1016 	vm_page_lock_queues();
1017 	if (!vm_pages_needed) {
1018 		vm_pages_needed = 1;
1019 		wakeup(&vm_pages_needed);
1020 	}
1021 	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
1022 	    "pfault", 0);
1023 }
1024 
1025 /*
1026  *	vm_page_activate:
1027  *
1028  *	Put the specified page on the active list (if appropriate).
1029  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1030  *	mess with it.
1031  *
1032  *	The page queues must be locked.
1033  *	This routine may not block.
1034  */
1035 void
1036 vm_page_activate(vm_page_t m)
1037 {
1038 
1039 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1040 	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1041 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1042 			cnt.v_reactivated++;
1043 		vm_pageq_remove(m);
1044 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1045 			if (m->act_count < ACT_INIT)
1046 				m->act_count = ACT_INIT;
1047 			vm_pageq_enqueue(PQ_ACTIVE, m);
1048 		}
1049 	} else {
1050 		if (m->act_count < ACT_INIT)
1051 			m->act_count = ACT_INIT;
1052 	}
1053 }
1054 
1055 /*
1056  *	vm_page_free_wakeup:
1057  *
1058  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1059  *	routine is called when a page has been added to the cache or free
1060  *	queues.
1061  *
1062  *	The page queues must be locked.
1063  *	This routine may not block.
1064  */
1065 static inline void
1066 vm_page_free_wakeup(void)
1067 {
1068 
1069 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1070 	/*
1071 	 * if pageout daemon needs pages, then tell it that there are
1072 	 * some free.
1073 	 */
1074 	if (vm_pageout_pages_needed &&
1075 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1076 		wakeup(&vm_pageout_pages_needed);
1077 		vm_pageout_pages_needed = 0;
1078 	}
1079 	/*
1080 	 * wakeup processes that are waiting on memory if we hit a
1081 	 * high water mark. And wakeup scheduler process if we have
1082 	 * lots of memory. this process will swapin processes.
1083 	 */
1084 	if (vm_pages_needed && !vm_page_count_min()) {
1085 		vm_pages_needed = 0;
1086 		wakeup(&cnt.v_free_count);
1087 	}
1088 }
1089 
1090 /*
1091  *	vm_page_free_toq:
1092  *
1093  *	Returns the given page to the PQ_FREE list,
1094  *	disassociating it with any VM object.
1095  *
1096  *	Object and page must be locked prior to entry.
1097  *	This routine may not block.
1098  */
1099 
1100 void
1101 vm_page_free_toq(vm_page_t m)
1102 {
1103 	struct vpgqueues *pq;
1104 
1105 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1106 	KASSERT(!pmap_page_is_mapped(m),
1107 	    ("vm_page_free_toq: freeing mapped page %p", m));
1108 	cnt.v_tfree++;
1109 
1110 	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1111 		printf(
1112 		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1113 		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1114 		    m->hold_count);
1115 		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1116 			panic("vm_page_free: freeing free page");
1117 		else
1118 			panic("vm_page_free: freeing busy page");
1119 	}
1120 
1121 	/*
1122 	 * unqueue, then remove page.  Note that we cannot destroy
1123 	 * the page here because we do not want to call the pager's
1124 	 * callback routine until after we've put the page on the
1125 	 * appropriate free queue.
1126 	 */
1127 	vm_pageq_remove_nowakeup(m);
1128 	vm_page_remove(m);
1129 
1130 	/*
1131 	 * If fictitious remove object association and
1132 	 * return, otherwise delay object association removal.
1133 	 */
1134 	if ((m->flags & PG_FICTITIOUS) != 0) {
1135 		return;
1136 	}
1137 
1138 	m->valid = 0;
1139 	vm_page_undirty(m);
1140 
1141 	if (m->wire_count != 0) {
1142 		if (m->wire_count > 1) {
1143 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1144 				m->wire_count, (long)m->pindex);
1145 		}
1146 		panic("vm_page_free: freeing wired page");
1147 	}
1148 	if (m->hold_count != 0) {
1149 		m->flags &= ~PG_ZERO;
1150 		VM_PAGE_SETQUEUE2(m, PQ_HOLD);
1151 	} else
1152 		VM_PAGE_SETQUEUE1(m, PQ_FREE);
1153 	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1154 	mtx_lock(&vm_page_queue_free_mtx);
1155 	pq->lcnt++;
1156 	++(*pq->cnt);
1157 
1158 	/*
1159 	 * Put zero'd pages on the end ( where we look for zero'd pages
1160 	 * first ) and non-zerod pages at the head.
1161 	 */
1162 	if (m->flags & PG_ZERO) {
1163 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1164 		++vm_page_zero_count;
1165 	} else {
1166 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1167 	}
1168 	mtx_unlock(&vm_page_queue_free_mtx);
1169 	vm_page_free_wakeup();
1170 }
1171 
1172 /*
1173  *	vm_page_unmanage:
1174  *
1175  * 	Prevent PV management from being done on the page.  The page is
1176  *	removed from the paging queues as if it were wired, and as a
1177  *	consequence of no longer being managed the pageout daemon will not
1178  *	touch it (since there is no way to locate the pte mappings for the
1179  *	page).  madvise() calls that mess with the pmap will also no longer
1180  *	operate on the page.
1181  *
1182  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1183  *	will clear the flag.
1184  *
1185  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1186  *	physical memory as backing store rather then swap-backed memory and
1187  *	will eventually be extended to support 4MB unmanaged physical
1188  *	mappings.
1189  */
1190 void
1191 vm_page_unmanage(vm_page_t m)
1192 {
1193 
1194 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1195 	if ((m->flags & PG_UNMANAGED) == 0) {
1196 		if (m->wire_count == 0)
1197 			vm_pageq_remove(m);
1198 	}
1199 	vm_page_flag_set(m, PG_UNMANAGED);
1200 }
1201 
1202 /*
1203  *	vm_page_wire:
1204  *
1205  *	Mark this page as wired down by yet
1206  *	another map, removing it from paging queues
1207  *	as necessary.
1208  *
1209  *	The page queues must be locked.
1210  *	This routine may not block.
1211  */
1212 void
1213 vm_page_wire(vm_page_t m)
1214 {
1215 
1216 	/*
1217 	 * Only bump the wire statistics if the page is not already wired,
1218 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1219 	 * it is already off the queues).
1220 	 */
1221 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1222 	if (m->flags & PG_FICTITIOUS)
1223 		return;
1224 	if (m->wire_count == 0) {
1225 		if ((m->flags & PG_UNMANAGED) == 0)
1226 			vm_pageq_remove(m);
1227 		atomic_add_int(&cnt.v_wire_count, 1);
1228 	}
1229 	m->wire_count++;
1230 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1231 }
1232 
1233 /*
1234  *	vm_page_unwire:
1235  *
1236  *	Release one wiring of this page, potentially
1237  *	enabling it to be paged again.
1238  *
1239  *	Many pages placed on the inactive queue should actually go
1240  *	into the cache, but it is difficult to figure out which.  What
1241  *	we do instead, if the inactive target is well met, is to put
1242  *	clean pages at the head of the inactive queue instead of the tail.
1243  *	This will cause them to be moved to the cache more quickly and
1244  *	if not actively re-referenced, freed more quickly.  If we just
1245  *	stick these pages at the end of the inactive queue, heavy filesystem
1246  *	meta-data accesses can cause an unnecessary paging load on memory bound
1247  *	processes.  This optimization causes one-time-use metadata to be
1248  *	reused more quickly.
1249  *
1250  *	BUT, if we are in a low-memory situation we have no choice but to
1251  *	put clean pages on the cache queue.
1252  *
1253  *	A number of routines use vm_page_unwire() to guarantee that the page
1254  *	will go into either the inactive or active queues, and will NEVER
1255  *	be placed in the cache - for example, just after dirtying a page.
1256  *	dirty pages in the cache are not allowed.
1257  *
1258  *	The page queues must be locked.
1259  *	This routine may not block.
1260  */
1261 void
1262 vm_page_unwire(vm_page_t m, int activate)
1263 {
1264 
1265 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1266 	if (m->flags & PG_FICTITIOUS)
1267 		return;
1268 	if (m->wire_count > 0) {
1269 		m->wire_count--;
1270 		if (m->wire_count == 0) {
1271 			atomic_subtract_int(&cnt.v_wire_count, 1);
1272 			if (m->flags & PG_UNMANAGED) {
1273 				;
1274 			} else if (activate)
1275 				vm_pageq_enqueue(PQ_ACTIVE, m);
1276 			else {
1277 				vm_page_flag_clear(m, PG_WINATCFLS);
1278 				vm_pageq_enqueue(PQ_INACTIVE, m);
1279 			}
1280 		}
1281 	} else {
1282 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1283 	}
1284 }
1285 
1286 
1287 /*
1288  * Move the specified page to the inactive queue.  If the page has
1289  * any associated swap, the swap is deallocated.
1290  *
1291  * Normally athead is 0 resulting in LRU operation.  athead is set
1292  * to 1 if we want this page to be 'as if it were placed in the cache',
1293  * except without unmapping it from the process address space.
1294  *
1295  * This routine may not block.
1296  */
1297 static inline void
1298 _vm_page_deactivate(vm_page_t m, int athead)
1299 {
1300 
1301 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1302 
1303 	/*
1304 	 * Ignore if already inactive.
1305 	 */
1306 	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1307 		return;
1308 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1309 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1310 			cnt.v_reactivated++;
1311 		vm_page_flag_clear(m, PG_WINATCFLS);
1312 		vm_pageq_remove(m);
1313 		if (athead)
1314 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1315 		else
1316 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1317 		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1318 		vm_page_queues[PQ_INACTIVE].lcnt++;
1319 		cnt.v_inactive_count++;
1320 	}
1321 }
1322 
1323 void
1324 vm_page_deactivate(vm_page_t m)
1325 {
1326     _vm_page_deactivate(m, 0);
1327 }
1328 
1329 /*
1330  * vm_page_try_to_cache:
1331  *
1332  * Returns 0 on failure, 1 on success
1333  */
1334 int
1335 vm_page_try_to_cache(vm_page_t m)
1336 {
1337 
1338 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1339 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1340 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1341 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1342 		return (0);
1343 	}
1344 	pmap_remove_all(m);
1345 	if (m->dirty)
1346 		return (0);
1347 	vm_page_cache(m);
1348 	return (1);
1349 }
1350 
1351 /*
1352  * vm_page_try_to_free()
1353  *
1354  *	Attempt to free the page.  If we cannot free it, we do nothing.
1355  *	1 is returned on success, 0 on failure.
1356  */
1357 int
1358 vm_page_try_to_free(vm_page_t m)
1359 {
1360 
1361 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1362 	if (m->object != NULL)
1363 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1364 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1365 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1366 		return (0);
1367 	}
1368 	pmap_remove_all(m);
1369 	if (m->dirty)
1370 		return (0);
1371 	vm_page_free(m);
1372 	return (1);
1373 }
1374 
1375 /*
1376  * vm_page_cache
1377  *
1378  * Put the specified page onto the page cache queue (if appropriate).
1379  *
1380  * This routine may not block.
1381  */
1382 void
1383 vm_page_cache(vm_page_t m)
1384 {
1385 
1386 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1387 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1388 	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1389 	    m->hold_count || m->wire_count) {
1390 		printf("vm_page_cache: attempting to cache busy page\n");
1391 		return;
1392 	}
1393 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1394 		return;
1395 
1396 	/*
1397 	 * Remove all pmaps and indicate that the page is not
1398 	 * writeable or mapped.
1399 	 */
1400 	pmap_remove_all(m);
1401 	if (m->dirty != 0) {
1402 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1403 			(long)m->pindex);
1404 	}
1405 	vm_pageq_remove_nowakeup(m);
1406 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1407 	vm_page_free_wakeup();
1408 }
1409 
1410 /*
1411  * vm_page_dontneed
1412  *
1413  *	Cache, deactivate, or do nothing as appropriate.  This routine
1414  *	is typically used by madvise() MADV_DONTNEED.
1415  *
1416  *	Generally speaking we want to move the page into the cache so
1417  *	it gets reused quickly.  However, this can result in a silly syndrome
1418  *	due to the page recycling too quickly.  Small objects will not be
1419  *	fully cached.  On the otherhand, if we move the page to the inactive
1420  *	queue we wind up with a problem whereby very large objects
1421  *	unnecessarily blow away our inactive and cache queues.
1422  *
1423  *	The solution is to move the pages based on a fixed weighting.  We
1424  *	either leave them alone, deactivate them, or move them to the cache,
1425  *	where moving them to the cache has the highest weighting.
1426  *	By forcing some pages into other queues we eventually force the
1427  *	system to balance the queues, potentially recovering other unrelated
1428  *	space from active.  The idea is to not force this to happen too
1429  *	often.
1430  */
1431 void
1432 vm_page_dontneed(vm_page_t m)
1433 {
1434 	static int dnweight;
1435 	int dnw;
1436 	int head;
1437 
1438 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1439 	dnw = ++dnweight;
1440 
1441 	/*
1442 	 * occassionally leave the page alone
1443 	 */
1444 	if ((dnw & 0x01F0) == 0 ||
1445 	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1446 	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1447 	) {
1448 		if (m->act_count >= ACT_INIT)
1449 			--m->act_count;
1450 		return;
1451 	}
1452 
1453 	if (m->dirty == 0 && pmap_is_modified(m))
1454 		vm_page_dirty(m);
1455 
1456 	if (m->dirty || (dnw & 0x0070) == 0) {
1457 		/*
1458 		 * Deactivate the page 3 times out of 32.
1459 		 */
1460 		head = 0;
1461 	} else {
1462 		/*
1463 		 * Cache the page 28 times out of every 32.  Note that
1464 		 * the page is deactivated instead of cached, but placed
1465 		 * at the head of the queue instead of the tail.
1466 		 */
1467 		head = 1;
1468 	}
1469 	_vm_page_deactivate(m, head);
1470 }
1471 
1472 /*
1473  * Grab a page, waiting until we are waken up due to the page
1474  * changing state.  We keep on waiting, if the page continues
1475  * to be in the object.  If the page doesn't exist, first allocate it
1476  * and then conditionally zero it.
1477  *
1478  * This routine may block.
1479  */
1480 vm_page_t
1481 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1482 {
1483 	vm_page_t m;
1484 
1485 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1486 retrylookup:
1487 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1488 		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1489 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1490 				return (NULL);
1491 			goto retrylookup;
1492 		} else {
1493 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1494 				vm_page_lock_queues();
1495 				vm_page_wire(m);
1496 				vm_page_unlock_queues();
1497 			}
1498 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1499 				vm_page_busy(m);
1500 			return (m);
1501 		}
1502 	}
1503 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1504 	if (m == NULL) {
1505 		VM_OBJECT_UNLOCK(object);
1506 		VM_WAIT;
1507 		VM_OBJECT_LOCK(object);
1508 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1509 			return (NULL);
1510 		goto retrylookup;
1511 	}
1512 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1513 		pmap_zero_page(m);
1514 	return (m);
1515 }
1516 
1517 /*
1518  * Mapping function for valid bits or for dirty bits in
1519  * a page.  May not block.
1520  *
1521  * Inputs are required to range within a page.
1522  */
1523 inline int
1524 vm_page_bits(int base, int size)
1525 {
1526 	int first_bit;
1527 	int last_bit;
1528 
1529 	KASSERT(
1530 	    base + size <= PAGE_SIZE,
1531 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1532 	);
1533 
1534 	if (size == 0)		/* handle degenerate case */
1535 		return (0);
1536 
1537 	first_bit = base >> DEV_BSHIFT;
1538 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1539 
1540 	return ((2 << last_bit) - (1 << first_bit));
1541 }
1542 
1543 /*
1544  *	vm_page_set_validclean:
1545  *
1546  *	Sets portions of a page valid and clean.  The arguments are expected
1547  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1548  *	of any partial chunks touched by the range.  The invalid portion of
1549  *	such chunks will be zero'd.
1550  *
1551  *	This routine may not block.
1552  *
1553  *	(base + size) must be less then or equal to PAGE_SIZE.
1554  */
1555 void
1556 vm_page_set_validclean(vm_page_t m, int base, int size)
1557 {
1558 	int pagebits;
1559 	int frag;
1560 	int endoff;
1561 
1562 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1563 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1564 	if (size == 0)	/* handle degenerate case */
1565 		return;
1566 
1567 	/*
1568 	 * If the base is not DEV_BSIZE aligned and the valid
1569 	 * bit is clear, we have to zero out a portion of the
1570 	 * first block.
1571 	 */
1572 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1573 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1574 		pmap_zero_page_area(m, frag, base - frag);
1575 
1576 	/*
1577 	 * If the ending offset is not DEV_BSIZE aligned and the
1578 	 * valid bit is clear, we have to zero out a portion of
1579 	 * the last block.
1580 	 */
1581 	endoff = base + size;
1582 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1583 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1584 		pmap_zero_page_area(m, endoff,
1585 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1586 
1587 	/*
1588 	 * Set valid, clear dirty bits.  If validating the entire
1589 	 * page we can safely clear the pmap modify bit.  We also
1590 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1591 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1592 	 * be set again.
1593 	 *
1594 	 * We set valid bits inclusive of any overlap, but we can only
1595 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1596 	 * the range.
1597 	 */
1598 	pagebits = vm_page_bits(base, size);
1599 	m->valid |= pagebits;
1600 #if 0	/* NOT YET */
1601 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1602 		frag = DEV_BSIZE - frag;
1603 		base += frag;
1604 		size -= frag;
1605 		if (size < 0)
1606 			size = 0;
1607 	}
1608 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1609 #endif
1610 	m->dirty &= ~pagebits;
1611 	if (base == 0 && size == PAGE_SIZE) {
1612 		pmap_clear_modify(m);
1613 		m->oflags &= ~VPO_NOSYNC;
1614 	}
1615 }
1616 
1617 void
1618 vm_page_clear_dirty(vm_page_t m, int base, int size)
1619 {
1620 
1621 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1622 	m->dirty &= ~vm_page_bits(base, size);
1623 }
1624 
1625 /*
1626  *	vm_page_set_invalid:
1627  *
1628  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1629  *	valid and dirty bits for the effected areas are cleared.
1630  *
1631  *	May not block.
1632  */
1633 void
1634 vm_page_set_invalid(vm_page_t m, int base, int size)
1635 {
1636 	int bits;
1637 
1638 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1639 	bits = vm_page_bits(base, size);
1640 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1641 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1642 		pmap_remove_all(m);
1643 	m->valid &= ~bits;
1644 	m->dirty &= ~bits;
1645 	m->object->generation++;
1646 }
1647 
1648 /*
1649  * vm_page_zero_invalid()
1650  *
1651  *	The kernel assumes that the invalid portions of a page contain
1652  *	garbage, but such pages can be mapped into memory by user code.
1653  *	When this occurs, we must zero out the non-valid portions of the
1654  *	page so user code sees what it expects.
1655  *
1656  *	Pages are most often semi-valid when the end of a file is mapped
1657  *	into memory and the file's size is not page aligned.
1658  */
1659 void
1660 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1661 {
1662 	int b;
1663 	int i;
1664 
1665 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1666 	/*
1667 	 * Scan the valid bits looking for invalid sections that
1668 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1669 	 * valid bit may be set ) have already been zerod by
1670 	 * vm_page_set_validclean().
1671 	 */
1672 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1673 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1674 		    (m->valid & (1 << i))
1675 		) {
1676 			if (i > b) {
1677 				pmap_zero_page_area(m,
1678 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1679 			}
1680 			b = i + 1;
1681 		}
1682 	}
1683 
1684 	/*
1685 	 * setvalid is TRUE when we can safely set the zero'd areas
1686 	 * as being valid.  We can do this if there are no cache consistancy
1687 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1688 	 */
1689 	if (setvalid)
1690 		m->valid = VM_PAGE_BITS_ALL;
1691 }
1692 
1693 /*
1694  *	vm_page_is_valid:
1695  *
1696  *	Is (partial) page valid?  Note that the case where size == 0
1697  *	will return FALSE in the degenerate case where the page is
1698  *	entirely invalid, and TRUE otherwise.
1699  *
1700  *	May not block.
1701  */
1702 int
1703 vm_page_is_valid(vm_page_t m, int base, int size)
1704 {
1705 	int bits = vm_page_bits(base, size);
1706 
1707 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1708 	if (m->valid && ((m->valid & bits) == bits))
1709 		return 1;
1710 	else
1711 		return 0;
1712 }
1713 
1714 /*
1715  * update dirty bits from pmap/mmu.  May not block.
1716  */
1717 void
1718 vm_page_test_dirty(vm_page_t m)
1719 {
1720 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1721 		vm_page_dirty(m);
1722 	}
1723 }
1724 
1725 int so_zerocp_fullpage = 0;
1726 
1727 void
1728 vm_page_cowfault(vm_page_t m)
1729 {
1730 	vm_page_t mnew;
1731 	vm_object_t object;
1732 	vm_pindex_t pindex;
1733 
1734 	object = m->object;
1735 	pindex = m->pindex;
1736 
1737  retry_alloc:
1738 	pmap_remove_all(m);
1739 	vm_page_remove(m);
1740 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1741 	if (mnew == NULL) {
1742 		vm_page_insert(m, object, pindex);
1743 		vm_page_unlock_queues();
1744 		VM_OBJECT_UNLOCK(object);
1745 		VM_WAIT;
1746 		VM_OBJECT_LOCK(object);
1747 		vm_page_lock_queues();
1748 		goto retry_alloc;
1749 	}
1750 
1751 	if (m->cow == 0) {
1752 		/*
1753 		 * check to see if we raced with an xmit complete when
1754 		 * waiting to allocate a page.  If so, put things back
1755 		 * the way they were
1756 		 */
1757 		vm_page_free(mnew);
1758 		vm_page_insert(m, object, pindex);
1759 	} else { /* clear COW & copy page */
1760 		if (!so_zerocp_fullpage)
1761 			pmap_copy_page(m, mnew);
1762 		mnew->valid = VM_PAGE_BITS_ALL;
1763 		vm_page_dirty(mnew);
1764 		mnew->wire_count = m->wire_count - m->cow;
1765 		m->wire_count = m->cow;
1766 	}
1767 }
1768 
1769 void
1770 vm_page_cowclear(vm_page_t m)
1771 {
1772 
1773 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1774 	if (m->cow) {
1775 		m->cow--;
1776 		/*
1777 		 * let vm_fault add back write permission  lazily
1778 		 */
1779 	}
1780 	/*
1781 	 *  sf_buf_free() will free the page, so we needn't do it here
1782 	 */
1783 }
1784 
1785 void
1786 vm_page_cowsetup(vm_page_t m)
1787 {
1788 
1789 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1790 	m->cow++;
1791 	pmap_remove_write(m);
1792 }
1793 
1794 #include "opt_ddb.h"
1795 #ifdef DDB
1796 #include <sys/kernel.h>
1797 
1798 #include <ddb/ddb.h>
1799 
1800 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1801 {
1802 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1803 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1804 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1805 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1806 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1807 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1808 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1809 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1810 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1811 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1812 }
1813 
1814 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1815 {
1816 	int i;
1817 	db_printf("PQ_FREE:");
1818 	for (i = 0; i < PQ_NUMCOLORS; i++) {
1819 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1820 	}
1821 	db_printf("\n");
1822 
1823 	db_printf("PQ_CACHE:");
1824 	for (i = 0; i < PQ_NUMCOLORS; i++) {
1825 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1826 	}
1827 	db_printf("\n");
1828 
1829 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1830 		vm_page_queues[PQ_ACTIVE].lcnt,
1831 		vm_page_queues[PQ_INACTIVE].lcnt);
1832 }
1833 #endif /* DDB */
1834